
21 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Case Study on Formal Equivalence Verification Between a C/C++ Model and Its RTL Design / Raia, Gaetano; Rigano,
Gianluca; Vincenzoni, David; Martina, Maurizio. - ELETTRONICO. - 1:(2024), pp. 373-389. (Intervento presentato al
convegno Formal methods tenutosi a Milano (Italy) nel 9-13 September 2024) [10.1007/978-3-031-71177-0_23].

Original

A Case Study on Formal Equivalence Verification Between a C/C++ Model and Its RTL Design

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/978-3-031-71177-0_23

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-031-71177-0_23

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992530 since: 2024-09-16T17:57:11Z

Springer

A Case Study on Formal Equivalence Verification
between a C/C++ Model and its RTL Design

Gaetano Raia1, Gianluca Rigano2, David Vincenzoni2(�), and Maurizio
Martina1

1 Politecnico di Torino, Torino (TO), Italy
2 STMicroelectronics, Agrate Brianza (MB), Italy

gaetanomaria.raia@studenti.polito.it
gianluca.rigano@st.com
david.vincenzoni@st.com

maurizio.martina@polito.it

Abstract. In the field of communication system products, most datap-
ath Digital Signal Processing algorithms are initially developed at a high-
level in MATLAB® or C/C++. Subsequently, design engineers use these
models as a reference for implementing Register Transfer Level designs.
The conventional approach to verify their equivalence involves extensive
Universal Verification Methodology dynamic simulations, which can last
for months and require significant verification efforts. However, some elu-
sive errors might still occur because it is infeasible to explore all input
combinations with this method. On the other hand, Formal Equivalence
Verification aims to verify that a Register Transfer Level design is func-
tionally equivalent to the reference high-level C/C++ model across all
possible legal states. With recent advancements in formal solver technol-
ogy, Formal Equivalence Verification provides a distinct benefit by using
mathematical methods to ensure that the Register Transfer Level (timed)
matches the original high-level C/C++ model (untimed). This drasti-
cally reduces the verification time and ensures the exhaustive coverage
of the design state space. This paper presents an in-depth exploration of
complex Finite State Machine with datapath verification, specifically fo-
cusing on Multiplier-Accumulator, Tone Generator, and Automatic Gain
Control, by employing the formal equivalence methodology. Although
these signal processing blocks were previously validated throughout Uni-
versal Verification Methodology dynamic simulations, Formal Equiva-
lence Verification was able to identify hard-to-find bugs in just a few
weeks by utilizing the new workflow, thereby streamlining the verifica-
tion process.

Keywords: Formal Equivalence Verification · JasperTM C2RTL App ·
C/C++ model · RTL design · Formal datapath verification

1 Introduction

Integrated circuits have become a cornerstone in both commercial and industrial
domains. As the demand for more sophisticated electronic devices has surged,

2 G. Raia et al.

the intricacy of these devices has considerably increased. This has necessitated
continuous evolution in design methodologies and verification processes to meet
the advancing technological requirements, as the cost of finding and solving bugs
has grown exponentially throughout the design process [14, 16].

Verification is a critical process designed to confirm that a Device Under
Verification (DUV) maintains its intended behavior throughout its implementa-
tion. In the domain of System-on-a-Chip, a variety of verification technologies
has been established. These technologies are essential for ensuring the function-
ality of these devices, which are complex designs integrating multiple disciplines.
While various categories of design flaws contribute to integrated circuits re-spins,
functional flaws remain the leading cause of bugs [18].

Additionally, the median percentage of total integrated circuit project time
dedicated to functional verification is approximately between 50% and 60% [17].
This figure can vary depending on the design; projects that utilize existing pre-
verified Intellectual Property (IP) may require less verification time, whereas
those with newly developed IP could require more. In general, test planning and
testbench development are the areas in which verification engineers spend the
most of their time, respectively 47% and 21% [17].

Over the last decade, functional verification has been mainly conducted
through the use of Universal Verification Methodology (UVM) testbench en-
vironments. A testbench serves as a verification framework that administers
a predefined set of input patterns, also referred to as stimuli, to the Register
Transfer Level (RTL) design. The primary function of a testbench is to facilitate
the observation of whether the DUV yields the correct outputs, compared to a
reference model, in reaction to these stimuli, as shown in Fig. 1.

C/C++
Reference Model

RTL
Implementation

==Input pattern
Output equivalence checks

Fig. 1. Conceptual representation of functional equivalence verification between a
C/C++ reference model and an RTL implementation

However, specifying millions of test vectors for exhaustive verification be-
comes impractical in simulation-based approaches due to the exponential in-
crease in scenarios with the number of input bits: for instance, a 32x32 bit

C-vs-RTL Formal Equivalence Verification 3

integer multiplier would have 264 total input combinations, at one million com-
binations checked per second, resulting into hundreds of thousands of processor
years. Random simulations are a practical alternative, providing a statistical
overview of compliance with specifications rather than exhaustive verification.
Yet, purely random inputs can miss corner cases or produce unrealistic scenarios.
Constrained-random simulations address this by guiding random input genera-
tion within defined parameters, improving coverage but still not guaranteeing
full design space exploration.

Moreover, this approach is resource-intensive due to the number of compo-
nents involved and is likely prone to subtle errors during the construction of the
verification environment. Ultimately, the UVM requires considerable effort to
validate its correctness prior to initiating the verification process. This results in
prolonged verification cycles, which may prove sub-optimal for projects facing
strict time-to-market constraints or operating with limited resources.

As electronic designs have become more complex and the time allocated
for design cycles has decreased, the industry has developed a suite of verifica-
tion methodologies and Electronic Design Automation (EDA) tools to address
these challenges. This paper introduces an innovative verification flow that lever-
ages Formal Equivalence Verification (FEV) to check that RTL designs match
C/C++ models. This approach, based on mathematical properties, ensures ex-
haustive coverage and a significant reduction in verification time when com-
pared to traditional UVM dynamic simulations. The comprehensive version of
this paper, which includes in-depth discussions of the validated designs and the
methodologies employed, is available for reference [15].

2 Formal Equivalence Checking in C-vs-RTL Scenarios

Functional verification is an essential step in the design process, aimed at con-
firming that the implementation reflects the design intent. The reconvergence
model [2] suggests that the purpose of verification consists in ensuring that the
result of some transformation, such as RTL coding, is as expected. This can be
accomplished through a secondary path reconverging with the primary design
path at a shared origin, namely the specification model (see Fig. 2).

RTL Coding

RTL
Implementation

High-level
Specification

Equivalence Checking

Fig. 2. Recovergence model of functional verification through equivalence checking

4 G. Raia et al.

Formal equivalence checking employs mathematical reasoning to confirm that
an implementation adheres to a specification. Formal verification leverages a
language with precisely defined syntax and semantics to encapsulate the sys-
tem’s intended behavior, utilizing the IEEE standard for SystemVerilog Asser-
tion (SVA) [8]. Through mathematical proofs, formal verification ensures the
correctness of the Device Under Verification regardless of the input values, as it
implicitly consider any legal case in the design state space. Two models are con-
sidered equivalent if, upon exhaustive analysis of all possible cases, the formal
verification tool has not identified any discrepancies - commonly referred to as
counterexamples - that would negate the equivalence.

To elucidate the mechanisms employed in today’s equivalence-checking tools,
it is instructive to consider a common computational equivalence model known
as miter. This model effectively acts as a product machine that combines two
Finite State Machine (FSM) designs by aligning each corresponding pair of pri-
mary inputs and connecting each pair of outputs to an XOR gate, as shown in
Fig. 3. Establishing equivalence between two machines, denoted as Mspec(X) for
the specification machine and Mimpl(X) for the implementation machine, neces-
sitates the demonstration that for any given input sequence X = (x1, x2, . . . , xn),
the outputs of the product machine consistently yield a zero value. Equivalence
is thus confirmed by proving the nonsatisfiability of Eq. 1 across all possible
inputs X, where ⊕ denotes the XOR gate operation.

Mspec(X)⊕Mimp(X) (1)

While there are various methods to address this challenge, such as Binary
Decision Diagrams (BDDs) and Satisfiability (SAT) algorithms [14, 16], they are
beyond the scope of this paper.

Finite State Machine
Specification

Finite State Machine
Implementation

Ispec

Iimp

Ospec

Oimp

= 0 ?

Primary inputs Primary outputs

Fig. 3. Miter model of two FSM designs to verify through formal equivalence

C-vs-RTL Formal Equivalence Verification 5

2.1 JasperTM C2RTL App

The advent of a novel category of formal engines embedded in Cadence® JasperTM

C2RTL App, specifically optimized for evaluating RTL datapath implementa-
tions against their C/C++ algorithmic specifications, has marked a significant
leap in verification performance. These specialized engines are now capable of
delivering performance that is up to 100 times more efficient than that of tra-
ditional general-purpose formal engines [10]. This innovation represents a sub-
stantial breakthrough for semiconductor companies, which frequently depend on
robust, standardized EDA tools to manage the complexities inherent to design
processes.

The integration of early-design formal verification checks into the design cy-
cle can dramatically enhance the efficiency and effectiveness of the verification
efforts. Nevertheless, it is essential to demonstrate that C/C++ models accu-
rately capture the design intent, as these models often serve as the starting point
for computational block development due to their abstraction capabilities, sim-
ulation speed, verification efficiency, and standard usage in the semiconductor
industry. High-level C/C++ models can be easily verified at system level com-
pared to RTL, to understand if they fulfill with their specifications: if so, they
become the golden reference for the related RTL implementation. Implement-
ing a redundancy layer enhances verification reliability by pinpointing whether
inconsistencies stem from RTL coding mistakes or inaccuracies in translating
design intent into C/C++, thereby preserving design integrity.

For the sake of clarity and focus, this paper does not delve into the specifics
of formal engines, as their intricate details fall outside the scope of the current
discussion (refer to [3, 4] for any insight). The emphasis here is on the broader
implications of these advanced tools and their impact on the semiconductor
industry’s verification practices, rather than on the technical nuances of the
engines themselves.

3 The Verification Flow

In formal verification, intended behaviors are encapsulated as properties, which
represent collections of logical and temporal relationships among subordinate
Boolean and sequential expressions, usually written in SVA language. Over the
past decades, verification engineers have been compelled to develop extensive
sets of properties to capture all conceivable behaviors for verification. This ap-
proach has been both time-consuming and prone to risk, as the potential for
overlooking certain properties could lead to incomplete verification and unde-
tected design errors. The pivotal advantage of FEV in C-vs-RTL scenarios lies
in the automatic comparison of the two models facilitated by the automatic
generation of assertions. Concisely, an assertion is a declarative statement that
specifies a property which must always hold. This automation streamlines the
verification process, significantly reducing the manual effort and the associated
risk of human error in property specification. Within this context, the formal

6 G. Raia et al.

tool possesses the capability to generate mathematical properties checking that
both the designs produce identical outputs under the same input conditions.

Although the verification methodology enhances autonomy in property gen-
eration and checking, it is not fully independent and continues to necessitate
human guidance for configuring the verification environment, delineating the
state space of the design, and addressing convergence issues that arise from
state-space explosion in intricate digital circuits.

Despite these challenges, JasperTM C2RTL App is able to handle a large
variety of datapath algorithms, such as unit arithmetic operations, high-level
image processing algorithms, and encryption/decryption models [13]: in addition,
it handles pipelines, feedback loops, floating-point and more [10]. The following
list describes the innovative verification flow to apply FEV in verifying digital
circuits, without the need to develop verification components and test vectors:

1. C/C++ Model Compilation: the tool adheres to the latest ANSI C++
standards and integrates with prevalent math libraries [10].

2. RTL Compilation: the tool supports SystemVerilog RTL implementations
[10]. For non-SystemVerilog Hardware Description Language (HDL), equiv-
alence checking tools ensure consistency with the original design [5, 11].

3. I/O Port Mapping: verification engineers map input and output ports
between the specification and implementation.

4. Clock and Reset Definition: the clock signal is identified in the RTL, and
reset signal polarity is specified to detect the reset state.

5. Input Assumptions: engineers define input signal dynamics and proto-
cols, acting as constraints to exclude illegal behaviors and prevent spurious
counterexamples.

6. Formal Engine Configuration: while engineers can select optimizations
for datapath-specific issues, leveraging the tool’s machine learning-based con-
figuration may yield optimal results [13], especially at the beginning.

7. Coverage Property Specification: engineers outline coverage properties
to evaluate the DUV in targeted scenarios. These are employed by the user
to prove the existence of at least one legal case fulfilling a specific condition,
thereby facilitating the identification of the most concise path satisfying it.

8. Proof Execution: the tool checks for discrepancies between models using
automatically generated and manually written assertions.

For the sake of clarity, Tab. 1 outlines all possible outcomes when proving an
assertion. If the verification runs extensively without finding bugs, the verifica-
tion user may decide to conclude the process, especially under tight design cycle
deadlines. Generally, if a proof runs for more than 24 hours without a result,
it may be necessary to rewrite or decompose the proof or to try different en-
gine modes [4]. This paper endeavors to delineate the challenges associated with
managing sophisticated real-world digital circuits developed by STMicroelec-
tronics and to outline effective strategies for ensuring convergence. To this end,
it is advisable to construct a comprehensive verification strategy that establishes
objectives, stages the complexity, and identifies coverage points.

C-vs-RTL Formal Equivalence Verification 7

Table 1. Possible proof status of formal verification

Proof status Description
Unprocessed The property is excluded from the proof target, even if declared
Undetermined Neither full pass nor counterexample found over the run time
Counterexample Property violated in at least one legal case
Proven Property exhaustively proven in all the legal cases
Cover The intended behavior can occur at least once
Unreachable The intended behavior never possible

4 Reconstruction of FSM-like Datapath Behavior

In Digital Signal Processing (DSP) applications, numerous digital circuits ex-
hibit behavior similar to FSM, where the next state is determined by the current
state. This characteristic is straightforward to replicate in RTL designs due to the
presence of memory elements such as registers that can hold state information.
However, in C/C++ models, which are inherently untimed, managing state tran-
sitions to drive the next state can be challenging. In this section, the FEV process
on the checking the functional equivalence of a Multiplier-Accumulator (MAC)
is described in detail.

The MAC unit finds extensive application across various DSP fields, includ-
ing but not limited to audio and speech processing, image and video compres-
sion, telecommunications, radar and sonar systems, as well as biomedical signal
processing. Specifically, it enables rapid computation for tasks such as filtering,
convolution, and Fourier transforms in embedded systems. The main purpose
of MAC is to repetitively add the product between two input signals to previ-
ously obtained intermediate results of the same nature. More precisely, such a
functionality can be modeled under a mathematical point of view, according to
Eq. 2. Given a(k), b(k) as input signals sampled at k-th cycle, the multiplication
operation produces an intermediate result which is added to the sum of those
computed during the k − 1 previous cycles.

result =

N∑
k=0

a(k) · b(k) (2)

4.1 Specifications

The Device Under Verification is a Floating-Point MAC compliant to the IEEE-
754 Standard for Floating-Point Arithmetic [7], patented by STMicroelectronics
[19], whose interface and computational block diagrams are shown in Fig. 4.
The block accepts three floating-point operands (namely fp_a, fp_b, fp_c) and
a starting condition triggering a new operation to execute, that is indicated by
fp_opcode_i (refer to List. 1.1 and List. 1.2 in [15] for C and RTL pseudo-codes).

Operational stability requires that, once the execution phase begins, the in-
put signal fp_op_start remains inactive, while the input operands and the op-
code signal retain their values until the completion of the computational phase.

8 G. Raia et al.

The block supports both straight and recursive arithmetical operations, involv-
ing multiplication, addition, and subtraction. On the output side, two distinct
floating-point results (fp_m and fp_z) are provided, respectively containing the
sampled outcomes produced by the multiplier and the adder/subtractor blocks.

Multiplier
Accumulator

fp_a
fp_b
fp_c

fp_op_start
fp_opcode_i

RESET
CCLK

fp_m
fp_z

fp_a

fp_b

fp_c

x fp_m

+ fp_z

32

32

32

4

32

32

F
S
M

S0

S2

S3

S1

S0
S1
S3
S2

fp_op_start
fp_opcode_i

Fig. 4. Interface and computational block diagrams of the MAC

4.2 Verification Strategy

The verification aimed to affirm the RTL implementation’s equivalence with its
C model. The circuit comprised a pipelined floating-point multiplier and a com-
binatorial floating-point adder from a third-party IP, complicating direct formal
verification. Focus thus shifted to verifying the control logic and feedback mech-
anism, using fixed-point behavioral models to represent the floating-point units
analytically. Recursive operations in the RTL allow reusing previous outputs as
operands for current computations, challenging to replicate in untimed C/C++
models due to their instantaneous computation on the same formal analysis cy-
cle. While appropriate latency was easily introduced in model comparisons to
properly handle the gap in pipelined designs, the formal tool lacked features to
enable the C/C++ model to retain past values.

The most promising strategy consisted in extending the interface of the
C/C++ model (see List. 1.1 in [15]), in a way that output values could be brought
back as operands for recursive operations. Within this framework, SVA assump-
tions were essential to ensure the feedback continuity, forcing that fp_m_in cor-
responds to the prior cycle’s fp_m_out, and similarly for fp_z_in and fp_z_out,
as delineated in List. 1.3 in [15].

Further strategies to achieve complete convergence in useful time consisted
in scaling down the bit-width of the arithmetical operands, from 32-bit to 8-bit

C-vs-RTL Formal Equivalence Verification 9

and 16-bit. In fact, design scaling simplifies the state space and thus accelerates
convergence in formal verification by diminishing the computational complexity
and the number of potential states to explore. Moreover, a case-splitting strat-
egy, guided by opcode values, was implemented to isolate and address the most
challenging cases for the verification tool, uncovering bottlenecks tied to specific
algorithmic attributes. Consequently, manual assertions were crafted to refine
the scope of auto-generated properties, as reported in List. 1.4 in [15].

To alleviate the verification load and ensure comprehensive equivalence, as-
sertions were reformulated. This entailed incorporating the triggering condition
and confirming the initial congruence of output signals from the preceding cycle.
Stability of the summation outputs was verified over the calculation span of six
cycles, whereas the multiplication output from the RTL was validated to not
changing within the five-cycle interval post-triggering, concurrently maintaining
equivalence with the C model in the subsequent cycle (see List 1.5 in [15]).

4.3 Results

Tab. 2 encapsulates the verification methodology for the MAC block. Despite
some instances of undetermined proof results arose, we ultimately established
complete equivalence across all cases by advancing through the verification se-
quence, confirming the functional correctness of the control part of the MAC
block. Tab. 3 reports the run-times obtained at the last verification stage by bit-
width value, illustrating the substantial influence of design scaling on formal tool
performance. Additionally, Tab. 4 provides run-times from an earlier verification
phase, demonstrating how case-splitting helps identify the most challenging sce-
narios for proof, namely recursive operations.

Table 2. Staging complexity in the verification of the MAC

Stage Description
1 Verification of the control logic with fixed-point behavioral operators
2 Reconstruction of the feedback mechanism using SVA assumptions
3 Scaling down the bit-width to reduce the complexity of the formal problem
4 Application of case-splitting technique and manually written properties
5 Reformulating the manually written assertions to lighten the verification load

Table 3. Final run-times of the MAC verification considering all the opcodes

Opcode 8-bit 16-bit 32-bit
[0x00, 0x0C] 17.27s 58.66s 99.32s

10 G. Raia et al.

Table 4. Run-times at stage 4 of the MAC verification sequence (* stands for unde-
termined proof result, while apex symbol indicates the value at the previous cycle)

Opcode Equation 8-bit 16-bit 32-bit
0x00 fp_z = fp_b+ fp_c 0.32s 0.50s 0.59s
0x01 fp_z = fp_b− fp_c 0.35s 0.64s 1.42s
0x02 fp_z = fp_z′ + fp_c 0.34s 1.44s 1.34s
0x03 fp_z = fp_z′ − fp_c 0.33s 1.39s 1.88s
0x04 fp_z = fp_m′ + fp_c ≈ 12h * ≈ 12h * ≈ 12h *
0x05 fp_z = fp_m′ − fp_c 2.85s 4.69s 17.81s
0x06 fp_m = fp_a · fp_b 7.54s 39.57s 131.97s
0x07 fp_m = fp_m′ · fp_b ≈ 12h * ≈ 12h * ≈ 12h *
0x08 fp_m = fp_z′ · fp_a 2.62s 21.35s 0.88s
0x09 fp_z = fp_a · fp_b+ fp_c 10.62s 91.52s 175.57s
0x0A fp_z = fp_a · fp_b− fp_c 10.04s 76.93s 186.11s
0x0B fp_z = fp_z′ + fp_a · fp_b 13.4s 63.97s 530.02s
0x0C fp_z = fp_z′ · fp_a+ fp_c 11.56s 65.89s 211.05s

5 Decomposition of a Complex Cone of Influence

Utilizing the JasperTM C2RTL App facilitates equivalence checking to ascertain
the functional correctness of an RTL design without necessitating manual prop-
erty specification. Nevertheless, the automatic generation of end-to-end prop-
erties aimed at confirming output signal consistency under equivalent inputs
can engender an intricate Cone Of Influence (COI). The COI, pivotal in formal
verification, circumscribes the relevant RTL logic impacting a given property,
enabling the exclusion of non-influential logic (refer to Fig. 5).

A case study on an STMicroelectronics-designed pipelined, frequency-tunable,
and programmable-gain tone generator was undertaken to investigate methods
for decomposing the COI in the context of challenging automatically generated
properties. The tone generator is crucial for calibrating audio DSP systems, de-
veloping signal processing algorithms, and testing telecommunications networks.

inputs result

Fig. 5. Conceptual representation of the Cone Of Influence

C-vs-RTL Formal Equivalence Verification 11

5.1 Specifications

The tone generator accepts inputs such as the tone setup choice mode_i (ei-
ther single or double tone), phase steps ∆Φ_single and ∆Φ_double, and pro-
grammable gains gain_single and gain_double, as shown in Fig. 6. It then gen-
erates outputs that consist of either one or two tones in the in-phase (I) and
quadrature (Q) components, Y_I and Y_Q respectively. The phase step sets
the incremental change in phase between successive samples, thereby setting the
frequency of the tone(s), while gain controls the amplitude scaling applied to the
output signal (see C and RTL pseudo-codes in List. 1.6 and List. 1.7 in [15]).

Tone
generator

Phase
accumulator

Address
computation

Phase
amplitude
converter

D Q TruncationX

Saturation
and

rounding
+

Phase
accumulator

Address
computation

Phase
amplitude
converter

D Q TruncationX

2

6

6

21

21 12

12

Fig. 6. Interface and computational block diagrams of the tone generator

The protocol governing input signals mandates static values within their
defined legal ranges throughout execution:

– mode_i signal assumes values within the set {0, 1, 2}, where 0 denotes the
idle state, 1 corresponds to single tone mode, and 2 to double tone mode.

– gain_single and gain_double signals are constrained to [0, 63] and [0, 31].
– ∆Φ_single and ∆Φ_double signals are restricted to the range [0, (221 − 1)].

5.2 Verification Strategy

The verification’s primary objective was to establish the complete equivalence of
the RTL implementation of the tone generator with its corresponding C/C++
model. Central to the block’s functionality is a phase accumulator unit designed
to iteratively compute the subsequent phase value, (Φ(t+ 1)), from the current
phase, (Φ(t)), and the input phase increment, (∆Φ), as described by the equation
(Φ(t + 1) = Φ(t) + ∆Φ). To manage the inherent feedback within the phase
accumulator, a verification strategy analogous to that delineated in Section 4
was employed. This strategy proved ineffective, except for large phase step values,
primarily due to the extensive bit-width and the vast array of potential cases
which could not be exhaustively verified.

Given the design’s intrinsic architecture, reducing parallelism was not feasible
without altering the models, a course of action avoided due to the potential for

12 G. Raia et al.

introducing errors. Consequently, an alternative strategy was adopted, which
involved overconstraining the current phase value node in both the RTL and
C/C++ models to accept any value within its legal range, independent of the
phase step. The overconstraint ensured that the subsequent phase value would
correspond to the overconstrained phase node’s value from the previous cycle,
thereby emulating the phase accumulator’s functionality (see List. 1.8 in [15]).
Overconstraining the internal phase node had not compromised the functionality
of the circuit, since it affected both downstream and upstream logic.

Despite promising, overconstraining the internal phase node did not result as
a completely satisfactory strategy because of the long time required to achieve
the full proof. Because this was mainly due to the high complexity of the com-
putational load, a more powerful technique, consisting in inserting extra asser-
tions by leveraging intermediate equivalent points between the C/C++ and RTL
models, was employed. While it may appear that adding more assertions could
increase the workload for the verification tool, proven assertions at the inter-
mediate key points can actually aid the formal tool in verifying more complex
automatically generated end-to-end properties (see List. 1.9 [15]). In this case,
intermediate equivalent points were placed at data processing stages (refer to
6), such as:

– Sample values coming out from the phase amplitude converter.
– Sample values scaled by the input gain and then truncated.

A more sophisticated and efficient verification strategy involved explicitly
instructing the formal verification tool to utilize proven assertions at interme-
diate equivalent key points within the design. By doing so, these assertions act
as simple blocks within a more complex chain of end-to-end properties. As the
verification tool progresses through the smaller properties, it utilizes the proven
assertions as helper assumptions for subsequent assertions in the verification
chain. An end-to-end property is considered proven if all its helper assumptions
are also proven. Consequently, the assume-guarantee method was employed as
the terminal verification technique to expedite the attainment of a comprehensive
proof. This approach mitigated the complexity of the global Cone Of Influence
by partitioning challenging monolithic assertions into discrete, tractable formal
verification sub-problems, each with a correspondingly narrowed COI.

5.3 Results

The application of FEV techniques successfully confirmed the functional equiv-
alence between the C/C++ model and the RTL implementations. For sake of
clarity, proof convergence was achieved by following the verification sequence
reported in Tab. 5, Tab. 6 reports the infeasibility of feedback reconstruction
using SVA assumptions, highlighting the formal tool’s difficulty with diminish-
ing phase step values. Tab. 7 summarizes the run-times by verification stage and
working mode, proving the advantage of proving the equivalence at intermediate
points to aid the formal tool in achieving convergence.

C-vs-RTL Formal Equivalence Verification 13

Table 5. Staging complexity in the verification of the tone generator

Stage Description
1 Reconstructing of the feedback of the phase accumulator
2 Overconstraining the current phase node using SVA assumptions
3 Proving the equivalence at intermediate points inserting extra assertions
4 Applying the assume-guarantee to leverage equivalence at intermediate points

Table 6. Run-times at stage 1 of the tone generator verification sequence value

Input phase step Proof status Run-time
220 Proven 17.6s
219 Proven 62.8s
218 Proven 29min
217 Proven ≈ 12h
216 Undetermined ≈ 24h

Table 7. Run-times at different stages of the tone generator verification sequence

Single tone mode Stage 2 Stage 3 Stage 4
Run-times 221min 132min 26min

Proof status Proven Proven Proven
Time reduction 40% 80%

Double tone mode Stage 2 Stage 3 Stage 4
Run-times 48h 111min 33min

Proof status Undetermined Proven Proven
Time reduction N/A 70%

6 Proving the Equivalence with a MATLAB®-derived C
Code

Significant algorithmic differences between high-level C/C++ models and RTL
designs present notable challenges in proving functional equivalence using FEV
techniques. This is especially the case for C code derived from MATLAB® where
complexity can increase due to several factors, such as the variations in data
types and bit-width choices. Despite casting procedures are supported by the
formal tool, it is highly recommended to minimize type discrepancies between
RTL and C/C++ representations. This approach was employed in the verifica-
tion of an Automatic Gain Control (AGC) design.

6.1 Specifications

The main purpose of an AGC circuit, within a receiver in a communication
system, is to maintain a constant output amplitude level of a signal despite
variations in the amplitude of input signal, as represented in Fig. 7. The device
under analysis is an AGC (targeting IEEE 802.15.4g protocol [6]) designed by
STMicroelectronics, governed by an FSM with datapath mechanism. Due to

14 G. Raia et al.

confidentiality constraints, detailed information about the specific block cannot
be disclosed in this publication. The AGC accepts inputs from a Received Signal
Strength Indicator (RSSI) block through rssi_result signal, providing an output
gain value to a Programmable Gain Amplifier (PGA) using gain signal, as shown
in Fig. 7. Configuration of the AGC is achieved by setting the mode signal,
initializing the gain with start_gain, and adjusting the gain using gain_step.

Automatic
Gain ControlRSSIA/D converter

DSP

Antialias filterPGAReceived
signal

Automatic
Gain Control

gain
mode

start_gain
gain_step

rssi_result

reset_n
clk

Fig. 7. System level representation of the Automatic Gain Control

6.2 Verification Strategy

Significant algorithmic differences between the two models precluded to leverage
intermediate equivalent key points to aid the formal tool. Consequently, beyond
feedback reconstruction technique described in Section 4 to emulate the FSM
behavior, further modifications were implemented. To alleviate verification over-
head, all double data types in the C/C++ model - automatically converted from
MATLAB® codes using MATLAB Coder [12] — were converted to int data
types to align with the RTL design specifications. This conversion necessitated
the creation of new functions within the C/C++ code, which are listed in Tab.
10 in [15]. Additionally, to prevent state explosion issues commonly associated
with counters, their maximum count values were deliberately constrained to zero
to avoid multiple accumulation of samples. This cap was not overly restrictive,
as the accumulation underwent separate verification from the gain computation
under specific input scenarios, namely the main target of the verification process.

6.3 Results

The verification of this case was particularly challenging due to algorithmic di-
vergences between the high-level and low-level models and the design’s com-
plex control logic. Tab. 8 outlines the verification sequence utilized for the AGC
block, which ultimately resulted in the run-times presented in Tab. 9. Despite the
full equivalence was not proven in all cases, the application of FEV techniques
resulted valuable by quickly identifying two mismatches between the C/C++
model and the RTL design, corresponding to subtle overflow cases that were not
discovered during previous UVM dynamic simulations.

C-vs-RTL Formal Equivalence Verification 15

Table 8. Staging complexity in the verification of the AGC

Stage Description
1 Reconstructing of the feedback mechanism to emulate the FSM behavior
2 Converting the data types of the C/C++ model from double to int
3 Disabling counters to avoid multiple accumulation of samples

Table 9. Run-times at the final stage of the AGC verification sequence

Mode Description Proof result Run-time
Mode_1 Fixed-gain configuration Proven 0.34s
Mode_2 Gain can only decrease Proven 121.74s
Mode_3 Gain can only decrease until a certain value Proven 754.10s
Mode_4 Gain can both increase and decrease Undetermined ≈ 48h
Mode_5 Gain is determined by non-trivial RSSI conditions Undetermined ≈ 48h

7 Conclusion

This paper presented a case study on applying various FEV techniques within
the context of verifying the functional equivalence between three-real world high-
level C/C++ models and RTL designs using the JasperTM C2RTL App. This
innovative approach enables exhaustive exploration of the design state space, po-
tentially revealing bugs that traditional verification methods might miss. More-
over, by utilizing high-performance formal engines, the verification time for typ-
ical DSP components has been significantly reduced — from months to just a
few weeks per case study —compared to UVM dynamic simulations, specifically:

– UVM environment setup traditionally requires six weeks, whereas C2RTL
preparation, including port mapping, adaptation of C/C++ models, and
verification plan formulation, is completed within one week.

– Test development in UVM extends over five weeks, in contrast to the two
weeks needed for incorporating appropriate constraints in C2RTL. This en-
tails specifying legal input signal values and protocols, methodically explor-
ing the design state space, and applying effective verification techniques to
ensure convergence.

– Debugging in UVM, which involves analyzing dynamic simulation wave-
forms, typically spans two weeks. Conversely, C2RTL reduces this to a matter
of days, benefiting from the provision of succinct counterexample waveforms
and facilitated root cause analysis.

Customizing the formal tool to accommodate the specific characteristics of
each DUV proved to be a non-trivial task. There is no replacement for the verifi-
cation user’s knowledge of the expected behavior and the selection of appropriate
techniques to assist the tool in handling FSM-like behaviors, large COI and sig-
nificant algorithmic difference between high-level C/C++ models and the RTL
designs. In conclusion, this paper has demonstrated that the strategic applica-
tion of FEV techniques, facilitated by the JasperTM C2RTL App, significantly
enhances the efficiency and effectiveness of DSP component verification.

16 G. Raia et al.

References

1. Albin, K., Oracle Labs: The Cost of SoC Bugs. In: Design and Verification Confer-
ence and Exhibition, U.S. (2016)

2. Bergeron, J.: Writing Testbenches using SystemVerilog . 1st edn. Springer, (2006)
3. Cadence Design System: Jasper C to RTL Equivalence Checking App User Guide,

(2023)
4. Cadence Design System: Jasper Engine Selection Guide, (2023)
5. Formality Equivalence Checking, https://www.synopsys.com/glossary/what-is-

equivalence-checking.html, last accessed 2024/06/15
6. IEEE, IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-

Rate Wireless Personal Area Networks (LR-WPANs) Amendment 3: Physical Layer
(PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility Net-
works. pp 1-252, IEEE Std 802.15.4g-2012 (2012)

7. IEEE-754, Standard for Floating-Point Arithmetic. IEEE Std 754-2008. pp 1-58,
IEEE (2008)

8. IEEE Computer Society and IEEE Standards Association Corporate Advisory
Group: IEEE Standard for SystemVerilog— Unified Hardware Design, Specifica-
tion, and Verification Language (IEEE Std 1800™-2017). IEEE, New York (2017)

9. Jasper C Apps, https://www.cadence.com/en_US/home/tools/system-design-and-
verification/formal-and-static-verification/jasper-c-formal-verification.html, last ac-
cessed 2024/06/13

10. Jasper C Apps, https://community.cadence.com/cadence_blogs_8/b/breakfast-
bytes/posts/jasperc2rtl, last accessed 2024/06/14

11. Jasper SEC App, https://www.cadence.com/zh_TW/home/tools/system-
design-and-verification/formal-and-static-verification/jasper-gold-verification-
platform/jaspergold-sequential-equivalence-checking-app.html, last accessed
2024/06/15

12. MATLAB Coder, https://it.mathworks.com/products/matlab-coder.html, last ac-
cessed 2024/06/19

13. Mittal, V., Roy, S., Singhal A., Embracing Datapath Verification with Jasper
C2RTL App. In: Design and Verification Conference, India. (2022)

14. Perry, D.L., Foster, H.: Applied Formal Verification: For Digital Circuit Design.
1st ed. McGraw Hill LLC, (2005)

15. Raia, G., Vincenzoni, D., Rigano, G., Martina, M.: A Case Study on Formal Equiv-
alence Verification between a C/C++ Model and its RTL Design: A Long Compan-
ion Version. Zenodo (2024). https://doi.org/10.5281/zenodo.12591803

16. Seligman, E., Schubert, T., Kirankumar, M.: Formal Verification: An Essential
Toolkit for Modern VLSI Design. 1st edn. Morgan Kaufmann Publishers Inc, San
Francisco (2015)

17. The 2022 Wilson Research Group Functional Verification Study (Part 8),
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-
wilson-research-group-functional-verification-study/, last accessed 2024/06/13

18. The 2022 Wilson Research Group Functional Verification Study (Part 12),
https://blogs.sw.siemens.com/verificationhorizons/2023/01/09/part-12-the-2020-
wilson-research-group-functional-verification-study-2/, last accessed 2024/06/13

19. Vincenzoni, D., Raffaelli, S.: Circuit for performing a multiply-and-accumulate
operation, (10089078, 3299952,10437558), (2016)

