
24 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Comprehensive Overview on Biochar-Based Materials for Catalytic Applications / Bartoli, M.; Giorcelli, M.; Tagliaferro,
A.. - In: CATALYSTS. - ISSN 2073-4344. - 13:10(2023). [10.3390/catal13101336]

Original

A Comprehensive Overview on Biochar-Based Materials for Catalytic Applications

Publisher:

Published
DOI:10.3390/catal13101336

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2990642 since: 2024-07-11T07:57:43Z

Multidisciplinary Digital Publishing Institute (MDPI)



Citation: Bartoli, M.; Giorcelli, M.;

Tagliaferro, A. A Comprehensive

Overview on Biochar-Based

Materials for Catalytic Applications.

Catalysts 2023, 13, 1336. https://

doi.org/10.3390/catal13101336

Academic Editor: Vladimir

Mordkovich

Received: 31 August 2023

Revised: 28 September 2023

Accepted: 29 September 2023

Published: 30 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Review

A Comprehensive Overview on Biochar-Based Materials for
Catalytic Applications
Mattia Bartoli 1,2 , Mauro Giorcelli 2,3 and Alberto Tagliaferro 2,3,4,*

1 Center for Sustainable Future, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy;
mattia.bartoli@iit.it

2 Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9,
50121 Florence, Italy; mauro.giorcelli@polito.it

3 Department of Applied Science and Technology, Politecnico di Torino, C. so Duca degli Abruzzi 24,
10129 Turin, Italy

4 Faculty of Science, OntarioTech University, Simcoe Street North, Oshawa, ON L1G 0C5, Canada
* Correspondence: alberto.tagliaferro@polito.it; Tel.: +39-011-0907347

Abstract: The development of heterogeneous catalysts is one of the pillars of modern material science.
Among all supports, carbonaceous ones are the most popular due to their high surface area, limited
cost, and tunable properties. Nevertheless, materials such as carbon black are produced from oil-
derived sources lacking in sustainability. Pyrolytic carbon produced from biomass, known as biochar,
could represent a valid solution to combine the sustainability and performance of supported catalysts.
In this review, we report a comprehensive overview of the most cutting-edge applications of biochar-
based catalysts, providing a reference point for both experts and newcomers. This review will provide
a description of all possible applications of biochar-based catalysts, proving their sustainability for
the widest range of processes.

Keywords: biochar; thermal catalysis; electrochemical catalysis; heterogeneous catalysis

1. Introduction

Since the early days of chemical industrial production, large-scale production has
relied on the use of catalysts to facilitate and optimize most chemical conversions [1].
As proved by empirical results, heterogeneous catalytic systems show a combination of
properties that perfectly match the industrial requirements (i.e., recyclability, activity, and
recoverability) [2]. Across the history of industrial catalysis, carbon-supported catalysts
(CSCs) have played a major role since the development of the Lindlar catalyst [3], which
marked the history of industrial processes. Since the first steps, CSCs have spread out
in several industrial applications due to their possible combination with several single
or multiple metal centers that are able to exploit the catalytic effect (i.e., palladium [4],
platinum [5], rhodium [6], and ruthenium [7]) and the high surface area and physical and
chemical stability of the support [8]. The possibility of producing multi-site materials al-
lowed the creation of real conversion platforms able to exploit complex chemical pathways.
The clearest example is represented by the electrocatalytic applications in which CSCs
with multiple active sites allowed the conversion of carbon dioxide to alcohols through
intermediates such as formic acid without requiring multiple-stage reactors [9] or reducing
the loading of costly species by using cheap metals such as iron [10]. After the selection
of CSCs, the morphological, physical, and chemical properties of the carbon support are
key features for the production of carbon-supported catalysts [11,12]. The surface prop-
erties of CSCs are a matter of great relevance, affecting both active site distribution and
catalyst–reagent interactions [12].

The use of pristine nanosized carbon-based species represented a key advancement
for CSC [13], enlarging the carbon black-supported species and introducing the use of
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graphene derivatives or carbon nanotubes [14], reaching fields such as biomedicine in
which high-tech materials represent critical and mandatory innovations [15–17]. Neverthe-
less, these materials are still far from reaching large-scale applications due to handability,
cost, and productive limitations [18]. During the last decades, the rise of social concerns
for environmental preservation has also driven the development of greener solutions for
the production of CSCs based on engineered waste or biomass-derived materials [19]. This
field is quite promising, but a fully engineered waste or biomass-derived catalytic support
is still far from being able to match all the properties of a traditional CSC considering
stability and utilization range [20]. Interestingly, carbon produced from the thermal degra-
dation of biomass, known as biochar (BC), has attracted great interest as a replacement for
carbon black for plenty of applications, such as composites production [21–27]. The BC
properties can be easily tailored by simply tuning the production conditions, increasing its
electrical [28–32] or thermal [33–35] conductivity, and modifying its morphology [36,37].
The great tunability [38], low cost [39], and environmental impact [40] have promoted the
use of BC in the realm of CSCs far beyond the more cutting-edge and high engineering
materials, reaching remarkable achievements [41–43]. An additional feature of BC is its
easy dispersibility in polymeric matrix together, the “shuttle” effect for nanofillers such as
carbon nanotubes [44]. Nevertheless, BC production is struggling to reach full maturity due
to geographical constraints and the strong dependency of the economy on its final applica-
tion [45]. BC-supported catalysts (BCSCs) can be a solid solution to reach the breakthrough
that will allow the consolidation and spread of BC-based platforms due to the high cost of
the CSCs, mitigating their environmental impact. Actually, BCSCs have found an active role
in the mitigation of environmental pollution, both in adsorption [46] and in degradative
processes [47–49]. Nevertheless, the BCSCs cannot be limited to the environmental field in
order to promote the development of a large, resilient, and productive network. A great
deal of work has already been carried out on BCSCs, and a reference point is needed to
establish critical discussions on which is the most promising catalytic field for the use
of BCSCs.

In this review, we provide a clear and complete picture of all possible uses of BCSCs,
focusing on the strong and weak points for each catalytic route discussed and clearing
up the possibility of the utilization of BCSCs in several catalytic applications as a solid
replacement for traditional CSCs.

2. Engineering the BC for Catalysts Production

BC is derived from biomass through thermochemical cracking using different methods
such as torrefaction, pyrolysis, and gasification. The primary difference between them
lies in the temperatures reached during the process. The temperature achieved during
torrefaction ranges between 200 and 350 ◦C. Torrefaction conversion technology avoids
proper carbonization of the material, reaching only a low degree of biomass degrada-
tion [50]. BC produced at such low temperatures contains up to 50 wt.% of carbon, with
remarkable yields of up to 70% [51]. Nevertheless, the limited processing temperature
avoids full carbonization, promoting only a limited condensation process with breakage of
lignocellulosic components.

Proper carbonization occurs at temperatures higher than 400 ◦C under the so-called
pyrolytic condition in an oxygen-poor atmosphere [52] using several kinds of heating tech-
nologies [53–55] and reactors [56]. Alternatively, techniques based on the use of liquid [57]
or oxidant [58] environments can be used, but they generally have been employed for
liquid or gas fuel applications.

The formation of BC takes place through several steps during the carbonization of
biomass. At first, the biomass feedstock lost adsorbed water in a temperature range of
100–1130 ◦C, while the proper breaking process of major components starts at 400 ◦C and
becomes complete at around 550–600 ◦C [52]. Nevertheless, this temperature range is far
from the one required for graphitization, and BC produced using pyrolytic temperatures up
to 600 ◦C is still rich in functional groups but displays a poor degree of graphitization [59].
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The advanced graphitization of BC takes place at temperatures higher than 800 ◦C [60] and
never reaches pure graphitic status as it is classified as non-graphitizable carbon according
to the Franklin definition [61].

The balance between graphitization and residual groups is a matter of complexity, and
it is related to the selection of BC productive conditions. These are strictly connected to the
BC final use, and their choice is used to tailor key parameters ranging from grindability to
physicochemical properties (i.e., residual functional groups, conductivity, and degree of
carbonization) [62]. Among all parameters, the processing temperature plays a major role,
and its effect can be monitored through the Van Krevelen graph (see Figure 1) plotting the
molar ratios H/C versus O/C.
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The Van Krevelen plot is very useful for correlating the heteroatom residues on BC with
the process temperature and to deduce this parameter through a simple elemental analysis.
Nevertheless, a more detailed evaluation of fine parameters such as the carbon defectiveness
and the species exposed on the surface is required for BCSCs. These analyses are generally
carried out using advanced techniques such as Raman and infrared spectroscopies [60],
electron microscopy [64], and X-ray investigation techniques [30,65].

The production of BCSCs is a matter of great complexity, and the use of pristine
BC is not an elective choice due to the intrinsic lack of BC catalytic activity [66,67]. The
engineering processes of BC are numerous and comprise two approaches, one based on
the insertion of functionalities on the BC surface and the other based on BC tailoring with
active micro- and nanostructures.

The well-established functionalization of BC has found its foundations in the proce-
dures developed for tailoring carbonaceous structures for the production of catalysts [68]
and absorbers [69].

The first relevant tailoring route is based on the insertion of heteroatoms (i.e., sulphur
and nitrogen) in the BC matrix to modify the electronic properties and the reactivity of the
vacancies produced in the carbon skeleton [70–72]. A simple route to enforce this approach
is based on the production of BC through direct pyrolytic conversion of heteroatom-
rich materials such as chitin [73]. Alternatively, more complex procedures can be used,
ranging from mechanochemistry-based [74] to impregnation [75] and washing with several
organic and inorganic solutions [76–80]. The covalent conjugation with metal–organic
frameworks or with polymeric chains is also used to modulate the interfacial properties of
BC [81,82]. An interesting tailoring process is represented by BC activation. BC activation
induces a great increment in the specific surface area up to several hundreds of m2/g [83],
removing the trace of unreacted volatile organic matter and tar from BC particles [84]. The
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activation process can be either physical or chemical, depending on the activation agents
used. Physical activation is performed by using a process temperature higher than 800 ◦C
in the presence of oxidant gases such as steam, CO2, H2O, or NH3 [85]. While physical
activations are relatively clean approaches, they require long process times and elevate
energy consumption [86]. Chemical activations are considerably faster, but they require
the use of large amounts of harmful agents such as oxidant acids [87,88], alkali [89,90],
carbonates [91,92], or peroxides [93–95].

BCSCs can also be produced by using engineered BC obtained by the growth of
deposited structures on their surfaces. Carbon tailoring represents an interesting route
to modulate the BCSC activity for all the electrochemical processes by inserting carbon
nanostructures, as reported by Zhang et al. [96]. The authors used chemical vapor depo-
sition (CVD) to grow carbon nanotubes on BC produced from nuts, while other authors
introduced micrometric needles or semi-spheres on cellulose-derived BC [97].

CVD was used for the deposition of several metal structures onto polymers [98] or
carbon matrix [99,100], but it is not the most used technique for metal tailoring in BC. BC
is mainly tailored through solvothermal routes, calcination, and carbothermal reduction.
Solvothermal routes are useful, but they lack deposition uniformity and require a calcination
step to fix the inorganic species onto BC, as described by Zeng et al. [101]. On the contrary,
carbothermal approaches directly anchor the inorganic structures on the BC through the
partial reduction of inorganic precursors using BC itself as a reducing agent [102], resulting
in a massive alteration of the BC morphology, as mentioned in several papers [103,104].

As summarized in Table 1, the choice of BC engineering technique should be carried
out by balancing the application of BCSCs with the cost-effectiveness of the route selected.

Table 1. Advance and disadvantages of engineering BC techniques.

Technique Modification Advantages Disadvantages

Tune the pyrolysis
parameters [105,106]

� Adjustments of residual
functionality

� Increase in BC
conductivity

� Simple approach
� It can be used with all the

feedstock

� Unable to insert any
new functionality

Pyrolysis of heteroatom-
rich feedstock [107]

� Heteroatom insertion � Simple approach � Limited to specific
feedstock

Activation [108]

� Increase in specific
surface area

� Remove of tar
� Insertion of oxygen and

nitrogen-based
heteroatoms

� It can be use with all BC.
� Physical activation does not

require any specific reagent
other than activation gas.

� Chemical activation can
improve the specific surface
area up to 1 order of
magnitude and
simultaneously passivate
the BC surface.

� Requires a post
treatment step

� Physical activation is an
energy consumption
route and require long
process time.

� Chemical activation
requires the use of great
amounts of unfriendly
reagents

Organic Tailoring [109]

� Insertion of residues,
carbon structure or
polymeric chains on BC
surface

� Great control
� Highly tunable

� Require a post-treatment
step

� Expensive
� Not useful to exploit BC

as cheap material
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Table 1. Cont.

Technique Modification Advantages Disadvantages

Inorganic Tailoring [110]

� Insertion of inorganic
micro- and
nanostructure on BC

� Great control
� Highly tunable
� Great catalytic activity

promoted by inorganic
species

� Require a post-treatment
step

� Expensive
� Necessary for the great

part of BCSC production
� Possible inorganic

leaching

3. Nanostructured and Nanosized Carbon Materials: Catalytic Applications
3.1. Thermochemical Based BC Catalytic Systems
3.1.1. Hydrogenation of Organic Compounds

The oldest field of application for supported catalysts is the hydrogenation of organic
compounds since the development of Lindlar catalysts [3]. The quest for highly active
green catalysts has been a vital research field, and BCSCs can play an interesting role in the
fulfillment of these aims by providing a combination of tuneability and toughness. Further-
more, BCSCs show better recoverability compared to traditional catalysts supported on
fine activated carbon that are hard to filter away, while micrometric BCSCs are considerably
easier to recover.

Santos et al. [111] tested the relationship between the textural properties of BCSCs
containing ruthenium and their activity in the reduction of monomeric sugars. The au-
thors clearly report a direct relationship between the number of residual groups and the
BCSC activity in the production of hexitols, which reached up to 95%. They suggested
that this behavior was due to the role of each residual group as a possible active center,
reporting also the crucial effect of metal sites’ homogenous dispersion, as also reported
for other BCSCs [112,113]. The relevance of BC surface modification was enlightened by
Wang et al. [114] in the hydrogenation of 1-chloro-2-nitrobenzene using nickel-supported
catalysts. The authors simultaneously introduced both hydrophilic and hydrophobic
sites through a combination of chemical activation and thermal annealing, boosting the
unsaturated bond reduction activity.

Similarly, Dou and co-workers [115] evaluated the effect of BC porosity by deposit-
ing palladium nanoparticles onto chemically activated cellulose-derived BC. The results
showed that activated BC overwhelmed the activity and recyclability of untreated BCSCs
working even at lower temperatures. Similar correlations were reported for the reduction
of phenols using potassium hydroxide-activated BC and nickel/cobalt-active species [116].

The insertion of specific heteroatoms was reported by Marques et al. [117] using
copper supported onto vineyard pruning waste derived from BC doped with nitrogen. The
authors proved the beneficial effect of nitrogen sites in the reduction of furfural to furfuryl
alcohol, reaching a conversion of up to 80% at 160 ◦C. As mentioned above, the insertion of
heteroatoms can be performed by processing specific materials such as sewage sludge [118]
or even by adsorbing metal ions from contaminated water and using the resulting BC
as BCSCs [119].

BCSCs can also be used for the hydrogenation of biomass [120], biomass-derived
fuels [121], and chemicals [122] for the creation of fully biomass-based sustainable platforms.
This is one of the most interesting possibilities related to BCSCs due to their inclusion in
fully biomass-based value chains. Van den Bosch et al. [123] reported the hydrotreatment
of birchwood lignin by using BCSCs containing both ruthenium and palladium, showing
the ability of the material to demethoxylate the guaiacol moieties at 240 ◦C while activated
carbon-supported catalysts required over 300 ◦C. Noble metals can be replaced by non-
noble species such as nickel, obtaining comparable deoxygenative performance with only a
small decrease in activity [124–126]. BCSCs have also found applications in the upgrading of
bio-oils, the liquid fractions produced from the pyrolysis of biomass [127,128]. These species
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are very complex in composition, containing up to hundreds of compounds, a high amount
of oxygen, and acidic molecules. BCSCs have been used for the hydrodeoxygenation
of bio-oils by directly mixing them with the pyrolytic feedstocks or in post-pyrolysis
experiments. The co-pyrolytic approach is particularly interesting for the simple realization
but involves a very complex reaction pathway including cracking, rearrangements, and
hydrogen transfers [129,130], while the post-treatment deals with a simple reactivity but
several deactivation issues to the composition of native bio-oils [121].

3.1.2. Oxidation of Organic Compounds

Among the thermal catalytic processes, the use of BCSCs for the oxidation process
is the most widely investigated due to their widespread application in water treatment
for pollution removal [131] and advanced desulphurization [132]. The oxidative process
of organic compounds mediated by BCSCs is not carried out using air or oxygen due to
the possible advanced oxidation of the BC matrix, but it is generally performed using
Fenton and Fenton-like reactions. Traditionally, a Fenton reaction involves the production
of reactive oxygen species through the decomposition of oxygenated water in the presence
of Fe(II) salts [133], with a well-known mechanism based on the equilibrium between
Fe(II)/Fe(III) species [134] and similar routes for Fenton-like reactions based on the use
of Fe(III) catalysts [135,136]. These reactions were originally developed as homogenous
catalytic reactions [137], but the production of heterogeneous catalysts has rapidly gained
relevance [138]. Manjuri Bhuyan et al. [139] developed BCSCs based on Fe3S4 that were
able to promote the rapid conversion of Fe(III) to Fe(II), combining the advantageous
handability of Fenton-like catalysts with the high reactivity of Fenton ones. This was due
to the in situ formation of sulphonyl radicals that allowed a rapid radical transfer to carbon
support, regenerating the Fe(II) sites.

As reported by Devi et al. [140], BC has shown remarkable stability under Fenton
model conditions for the degradation of naphthenic acids. The authors reported a higher
oxygenated water decomposition rate compared with activated carbon with a maximum
radical concentration of up to 182 mg/L that allowed these systems to operate under
real-world operating conditions. Mixed results were obtained by comparing the oxidation
of tetracycline using chemically activated BC produced by potassium permanganate, potas-
sium hydroxide, or phosphoric acid and different feedstocks [141]. The authors showed
that the feedstock plays a minor role while the activation process could enhance the reagent
adsorption, as in the case of permanganate treatment, and the catalytic activity, as in the
case of potassium hydroxide, depending on the functionalities introduced, as also reported
for BCSCs used for ozonation of wastewaters [142]. Additionally, the well-known catalytic
effect of aluminum doping can be exploited by producing BCSCs using aluminum-rich
feedstock and water sludge [143,144] or red mud [145]. Alternatively, the urea-oxygenated
water route can be followed with remarkable results using simple Fenton-like BCSCs [146].
The approach allowed the formation of a wide range of reactive oxygen species other than
oxygen radicals such as O2− and 1O2, which greatly increased the common Fenton reaction
performances [147,148].

The relevance of BCSCs in oxidant catalytic systems has also reached fuel upgrading,
in which catalytic oxidative desulphurization has outperformed the traditional desulphur-
ization routes [149].

As reported by Tamborrino et al. [103], iron-loaded coffee-derived BCSCs were synthe-
sized through carbothermal routes and employed to desulphurize a recalcitrant feedstock
produced from the pyrolysis of waste tires. The liquid, which contained over 7000 ppm,
was treated in mild conditions, reaching a desulphurizaiton of over 60% without any ap-
preciable leaching phenomenon. Similar approaches can be used for the catalytic oxidation
of sulphuric acid using BCSCs as a platform for simultaneous adsorption and oxidation
processes [150,151] reaching desulphurization over 70% even at room temperature.

Traditional CSCs suffer from great alternation during oxidative catalytic cycles that
greatly change their chemical and structural features, avoiding their use as inorganic
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support materials. BCSCs can be improved in their activity by the presence of additional
oxygen sites, increasing their performances [152,153].

3.1.3. Fischer–Tropsch Process

The Fischer–Tropsch process (FTP) is a well-established chemical route to convert a
mixture of carbon monoxide and hydrogen into liquid hydrocarbons, as reported in Figure 2.
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FTP is the most industrially relevant gas-to-liquid fuel technology for the production
of an oil derivative analog using reforming gas. Actually, cobalt-containing catalysts
represent the state of the art of FTP using an H2:CO ratio close to 2 [154], but syngas
produced from low-quality sources such as biomass can have different compositions [155],
requiring the presence of an iron co-catalyst [156]. There are few examples of BCSCs, but
the results reported were comparable or better compared to similar catalysts supported on
carbon black [157], with the advantage that micrometric BC particles reduce the poisoning
of metal centers [158]. Yousefian et al. [159] comprehensively evaluated the relevance
of BC feedstock for FTP producing 15 wt.% cobalt supported onto BCSCs using several
biomass sources (i.e., rice husk, coconut shell, and algae) using deposition methods. The
experiments were run in a fixed-bed reactor at 400 ◦C with an optimum H2:CO ratio,
comparing the catalytic activity with a common alumina-supported catalyst. The authors
reported that the low-ash BC produced from algae displayed better performance, with a
conversion of up to 67%. Nevertheless, iron–cobalt BCSCs showed superior performances,
as reported by Yan et al. [160]. The authors used a carbothermal reduction approach
to form nanosized supported metal catalyst anchoring with a thin layer of iron carbide,
reaching conversion up to 95% conversion, a value stable for more than 1500 h of working
activity. Alternatively, the modification of BC texture can also improve the output of
FTP, particularly after activation [161] or by inserting nitrogen doping. As reported by
Bai et al. [162], the presence of pyrrolic functionalities improved the selectivity towards
long-chain hydrocarbons due to a better adsorption of CO.

Compared to inorganic-supported catalysts, BCSCs do not suffer from poisoning, and
the weak adsorption interaction on their surfaces greatly promotes the efficiency of the
hydroformylation process.

3.1.4. Cross Coupling Reactions

The cross-coupling reactions are powerful tools for any synthetic process that requires
the formation of new carbon–carbon or carbon–heteroatom bonds [163]. These reactions
are possible only in the presence of specific catalytic metal centers [164] that promote
mechanisms such as the one schematized in Figure 3.

The catalysts for cross-coupling processes were originally designed as homogenous
ones [165], and heterogeneous species are still far less active [166]. Nevertheless, cross-
coupling heterogeneous catalysts are still attractive due to their good stability after multiple
catalytic cycles. Carbon supports have been proven to be the most promising way to
produce them [167]. To the best of our knowledge, only one research study has been
reported using BCSCs for performing a cross-coupling reaction. Akay and co-workers [168]
performed a solventless Suzuki–Miyaura coupling using a ferrite–palladium-doped BC
for the production of bi-aryl compounds under microwave irradiation, achieving a yield
of up to 99% using iodine-containing precursors. The authors observed, as in the more
traditional systems, a decrease in reactivity using bromide and chloride derivatives.
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3.1.5. Immobilized Enzyme onto BC

Immobilized enzyme-based catalysts are among the most ground-breaking and game-
changing materials in the realm of catalysis. These systems have attracted a great deal of interest
from both the industrial and academic worlds [169,170] due to the great specificity, activity,
and conversion rate of enzymatic systems, even if their shelf life and operative conditions
should still be optimized [170]. The immobilization of enzymes on carbonaceous support is
quite common due to the easy chemical functionalization of carbon surfaces [171,172]. The
surface functionalization of BC represents an interesting starting point for the production
of enzymatic BCSCs for plenty of applications [173].

As reported by Souza Júnior et al. [174], the immobilization procedure adopted matters
for the toughness of the enzymatic BCSCs. The authors used the glutaraldehyde conjugation
procedure to fix trypsin on activated BC, showing a hydrolytic resistance of over 87%
in operative conditions and an increase in activity due to both more efficient feedstock
adsorption and a geometrical strain induced by the conjugation. The authors claimed
stable catalytic activity for at least four consecutive tests. Similar procedures can be used
to immobilize chromate reductase for removing chromium from wastewater operating
at 45 ◦C, reaching a decontamination rate of 98% in a short time [175]. An alternative,
glutaraldehyde conjugation, was used to produce peroxidase-based BCSCs to remove
phenols [176,177] or to conjugate dehalogenase to remove halo compounds from water
solutions [178]. These routes allowed a very efficient treatment of recalcitrant pollutants
that can be removed only by using less environmentally sustainable approaches [179,180].

Interestingly, laccases have been found to be very promising in the treatment of such
tough waste degradation [181,182]. This enzyme triggers several kinds of reactions by using
a complex three-copper active center system [183]. Laccases containing BCSCs have been
used to depurate water from plenty of emerging pollutants such as acetaminophen [184],
quinolone antibiotics [185], or dyes [186–189]. It was proven that overall system activity
can be improved by the alkali-mediated chemical activation of BC support [190].

BC suffers in the confrontation with CNTs and graphene-related materials for the
production of enzyme-immobilized materials due to a non-homogenous surface chemistry
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compared with carbon allotropes. Nevertheless, BC can be treated as quite homogenous,
and the organic tailoring dramatically improves the repeatability of enzyme conjuga-
tion procedures.

3.2. Electrochemical Based BC Catalytic Systems

Contrary to thermal catalytic processes, electrocatalytic ones are deeply affected by
the quality of the carbon utilized. BC treated at temperatures higher than 800 ◦C has
shown very interesting electric properties [30,191], but they are still far away from those of
carbon nanotubes [192] and graphene-related materials [193]. Nevertheless, the electron
mobility of thermally annealed BC is quite high [194,195], and the production of self-
standing electrodes [196] spread the use of BCSCs in several applications discussed in the
next sections.

3.2.1. Electrochemical Oxidation

Electrochemical oxidation is a possible alternative to classical chemical disruption
of organic pollutants in watery media with a chemical reaction pathway as represented
in Figure 4.
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The mechanism of electro-oxidation involves a metallic active center that is converted
into an unstable and very reactive metal hydroxyl radical, promoting the radical degrada-
tion of organic species. This approach did not require any oxidant reagents considering
that reactive species are produced directly from aqueous medium, but it requires a great
deal of energy [197], limiting its applicability to a few scenarios, including the removal
of recalcitrant species from wastewater in the civilian [198–203] and pharmaceutical and
food [204,205] industries. As an alternative to the mechanism reported in Figure 4, electro-
oxidation can proceed through the in situ formation of hydrogen peroxide at the cathode
of the system, which acts like an oxidant agent [206]. This is the mechanism exploited
by BCSCs, as reported by several authors [176,207–209]. Nevertheless, Dai et al. [210]
used BCSCs.
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3.2.2. Electrochemical Reduction

Electrochemical reduction is another application of BCSCs of extreme relevance due
to the possibility of active removal of carbon dioxide from the gas stream by capturing and
converting it through electrochemical devices [211,212]. The mechanism of carbon dioxide
reduction is still debatable, but there is consensus that it changes by changing the active
material [213–216]. There are a few examples of BCSCs used for the reduction of carbon
dioxide using coffee-derived BC as support for bismuth [101] or zinc oxide [217] particles
for the production of formic acid or carbon monoxide with high faradic efficiency. In both
cases, the BCSCs were prepared through a simple impregnation and calcination process.

3.3. Photochemical Based BC Catalytic Systems

The integration of photocatalytic processes with advanced materials has paved the
way for groundbreaking applications in environmental remediation and sustainable tech-
nology [218–221]. BCSC photocatalysts stand out as a promising route for harnessing solar
energy to drive catalytic reactions [222], as sketched in Figure 5 for ferrite/bismuth oxide
supported on biochar for degradation.
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Photocatalysts are characterized by their ability to initiate chemical reactions upon
light exposure, offering a unique opportunity to address pressing challenges such as water
and air pollution, while BC can provide an intriguing platform for hosting and enhancing
the performance of these photocatalytic agents. The scientific challenge represented by
BCSC photocatalysts delves into the fundamental principles, mechanisms, and potential
applications of BC-supported photocatalysts, illuminating a path toward efficient and envi-
ronmentally friendly solutions to contemporary environmental issues [224]. Accordingly,
the majority of the studies about photoactive BCSCs are focused on pollutant degradation
and wastewater treatment using well-known materials such as titanium oxide [225–229] or
zinc oxide [230,231].

Nevertheless, band-gap tuning is crucial in order to obtain materials that are active
under visible light instead of UV. Several authors modified the surface of common titanium
oxide by forming heterojunctions between two different phases [232] or by adding metal
doping [233–235]. Li et al. [236] rethought the band gap approach by modifying the BC
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structure instead of inserting nitrogen defects in order to improve electron mobility and to
more efficiently disperse titanium oxide particles. Alternatively, BCSCs active under visible
light can be produced by using different metal species such as bismuth oxide [237,238],
bismuth oxohalides [239–242], bismuth vanadate [243–245], cadmium sulphide [246], or
zinc ferrites [247,248]. Even if the utilization of a carbon-negative cost matrix such as
BC, photoactive BCSCs remain out of the range for most on-field applications due to the
elevated cost and leaching problem due to the impossibility of tightly anchoring the active
species on the carbon matrix through solid bonds.

3.4. BCSCs for Sustainble Energy Sector: A Small Conundrum

The search for renewable and sustainable sources of energy and fuels has driven sig-
nificant research into innovative catalytic processes [249], together with the development
of new set-up and membrane materials [15]. The utilization of BCSCs has found plenty of
applications, but the most important for the future of mankind is related to the promotion
of a productive paradigm shift towards a more sustainable society. As a clear example,
BCSCs offer a compelling platform to enhance the efficiency and specificity of fuel synthesis
reactions through bio-oil upgrading, providing a reasonable solution to biofuel produc-
tion [129,250]. Particularly, BCSCs have been used for tuning the gasification process in
order to drive the consolidation of sustainable hydrogen production [251,252]. In the same
framework, BCSCs have found several applications as electrode materials for direct carbon
fuel cells [253], hydrogen [254,255], methanol [256], and microbial ones [257,258]. Further-
more, BCSCs were also used in the electrolyzers for green hydrogen production [259,260].
Nevertheless, BCSCs failed to reach a ground-breaking effect in these sectors due to their
poor competitiveness with traditional oil-based ones. We can confidently state that BC will
contribute to reaching the ambitious goal of a negative emission society by supporting the
transition to hydrogen-fueled systems [261], but we should also consider that BC is not a
solution for everything, especially for the sectors that still require optimization based on
sustainability studies.

4. BCSCs Sustainability: A Small Conundrum

The utilization of BC has been discussed intensively by the research community,
but there is not a unanimous consensus on its contribution to mitigating environmental
impact. The European community has enforced administrative procedures to certify the
sustainability of BC [262]. This has become mandatory for the resource-intensive production
platforms of BC that require significant amounts of energy and biomass feedstock [263].
In this framework, the choice of feedstock and the pyrolysis unit play a major role. As
a matter of fact, the potential land use competition between BC and food production
or natural ecosystems is a major concern. Nevertheless, the utilization of biomass waste
streams represents an acceptable alternative that reduces the contribution of greenhouse gas
emissions due to their combustion while limiting the available feedstock to the waste one.
This represents a key reason for searching for relevant industrial applications that could be
satisfied by the use under the limitations related to feedstock availability. BCSCs are high-
cost materials that represent a perfect application of BC, actively reducing the utilization
of carbon produced from the refinery platforms, such as carbon black. Furthermore, the
end-life BCSCs can be simply reused as catalysts in the pyrolysis process, enforcing virtuous
circular economy principles.

5. Conclusions and Future Perspectives

In this review, we present a brief and schematic picture of the possible use of BCCSs,
providing a general overview of the more recent achievements. The simple handability
and modifiability of BCSCs have been taken into consideration, considering their low cost
compared with carbon black. BCSCs hold significant promise as a sustainable solution
for plenty of catalytic processes, but they are not yet up to the mark when the process
itself is not fully established, as in the case of the hydrogen sector. Leveraging the unique
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properties of BC as a support material can enhance the catalytic activity and stability of
BCSCs, and several ways can be exploited based on the circumstances. The balancing of
BC feedstock sourcing, tailoring procedures, and waste valorization emerged as key factors
for BCSCs to make a disruptive contribution to the creation of a greener and more efficient
future. However, the complete realization of the benefits related to BC BCSCs must be
balanced with resource availability and the efforts necessary to build a solid, productive
infrastructure. Accordingly, we believe that responsible implementation and thoughtful
policy development of BC will be key aspects of the realization of a more sustainable and
environmentally resilient society.
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