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PAPER

Nonlinear spatio-temporal filter to reduce crosstalk in bipolar
electromyogram
Luca Mesin
Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli
Abruzzi 24, Turin, Italy

E-mail: luca.mesin@polito.it
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Abstract
Objective. The wide detection volume of surface electromyogram (EMG) makes it prone to
crosstalk, i.e. the signal from other muscles than the target one. Removing this perturbation from
bipolar recordings is an important open problem for many applications. Approach. An innovative
nonlinear spatio-temporal filter is developed to estimate the EMG generated by the target muscle
by processing noisy signals from two bipolar channels, placed over the target and the crosstalk
muscle, respectively. The filter is trained on some calibration data and then can be applied on new
signals. Tests are provided in simulations (considering different thicknesses of the subcutaneous
tissue, inter-electrode distances, locations of the EMG channels, force levels) and experiments
(from pronator teres and flexor carpi radialis of 8 healthy subjects).Main results. The proposed
filter allows to reduce the effect of crosstalk in all investigated conditions, with a statistically
significant reduction of its root mean squared of about 20%, both in simulated and experimental
data. Its performances are also superior to those of a blind source separation method applied to the
same data. Significance. The proposed filter is simple to be applied and feasible in applications in
which single bipolar channels are placed over the muscles of interest. It can be useful in many
fields, such as in gait analysis, tests of myoelectric fatigue, rehabilitation with EMG biofeedback,
clinical studies, prosthesis control.

Abbreviations

ANOVA Analysis of variance
BMI Body Mass Index
BSS Blind source separation
CoV Coefficient of variation
EMG Electromyogram
FCR Flexor carpi radialis
IED Inter-electrode distance
MDF Median frequency
MNF Mean frequency
MU Motor unit
MVC Maximum voluntary contraction
NLSTF Nonlinear spatio-temporal filter
OSTF Optimal spatio-temporal filter
PSD Power spectral density
PT Pronator teres
RMS Root mean squared
SD Single differential
SNR Signal-to-noise ratio
SOBI Second-Order Blind Identification

1. Introduction

Surface EMG is the signal recorded by electrodes
placed on the skin and reflecting the bioelectric com-
mand inducing the contraction of a muscle [1]. The
electrodes have a large detection volume [2, 3], so
that they can record also the contribution from other
muscles than the target one of interest [4, 5]. This
undesired contribution, called crosstalk [6], is still
an open problem in surface EMG. It is difficult to
quantify and to remove and may affect different
applications, as gait analysis [7], coordination [8] and
control of myoelectric prosthesis [9–11].

Crosstalk was studied both using simulated
[12–16] and experimental data [17–21]. Many res-
ults documented the difficulty of quantifying and
removing crosstalk: cross-correlation of EMGs recor-
ded over target and crosstalk muscles is not effective
to measure the signal quality [22]; spatial filters have
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different selectivity depending on the specific volume
conductor [12]; simple temporal filters do not reduce
it [23].

A common strategy to attenuate crosstalk is
through appropriate electrode positioning [24] and
the use of spatial filters [17, 19]. These filters reduce
non propagating components [25], which provide
the main contribution to crosstalk [26]. However,
their effect depends on many factors (type/dimen-
sion of electrodes used, physical/geometrical prop-
erties of the tissues and anatomy of the subject)
[12–16] and a small detection volume is explored,
posing a problem of representativeness of the recor-
ded information [27].

Advanced strategies have also been explored,
e.g. decomposition algorithms [28, 29] and inverse
methods [26, 30]. However, these processing
algorithms are complicated and require a high-
density detection. This is uncomfortable to use
in many applications (e.g. ergonomics [31], sport
science [32], gait analysis [33] and clinics [34]) where
the set-up of the experiment should be fast, the detec-
tion has to be stable and the acquisition system must
not hinder the movement.

An alternative approach is the OSTF [35, 36],
which is adapted to the specific conditions (need-
ing a preliminary training on selective data from tar-
get and crosstalk muscles) and can be applied in
real-time. It requires simple recording systems (e.g. a
few EMG channels over the target and the crosstalk
muscles) and showed lower sensitivity to crosstalk
than traditional spatial filters [36] and advanced BSS
approaches [37]. However, the output of the filter is
not easy to be interpreted. In fact, the motor unit
(MU) action potential (MUAP) waveforms are in
general different from those ofwell-known filters (e.g.
the typical biphasic waveforms recorded by a bipolar
filter). Moreover, the PSD can present dips and a
bandwidth which is different from that of data usu-
ally recorded using simple spatial filters. In fact, OSTF
performs both a spatial and a temporal filter, chan-
ging the typical distribution of sinusoidal compon-
ents shown in the PSD of surface EMG. Finally, the
output of the OSTF can change significantly whether
applied to different subjects, experimental sessions of
the same subject, or during different motor tasks (e.g.
requiring different joint angles). Therefore, the adapt-
ation of themethod to specific conditions, depending
mainly on electrodes locations and physical proper-
ties of the volume conductor, makes tricky a compar-
ison among different acquisitions.

Thus, it would be much simpler to interpret the
data provided by an algorithm giving an estimation of
the classical bipolar EMG from the target muscle after
removing the contribution of crosstalk. This paper
addresses this problem. A possible solution could be
using a BSS method: such an approach was proposed
to estimate the contributions of two nearby muscles

(removing crosstalk from each other) by assuming
that recorded signals are linear instantaneous mix-
tures of decorrelated sources [20]. The method was
applied offline on the entire signals, but the de-mixing
matrix could be estimated on a portion of data and
then kept fixed and applied online on new data.

The de-mixing matrix is a set of spatial filters
adapted to the subject to remove crosstalk from
each signal. A generalization of using spatial filters
is obtained by including also delayed samples (thus,
applying a spatio-temporal filter) and making a non-
linear processing of the data. In this way, a NLSTF is
obtained. This paper explores this approach, introdu-
cing an innovative NLSTF to reduce the amount of
crosstalk from single differential (SD) data, provid-
ing as output an estimation of the bipolar EMG from
the target muscle. This method is compared to a BSS
approach, trained and tested on the same data.

2. Methods

2.1. Design of the optimal filter
An optimal filter is designed to provide as output
the signal from the target muscle, giving as input the
data corrupted by crosstalk recorded over the tar-
get and the cross-talk muscles. The filter is built by
training on SD signals recorded over the target and
the crosstalk muscles during selective contractions.
Specifically, assume that we consider only 2 muscles,
i.e. a target and a single crosstalk muscle. Two SD
channels are placed, one over each muscle. We indic-
ate by xij(t) the signal recorded over the muscle i and
produced by the muscle j, where i (j) is equal to 1
or 2 for the target and crosstalk muscle, respectively.
These signals are summed to generate data corrupted
by crosstalk xi(t) = xi1(t)+ xi2(t). Using the informa-
tion contained in x1(t) and x2(t) (i.e. the signals recor-
ded respectively over the target and crosstalk muscles
and produced by their co-contraction), the objective
is to estimate y(t) = x11(t) (i.e. the SD signal recorded
over the target muscle and produced only by it).

An approach similar to that proposed in [38] is
used, to obtain a NLSTF.

A linear least squared problem is defined with
respect to the weights of the filter, using present
and past samples (up to N lags) of the 2 SD chan-
nels. This way, both spatial and temporal filters are
defined. Also quadratic terms have been included,
i.e. instantaneous cross-correlations and energies
(preserving information on the sign, i.e. −x2(t)
was used for samples for which x(t)< 0). Thus,
a nonlinear processing of the input data was per-
formed, but still solving a linear problem for the filter
weights.

In detail, the desired output was fit by the follow-
ing linear model

y= XW+ r (1)
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where W is the vector of filter weights, r the resid-
ual error and the matrix X includes the predictors,
i.e. the 2 SD signals, their delayed versions up to N

lags and the cross-product of all these terms. A general
expression of X is

X=


1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 x1 (i) x1 (i− 1) · · · x2 (i−N) x21 (i) · · · x22 (i−N) · · · x1 (i− k)x2 (i− n) · · ·
...

...
...

...
...

...
...

...
...

...
...

1 x1 (S) x1 (S− 1) · · · x2 (S−N) x21 (S) · · · x22 (S−N) · · · x1 (S− k)x2 (S− n) · · ·


(2)

where the vector of 1s is used to account for a bias;
N is the order of the temporal filter; S is the number
of samples in the training set; i is a generic sample; k
and n are general delays (⩽N); for brevity, the square
symbol was used, but the sign was kept (thus, x2i ( j)
was substituted by sign(x2i ( j))|x2i ( j)|2).

The matrix X was decorrelated, by eigendecom-
position of the correlation matrix XTX, obtaining the
eigenvectors matrix V, such that the new predict-
ors Y =XV were orthogonal. Then, the least absolute
shrinkage and selection operator was used to estim-
ate the filter weights in order to reduce the resid-
ual error and select the essential predictors, avoiding
overfitting [39]. Specifically, the following functional
was minimized with respect to the weightsW

∥y−YW∥22 +λ∥W∥1 (3)

where λ is a regularization parameter balancing the
squared residual (in estimating the crosstalk-free SD
signal y(t)) and the L1 norm of the weights, chosen
minimizing the 10-fold cross-validation error.

The matrix of eigenvectors V and the optimal
weights W should contain essential information on
the volume conductor and on the detection system,
allowing to compensate their influence in corrupting
target data with crosstalk. Assuming that their effect
is constant during the experiment, V andW are kept
fixed and applied to test data.

2.2. Blind source separation
The NLSTF was compared to a method of BSS based
on SOBI, introduced in [40] and then applied to
crosstalk in surface EMG [20].

The method is based on the assumption that the
recorded data are instantaneous linear mixtures of
decorrelated sources [41]. The mixing matrix can be
estimated in two steps [20]:

(i) whitening, which imposes that the sources are
spatially decorrelated;

(ii) rotation, which assumes that the instantan-
eous cross-correlation of the sources is diag-
onal; it was implemented in the time–frequency
domain, by joint diagonalization of matrices
of spectra sampled at K time–frequency points

(where K was chosen by a fine tuning on few
data).

Once obtained the mixing matrix, SOBI provides
a de-mixing matrix (by pseudo-inversion) that,
applied to the recorded data, provides decorrelated
sources which, eventually, approximate the signals
from the two muscles.

SOBI was applied to our signals in a similar fash-
ion as the NLSTF: specifically, the de-mixing matrix
was trained on a portion of data (i.e. the same used for
training the NLSTF) and then kept fixed and applied
to test data. The source with largest correlation with
the ideal target signal was selected, with amplitude
optimally chosen to minimize the RMS error.

2.3. Simulated signals
The cylindrical model proposed in [42] was used to
simulate single fibre action potentials (SFAP) from
two muscles (figure 1). A 2D grid of square elec-
trodes (surface 1 mm2) with inter-electrode distance
(IED) of 10 mm was used, with arrays of 3 elec-
trodes placed aligned to the fibres. The average length
of simulated muscle fibres was 10 cm, with a ran-
dom uniform spread of tendon endings of 10mm;
the innervation zones (IZ) were located about in the
middle of the fibres with random displacement in
a range of variation of 10mm (uniform distribu-
tion). Monopolar SFAPs were simulated, from which
SD recordings with different detection points and
IEDs were obtained. Fibre density was 20mm−2,
which is about 10 times smaller than the physiolo-
gical value (it is about the density of fibres of MUs
[43]) and the same fibres were included in differ-
ent MUs with superimposed territory (which intro-
duces a small approximation error). MU sizes were
exponentially distributed in the range 15–300 and
200 MUs were simulated for each muscle. Their loc-
ations were chosen randomly, with uniform distri-
bution within the muscles, whose cross-sections are
shown in figure 1(B). The fibres closest to the centre
of a MU were selected to belong to it and MUAPs
were generated summing the corresponding SFAPs.
A Gaussian distribution with mean 4 m s−1 and
standard deviation 0.3m s−1 was assumed for theMU
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conduction velocity (CV); a reduction of 20% was
used to test the algorithm on data affected by peri-
pheral fatigue. CV values were assigned according to
the size principle [44].

Interference signals were simulated as in [43],
with largest recruitment threshold equal to 60% of
the MVC, mean firing rates (FR) with range 8–30Hz
(after MU recruitment, the mean FR increased lin-
early with force, with slope of 1Hz per 1% MVC,
with saturation at 30Hz) and random (Gaussian) jit-
ter with zero mean and standard deviation of 10%
of the mean inter-spike interval. Force levels of 10%–
100%MVC (10% step) were simulated.

2.3.1. Simulation tests
The algorithm for the estimation of the SD signal
from the target muscle has been applied in different
conditions. The following parameters were varied in
different tests in simulation.

• Fatigue: test data were either equivalent to those
used for training or affected by fatigue, inducing a
20% reduction of the CV of all MUs.

• Transverse distance: either 20mm or 40mm from
the median line separating the two muscles.

• IED: 10mm or 20mm.
• Noise: white Gaussian noise was added to the simu-
lated monopolar data before building the SD filter,
with either 30 dB or 20 dB of SNR.

• Training was applied either to selective contrac-
tions or to data corrupted by a contraction of 5%
MVC of the muscle assumed to be silent.

• A volume conductor with thickness of the fat layer
of either 3mm or 7mm was used to generate the
MUAPs.

• EMGs related to force levels of 10%–100% MVC
(10% step) were generated for each muscle and
summedwith all possible combinations to simulate
co-contractions.

• Five different distributions of MUs within the
muscles were generated (to get different ‘simulated
subjects’).

Thus, in total, the dataset of simulations on which the
method was tested included 32 000 signals (i.e. either
including or not fatigue, with 2 possible transverse
distances, 2 IEDs, 2 noise levels, using for the train-
ing either selective contractions or not, 2 fat layer
thicknesses, producing 10 force levels with the target
muscle and 10 others with the crosstalk muscle, con-
sidering 5 subjects).

2.4. Experimental data
The experimental data used to test the algorithm
are the same as in [36] (to which the reader can
refer for details). In short, eight healthy volun-
teers participated in this study (six males; mean ±
standard deviation: age 28.1± 7.5 yr, height 176.8±
7 cm, weight 71± 11.2 kg, BMI 22.4± 2.4). The

experiments were conducted in accordance with the
Declaration of Helsinki and with the approval of the
Ethical Committee of University of Turin (approval
number 510190).

Monopolar EMGs were recorded with refer-
ence electrode on the elbow, using the amplifier
Quattrocento (OT Bioelettronica, Turin, Italy) dur-
ing selective contractions of FCR and PT. The two
muscles are close to each other (making relevant
the issue of crosstalk) and are devoted to different
movements, i.e. flexion and pronation, respectively.
The dominant (right) forearm of each subject was
placed in a support, to which a ‘handle’ was con-
nected through two load cells (from which torque
signals were amplified and sampled at 10Hz using
two ADCs with 24 bits resolution, controlled by an
Arduino UNO board), one for each side, allowing to
quantify the applied force and type of effort (i.e. either
flexion or pronation). After skin cleaning, a grid of
13 rows and 5 columns of electrodes with 8mm
IED was placed so that ideally two columns were
over the PT, two on the FCR and the central one
in between. Surface EMGs were amplified, band-pass
filtered (−3 dB bandwidth, 10–500Hz), sampled at
2048Hz and converted in digital form with a resolu-
tion of 16-bit. Data were finally sent to a workstation,
for further processing with MATLAB (Inc. Natick,
Massachusetts, USA, ver. 2023a). A visual feedback
was provided to the subject, to help keeping approx-
imately isotonic contractions at specific levels.

For each task (i.e. flexion and pronation), three
MVCs were first measured (with 120 s rest between
them) and the largest value was selected. Then, for
each muscle, 20 s submaximal contractions of 10%–
50% MVC (with 10% step) in random order were
recorded with 60 s of rest between them, from which
the central epochs of 10 s (considered as quite station-
ary) were selected for processing.

Bipolar data from the two muscles were obtained
using electrodes from the external columns (in order
to be sure to be over a single muscle). The same rows
were used for the electrodes of the two channels, so
that the detection systems were side-by-side. They
were placed beyond the most distal IZ of the two
muscles, considering two IEDs (8mm and 24mm,
keeping the same detection point). A final test was
also carried out by including a third detection chan-
nel from the central column, placed between the other
two.

2.5. Test of performances
Data were combined to simulate the co-contraction
of pairs of muscles, both when considering simula-
tions and experimental signals. The first second of
datawas used for training, both in the tests with simu-
lations and experimental EMG. The algorithms SOBI
and NLSTF were trained to recover the crosstalk-
free SD EMG of the target muscle from the com-
bined signals recorded over the two muscles. Data of
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crosstalk muscle were circularly shifted with 5 differ-
ent translations to augment the training. Then, they
were summed to the EMGof the targetmuscle to train
the NLSTF; target and crosstalk signals were instead
concatenated to train SOBI. The optimal number K
of time–frequency points for the joint diagonalization
step in SOBI algorithmwas chosen by a fine tuning on
a few tests: K = 2000 for simulations and K = 600 for
experimental data.

Then, SOBI and NLSTF were applied for test-
ing on the data not used for training. The perform-
ances of the algorithms were indicated in terms of
the root mean squared (RMS) error of the residual
when estimating the SD signal produced by the tar-
get muscle (in percentage with respect to the RMS of
the correct SD signal from the target muscle). When
the algorithms are not applied, the residual error is
equal to the percentage RMS of the crosstalk signal
recorded over the target muscle. This value was used
as reference, to test the importance of processing the
data.

Furthermore, the possibility of estimating clas-
sical amplitude and spectral indexes was investigated.
The RMS of the signal was used as amplitude estim-
ator (notice that the amplitude of the output of SOBI
is not determined, so that the RMS amplitude was
computed only for the ideal signal, the raw data and
the EMG filtered by theNLSTF).Moreover,mean and
median frequencies (MNF and MDF, respectively)
were computed as spectral indexes. These amplitude
and spectral parameters were estimated from the tar-
get signal (used as reference), the noisy data corrupted
by crosstalk and the filtered EMG (obtained by apply-
ing either SOBI or NLSTF to the noisy data). The
absolute errors of the RMS amplitude (in percentage
with respect to the RMSof the target signal) and of the
spectral indexes were computed, by comparing estim-
ations from either the noisy or the filtered data with
the reference.

Overall results of the performance indexes were
computed. Then, the analysis was deepened for two
of them: the RMS error (providing the accuracy in
reconstructing the target signal) and the error in
estimating MDF (indicating the possibility of get-
ting accurate information on the spectral content of
the target signal). In order to detect possible statist-
ically significant differences, multifactorial ANOVAs
were applied on the difference between these two per-
formance indexes obtained by using data processed
by the NLSTF and either the raw data or the out-
put of SOBI. Specifically, for simulations, there were
8 factors (fatigue, transverse distances, IEDs, noise
levels, selectivity of contractions, fat layer thickness,
force levels of target and crosstalk muscles) and for
experimental data 4 factors (muscle considered as tar-
get, IED, force levels of target and crosstalk muscles).
ANOVA models with two-factor interactions were
used.

Standard parametric tests were applied after
transforming the data (i.e. RMS error and absolute
error in MDF estimation). The classical Box-Cox
transformation [45] did not provide satisfying res-
ults. Then, monotonic transformations of the data
(preserving ranks) were chosen by solving optim-
ization problems imposing that the residuals had
distributions close to Gaussian and were homosce-
dastic across groups. The performances of the trans-
formations were indicated in terms of the follow-
ing parameters, measuring the goodness of fit of
the hypotheses of the parametric ANOVA models
(i.e. gaussianity and homoscedasticity of residues):
L1 difference between a Gaussian (with same mean
and standard deviation as the corresponding sample
estimations) and the probability density distribution
of the residues (obtained by the kernel density estim-
ation, using 100 points and normal kernel), skewness,
kurtosis and CoV of their standard deviations across
groups.

Finally, differences of distributions of perform-
ance indexes were also displayed after pooling with
respect to factors (without transforming the data, but
showing the differences of the original values).

3. Results

The simulation model is depicted in figure 1, indic-
ating the volume conductor in figure 1(A) and the
cross-section in 1(B). Monopolar signals from dif-
ferent electrodes were simulated, in order to be able
to generate bipolar EMGs with different locations
and IEDs. Some examples of interference signals are
shown in figure 1(C): the same MU firings were used
to generate EMGs recorded with bipolar channels
with different locations and IEDs. As expected, the
effect of crosstalk decreases when the detection is
more selective (i.e. smaller IED) and located further
away from the crosstalk muscle.

Figure 2 illustrates the experiments, indicating the
two muscles under study in 2(A), the experimental
protocol in 2(B) and some examples of data in 2(C)
(considering bipolar channels with different locations
and IEDs).

Examples of processing are shown in figure 3.
Both simulated (panels 3(A) and (C)) and experi-
mental data (3(B) and (D)) are considered, either in
time (3(A) and (B)) or in frequency domain (3(C)
and (D)). Data from target and crosstalkmuscles were
summed to generate a noisy signal, which was cor-
rupted by crosstalk as in the case of a co-contraction.
SOBI and NLSTF were then applied to the noisy
data to estimate the signal from the target muscle.
The contraction levels were selected for the simulated
and experimental conditions to get similar contribu-
tions of crosstalk. The RMS errors for the estima-
tion of the target signal using either SOBI or NLSTF
are shown.
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Figure 1. Generation model used for the simulation of surface EMGs. (A) Three dimensional view of the cylindrical volume
conductor. Tissue thickness/conductivities are 1mm/50 · 10−2 S m−1 for the skin, 3 or 7mm/5 · 10−2 S m−1 for the fat, 20mm
(radius)/2 · 10−2 S m−1 for the bone, 26mm for the muscle with longitudinal/transverse conductivity 50/10 · 10−2 S m−1. The
simulated electrode grid is also indicated: monopolar signals were simulated and then different electrodes were used to generate
bipolar signals with different inter-electrode distances (IED) and detection points. (B) Cross-section of the volume conductor:
centres and dimensions of MUs of a single simulated subject are indicated with circles with correct centre and cross-sectional
area, for simplicity of representation. (C) Examples of single differential (SD) signals generated by a muscle (at 50%MVC) and
recorded with different IEDs (volume conductor with 7mm of fat thickness). The SD channels are placed in different locations:
either over the contracted muscle or on the relaxed one, obtaining the target and crosstalk signal, respectively; the transverse
distances (TD) from the mid-line separating the two muscles is either 20 or 40mm.

Figure 2. Example of real data and description of the experimental protocol. (A) Indication of the investigated muscles: Flexor
Carpi Radialis (FCR) and Pronator Teres (PT). (B) Timings of the experimental protocol. (C) Examples of data from a subject.
The two muscles are considered during selective contractions of different levels, using two single differential (SD) channels
(placed over each muscle, at 16 mm from the mid-line separating them) with different IED.

The entire simulated and experimental datasets
are now considered. Statistical effects of factors on
simulations are first explored, using ANOVA tests
applied on differences of performance indexes (RMS

error and mistake in MDF estimation), obtained
using NLSTF vs SOBI or NLSTF vs the original sig-
nals. Those data were transformed monotonically
(as explained in the Methods section) to make the

6



J. Neural Eng. 21 (2024) 016021 L Mesin

Figure 3. Examples of target, crosstalk, perturbed and filtered data (by either SOBI or NLSTF). (A) Simulated data (fat layer
thickness 3mm, IED= 20mm, distance from the mid-line separating the two muscles equal to 20mm). A portion of testing
signal is shown out of a processed signal of 5 s (1 s of data was used for training SOBI and NLSTF). Five signals are shown: target,
crosstalk, perturbed data (i.e. the sum of target and crosstalk signal recorded from the bipolar channel placed over the target
muscle) and signals filtered by SOBI and NLSTF. The indication of the RMS amplitude (referred to that of the target signal) is
shown for each signal. Moreover, the RMS of crosstalk is a measurement of error when using the raw data (which is the sum of the
signals from the target and crosstalk muscle); the RMS errors of SOBI and NLSTF in estimating the target signal are also given, as
a percentage of the RMS of the target signal. (B) Same as (A), but considering a portion of experimental data extracted from
signals of duration 10 s, of which 1 s was used for training SOBI and NLSTF. Bipolar EMGs with IED= 24mm are shown, in
which the flexor carpi radialis (FCR) and the pronator teres (PT) are considered as target and crosstalk muscles, respectively. (C)
Power spectral density (PSD) of the simulated signals shown in (A) (Welch method, with Tukey window with cosine fraction of
10%, duration 250ms, overlap of 50% and zero padding to get apparent resolution of 1Hz), with indication of the estimated
spectral indexes. (D) Same as (C), but for the experimental signals shown in (B).

residual errors after linear fitting closer to Gaussian
and homoscedastic. Table 1 provides some indexes
measuring the fit of the hypotheses of parametric
multifactorial ANOVA. The transformed data bet-
ter fit the hypotheses than the original and those
processed by the optimal Box-Cox transformation.
ANOVA was applied on those transformed data. The
list of factors and interaction terms showing statist-
ically significant differences are reported in table 2.
The single factors provided significant effects in most
cases and also many interaction terms.

Figure 4 shows distributions of results (using
violin plots [46]), obtained from the dataset of sim-
ulations. The focus is on the ability of SOBI and
NLSTF to estimate the crosstalk-free bipolar signal
from the target muscle. The percentage RMS error is
shown in 4(A) and the absolute error in estimating
MDF is reported in 4(B), after pooling data to indic-
ate single effects of interest, regarding the volume
conductor (i.e. fat layer thickness), the location of
the detection point (in terms of the distance from
the crosstalk muscle), the selectivity of the SD filter
(related to the IED) and problems in the input sig-
nals (noise with different SNRs, not selective contrac-
tions for training, myoelectric fatigue in the test). In
all conditions, NLSTF showed smaller average errors
in estimating the target signal than SOBI and large

improvements with respect to using raw data. Results
follow our expectations: estimation errors increase
when test data include myoelectric fatigue, crosstalk
muscle is closer, IED is larger (i.e. SD filter is less
selective), noise is larger and the fat layer is thicker
(thus, diffusing more the crosstalk signal). The only
unexpected result is a reduction of the estimation
error of MDF when the training set is perturbed by
using not selective contractions; this result is subver-
ted when myoelectric fatigue is neglected (notice the
significant interaction between fatigue and selectivity
disclosed by ANOVA tests shown in table 2).

Considering the entire dataset, the following
median errors were obtained when estimating the
target SD signal using raw data, SOBI and NLSTF,
respectively: 23.7%, 21.4% and 17.4% for the RMS
error (median improvement with respect to using raw
data of 4.4% and 5.9%, median percentage reduction
19.6% and 25.5% for SOBI and NLSTF, respectively);
a marginal improvement in RMS amplitude estima-
tion was obtained, with 2.57% of median error when
using the NLSTF, instead of 2.58% for the raw data
(the mean percentage error showed a larger decrease,
from 5.9% with raw data to 4.6% using the output
of NLSTF; notice that the amplitude of the output of
SOBI is not defined and it was chosen in order tomin-
imize the error in estimating the ideal crosstalk-free
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Table 1. Simulated data: comparison of NLSTF and either raw data or SOBI. Different indexes are shown to characterize the deviations
from hypotheses of ANOVA of residues of errors after linear fit (with interactions). Goodness of fit was measured as the integral of the
absolute difference between the distribution of data and a Gaussian with mean and standard deviation equal to the sample estimates.
Goodness of fit, skewness and kurtosis indicate the deviation from the hypothesis that the residues have Gaussian distribution. CoV(σ)
indicates the coefficient of variation of the standard deviation of the residues across groups, as an indicator of the divergence from the
hypothesis of homoscedasticity. In the case of Box-Cox transformation, λ is the optimal exponent.

NLSTF—Raw

RMS error Error in MDF estimation

Raw Box-Cox Monotone Raw Box-Cox Monotone
data λ= 3.86 Transform data λ= 1.72 Transform

Goodness of fit 1.38 1.43 0.10 1.52 0.18 0.09
Skewness −1.52 0.88 0.02 1.29 4.24 0.26
Kurtosis 23.40 14.13 4.24 35.44 146.62 3.00
CoV(σ) 1.21 0.81 1.12 0.96 0.96 0.63

NLSTF—SOBI

RMS error Error in MDF estimation

Raw Box-Cox Monotone Raw Box-Cox Monotone
data λ= 4.86 Transform data λ= 2.54 Transform

Goodness of fit 1.23 1.01 0.04 1.44 1.00 0.05
Skewness −1.32 0.46 0.02 −0.38 4.91 0.21
Kurtosis 14.31 22.04 3.01 18.75 220.86 2.94
CoV(σ) 1.42 0.96 0.54 1.06 1.00 0.53

Table 2. Simulated data. Statistically significant factors and interactions in the ANOVA model applied to error differences (i.e. error of
NLSTF output minus that obtained either using raw data or signals provided by SOBI). Both RMS error and MDF estimation error are
considered. Single terms indicate single factors with significant differences; couples of factors indicate interaction terms. Target muscle
(M1) and crosstalk muscle (M2).

Simulations—significant terms in ANOVA model (p < 0.001)

NLSTF—Raw RMS error All factors, fatigue-selectivity, fatigue-force M2, TD-fat, TD-force M1,
TD-force M2, IED-fat, IED-force (M1 and M2), selectivity-force (M1 and
M2), fat-force (M1 and M2), force M1-force M2

MDF error All factors except for noise level, fatigue-selectivity, fatigue-force (M1 and
M2), TD-(All factors except for fatigue), IED-fat, IED-force (M1 and M2),
selectivity-fat, selectivity-force M2, fat-force (M1 and M2), force M1-force
M2

NLSTF—SOBI RMS error All factors except for selectivity, fatigue-IED, fatigue-fat, fatigue-selectivity,
fatigue-force (M1 and M2), TD-selectivity, TD-force (M1 and M2),
IED-noise level, IED-fat, IED-force M2, selectivity-force (M1 and M2),
selectivity-fat, fat-force (M1 and M2), force M1-force M2

MDF error All factors except for noise level, fatigue-selectivity, fatigue-force (M1 and
M2), TD-selectivity, TD-fat, TD-force (M1 and M2), IED-force M1,
selectivity-force (M1 and M2), fat-force (M1 and M2), force M1-force M2

signal); 1.01Hz, 1.13Hz and 0.50Hz for the error
in estimating MDF (for NLSTF, median difference
0.34 Hz, median percentage reduction of the error
equal to 46.1%; SOBI worsened MDF estimation);
0.81Hz, 3.88Hz and 0.69Hz for the error in estim-
ating MNF (for NLSTF, median difference 0.03Hz,
median percentage reduction 6.1%; SOBI worsened
MNF estimation).

The beneficial effects of the investigated filters
(SOBI and NLSTF) depend on the contraction levels
of the two muscles. For example, pooling simu-
lated conditions, when estimating the target SD sig-
nal using raw data, SOBI and NLSTF (respectively),
the median RMS error decreased from about 88.6%,
61.0% and 55.7% to 15.2%, 15.8% and 11.7% when

the force level of the target muscle increased from
10% to 100% MVC; on the other hand, it increased
from about 7.1%, 15.6% and 6.8% to 36.5%, 26.7%
and 24.3%when the force level of the crosstalkmuscle
increased from 10% to 100%MVC.

Notice that, considering the overall results, there
are conditions in which crosstalk is either marginal
or important, specifically when the force level of
crosstalk is either larger or smaller (respectively) than
that of the target. Obviously, the importance of using
a filter (either SOBI or NLSTF) is more evident when
the crosstalk perturbation is larger: considering only
contractions in which the force level of the crosstalk
muscle was equal or larger than that of the target,
themedian reductions of RMS error, RMS amplitude,

8



J. Neural Eng. 21 (2024) 016021 L Mesin

Figure 4. Summary of the processing of the simulation dataset, pooling the results to show the effect of different parameters of
interest: test EMGs either affected by fatigue or not, transverse distance (TD) from the mid-line separating the two muscles either
20mm or 40mm, IED of 10mm or 20mm, SNR of the monopolar signals of 30 dB or 20 dB, contractions generating the training
EMGs either selective or including crosstalk (with force level 5% MVC), volume conductor with fat layer thickness of 3mm or
7mm. Violin plots are shown with indication of median and mean of the distributions. (A) Percentage RMS error in estimating
the crosstalk-free signal, using either the raw EMG or the output of SOBI or NLSTF. (B) Error in estimating the median frequency.

MDF and MNF errors when using NLSTF were
30.4%, 9.6%, 60.7% and 20.8%, respectively (in the
case of SOBI, there were reductions of 25.2% of RMS
error and 42.7% in MDF estimation, but MNF was
estimated worse); on the other hand, when the force
level of the target muscle was equal or larger than that
of crosstalk, the median reduction of the reconstruc-
tion error by using NLSTF was 20.2% and the differ-
ences on RMS amplitude and spectral indexes were
very small (median around 3% for the amplitude and
0.03Hz for the spectral indexes), whereas using SOBI
the reconstruction error was reduced of 10.5%, but
spectral indexes were estimated worse than using the
raw signal.

The same tests were also done for the NLSTF
including a third SD channel placed in the mean
position between the other two and with same IED.
Marginal variations were obtained in the approxim-
ation of the target bipolar EMGs: the median RMS
errors of filtered data were 17.4% and 16.2% when
including 2 or 3 SD signals, respectively, with a
median percentage reduction of 5.7%. The estim-
ations of RMS amplitude were fairly similar and
spectral indexes had median differences of less than
0.1Hz.

Concerning experimental data, multifactorial
ANOVA tests were employed to investigate the effect
of different factors on performance indexes, using the
same approach as for simulated data. A paired com-
parison was studied evaluating differences of per-
formance indexes on same conditions. Specifically,
the differences of RMS errors and ofmistakes inMDF

estimation were computed when considering signals
processed by the NLSTF instead of either the raw data
or the output of SOBI. These variables of interest were
transformed (preserving ranks) to make the residual
error after linear fitting closer to Gaussian and homo-
scedastic. Table 3 shows indexes measuring the fit of
the hypotheses of parametric ANOVA. Such a test was
then applied and statistically significant terms were
obtained, as reported in table 4. The force levels and
the muscle considered as target were the factors most
selected as significant in the ANOVA models. The
original distributions had large queues (reflected into
a great kurtosis, especially in the case of the compar-
ison NLSTF vs SOBI), which were largely reduced by
the transformation. Possibly, this is the reason why
the factor IED was not significant on transformed
data (whereas it was when applying ANOVA test to
not-transformed data of MDF estimation).

Figure 5 shows a summary of results obtained
from experimental data. The percentage RMS error
in approximating the bipolar EMG from the target
muscle and the absolute error in estimating its MDF
are given in figures 5(A) and (B), respectively. The
results were pooled showing single effects. As in the
case of the tests in simulations, the effect of crosstalk
increases when using a larger IED (as the filter is
less selective in that case). We also note that the PT
is more affected by crosstalk from FCR than vice
versa (this clear outcome is also supported byANOVA
results in table 4). SOBI shows some problems in
identifying FCR, as the error in estimating the sig-
nal from the target muscle is even worse than using
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Table 3. Same as table 1, but considering experimental data.

NLSTF—Raw

RMS error Error in MDF estimation

Raw Box-Cox Monotone Raw Box-Cox Monotone
data λ= 5.04 Transform data λ= 3.22 Transform

Goodness of fit 0.89 0.93 0.08 0.93 0.88 0.05
Skewness −1.91 −0.61 0.01 −2.42 −0.44 −0.01
Kurtosis 10.82 3.80 3.18 15.00 4.73 2.88
CoV(σ) 1.00 0.62 0.31 0.77 0.54 0.33

NLSTF—SOBI

RMS error Error in MDF estimation

Raw Box-Cox Monotone Raw Box-Cox Monotone
data λ= 8.44 Transform data λ= 5.16 Transform

Goodness of fit 1.30 0.82 0.05 1.24 0.84 0.09
Skewness −5.37 −3.04 0.005 −4.84 −4.39 −0.001
Kurtosis 45.08 12.84 2.85 26.11 22.60 2.62
CoV(σ) 1.50 0.96 0.27 1.56 1.20 0.21

Table 4. Same as table 2, but for experimental data.

Experiments—significant terms in ANOVA model (p < 0.01)

NLSTF—Raw
RMS error Target muscle, force (M1 and M2).
MDF error Target muscle, force (M1 and M2), target muscle-force M1.

NLSTF—SOBI
RMS error Target muscle, force (M1 and M2), target muscle-force M2.
MDF error Target muscle-force (M1 and M2).

raw data. Moreover, spectral indexes measured from
the output of SOBI are statistically worse than using
raw data. As expected, the relative contribution of
crosstalk decreases as the force of the target muscle
increases; moreover, it increases with the force level
of the crosstalk muscle (the same is found for simu-
lations; results are not shown, but average outcomes
are given in the text). In fact, statistically significant
effects of the force levels are disclosed by ANOVA tests
(table 4).

Considering the entire dataset, the following
median RMS errors were obtained, when estimat-
ing the target SD signal using raw data, SOBI and
NLSTF, respectively: 58.1%, 59.4% and 44.1% (there
was an improvement over raw data only when using
the NLSTF, with median 11.3%, median percentage
reduction of the error equal to 19.4%). The error
in RMS amplitude estimation was about 20.0% with
raw data and 8.4% when using the NLSTF (with a
median improvement of 6.8% and a median percent-
age reduction of the error of 33.8%). Clear improve-
ments in the estimation of spectral indexes were
found only when using NLSTF: the error in estimat-
ingMDFwhen using raw data orNLSTFwere 2.50Hz
and 1.58 Hz (median difference 0.60 Hz, median per-
centage reduction 24.2%); the error in estimating
MNF when using raw data or NLSTF were 2.46Hz
and 1.69Hz (median difference 0.42Hz, median per-
centage reduction 17.2%).

Additional tests checked the usefulness in the
design of the NLSTF of the inclusion of a third SD
channel placed between the investigated muscles (at
the mean position between the other two channels
and with same IED). Marginal improvements were
obtained in the approximation of the target bipolar
EMGs: the median RMS error of filtered data was
45.6% and 44.8% when including 2 or 3 SD signals,
respectively, with a median percentage reduction of
0.7% (as reference, the median RMS of raw data is
58.1%, as indicated above; the median variations in
the estimations ofmedian andmean frequencies were
below 0.1 Hz).

4. Discussion

Due to the large detection volume, a surface EMG
channel placed over a target muscle of interest
records also an undesired crosstalk signal produced
by the contraction of adjacent muscles [8, 9, 35, 47].
Different advanced methods have been proposed to
attenuate crosstalk [20, 26, 28, 30, 37, 47], but using
simple spatial filters is still the most used approach in
many fields [17, 19].

However, the selectivity of spatial filters depends
on tissue properties [12] and the detection volume
is reduced so that only a small portion of the target
muscle is explored, posing a problem of representat-
iveness of the activity of the entire muscle [27]. To
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Figure 5. Summary of results from the experimental data, which were pooled to show different parameters of interest: IED of
8mm or 24mm, target muscle either flexor carpi radialis (FCR) or pronator teres (PT), different contraction levels of either the
target or the crosstalk muscle. Violin plots are shown with indication of median and mean of the distributions. (A) Percentage
RMS error in estimating the crosstalk-free signal, using either the raw EMG or the output of SOBI or NLSTF. (B) Error in
estimating the median frequency.

overcome these limitations, the OSTF was developed
to adapt to the anatomy of the subject and discard
crosstalk, while keeping the maximal energy of the
contribution from the target muscle [35]. However,
the OSTF produces different outputs when applied to
different data, so that the possibility of comparing dif-
ferent conditions is limited.

An ideal solution to crosstalk would allow to
record the crosstalk-free EMG from the target muscle
in a standard filter configuration. Bipolar EMGs are
very popular, as they are easy to use and interpret,
they require small resources of memory and power,
they minimally restrain movements, they can have
a large detection volume (if IED is not too small)
guaranteeing to record much information from the
target muscle and have been applied in many fields
(e.g. ergonomics [31], sport science [32], gait analysis
[33] and clinics [34]). Thus, in this paper a nonlin-
ear spatio-temporal filter (NLSTF) is introduced to
estimate the crosstalk-free bipolar EMG from a target
muscle of interest, combining information from few
channels recording from target and crosstalkmuscles.
The new filter is compared to using simply the raw
data or applying SOBI approach in the same condi-
tions (i.e. identifying the de-mixing matrix on train-
ing data and applying it to the test data to recover the
target, thus using a spatial filter adapted to the data).

Both simulated (figure 1) and experimental data
(figure 2) have been included to test the performances
of the NLSTF. Various conditions are considered,
including different IEDs of the bipolar signals, loc-
ations of the detection point (at different distances

from the crosstalk muscle), anatomies (i.e. differ-
ent subjects in the experiments and different simu-
lated fat layer thicknesses), and detection problems
(simulations of myoelectric fatigue in test data, not-
selective conditions in training data, noisy EMGs).
The proposed filter is able to reduce the effect of
crosstalk, offering the possibility to better investig-
ate the EMG from the target muscle and to decrease
the bias in parameter estimation (e.g. amplitude and
spectral indexes). Some representative examples are
shown in figure 3: the perturbation introduced by
crosstalk is evident (for both simulated and experi-
mental EMGs), both in time and frequency domain.
Overall results are finally shown in figure 4 (simulated
data) and figure 5 (experiments). The effects of differ-
ent parameters are in line with our expectations, with
larger effects of crosstalk in case of less selective con-
ditions. The NLSTF cuts-off the errors in estimating
the signal from the target muscle by about 20% in the
average (both in simulated and experimental signals).

Moreover, the NLSTF allows more reliable meas-
urements of the RMS amplitude (marginal effect on
simulated data, about 34% reduction of the error on
experimental data) and of spectral indexes MDF and
MNF (average reduction of the error of more than
40% for the simulated signals and about 20% for the
experimental data). SOBI shows worse performances,
especially in estimating spectral indexes.

In tests on experimental data, a decrease of per-
formance was noted, especially when considering PT
as target muscle, which is also the case in which the
level of crosstalk is larger. Possibly, it was hard to get
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selective contractions of the two investigatedmuscles.
Indeed, SOBI showed great problems in processing
experimental data, possibly because the hypothesis of
de-correlation of the sources was not met, due to the
not selective contractions. In simulations, the addi-
tion of a small contribution from the crosstalkmuscle
on training data did not compromise performances,
but it is possible that in experiments the importance
of the problem was much greater.

In addition, crosstalk-free signals were available
in simulations, whereas they were not in experi-
mental data, where the possible co-contraction of the
crosstalk muscle could not be revealed. Thus, if the
target signal to be estimated was affected by crosstalk
induced by an unwanted contraction of the other
muscle, this would reasonably make a major contri-
bution to the estimation error (and this would be true
even if the estimates were ideal).

Moreover, other problems may affect experi-
mental data: for example, the possibility that other
non investigated nearby muscles contribute to
crosstalk and themisalignment of the detection chan-
nels (having parallel distributions of electrodes) with
the fibres of the two muscles (which can be not per-
fectly parallel and can also move during the investig-
ated contractions).

These problems were sometimes evident from the
inspection of the data from the high-density elec-
trode grid (including 5 parallel arrays of electrodes).
Indeed, in some subjects and during some contrac-
tions, there were problems among the followings:
misalignment of the fibres with respect to the elec-
trodes, their different orientations across the two
muscles, different locations of the IZs, lack of selectiv-
ity. Careful selection of the best electrodes could have
improved the results, but was not implemented in
this study, where the most distal portion of the elec-
trode grid was always used: in this way, an experi-
mental condition was mimicked in which electrode
placement is guided only by prior visual inspection
and palpation of the muscles of interest.

However, even considering the above technical
problems and limitations, the advantage of applying
the NLSTF was evident in all conditions, even in the
worst cases.

In particular, the performances of NLSTF were
always superior to those of SOBI. The latter, as well
as other BSS methods, is only based on a statistical
assumption (i.e. de-correlation of sources for SOBI,
independence for other BSS approaches), along with
an underlying mixture model. Thus, the output is
not forced to approximate the bipolar data from each
muscle (as a difference with respect to NLSTF), but
eventually they are retrieved if the assumption on
sources is satisfied.However, inter-muscular coupling
can arise and affect the hypothesis of de-correlation
of sources [48, 49]. Moreover, SOBI assumes a linear
instantaneous mixture model, so that the de-mixing
matrix applies a simple spatial filter. A convolutive

model would allow to include also temporal filters,
but the training would require more data (indeed,
the statistical hypothesis is quite weak, with respect
to the one used to build the NLSTF, which forces its
output to be the target signal of interest). However,
still a linear processing would be applied to the data,
even using a convolutive mixture model. The pro-
posed NLSTF improves the flexibility of the pro-
cessing algorithm by including also quadratic terms
(thus, energetic components and cross-correlation)
among the predictors used to estimate the target sig-
nal. In summary, the stronger constraint imposed by
the optimization problem (i.e. fitting the target signal
of interest instead of requiring a statistical property of
sources), the inclusion of delayed data (and thus the
possibility of making also a temporal filter, not only a
spatial one) and the nonlinear processing are the key
features that probably justify the superior perform-
ance of NLSTF over SOBI.

The application of the NLSTF has a very small
computational cost. In fact, in the test phase the
application of the filter requires only making some
algebraic manipulations of the data. The time needed
to process epochs of duration 4 s (a subset of 1000
tests was considered) took 14.7± 2.3ms (mean± std;
i.e. in the average, about the 0.4% of the duration of
the processed epoch), using an interpreted single core
implementation in MATLAB on a PC with average
performances (with Intel Core i7-2630QM, Quad-
Core, clock frequency of 2 GHz, 6 GB of RAM, and
64-bit operating system). Implementing the method
in a low level programming software and using a com-
piled version can further reduce the computational
time, if needed.

The NLSTF is assumed to be able to recognize the
filtering effect of the volume conductor, which trans-
fers the signal from the MU sources of the crosstalk
muscle to the detection channel placed over the tar-
get muscle. However, the volume conductor filter-
ing depends on the location of the source and of
the detection point [50, 51]. For example, different
components of the MUAPs (namely, the propagating
and the non-propagating components) decay differ-
ently depending on the relative distance between the
source and the detection point [25, 50]. Moreover,
details of tissue geometry and conductivity influence
the specific volume conductor filtering and, as a con-
sequence, the shapes of the recorded MUAPs [50].
As the crosstalk muscle is constituted by different
MUs located in different positions, the recorded sig-
nal is the result of different contributions, generated
by sources filtered in different ways by the volume
conductor. Thus, a filter which attenuates optimally
all their contributions does not exist. Therefore, we
can expect that the estimated NLSTF is a comprom-
ise among the need of attenuating allMUAPs from the
crosstalk muscle. The activity of different sources will
contribute to the definition of the NLSTF depending
on their amplitude (relying on the size and proximity
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of eachMU to the detection channel) and their effect-
ive activity in the training signal (i.e. a MU which is
active and fires a lot will be more represented in the
training signal and will have a larger weight in defin-
ing the NLSTF with respect to another withMUAP of
similar amplitude which has a lower firing frequency
in the training signal). In order to give the correct
balance to the different sources, it is useful that the
training data include about the same contributions as
the test set. The specific timings of the MU firings is
not a great concern, as is the progressive decrease of
CV induced by muscle fatigue: as far as the filtering
effect of the volume conductor on the MU sources is
well recognized, the NLSTF is expected to maintain
its performances (as confirmed by figure 4). On the
other hand, some problems are expected in dynamic
contractions, in which the volume conductor and the
relative positions of the sources and detection chan-
nels change. In addition, questions and concerns may
arise about long-term use of the filter, as slow drifts
(e.g. due to drying of the electrode gel, subject sweat,
or relative displacement of muscles and electrodes, or
increase in contact impedance) could induce changes
that would require recalibration. The investigation of
these conditions is beyond the aims of the present
work and left for future study.

An additional perspective is the extension to
a high-density recording system. Estimating the
crosstalk-free signal of each channel over the target
muscle is straightforward: more predictors could be
included in the matrix X defined in equation (2).
Some preliminary tests of the beneficial effect of
adding more information from other channels have
been performed including a third bipolar detec-
tion placed over the mid-line separating the two
muscles, obtaining a small (even if statistically sig-
nificant, according to Wilcoxon signed rank test)
improvement (in the average, the estimation error
was reduced of 5.7% and 0.7% in simulated and
experimental conditions, respectively).

If more detection channels are recorded,
other important information could be extracted,
e.g. muscle fibre CV. The investigation of this point
is left to future studies: it requires experimental tests
with more signals recorded from channels aligned to
the muscle fibres (two separate linear arrays of elec-
trodes are suggested, to better align with the fibres of
the two muscles studied, as in [20]).

The same method could be applied to estim-
ate other crosstalk-free signals, as those provided by
monopolar or double differential filters. This is a fur-
ther interesting extension of this study that can be
investigated in the future.

5. Conclusion

An innovative NLSTF is introduced to estimate a
bipolar EMG signal cleaned of crosstalk. The method
requires a training phase, based on selective data

recorded from the target and crosstalk muscles, in
order to adapt to the volume conductor and specific
conditions. TheNLSTF has shown clear advantages in
retrieving information from the target muscle com-
pared to the use of raw EMG or the processing by
a blind source separation approach. The method is
proposed here to support applications in which single
bipolar channels are placed over different muscles of
interest (common methodology in applied fields like
ergonomics, sport science or clinics). Extensions con-
cerning different spatial filters estimation or in high-
density surface EMG recordings are interesting future
prospects.
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