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ABSTRACT We investigate the task of unsupervised domain adaptation in aerial semantic segmentation
observing that there are some shortcomings in the class mixing strategies used by the recent state-of-the-art
methods that tackle this task: 1) they do not account for the large disparity in the extension of the semantic
categories that is common in the aerial setting, which causes a domain imbalance in the mixed image; 2) they
do not consider that aerial scenes have a weaker structural consistency in comparison to the driving scenes
for which the mixing technique was originally proposed, which causes the mixed images to have elements
placed out of their natural context; 3) source model used to generate the pseudo-labels may be susceptible to
perturbations across domains, which causes inconsistent predictions on the target images and can jeopardize
the mixing strategy. We address these shortcomings with a novel aerial semantic segmentation framework
for UDA, named HIUDA, which is composed of two main technical novelties: firstly, a new mixing strategy
for aerial segmentation across domains called Hierarchical Instance Mixing (HIMix), which extracts a set
of connected components from each semantic mask and mixes them according to a semantic hierarchy and
secondly, a twin-head architecture in which two separate segmentation heads are fed with variations of the
same images in a contrastive fashion to produce finer segmentation maps. We conduct extensive experiments
on the LoveDA benchmark, where our solution outperforms the current state-of-the-art.

INDEX TERMS Computer vision, deep learning, image processing, remote sensing, semantic segmentation,
unsupervised domain adaptation.

I. INTRODUCTION datasets with annotated images [9], [12], which have led

Semantic segmentation is a well-known computer vision task
that aims to predict the semantic category of each individual
pixel in an image from a predefined set of possible labels.
Such fine-grained scene understanding has numerous appli-
cations in aerial robotics and remote sensing, where it is used
to perform road extraction and building detection [1], [2], [3],
to classify land cover [3], [4], [5], [6], to estimate damages
caused by wildfires [7], to assess deforestation [8] and to
classify agricultural patterns [9].

In the field of aerial semantic segmentation there have
been numerous advances based on the use of deep learn-
ing models [2], [3], [6], [10], [11] trained on large public
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to remarkable levels of performance. However, this perfor-
mance generally does not carry over when these models
are set to operate on images that come from a distribution
(target domain) different from the data experienced during
training (source domain). In principle this loss in perfor-
mance could be recovered by fine-tuning the source model
on large quantities of labeled images collected from the target
domain, but in practice this is generally not an option because
generating pixel-wise annotations for semantic segmentation
is extremely costly [13]. Thus, in this paper we tackle the
problem of unsupervised domain adaptation (UDA) for aerial
semantic segmentation assuming to have available at training
time both a set of labeled images from the source domain and
a collection of unlabeled images from the target domain. This
problem is widely studied in the literature, and a prominent
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FIGURE 1. Class Mix overlays classes of the source domain onto the
target without taking into account the semantic hierarchy of the visual
elements. As a result, it generates erroneous images that are detrimental
to Unsupervised Domain Adaptation training in the aerial scenario.
Instead, our HIMix extracts instances from each semantic label and then
composes the mixing mask after sorting the extracted instances based on
their pixel count. This mitigates some artifacts (e.g. partial buildings) and
improves the balance of the two domains.

solution to address it is to combine domain mixing solu-
tions with self-supervision [14], [15], [16], [17]. Namely,
the source model is used to generate semantic predictions
(pseudo-labels) on the unlabeled target data, and then the
labeled source images and the pseudo-labeled target images
are mixed to create artificial images with elements from
both domains. Training on these mixed samples encourages
the model to learn domain-agnostic features. In particular,
both DACS [15] and DAFormer [16], two recent state-of-
the-art methods in aerial semantic segmentation, rely on
ClassMix [18], a mixing strategy originally created for driv-
ing scenes that generates the composite image by randomly
selecting half of the semantic classes from the source image
and pasting them onto the target one (see Fig. 1 left). How-
ever, we argue that such a self-supervised mixing solution
has a few shortcomings that make it inadequate for aerial
semantic segmentations:

o Domain imbalance: Segmentation-oriented aerial
datasets are often characterized by categories with vastly
different extensions, some exposing only a few pix-
els (e.g., cars) and others occupying large portions of
the whole image (e.g., forest). This disparity in raw
pixel counts between classes may be detrimental for
an effective domain adaptation through class mixing,
because the composition may be skewed towards on of
the two domains, depending on how the classes have
been sampled (see Fig. 1 left), which in turn leads to a
poor alignment of the features.

o Out-of-context instances: The mixing strategies used
in aerial segmentation, such as ClassMix [18], were
originally developed for applications in driving scenes.
However, the scenes captured by a front-facing cam-
era onboard a car have a consistent structure, with the
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street at the bottom, the sky at the top, sidewalks and
buildings at the sides, etc. This structure is preserved
also across domains, as in the classic Synthia [19] —
CityScapes [13] setting. Thus, when copying objects
from a driving scene onto another one they are likely to
end up in a reasonable context. This is not true for aerial
images, where there is no consistent semantic structure
(see Fig. 1 left).

« Pseudo-labels: The effectiveness of the semi-supervised
mixing strongly depends on the accuracy of the
pseudo-labels generated on the target images during
training. However, the source model used to generate the
pseudo-labels may be susceptible to perturbations across
domains, thus leading to inconsistent predictions on
the target images and possibly jeopardizing the domain
mixing strategy.

In this paper, we propose a new framework for unsuper-
vised domain adaptation in aerial semantic segmentation,
called Hierarchical Instance Mixing for Unsupervised
Domain Adaptation (HIUDA). HIUDA addresses the afore-
mentioned shortcomings in current domain mixing strategies
by introducing two technical novelties:

« A new mixing strategy for aerial segmentation
across domains, called Hierarchical Instance Mixing
(HIMix). HIMix extracts from each semantic mask a
set of connected components, akin to instance labels.
The intuition is that aerial tiles often present very large
stretches of land, divided into instances (e.g., forested
areas separated by a road). HIMix randomly selects from
the individual instances a set of layers that will compose
the binary mixing mask. This helps to mitigate the pixel
imbalance between source and target domains in the arti-
ficial image. Afterward, HIMix composes these sampled
layers by sorting them based on the observation that
there is a semantic hierarchy in the aerial scenes (e.g.,
cars lie on the road and roads lie on stretches of land).
We use the pixel count of the instances to determine
their order in this hierarchy, placing smaller layers on
top of larger ones. This hierarchical composition helps
to mitigate the occurrence of semantic instances pasted
in an unreasonable context (e.g. cars in the water) and it
also reduces the bias towards those categories with larger
surfaces in terms of pixels as they are placed below the
other layers of the mask (see Fig. 1 right).

e A new twin-head UDA architecture in which two
separate segmentation heads are fed with contrastive
variations of the same images to improve pseudo-label
confidence and make the model more robust and less
susceptible to perturbations across domains, inevitably
driving the model towards augmentation-consistent rep-
resentations.

We evaluate HIUDA on the LoveDA benchmark [12], the
only dataset designed for evaluating unsupervised domain
adaptation in aerial segmentation, where we exceed the cur-
rent state-of-the-art. We further provide a comprehensive
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ablation study to assess the impact of the proposed solutions.
The code will be made available to the public to foster the
research in this field.

The rest of this paper is organized as follows. In Sec. I we
provide an analysis on the literature in this field and discuss
the related works. Then, in Sec. III we formally state the prob-
lem setting and we describe in detail the proposed HIUDA
method, focusing first on the novel HIMix mixing strategy
and then on the twin-head architecture. In Sec. IV we pro-
ceed to present the experimental validation of the proposed
method, describing first the datasets used and the imple-
mentation details, and then discussing the results. Lastly,
in Sec. V we provide some conclusive remarks regarding the
limitations of the method as well as possible directions for
future research.

Il. RELATED WORK

A. AERIAL SEMANTIC SEGMENTATION

Current semantic segmentation methods mostly rely on con-
volutional encoder-decoder architectures [20], [21], [22],
[23], but the recent breakthroughs of vision Transform-
ers introduced new effective encoder architectures such as
ViT [24], Swin [25] or Twins [26], as well as end-to-end
segmentation approaches such as Segmenter [27] and Seg-
Former [28]. Concerning the application to aerial images,
despite the comparable processing pipeline as in other set-
tings, there are peculiar challenges that demand for specific
solutions. Firstly, aerial and satellite data often include multi-
ple spectra besides the visible bands, which can be leveraged
in different ways, such as including them as extra channels [9]
or adopting multi-modal encoders [2]. Yet, this is not the
case for the LoveDA dataset used in this manuscript. Visual
features represent another major difference: unlike other set-
tings, aerial scenes often display a large number of entities
on complex backgrounds, with wider spatial relationships.
In this case, attention layers [29] or relation networks [30]
are often employed to better model long-distance similarities
among pixels. Transformers are in this case a natural choice,
considering their attention-based architecture which is capa-
ble of extracting long-range relations. Another distinctive
trait of aerial imagery is the top-down point of view and the
lack of reference points that can be observed in natural images
(e.g., sky is always on top). This can be exploited to produce
rotation-invariant features using ad-hoc networks [11], [31],
or through regularization [32]. Considering the UDA setting,
feature consistency across domains is crucial for an effective
training. Forcing the output to be invariant not only to rotation
but also to other geometric and photometric transformations,
can be extremely beneficial for the generalization abilities of
the final model. Lastly, aerial images are characterized by
disparities in class distributions, since these include small
objects (e.g. cars) and large stretches of land. This pixel
imbalance can be mitigated with sampling and class weight-
ing [16], or ad-hoc loss functions [33]. In the context of aerial
images, these solutions may not be enough to tackle this issue,
given the wide range of scales. In this work, we attempt
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to further balance this disparity by ensuring that smaller
objects always appear on top, through the hierarchical mixing
approach. While approximating a top-down hierarchy, this
method ensures that large surfaces do not overshadow less
represented categories, allowing for fairer training.

B. DOMAIN ADAPTATION

Domain Adaptation (DA) is the task of attempting to train a
model on one domain while adapting to another. The main
objective of domain adaptation is to close the domain shift
between these two dissimilar distributions, which are com-
monly referred to as the source and target domains. The initial
DA techniques proposed in the literature attempt to mini-
mize a measure of divergence across domains by utilizing a
distance measure such as the Maximum Mean Discrepancy
(MMD) [34], [35], [36]. Another popular approach to DA
in Semantic Segmentation is adversarial training [37], [38],
[39], [40], which involves playing a min-max game between
the segmentation network and a discriminator. This latter is
responsible for discriminating between domains, whereas the
segmentation network attempts to trick it by making features
of the two distributions identical. However, when attempting
to align the features of two domains, it is common for samples
with different semantic labels to be mixed together. This can
often lead to a class mismatch between the two domains.
Other approaches, such as [41], [42], [43], employ image-to-
image translation algorithms to generate target pictures styled
as source images or vice versa, thus not tackling the issue of
differences in texture and semantic content of classes between
the two domains. More recent methods like [44], [45], [46]
use self-learning techniques to generate fine pseudo-labels on
target data to fine-tune the model. Nonetheless, these methods
directly select pseudo-labels with high prediction confidence,
which can lead to the model being biased towards easy classes
and negatively impacting its ability to transform the hard
classes.

Novel methods like [15], [16] combine self-training with
the class mix to reduce low-quality pseudo-labels caused
by domain shifts among the different distributions. These
mixing algorithms are very effective on data with a consistent
semantic organization of the scene, such as in self-driving
scenes [13], [47]. In these scenarios, naively copying half of
the source image onto the target image increases the likeli-
hood that the semantic elements will end up in a reasonable
context. This is not the case with aerial imagery (see Fig. 1).
HIMix not only mitigates this problem, but it also reduces the
bias towards categories with larger surfaces.

lll. METHODOLOGY

A. PROBLEM STATEMENT

In this paper, we focus on the task of aerial semantic seg-
mentation in the context of unsupervised domain adaptation
(UDA). UDA is a form of transfer learning that involves
adapting a model to a new scenario, or target domain, using
only labeled data from a source domain and unlabeled data
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FIGURE 2. HIMix operates by (i) extracting the connected components from the source label and target pseudo-label, (ii) selecting uniformly which
instances should be mixed from S, (iii) merging source and target instances hierarchically based on instance size (smaller ones on top), and (iv)
producing a binary mask M to construct the final blended image xp,; and its label yp;.

from the target domain. By studying aerial semantic seg-
mentation in the context of UDA, we aim to improve the
performance of this task in new scenarios where labeled data
may be limited. More specifically, let us define as X the set
of RGB images constituted by the set of pixels Z, and as Y
the set of semantic masks associating a class from the set of
semantic classes C to each pixel i € Z. We have two sets of
data accessible at training time: (i) a set of annotated images
from the source domain, denoted as X; = {(xs, ys)} with
xs € X and y; € Y; (ii) a set of N, unlabeled images from the
target domain, denoted as X; = {(x;)} with x;, € X.

The goal is to find a parametric function fp that maps an
RGB image to a pixel-wise probability, i.e., fy X —
RZIXICI and evaluate it on unseen images from the target
domain. In the following, we indicate the model output in
a pixel i for the class c as pf, ie., pi(x) = fo)icl.
Following standard practices in literature [16], [20], [21],
[48], the parameters 6 are tuned to minimize a categorical
cross-entropy loss defined as:

1
Lug(x:3) = =17 DDy log(pi(x)), (1)

ieZ ceC

where y{ represents the ground truth annotation for the pixel
i and class c. While alternative functions or a combination
of them, such as cross-entropy and Dice loss [12], could be
adopted in the aerial domain, this work concentrates on the
UDA task. In this context, the objective function is not the
main focus, and the cross-entropy provides a fair comparison
with other approaches [16].

B. FRAMEWORK

The remainder of this section describes a new end-to-end
trainable UDA framework, named HIUDA, based on the use
of target pseudo-labels. To better align domains, we construct
artificial images using our HIMix strategy (III-C), which
generates mixed images exploiting the instances produced
both from the source ground truth and the target pseudo-
label. Rather than using a secondary teacher network derived
from the student as an exponential moving average as in [15],
[16], we propose a twin-head architecture (III-D) with two
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separate decoders trained in a contrastive fashion to provide
finer target pseudo labels.

C. HIERARCHICAL INSTANCE MIXING

Given the pairs (xs, ys) and (x;, y;), where 3, = fy(x;) are
the pseudo-labels computed from the model prediction on
the target domain, the purpose of the mixing strategy is to
obtain a third pair, namely (x;,, y;,), whose content is derived
from both source and target domains using a binary mask M.
While techniques based on ClassMix have been successfully
applied in many UDA settings, we discover that the same may
not be optimal in the aerial scenario since it superimposes
parts of the source domain onto the target without taking
into consideration their semantic hierarchy (e.g., cars appear
on top of roads, not vice versa). In contrast, we propose
a Hierarchical Instance Mixing strategy (HIMix), which is
composed of two subsequent steps: (i) instance extraction and
(ii) hierarchical mixing.

1) INSTANCE EXTRACTION

Aerial tiles often present uniform land cover features, with
many instances of the same categories in the single image.
In the absence of actual instance labels, this peculiarity can
be exploited to separate semantic annotations into connected
components. Here a connected component is a set of pixels
that have the same semantic label and such that for any two
pixels in this set there is a path between them that is entirely
contained in the same set. Fig. 2 illustrates an example of
this process, with a forest that is separated in two instances
by a road. This increases the number of regions which can
be randomly selected for the mixing phase, thus mitigating
the pixel unbalance in the final mixed sample between source
and target domains. Note that this procedure is applied to the
concatenation of source and target label.

2) HIERARCHICAL MIXING

We observe that instances in aerial imagery have an inherent
hierarchy that is dictated by their semantic categories. In other
words, land cover categories such as barren or agricultural
frequently appear in the background w.r.t. smaller instances
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FIGURE 3. Our framework training: (i) standard training is carried out on the source domain, on samples composed of source image (xs) and target
image (ys, through the segmentation loss Lseg(Bs). (ii) Pseudolabels y; are generated from target the target image (x7), encoded by the shared backbone
g, through majority voting between each segmentation head output(h;, h,). (iii) Source and target samples are mixed together through HIMix, producing
a new pair of samples xy; and yy. (iv) Last, the segmentation loss Lseg(Bm) is computed on mixed pairs.

such as roads or buildings. The mixing step follows this
hierarchy when combining the instances from source and
target, and it is illustrated in Fig. 2. First, both sets of instance
labels are encoded into a one-hot representation,! so that each
component yields its own mask layer. Then both stacks of
layers are merged together and sorted by their pixel count,
with the larger layers on the bottom. Finally, a reduction from
top to bottom projects the 3D tensor into a 2D binary mask M,
where positive values indicate source pixels, and null values
indicate target pixels.

D. TWIN-HEAD ARCHITECTURE

State-of-the-art, self-training UDA strategies, such as [16],
use teacher-student networks to improve the consistency of
the pseudo-labels. Albeit dealing with consistency in time,
teacher-based approaches do not directly cope with geometric
or stylistic consistency. We propose a twin-head segmentation
framework to directly address this, providing more consistent
pseudo-labels and outperforming the standard tested method-
ologies, as shown in the ablation study IV-C. Our architecture
(see Fig. 3) comprises a shared encoder g, followed by two
parallel and lightweight segmentation decoders, i1 and h;.
Training is carried out end to end, exploiting annotated source
data and computing pseudo-labels from target images online,
as detailed hereinafter.

1) SOURCE TRAINING

With the purpose of driving the model towards augmentation-
consistent representations, we feed the two heads with vari-
ations of the same source image in a contrastive fashion.
More specifically, at each iteration we consider a random
sequence of geometric augmentations T, (horizontal flipping,
rotation) and photometric augmentations T, (color jitter).
At each iteration, given these sampled transformations, a
source image x; and its ground-truth label, we compute
their augmented counterparts as X; = T,(T,(xy)), and y; =
T,(ys). After this operation, the full augmented pair By =
(concat(xs, X5), concat( ys, ¥5)), where concat(-) is the con-
catenation function, is first forwarded to the shared encoder
module g, producing a set of features. The latter, containing

IThe one hot representation is an index map where each pixel indicates
the index of the class it belongs to.

13328

information derived from the images and its augmented
variants, are split and forwarded to the two parallel heads,
effectively obtaining two comparable outputs, /1(g(x;)) and
ho(g(Xs)). A standard cross-entropy loss, as shown in Eq. 1,
is computed on both segmentation outputs. Working indepen-
dently on different variations of the same images, the two
heads can evolve in different ways while trying to minimize
the same objective function. Using the same encoder yields
a more robust, contrastive-like feature extraction that is less
susceptible to perturbations. This is essential for producing
more stable and precise pseudo-labels.

2) MIX TRAINING
The twin-head architecture is expressly designed to gener-
ate more refined pseudo-labels. Given an unlabeled target
image x;, we compare the probabilities o (h1(g(x;))) and
o (h2(g(x;))) obtained by forwarding the image to both heads
and passing them through a Softmax function, and select the
maximum value between the two. Once p{ is derived, the
pseudo-label y; necessary for the mixing strategy is generated
for each head output through:
0 c
Vi = [c = argmax pj(x;)] 2
c
At this point, the mixed pairs of inputs can be computed
through HIMix, as described in previous sections and detailed
in Algorithm 1, obtaining (x,,, y»,) as a composition of the
source and target samples. Similar to source training, an aug-
mented pair B, = (concat(x,,, X,,), concat( y,, ¥n)) iS com-
puted through geometric and photometric transformations,
then fed to the model to compute Lgeg(By,). To reduce the
impact of low-confidence areas, a pixel-wise weight map wy,
is generated. Similar to [15], [16], wy, is computed as the
percentage of valid points above threshold. Formally, for each
pixel i:
1, i €y
l
w, = m 3)
L€t

m7

where m, represents the Max Probability Threshold [49]
computed over pixels belonging to the pseudo-label as
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follows:

me = L{argmarep(x)>1» “)

In practice, each pixel of the mixed label is either weighted
as 1 for regions derived from the source domain, or by a
factor obtained as the number of pixels above the confidence
threshold, normalized by the total amount of pixels. Note that,
during all of these computations, the gradients are not prop-
agated. The overall HIUDA training procedure is detailed in
Algorithm 1.

IV. EXPERIMENTS

A. TRAINING DETAILS

We assess the performance of our approach on the LoveDA
dataset [12]. According to that benchmark, we conduct
two series of unsupervised domain adaptation experiments:
rural—urban and urban— rural. We have a separate set of
data for training and testing on the target domain. The target
training set is unlabeled, while the testing set has ground truth
labels that allow us to measure the performance of the model.

1) DATASET

To our knowledge, the LoveDA dataset [12] is the only
open and free collection of land cover semantic segmentation
images in remote sensing explicitly designed for UDA. Both
urban and rural areas are included in the training, validation,
and test sets. Data is gathered from 18 different administrative
districts in China. The urban training set has 1156 images,
while the rural training set contains 1366 images. Each image
is supplied in a tiled format of 1024 x 1024 pixels annotated
with seven categories.

2) METRIC
Following [12] we use the averaged Intersection over Union
(mIoU) metric to measure the accuracy of all the experiments
conducted.

3) BASELINES

We compare HIUDA to various cutting-edge UDA methods.
The first baseline we consider is the Source Only model,
which is a network that has only been trained using the
source dataset. We look at MMD’s [36] original metric-
based methodology. Then, we compare two alternative UDA
approaches: the adversarial training strategy, with AdaptSeg-
Net [37], FADA [39], CLAN [38], and TransNorm [50], and
the self-training technique, with CBST [45], PyCDA [44],
IAST [46], DACS [15], and DAFormer [16].

4) IMPLEMENTATION

To implement HIUDA we leverage the mmsegmentation
framework, that is based on PyTorch. We train each exper-
iment on an NVIDIA Titan GPU with 24 GB of RAM.
We refer to DAFormer [16] for the architecture and config-
uration of hyperparameters. We use the MiT-B5 model [28]
pretrained on ImageNet as the encoder of our method, while
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Algorithm 1 HIUDA Training Procedure
Initialize:
Model fy : X — RZIXIVI with encoder g and twin
heads hy, hy;
Input: X source domain with N pairs (x;, ys),
x5 € X, ys € Y and semantic classes C;
X, target domain with N; images x;, lacking ground
truth labels;
Output: y = {argmaxceypf}f\’: |» where p{ the model
prediction of pixel i for class ¢ and ) the label space;
while epoch in max_epochs do
while x;, yg, x; in Xy x X, do
Train on source X
/I Compute augmented source batch
By = (concat(xg, Xy), concat(ys, ¥s));
// Train fp on source labels with Ly, (By)
end
Mix source and target pairs
/I Compute pseudo-labels via majority
/1 voting §; = max (h1(g(x,)), (h2(g(x:))));
/] Extract source instance labels
iy = CCL(ys) with instances € Kj;
// Extract target instance pseudo-labels
i; = CCL(y,) with instances € K;;
/I Compute one-hot encoded labels,
// sorted by pixel size as:
1,y = sorted (concat(1, (iy), 1k, (ir)));
// Reduce z axis to 2D indexed mask
m = argmax;1,(i, J, 2);
// Binarize mask

1 if m@,)) € Ks

0 if m@i,j) ek,

/I Compute mixed image and labels as:
Xm=MOx;+(1—-M)Ox;

Ym=MOys+ (1 —M)O ¥

/Il Compute wy, as in Eq. 3

end

Train on mixed X, pairs
/I Compute augmented mixed batch

B, = (concat(x,,, X,), concat(yy,, ym));
/I Train fp on mixed samples with

Il Lgeg(By), weighted by wy,

end

Vijem, M=

end
end

the segmentation decoder module corresponds to the Seg-
Former head [28]. We train on every setting for 40k iterations
using AdamW as the optimizer. The learning rate is set to
6x 1073, weight decay of 0.01, betas to (0.9, 0.99). We also
adopt a polynomial decay with a factor of 1.0 and warm-up
for 1500 iterations. To cope with possible variations, every
experiment presented has been obtained as the average over
three seeds {0, 1, 2}. Training is performed on random crops,

13329



IEEE Access

E. Arnaudo et al.: Hierarchical Instance Mixing Across Domains in Aerial Segmentation

TABLE 1. Urban— Rural experiments. Experiments marked with * were
replicated using the original method.

E

$ 5 3 &8 E @ ¢

2 el s s 3 5 5
Method &8 2 ~ = = = < mloU
Source Only 242 370 326 494 140 293 357 317
MCD [36] 256 443 313 448 137 338 260 314
AdaptSeg [37] 269 405 307 501 17.1 325 283 323
FADA [39] 244 330 256 476 153 344 203 287
CLAN [38] 229 448 260 468 105 372 245 304
TransNorm [50] 194 363 220 367 140 406 033 246
PyCDA [44] 124 381 205 572 183 367 419 321
CBST [45] 251 440 238 505 083 397 497 344
IAST [46] 300 495 283 645 021 334 614 384
DACS* [15] 20.1 505 359 60.6 099 354 175 329
DAFormer* [16]  29.5 579 418 67.1 07.6 353 481  41.0
HIUDA 315 396 515 681 082 374 539 443

TABLE 2. Rural—Urban experiments. Experiments marked with * were
replicated using the original method.

[=1)
o0 £ = g -
Method & a & 2 = £ < mloU
Source Only 133 256 127 762 125 233 251 313
MCD [36] 436 154 120 791 143 331 235 315

AdaptSeg [37] 424 237 156 82.0 136 287 221 32.6

FADA [39] 439 126 128 804 127 328 248 314
CLAN [38] 434 254 138 793 137 304 258  33.1
TransNorm [50] 334 050 03.8 808 142 340 179 277
PyCDA [44] 380 359 455 749 077 404 114 363
CBST [45] 484 461 358 80.1 192 297 301 413
TAST [46] 486 315 287 860 203 318 365 405
DACS* [15] 460 316 338 764 164 293 277 373
DaFormer* [16] 492 477 552 866 165 395 308 465
HIUDA 493 550 554 860 171 412 369  48.7

TABLE 3. Ablation study on our HIUDA framework which comprises the
twin-head architecture and HIMix strategy.

ID | Twin | Class | Instance | Hierarc. mloU mloU
Head Mix Mix Mix U2R R2U
1 v 41.0 £ 0.33 | 46.5+0.41
2 v v 43.44+0.76 | 47.6£0.10
3 v v 4294035 | 47.1+0.34
4 v v 4324035 | 474+0.16
5 v v v 44.3 +0.39 | 48.7 + 0.06

by augmenting data through random resizing in the range
[0.5, 2.0], horizontal and vertical flipping, and rotation of
90 degrees with probability p = 0.5, together with random
photometric distortions (i.e., brightness, saturation, contrast,
and hue). As [15], [16], we set T = 0.968 in 4. The final
inference on the test set is instead performed on raw images
without further transformations. HIUDA trains in approxi-
mately 11 hours on an NVIDIA Titan GPU.

B. RESULTS

1) Urban—Rural

The results for this set of experiments are reported in Tab. 1.
They corroborate the complexity of the task due to a strong
and inconsistent class distribution in the source domain,
which is dominated by urban scenes with a mix of build-
ings and highways but few natural items. This causes a
negative transfer to the target domain since both adversarial
strategies and self-training procedures achieve overall per-
formance equivalent to, if not worse than, the Source Only
model. Specifically, when we evaluate the best performing
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Adversarial Training technique, which is represented by
CLAN, we gain just a +1.8 improvement over the Source
Only model. Self-training approaches have shown to be
the most effective. DACS, which introduces the class mix
strategy, improves the Source Only model by +1.2, while
DAFormer, which uses a Transformer backbone and the same
class mix strategy as DACS, outperforms the Source Only
model by +9.3. HIUDA, which combines both the twin-head
architecture and the innovative class mix, outperforms the
Source Only model by a wide margin of +12.6 and it exceeds
its closest competitor (DAFormer) by +3.3. HIUDA exhibits
its ability to boost rural and underrepresented classes, such
as agriculture, as also evidenced by qualitative results in
Fig. 4. In comparison to DACS and DAFormer, our technique
recognizes and classifies better contours and classes, such
as water, despite their under-representation in the source
domain. This is also true in common categories with different
visual features, such as road, which can appear in paved and
unpaved variants.

2) Rural—Urban

The results for this set of experiments are summarized on
Tab. 2. The source domain in this scenario is dominated by
large-scale natural objects and a few man-made samples.
Nonetheless, the models under consideration are capable
of effectively transferring knowledge even in these under-
represented categories. Self-learning approaches outperform
adversarial methods, getting an average boost of +9.1 over
the Source Only model, whereas adversarial training methods
achieve comparable accuracy. In terms of mloU, the two best
performing self-training models and our closest competitor
surpass the Source Only model by +6.0 and +15.2, respec-
tively. In comparison, HTUDA gains a +17.4 boost over the
Source Only model, outperforming DACS and DAFormer by
+11.4 and +2.2, respectively. In this case, the qualitative
results in Fig. 4 support the superior ability of HIUDA to
discern between rural and urban classes. While DACS does
not recognize buildings and DAFormer misclassifies parts
of them as agricultural terrain, our model demonstrates its
effectiveness in minimizing the bias towards those categories
with larger surfaces, providing results close to the ground
truth.

C. ABLATION
1) TWIN-HEAD AND HIMix
To demonstrate the effectiveness of the twin-head architec-
ture, we compare it to the traditional single-head structure,
which generates pseudo-labels using a secondary teacher net-
work derived from the student as an exponential moving aver-
age. This study also demonstrates the potential of the HIMix
when paired with traditional single-head training. For both
settings, we conduct an extensive ablation study considering
the MiT-B5 [28] as the backbone, and we report the results in
Tab. 3.

The twin-head design paired with the Standard Class Mix
(line 3) performs better than the single-head architecture (line
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FIGURE 5. Qualitative comparison of Single or Twin-Head architectures
using Standard Class Mix or our HIMix.

1), implying that our solution is better at providing finer
pseudo-labels with correct class segmentation, as shown also
in the first column of Fig. 5.

HIMix increases recognition performance even when
paired with a single-head architecture (line 2), particularly
for categories with a lower surface area in terms of pixels,
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which are placed below those with larger surfaces when using
the Standard Class Mix. That is why, in the top-left image of
Fig. 5, the model is unable to grasp their semantics effectively
and erroneously classifies building as agricultural pattern.
In comparison, HIMix can accurately distinguish buildings
(top-right picture in Fig. 5) even though the prediction has
poorly defined contours.

The best results are obtained when the twin-head ability
to provide an enhanced segmentation map is combined with
the HIMix ability to maintain a correct semantic structure
(line 5). This combination yields the best results in terms
of accuracy and level of detail in the segmentation map,
as shown in the bottom-right image of Fig. 5.

We finally ablate the different components of our HIMix to
assess each term’s contribution to overall performance (lines
4-5). The Hierarchical Mixing always increases the Instance
Extraction by +1.1 and +1.3 in the two Urban— Rural and
Rural— Urban scenarios, respectively.

V. CONCLUSION

We investigated the problem of Unsupervised Domain Adap-
tation in aerial Semantic Segmentation, showing that the
peculiarities of aerial imagery, principally the lack of struc-
tural consistency and a significant disparity in semantic class
extension, must be taken into consideration. We addressed
these issues by developing HIUDA, an end-to-end trainable
UDA framework comprising two main contributions. First,
a novel domain mixing method that consists of two parts: an
instance extraction that chooses the connected components
from each semantic map and a hierarchical mixing that sorts
and fuses the instances based on their pixel counts. Second,
a twin-head architecture that produces finer pseudo labels
for the target domain, improving the efficacy of the domain
mixing. We demonstrated the effectiveness of HIUDA with
a comprehensive set of experiments in the LoveDA bench-
mark, outperforming the previous state-of-the-art by 3.3 in
the urban—rural and 2.2 in the rural—urban settings.

13331



IEEE Access

E. Arnaudo et al.: Hierarchical Instance Mixing Across Domains in Aerial Segmentation

1) LIMITATIONS

Despite the excellent results, we observed that our solution
has worse performance than the Source Only model in the
barren class, particularly in the Urban— Rural scenario. This
is possibly due to the large disparity in absolute pixels count
between source and target domains in this category.

2) FUTURE WORKS

In the future, we plan to evaluate lighter segmentation heads
and other contrastive techniques to accelerate overall training
and improve performance, particularly on specific semantic
classes.
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