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Abstract
Background The presence of parametric excitation in dynamic structures, caused by friction, crack, varying compliance, 
electromagnetic field, etc. may generate unbounded responses. In the literature there exist several numerical analyses of 
systems affected by parametric excitation, while experimental studies are less frequent.
Objective The goal of the paper is to create a demonstrator of a parametrically excited system, whose stability can be modi-
fied through a controlled physical parameter. This work also investigates the applicability of the recently developed stability 
analysis method named Jacobian Based Approach (JBA).
Methods This paper studies a simple experimental set-up comprising of a cantilever beam mounted on a spring with time 
– varying stiffness, achieved through the use of an electromagnet. The test rig allows measuring directly the magnetic force 
without any preknowledge of the values of electrical parameters. Results obtained from the test rig are compared with 
numerical results obtained from the Finite Element model. In this study, Hill’s method and JBA are employed to obtain the 
stability plot highlighting the regions of parametric instabilities.
Results Good agreement is found between experimental and numerical data and the presence of unstable behavior is veri-
fied through the use of the well – known Hill’s method and the JBA. Furthermore, this study demonstrates that the stability 
plot, highlighting the unstable regions, computed by JBA is in complete agreement with the one obtained by Hill’s method.
Conclusions It is shown how the parametric instability can be triggered through the regulation of a simple physical parameter, 
i.e. the gap between the electromagnet and the beam. The numerical model analyzed by the ad – hoc technique proposed 
by the authors i.e. JBA has been proven to have predictive capabilities in studying a system under parametric excitation and 
could be a potential substitution for state-of-the-art stability analysis techniques such Hill’s method.

Keywords Parametric excitation · Parametric Combination Resonance · Experimental Investigation

Introduction

The time – dependency of physical parameters, such as 
mass, damping, stiffness, and rotational speed, may affect 
the working conditions of a wide variety of dynamical sys-
tems. Systems including such time – varying parameters 

are said to be operating under Parametric Excitation. The 
existence of parametric excitation can result in responses 
that are different from the typical resonances, i.e. the system 
response is unbounded and may have a frequency content 
different from that of the excitation. Hence, performing a 
careful dynamic characterization of structures under para-
metric excitation prior to manufacturing is essential.

In the literature, numerical analyses of systems operat-
ing under parametric excitation are numerous. Ghadiri and 
Hosseini [1] studied the nonlinear dynamic behavior of a 
nanobeam modeled by Bernoulli–Euler beam theory; in this 
work, the authors sought the influence of parametric exci-
tation, axially imposed and generated by thermo-magnetic 
load, on the stability of a beam. Zhang et al. [2] analyzed 
the stability of a parametrically excited viscoelastic beam. 
In this study the time – varying axial tension is the source 
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of parametric excitation and its effect on the principal para-
metric frequencies, close to twice the value of each natural 
frequency, is investigated. Arvin et al. [3] analyzed the non-
linear behavior of a rotating beam. They studied the stabil-
ity of the system under parametric excitation resulting from 
time – varying rotational speed. Karev et al. [4] focused on 
an asynchronous/out of phase parametric excitation of a disk 
brake system using a normal form approach. Zhou et al. [5] 
considered a vertical cantilever beam under different kinds 
of excitation. They took into account the super periodic and 
nonlinear periodic parametric excitations and they obtained 
the boundaries separating chaotic and non-chaotic responses, 
using Melnikov’s method. Vernizzi et al. [6] studied the 
influence of parametric excitation on a vertically floated rod 
in a fluid. In this paper, the authors proposed three types of 
reduced order models and obtain the stability plots. Here, the 
results are also verified by FEM of the rod. Sheng and Wang 
[7] in a part of their research, performed a dynamics analysis 
of a functionally graded Timoshenko microbeam under para-
metric excitation. They concluded that the structure would 
have diverging responses at a parametric frequency equal to 
twice the natural frequency of specific modes.

In addition to these theoretical studies of parametrically 
excited systems, few experimental validations can be found 
in the literature. Hocquet and Devaud [8] investigated para-
metric resonances of a double coupled pendulum. In this 
study, the parametric excitation, generated by length modu-
lation, has been tuned around the first and second parametric 
resonances where the boundaries of stability – instability are 
obtained. In other studies, an electromagnet is used to gen-
erate the time – varying spring. Chen and Yeh [9] studied 
theoretically and experimentally a parametrically excited can-
tilever beam. Here, an electromagnet simulates the paramet-
ric excitation (time-varying stiffness). The amplitude of the 
stiffness is computed analytically using the measured natural 
frequency for a constant gap between the electromagnet and 
the beam. Han et al. [10] used, as a test rig, a cantilever beam 
excited by two electromagnets. Two numerical methods were 
applied to obtain the full stability plot (containing stability 
boundaries). Furthermore, the instability investigation was 
performed for a single value of damping based on different 
gaps, location of the magnets, and excitation phase. Dohnal 
and Mace [11] demonstrated theoretically and experimen-
tally that at the parametric combination resonance (subtrac-
tion kind), a reduction of vibration amplitude would happen. 
Ecker and Pumhossel [12] worked on the application of para-
metric excitation to attenuate the unwanted vibration of a tor-
sional system due to self – excitation. In this paper, paramet-
ric excitation has been introduced to the experimental model  
employing a PD controller. Zaghari et al. [13] proposed the 
application of energy harvesting in a system driven by para-
metric excitation. The authors demonstrated theoretically 

and experimentally that at the parametric resonances of the 
first and second kind, the piezo-electric maximizes energy 
production.

Whether in a purely numerical context or in an experimental– 
numerical one, the instability detection of parametrically 
excited systems is necessary and of interest to a lot of research 
studies. In this context, Hill’s method which is based on the 
well – known Harmonic Balance Method, has been applied by 
numerous researchers. Villa et al. [14] utilized Hill’s method 
to investigate the stability of a rotor system mounted on rolling 
element bearings. Detroux et al. [15] proposed the application of 
Hill’s method, as an alternative to Floquet Theory, to determine 
the stability of the periodic solution of a SmallSat spacecraft for 
bifurcation detection. Liao et al. [16] did a comprehensive study 
on the quasi – periodic solutions of nonlinear systems. They 
utilized the multi – harmonic Hill’s method to study the stability 
of nonlinear systems such as a duffing oscillator.  Von Groll and 
Ewins [17] performed the stability analysis of a rotor system in 
case of rotor–stator contact using Hill’s method.

In the present paper, two numerical methods to iden-
tify instability are validated thanks to an experimental test 
rig which, unlike others in the literature, allows to directly 
measure the physical parameters of interest. The test rig, 
used as a demonstrator, is composed of a cantilever beam 
exited by an electromagnet, serving as a time – varying stiff-
ness. For the first time, to the authors’ knowledge, the ampli-
tude of the time – varying stiffness generated by the mag-
net is obtained directly from the measured magnetic force. 
Moreover, an original formulation to quantitively link the 
physical parameters of the electromagnet to the parametric 
excitation characteristics is proposed. This formulation is 
used to build a predictive model of the experimental set-up. 
In addition, a mathematical formula for the modal damping 
is derived from the experimental evidence as a function of 
the gap between the electromagnet and the beam.

Both stable and unstable regimes are investigated experi-
mentally and numerically, with a special reference to the 
combination resonance. The presence of unstable responses 
is confirmed not only by the amplitude but also by the fre-
quency content. Instability detection is carried out through 
two state-of-the-art methods, Hill’s method and the Jacobian 
Based Approach, recently proposed by the authors [18]. The 
predictions of the instability detection techniques based on the 
purposely developed numerical model are validated experi-
mentally. Furthermore, it is shown how, by changing the set-
up of the electromagnet, instability can be activated and de-
activated, a behavior well predicted by the proposed model.

The “Mathematical Model” section presents the 
general model of the demonstrator, while the “Stabil-
ity Analysis” section summarizes the methods used for 
instability detection. The “Experimental Setup” section is 
dedicated to the experimental set-up and to the predictive 
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quantitative model of the electromagnet functioning as a 
time-varying spring. Results are presented and discussed 
in the “Results and Discussion” section.

Mathematical Model

The system here adopted for the stability analysis is a 
clamped beam attached to a spring with time – varying 
stiffness introducing parametric excitation into the sys-
tem. The scheme of the beam with a rectangular cross 
– section is shown in Fig. 1. The beam is modeled by 
seven Bernoulli – Euler beam elements (two beams for the 
length Lm and five for the remaining length) which have 
two DOFs (degrees of freedom) for each node (translation 
along Y  axis and rotation in the X_Y  plane).

where [M] , [C] and [K] are the mass, damping, and stiff-
ness matrices. The damping matrix is assumed to be pro-
portional and computed as �[M] + �[K] . H  , in equation 
(1) is a Heaviside function equal to 1 at the DOF yE of 
node E and zero for the other DOFs. It is used to state that 
the time – varying stiffness k(t) is applied only along the 
DOF yE . The mathematical expression of k(t) is:

(1)
[M]n×n{ÿ}n×1 + [C]n×n{ẏ}n×1 +

(
[K]n×n + k(t)H

)
{y}n×1 = 0

Equation (2) is periodic with T = 2�∕� and introduces 
parametric excitation to the system. Here, K0 denotes the 
mean value of the stiffness and � represents the parametric 
excitation frequency. The meaning of this formula will be 
justified in the “Experimental Setup” section.

Stability Analysis

Systems under parametric excitation may show unstable 
(resonance) conditions that are different from the simple 
resonances caused by an external harmonic excitation. 
Such instabilities are significant and might occur when the 
exciting frequency of the time – varying parameter is 1) 
close to twice each of the natural frequencies or 2) close 
to their combination [11]. The first condition is known as 
“primary parametric resonance”, while the second one is 
the so – called “parametric combination resonance”. The 
possible instability resonances under parametric excitation 
can be grouped by the following expression [12]:

The governing equations of motion of the system are:

(2)k(t) = −K0(1 + cos �t)

Fig. 1  Clamped beam with 
time-varying stiffness (top 
view)

(3)

Primary Parametric Resonance Frequencies

(1st kind Parametric Resoance)
� =

2�n i

r
, i, r = 1, 2,…

Combination Parametric Resonance Frequencies

(2nd kind Parametric Resonance)
� =

|�n i±�n j|
r

, i, j, r = 1, 2,…
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where r is the order of the parametric resonance and r = 1 
gives the most significant case (primary and combination) 
[12]. �ni and �nj are the natural frequencies of the system. 
In particular, the instabilities due to the summation of the 
natural frequencies are considered the most significant [19]. 
In this study, only the first two natural frequencies of the 
beam model given in Fig. 1 are taken into account.

A typical stability plot of a parametrically excited system, 
in terms of physical parameters, is depicted in Fig. 2. In this 
case, the stability plot is a space of two parameters 

(
�,K0

)
 

divided into regions, whose borders are the so – called Tran-
sition Curves where the periodic responses exist. The inside 
surrounded by the Transition Curves comprises unstable/
unbounded responses, while the outside area corresponds 
to stable/bounded responses.

Inside and on the boundaries of the combination reso-
nance region, the system’s response has two dominant 
incommensurable frequencies, �1 and �2 , whose summation 
is equal to the parametric excitation frequency � . Moreover 
from Floquet Theory [20], the unstable regions caused by 

the primary parametric resonance correspond to periodic 
responses with frequency content �∕2 or so – called 2T  peri-
odic frequency component.

Hill’s Method

To perform the stability analysis and to obtain the stability 
plot, here Hill’s method is adopted as an alternative to the 
classical Floquet method. This method is initiated by per-
turbing a solution of equation (1), 

{
yp(t)

}
 , as follows [15]:

where {P(t)} is a periodic function and is expressed by the 
Floquet Form [21]:

Since the beam vibrates around its equilibrium, {
yp(t)

}
= {0} which is the trivial solution of equation 

(1). Hence, the aim is to study the stability of the trivial 

(4){q(t)}n×1 =
{
yp(t)

}
n×1

+ {P(t)}n×1

(5){P(t)} = {p(t)}e�t

Fig. 2  Schematic of a stability plot with a sample of response
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solution. By substituting equation (4), considering equa-
tion (6), in equation (1) following would be derived:

where E
({

yp(t)
})

= 0 . The periodic function {p(t)} in equa-
tion (5) can be expanded by the Fourier series. The frequency 
components adopted here are 2T periodic and it will be dem-
onstrated that they suffice to obtain the whole unstable regions:

where i denotes each node of the FE model of the beam and 
z is an odd number except for the zeroth harmonic/static 
term. By collecting all the pi(t) given by equation (7) in a 
column vector, substituting the resultant in equation (6) and 
balancing the resultant equation, the following eigenvalue 
problem will be obtained [15]:

where J is the Jacobian matrix and the matrices X1 and X2 
can be written as follows:

In the present study, the Fourier series is truncated to 
two harmonics ( nh = 2 ) i.e. z = 1, 3 , with corresponding 
frequencies �∕2 and 3�∕2 according to equation (7).

To avoid a trivial solution of equation (8) its determinant 
is set equal to zero:

Equation (10) is a characteristic equation of an eigenvalue 
problem:

where:

then:

(6)

E
({

yp(t)
})

= [M]{ÿ} + [C]{ẏ} + ([K] + k(t)H){y}

E({P(t)}) = [M]{p̈} + [C]{ṗ} +
(
[K] + k(t)H + [M]𝛾2

)
{p} + (2[M]ṗ + [C]{p})𝛾

(7)pi(t) =
∑

z=0,1,3,…

(
dizsin

z�t

2
+ cizcos

z�t

2

)

(8)�2X2 + �X1 + J = 0

(9)X1 =

⎡
⎢⎢⎢⎢⎢⎣

[C]

⋱ �
[C] −2Ωz[M]

2Ωz[M] [C]

�

z

⋱

⎤⎥⎥⎥⎥⎥⎦
X2 = diag([M],… , [M])

(10)
|||�

2X2 + �X1 + J
||| = 0

(11)Λ�⃗v = 𝛾 �⃗v

(12)Λ =

[
−X−1

2
X1 −X−1

2
J

� 0

]

2n(2nh+1)×2n(2nh+1)

(13)� = eig(Λ)

The number of eigenvalues is 2n
(
2nh + 1

)
 . The 2n eigen-

values with the smallest imaginary part in modulus, which 
are the so – called ‘’Floquet Exponents’’, determine whether 
the perturbing term in equation (5) will grow or decay in 
time. The system is said to be stable if all the Floquet Expo-
nents in the parameter space are less than zero otherwise the 
system is unstable.

Instability Detection Using Jacobian Based 
Approach (JBA)

Jacobian Based Approach (JBA) which is recently devel-
oped and explained in detail by the authors in [18], is uti-
lized to exploit the forced response study and locate the 
instabilities due to the parametric resonances. In [18], it 
was demonstrated that the HBM can detect an unstable 
region only if there are force components at the same fre-
quency of the response in the unstable zones. These force 
components are necessary to trigger and track the unstable 
regions. Such force components are named “Test Force” 
components.

In order to implement this approach, the response of each 
node is expressed by the following Fourier series:

where s and z are the indices of the Fourier series. In equa-
tion (14) the first set of Fourier components corresponds  
to primary parametric resonance responses (with frequen-
cies z�t∕2 that are 2T  periodic) and the second part (with 
frequencies sω1 & s�2 ) corresponds to the combination 
parametric resonance responses. It must be noted that 
the first set of the Fourier series in equation (14), z�t∕2 
frequency component, is truncated to two harmonics i.e. 
z = 1, 3 while the second set is truncated to a single har-
monic i.e. s = 1 . Here, the index i represents a specific 
node of the beam. The mathematical expressions of the 
frequencies �1 and �2 will be presented in the “Stability” 
section.

In the same way, the “Test Forces” will be expressed in 
terms of the same harmonic components as equation (14):

(14)

ri

=
∑

z=0,1,3,…

�
aiz sin

z�t

2
+ biz cos

z�t

2

�

+
∑

s=1,2,…

��
cis sin s�1t + dis cos s�1t

�

+
�
lis sin s�2t + ois cos s�2t

��

(15)

fi

= FTT

∑
z=0,1,3,…

�
���

z�t

2
+ ���

z�t

2

�

+FT

∑
s=1,2,…

��
��� s�1t + cos s�1t

�

+
�
��� s�2t + ��� s�2t

��
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Where the values of  FTT and  FT are arbitrary. By stacking equa-
tions (14) and (15) for each node in a column vector, substituting 
them in equation (1) and balancing the resultant equations for 
each harmonic term, the following residual equation is obtained:

where [J] , {A} and {F} are the Jacobian matrix and vectors 
of the harmonic amplitude and the external forces respec-
tively. By minimizing the residual, the frequency response 
{A} of the system is computed. It will be shown that the FRF 
of the system will show local peaks corresponding to the 
boundaries between stable and unstable zones i.e. Transi-
tion Curves.

Experimental Setup

An experimental setup with a parametric excitation is pro-
posed here to experimentally prove the presence of instabil-
ity in the response. The test rig consists of a cantilever beam 
excited by an electromagnet. The electromagnet generates a  

(16){R} = [J]{A} − {F}

force which corresponds to a time – varying stiffness con-
nected to the beam, thus producing a parametric excitation. 
Figure 3 displays the scheme of the experimental setup with 
the generation of the magnetic force and the measurement of 
the response by means of a laser vibrometer. The picture of 
the test rig is shown in Fig. 4. The electromagnet is made of 
two coils of wire wrapped around a U-shaped core of ferro-
magnetic packed plates. Two prismatic extensions are glued 
at the two ends of the U – shaped core to be parallel to the 
beam and to excite the beam from one side. A NI Compac-
tRIO system generates the current which is amplified before 
being supplied to the electromagnet. Since the beam is in 
aluminum, a thin steel plate (of mass Ms ) is attached to the 
part of the beam facing the electromagnet in order to receive 
the magnetic force. A laser vibrometer Polytec measures the 
beam response at one point as shown in Fig. 4(b).

The mathematical formula of the magnetic force can be 
written as [22]:

(17)f (t) =
A(

L0 − ym
)2 (1 − cos �t)

Fig. 3  Schematic of the test rig and measurement process

182 Experimental Mechanics (2023) 63:177–190
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where L0 is the initial gap between the electromagnet and 
the steel plate attached to the beam (as shown in Fig. 3), 
ym represents the displacement amplitude of the beam at a 
distant time and a distance Lm from the beam constraint, � is 
the frequency of the excitation. The coefficient A is defined 
as follows [22]:

where N , �air , S
′ and I are respectively: the number of turns 

of the coils, the air permeability, the area of each coil facing 
the steel plate, and the amplitude of the current.

Since the beam’s vibration displacement is usually small 
with respect to L0 , equation (17) can be expanded around 
ym = 0 by a Taylor series expansion, taking the first order 
expansion. The force of equation (17) will then become [13]:

From equation (19) it can be observed that the force 
includes an external force and a time – varying stiffness  
with a mean value:

(18)A =
N2�airS

�

I2

2

(19)
f (t) =

A

L2
0

(1 − cos �t) +
2A

L3
0

(1 − cos �t)ym

= F0(1 − cos �t) + K0(1 − cos �t)ym

The advantage of this system is that the force F0 
exerted by the magnet on the beam can be directly derived 
from the measurement of a force transducer placed on the 
magnet itself. The force F0 is derived by the measurement 
of the force ( Fm ) of the transducer positioned at the base 
of the electromagnet (see Fig. 5). The electromagnet was 
calibrated in advance and a calibration curve provides the 
values of the force exerted on the beam ( F0 ) correspond-
ing to the values of the force measured by the transducer 
( Fm ) for different frequencies [23, 24].

The constant A , which is a function of different param-
eters, not all known a priori, as shown in equation (18), 
can be directly derived by the value of the force F0 at a 
given exciting frequency. From equations (17) and (19) 
it can be written:

Equation (21) will then be substituted in equation 
(19) for the computation of the magnetic force f (t) in the 
numerical analysis.

(20)K0 = 2A∕L3
0

(21)A = F0L
2

0

Fig. 4  a Magnet system, b Top 
view of the test rig
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Results and Discussion

This section presents an experimental–numerical com-
parison of the parametrically excited system described in 
the “Experimental Setup” section and modeled according 
to the “Mathematical Model” section. A numerical solu-
tion of the system is proposed, where stable and unstable 
regions are identified according to the methods described 
in the “Stability Analysis” section. The results of the 
experimental measurements are obtained in one of the 
unstable regions (corresponding to the combination para-
metric frequencies). After a modal damping identification 
of the rig for different gap L0 values, the experimental 
results are compared to the numerical results on the same 
stability plot. The values needed to model the test rig, 
according to the parametrization described in the “Math-
ematical Model” section, are given in Table 1.

Stability

The stability plot is obtained implementing Hill’s method 
and presented in Fig. 6. Here the results are computed on the 

(K0, �) plane where, for each combination of these parame-
ters, the Floquet exponents are computed. The black regions 
contain unstable responses as at least one Floquet exponent 
is greater than zero. Three unstable zones are visible in 
Fig. 6, the first and third are appeared due to the Primary 
Parametric Resonance while the one in the middle is formed 
as a result of Combination Parametric Resonance response. 
According to Fig. 6 and equation (3), the instabilities due to 
the Primary Parametric Resonance occur when � is around 
2�n1 (first green dashed line) and 2�n2

 (last green dashed 
line), while the instabilities due to the Primary Parametric 
Resonance takes place when � is around �n1

+ �n2
 (middle 

green dashed line).
The result of the JBA for K0 = 800N∕m is presented in 

Fig. 7. Since this approach is adopted for a specific value of 
K0 , it demonstrates “local” stability. The frequency response 
is obtained for the same range of � as Fig. 6. According to 
the authors’ observation, for this specific system, the incom-
mensurable frequencies �1 and �2 are linked by the follow-
ing formula:

Fig. 5  Actual magnetic force generated by the magnet 
(
F0

)
 and the force measured by the transducer 

(
F
m

)

Table 1  system’s parameters
h(m) b(m) L(m) L

m
(m) E(Pa) �

(
kg∕m3

)
M

s
(kg)

3 × 10
−3

30 × 10
−3

540 × 10
−3

155 × 10
−3

70 × 10
9 2700 10 × 10

−3

184 Experimental Mechanics (2023) 63:177–190
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The frequency response shown in the lower portion of 
Fig. 7 has been obtained by inserting equation (22) in equa-
tion (15) and solving equation (16). In this figure the blue 
curve is the response of the system to the external test force 
with the frequency associated to 2T  periodic responses 
(primary parametric resonances); conversely, the purple 

(22)�1 =
|||
(
� + �n1 − �n2

)|||∕2,�2 = � − �1

curve corresponds to the system’s response to the external 
test force having the frequency related to parametric com-
bination resonances. Three sets of dual peaks are visible in 
Fig. 7, each connected by dashed red lines to the stability 
plot (obtained according to Hill’s theory) at the correspond-
ing value of � . It can be observed how the double peaks 
efficiently and precisely signal the limits, frequency-wise, 
of the unstable regions related to K0 = 800N∕m . In fact, as 
stated in the “Stability Analysis” section, these local peaks 
pick up the transition curves, i.e. those curves defined by the 
parameters combinations giving rise to period responses.

The reader will notice that the JBA response shown in 
Fig. 7 contains two extra peaks, denoted by ① & ②, which 
have nothing to do with instability detection. The reason 
behind these peaks is a by-product of the method itself. The 
external test force inserted in the system is swept for a range 
of � . It may happen that the exciting frequency � may coin-
cide with one of the natural frequencies and, as the result, 
cause the resonance. For instance, the first peak of the blue 
curve at � = 33 r∕s , marked by ①, causes the system to reso-
nate. This is because at � = 33 r∕s one of the frequencies in 
equation (15), 3�∕2 , will be equal to �n1

 . Accordingly, for 
the peak ② of the purple curve, when � = 165.9 r∕s , it holds 
�1 = �n1

 which also causes the resonance of the system. It 
should be noted that these extra contributions can be easily 
filtered out a priori and are here shown only to demonstrate 
a full implementation of the method.

To build the stability plot using JBA, the following pro-
cedure must be followed:

(a) Perform the JBA for different values of K0 for an inter-
val of �

(b) For each K0 , build a plot like in Fig. 7
(c) Collect the frequency values corresponding to the peaks 

demonstrating the domains of instabilities
(d) Plot the collected points from the previous step

Doing so, the stability plot obtained by JBA is given in 
Fig. 8. In this figure, it can be observed that the transition 
curves computed by JBA accurately locate all the unsta-
ble regions obtained through Hill’s method. Here, the blue 
transition curves determine the border of the instabilities 
due to the primary parametric resonances while the purple 
one characterizes the unstable zone induced by combination 
parametric resonances. In addition, the first and second lines 
of simple resonances shown in Fig. 8 (see the labels at the 
bottom left), are the collection of the peaks ① and ② shown 
in Fig. 7 for different values of K0.

To make a comparison, in terms of computational time, 
between JBA and Hill’s method, a portion of the stability 
plot at 600 N/m ≤ K0 ≤ 800 N/m and 0 rad/s ≤ � ≤ 700 
rad/s considering 500 values for each parameter, is recom-
puted where the duration of the computation is presented in  

Fig. 6  Stability plot applying Hill’s method

Fig. 7  JBA results for K0 = 800 (N/m)
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Table 2. It must be noted that the reason for choosing this 
portion of the stability plot is that this part contains just 
the unstable regions which could be computationally time 
– consuming to obtain. In this way, the efficiency of the 
two methods can be examined more precisely. According to 
Table 2, JBA is almost 45 times faster than Hill in obtaining 
the stability plot.

Experimental–Numerical Results

As mentioned in the “Experimental Setup” section, to seek 
the existence of parametric resonance, a test rig comprising 
of a cantilever beam excited by an electromagnet is taken 
into account. In this study, the focus is on the combination 
parametric resonance response. For this reason, the system 
will be analyzed at � ≈ �n1

+ �n2
.

In the first step, in order to make sure that the numerical 
model matches its experimental counterpart, the natural fre-
quencies corresponding to the free system (i.e. no magnet) 
are compared. As presented in Table 3, the first two natural 
frequencies are fairly close.

In the second step, the experimental results for three 
values of the gap L0 = 7mm, 8mm, 9mm are obtained. For 

Fig. 8  Stability plot obtained by 
employing JBA

Unstable region due to
Primary

Parametric resonance

Unstable region due to
Primary

Parametric resonance

Unstable region due to
Combination

Parametric resonance

Simple resonances
w = and

≈ . rad/s

Simple resonances
w / =
and ≈ rad/s

Table 2  The computational time for obtaining the complete stability 
plot via Hill’s method and JBA for 600

(
N

m

)
≤ K0 ≤ 800

(
N

m

)
 & 0

(
rad

s

)

≤ � ≤ 700

(
rad

s

)

Stability analysis 
approaches

Number of samples Time of 
computation

Hill’s method 500 samples of K0

500 samples of �
5807 (s)

JBA 500 samples of K0

500 samples of �
127 (s)

Table 3  1st two Natural Frequencies

Numerical Model Test Rig

�
n1 = 8.4 Hz (52.7 r∕s)   �

n1 = 8.36 Hz (52.5 r∕s)  
�
n2 = 51.1 Hz (321 r∕s)   �

n2 = 50.47 Hz (317.1 r∕s)  
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each L0 , the system is excited at a frequency equal to the 
summation of the first two natural frequencies. In each 
case, the response of the point highlighted in Fig. 4(b) is 
measured and its FFT is plotted. The numerical calculation 
is performed for the same nominal conditions. The numer-
ical and experimental results in terms of excitation force 
and displacement for different L0 are compared in Fig. 9.

For the case L0 = 7mm , the rig has been excited at the 
frequency � = 58, 44 Hz ≈ �n1

+ �n2
 . This is confirmed by 

the FFT of the measured force shown in Fig. 9(a) where 
also small extra harmonic contributions are visible. These 
extra harmonics are due to the response of the beam whose 
frequency content includes �n1

 and �n2
 as shown in the 

lower portion of Fig. 9(a). At the excitation frequency � = 
58, 44 Hz, the response, as depicted in the lower portion 
of Fig. 9(a), not only has a high amplitude but also its fre-
quency content (large peaks at �n1

 and �n2
 ) is typical of 

instability due to combination resonance.
To obtain the numerical results at the corresponding gap and 

exciting frequency, different quantities need to be estimated:

– the excitation force F0

– the equivalent stiffness K0

– the damping ratio �

Equation (21) is used to compute the value of the constant 
A from the measured force F0 . For this purpose, F0 is read as 
the amplitude of the main peak of the FFT of the measured 
force in Fig. 9. Then K0 is obtained as a function of A and L0 
from equation (20). Since the system’s equivalent stiffness 
changes as K0 changes and since, in the assumed model, the 
damping is proportional to the stiffness, its value must be 
updated for each L0 as shown in Fig. 10(a). For the damping 
ratio characterization tests have been performed for three 
different gap values: L0 = 7 mm, 8 mm, 9 mm . In all these 
cases instability has been observed. For each experimen-
tal test, a series of numerical simulations are carried out. 
All the parameters of the numerical model are known but 
� . The value of � is obtained as the highest possible value 
which still ensures the numerical system to reach instability. 
Repeating this procedure for all three cases, the results are 
collected and presented in Fig. 10(b). As expected, different 
values of K0 , produce different values of � . Then, two dif-
ferent fitting curves based on the three sets of values have 
been obtained. In this paper, the polynomial curve is used to 
characterize the damping ratio. It is worth mentioning that 

a) = 7mm b) = 8mm c) = 9mm

ωn2ωn1

ωn2

ωn2

Fig. 9  FFT of the force and displacement of the rig and mathematical mode for different values of L0 where instability is detected
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for L0 > 9 mm , instability is not observed experimentally. 
In this case, the corresponding numerical modes adopt the 
fixed value of �

(
L0 = 9 mm

)
.

As shown in Fig. 9(a), the FFT of the numerical force has 
similar components compared to the experimental case. Tak-
ing into consideration the FFT of the response, it is observed 
that the numerical model follows the same behavior as the 
experimental model but with higher amplitude in the first 
mode. It must be noted that the response of the numerical 
model will increase unboundedly at the parametric com-
bination frequency as time passes while the experimental 
model reaches a high amplitude steady – state response. The 
bounded response observed during testing is probably due to 
the additional source of damping provided by the friction of 

the bolts used to clamp the beam and not taken into account 
in the model described in the “Mathematical Model” section. 
The same procedure is followed for L0 = 8 mm and 9 mm.

When the frequency of the electromagnet � is away 
from resonance frequencies either simple or parametric, 
the system has infinitesimal displacement and accordingly 
ym = 0 . Therefore, the measured force by the force trans-
ducer will be F0 . However, the stiffness – dependent part of 
the magnetic force given by equation (19) is still available 
and the Formulas given in equations (20) and (21) can be 
computed. At the parametric resonance, still the procedure 
explained above is adopted and since the Experimental and 
Numerical FFT plots in Fig. 9 overlap each other frequency 
– wise, it proves that considering the measured force from 
the transducer, even in case of resonance, to be equal to 
F0 is correct.

Considering Fig. 10(a), as the value of the gap increases 
the value of K0 decreases and, consequently, the influence 
of the parametric excitation becomes less significant. 
This point by the stability plot shown in Fig. 11. This 
numerical stability plot is obtained applying Hill’s method 
(see “Stability Analysis” section); the only difference, 
which has a negligible impact on the final result, is that 
the damping ratio is modified according to the K0 values 
(i.e. Fig. 10(b)). The formula coming from the polyno-
mial fitting curve of the damping ratio is used for a range 
of K0 corresponding to 7 mm ≤ L0 ≤ 9 mm while a fixed 
value of �

(
L0 = 9 mm

)
 is applied for K0 corresponding to 

L0 > 9 mm . In order to obtain a complete experimental 
numerical comparison both stable and unstable responses 
are shown. As expected stable responses correspond to 
cases where L0 > 9 mm . The experimental results match 
perfectly the numerical stability plot as the K0 values cor-
responding to L0 > 9 mm lead to K0 values lower than 

Fig. 10  a Effect of gap value L0 
on the mean parametric stiff-
ness K0 b Modal damping ratio 
calculation empirically

a. Effect of gap value on the mean 

parametric stiffness

b. Modal damping ratio calculation 

empirically

Fig. 11  Stability plot corresponding to the test rig at the combination 
parametric resonance frequency
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250 (N∕m) , for which no instability can be detected, nei-
ther numerically nor experimentally.

Conclusion

This paper aims to present an easily attainable experimen-
tal test case to study the effect of parametric excitation 
on the stability of a vibrating system. For this reason, the 
chosen demonstrator is a cantilever beam mounted on a 
spring, whose time – varying stiffness can be derived by 
a measurement of the corresponding force. In this experi-
mental set-up, the time varying stiffness is obtained thanks 
to an electromagnet. The observation of the experimental 
results and the subsequent comparison with the numerical 
simulation results in the following remarks:

– The experimental set-up is successful in triggering 
unstable behavior typical of parametric excitation, 
with a specific reference to the Combination Paramet-
ric Resonance.

– The experimental results obtained by the direct meas-
urement of the magnetic force are in good agreement 
with the numerical ones.

– The link between the electromagnet, i.e. source of para-
metric excitation, and the resulting model form is for-
mulated based on easily controllable physical param-
eters.

– The state-of-the-art Hill’s method for the detection 
of unstable responses, and the one proposed by the 
authors i.e. JBA, successfully identify the unstable 
regions of the system. The stability plots thus obtained 
are confirmed numerically, i.e. through Direct Time 
Integration, and validated experimentally.

– The amplitude of the unstable response in the numeri-
cal simulation is greater than the experimental one. 
This may be because the numerical model lacks addi-
tional sources of damping, e.g. friction at the bolts, 
which may limit the amplitude of the response.

– The multi-functionality of JBA i.e. determining the 
domain of parametric instabilities in the frequency 
response plot as well as obtaining accurately the full 
stability plot in an efficient computational time makes 
JBA a useful tool for studying a parametrically excited 
system.

– The characteristics of the response at combination para-
metric resonance, i.e. large vibration amplitude and multi 
–frequency content which is different from the drive fre-
quency, make the experimental setup a good candidate for 
different applications, e.g. energy harvesting from the high 
amplitude oscillations, multi-modal investigations, etc.
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