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Abstract: We assume that a sufficiently large database is available, where a physical property of
interest and a number of associated ruling primitive variables or observables are stored. We introduce
and test two machine learning approaches to discover possible groups or combinations of primitive
variables, regardless of data origin, being it numerical or experimental: the first approach is based on
regression models, whereas the second on classification models. The variable group (here referred
to as the new effective good variable) can be considered as successfully found when the physical
property of interest is characterized by the following effective invariant behavior: in the first method,
invariance of the group implies invariance of the property up to a given accuracy; in the other method,
upon partition of the physical property values into two or more classes, invariance of the group
implies invariance of the class. For the sake of illustration, the two methods are successfully applied
to two popular empirical correlations describing the convective heat transfer phenomenon and to the
Newton’s law of universal gravitation.

Keywords: machine learning in physics; primitive variable analysis; physical property invariance;
feature grouping

1. Introduction

Theoretical modeling and numerical simulations have become invaluable tools for
the current scientific and technological advancement across various fields [1]. In essence,
models make use of a mathematical description of the physical laws by establishing the
relationships between physical variables. The latter variables have the key role of describing,
in a complete and non-redundant manner, a system of interest. As such, their correct
identification is never a trivial task, especially in systems with little prior knowledge [2–4].

Often, in order to effectively model complex systems, it is favorable to search for
a more convenient description with a reduced number of effective variables [5,6]. In
other words, the system behavior is not described by the directly accessible physical
variables, but rather by some groups or combinations. In this respect, back in the late 19th
century, the Buckingham theorem was introduced [7–9]. In the latter approach, based on
dimensional analysis, it is possible to mix the primitive physical variables, thus creating
fewer dimensionless numbers which are effectively relevant.

Over the years, sophisticated methodologies have also been developed based on
machine learning, data mining and other data-driven approaches [10–12]. Some other
approaches aim to unlock the discovery of symbolic expressions accurately matching
data derived from an unknown function. This problem has been tackled with a number
of methods [13,14], including sparse regression [15–18], genetic algorithms [19–21] and
physics-inspired algorithms like AI Feynman, introduced by Udrescu and Tegmark [22].
Inspired by the latter, some authors of this work presented a multi-objective optimization
procedure for reducing the set of composition-based material descriptors by optimally
mixing them in power combination form. This resulted in improved classification per-
formances, as demonstrated in a case study focused on superconductors [23]. Moreover,
the same procedure was applied by Bonke et al. [24] to identify an effective reduced set of
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variables in a micelle-based photocatalytic system for solar fuels production. Specifically,
the algorithm allowed for analytically mixing five physical primitive variables into two
synthetic features for the optimal binary separation of the experimental samples according
to their performances. The practical benefit of such an approach lies in its capability to
replace an experimental sample achieving high performance with an alternative combina-
tion of its elemental components. This gives the possibility of reducing the most expensive
ones, and re-balancing the others, at no cost on the overall performance. To our knowl-
edge, developing a robust method for identifying symmetries in descriptors, and thereby
determining analytically mixed features that govern a specific phenomenon, remains an
unresolved issue [2,22]. Within this framework, the scientific question we aim to address is
the same of interpretability algorithms like SHAP [25], i.e., identifying relevant features
over a trained ML model. However, SHAP works in the original features space, even
when aggregations of such features more effectively would explain the phenomenon of
interest. Other recent works deal with methods for feature selection/removal by means of
genetic algorithms (but not mixing) [26], for identification of the minimal intrinsic variables
(but not analytically) [3]. Also, Udrescu and Tegmark [22] consider only a few possible
symmetries in the data.

In this work, we present a general and automated methodology, suitable for regres-
sion tasks, able to identify groups and/or group sets of variables in the power form
xα1

i xα2
j · · · x

αp
m . We show its effectiveness on popular thermo-fluid dynamics correlations (i.e.,

Dittus–Boelter and Gnielinski). Furthermore, we also demonstrate that the approach can be
easily extended to a more general functional form, proving its ability on Newton’s law of
universal gravitation. Also, we employ the optimal feature mixing procedure in ref. [23]
for classification tasks, showing its successful application on the former two problems of
this study. We refer to the resulting variable groups/sets as effective good variables, since
either the examined property of interest or the class effectively depend on groups or sets
of features rather than on individual features considered separately. Thus, such effective
good variables comply with the definition adopted by Chen et al. [2], as a “complete and
non-redundant description of the relevant system”. An overview of the two proposed
methodologies is depicted in Figure 1.

The paper is organized in sections as follows. Section 2 presents the methodology
for searching good variables in regression models and describes the implementation of
classification models for optimal variable mixing towards class separation. This section
is further subdivided into specific techniques, including the consideration of single and
multiple invariant groups in power form, as well as a broader exploration into non-power
forms. Section 3 presents numerical examples and discussions related to our study. We
detail the procedure for generating the three datasets employed in this study, based on the
three functional forms analyzed here (i.e., Dittus–Boelter correlation, Gnielinski correlation,
and Newton’s law of universal gravitation). Here, we also provide a comprehensive
evaluation of our approach. Finally, in Section 4, we draw conclusions providing an
overview of the main contributions. We point out that, since this work is methodological, it
deals only with numerically generated data. However, those methodologies are blessed by
generality and, as such, are agnostic to the data origin.
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Figure 1. Overview of the protocol used to detect possible symmetries of a target property of
interest with respect to its input variables, utilizing only data and ignoring the analytical functional
dependence. Two distinct methodologies are presented: the former for identifying, in regression tasks,
invariant groups in the form xα1

i xα2
j · · · xαp

m , among others; the latter for identifying, in classification
tasks, one or several mixed features as power combinations of the input variables to achieve an
optimal class separation.

2. Methods
2.1. Problem Statement

Within the context of analyzing complex physical phenomena, discovering effec-
tive combinations or groups of primitive variables that characterize a particular physical
property of interest is highly desirable. Indeed, this deeper insight not only enhances un-
derstanding per se, but also offers practical benefits for optimization purposes, as already
pointed out above. Herein, we introduce a methodology to detect invariant groups/sets
of variables for regression tasks. In some cases, invariant groups may not be identifiable
for regression tasks. Therefore, we also outline a method for identifying similar invariant
groups for classification tasks, including the formulation of an analytical classifier.

2.2. Searching for Good Variables by Regression Models
2.2.1. Single Invariant Group in Power Form

Let f (x) = f (x1, . . . , xn) denote a function depending on n physical variables x1, . . . , xn.
If f (x) is invariant with respect to a group of p variables in the form (xα1

i xα2
j · · · x

αp
m ),

α1, α2, . . . , αp ∈ R, when this group is kept at a constant value c, regardless of the value of
each component xi, xj, . . . , xm, f (x) does not change. Stated differently, the above invariance
condition requires:

α1 ln(xi) + α2 ln(xj) + · · ·+ αp ln(xm) = c (1)

(c = ln(c)), which upon differentiation yields:

α1
dxi
xi

+ α2
dxj

xj
+ · · ·+ αp

dxm

xm
= 0. (2)

We can thus construct the (1 × p) matrix B at a generic point x0 = (xi,0, xj,0, . . . , xm,0), as

B =

[
α1

xi,0
,

α2

xj,0
, · · · ,

αp

xm,0

]
. (3)



Mach. Learn. Knowl. Extr. 2024, 6 1600

Let K be a matrix whose columns form an ortho-normal basis in the null space
(or kernel) of B. Hence, the condition of invariance of f (x) with respect to the group
(xα1

i xα2
j · · · x

αp
m ) can be recast into an orthogonality condition in the configuration space

between the normalized gradient of f (x) and each column of K, namely(
∇ f̃
)

x0
· K = 0, (4)

where
∇ f̃ =

∇ f
norm(∇ f )

. (5)

Coefficients α1, α2, . . . , αp can be conveniently normalized, thus yielding the following
algebraic system: {(

∇ f̃
)

x0
· K = 0

α2
1 + α2

2 + · · ·+ α2
p = 1

. (6)

If the non-linear system in Equation (6) is satisfied for the same exponents (α1, α2, . . . ,
αp) over all the domains of the features (xi, xj, . . . , xm), the group xα1

i xα2
j · · · x

αp
m represents

an intrinsic variable and f (x) is invariant with respect to that group.

2.2.2. Multiple Concurrent Invariant Groups in Power Form

Clearly, the above procedure can be extended to a function f (x) being invariant with
respect to a higher number of feature groups, with each group even sharing some of the
primitive physical variables. Without losing generality, and for the sake of simplicity, we
limit this generalized description to sets consisting of two concurrent groups.

Let f (x) = f (x1, . . . , xn) = f (x1, . . . , xα1
i xα2

j · · · x
αp
m , xβ1

j xβ2
k · · · x

βq
r , . . . , xn) denote a

function where two groups share a generic primitive variable xj. In this case, the above

procedure applied to individual groups xα1
i xα2

j · · · x
αp
m and xβ1

j xβ2
k · · · x

βq
r independently is

not suitable any longer and requires a generalization as discussed below.
To investigate the invariance with respect to both groups, we now construct the (2 × l)

matrix B:

B =

 α1
xi,0

α2
xj,0

0 · · · αp
xm,0

0

0 β1
xj,0

β2
xk,0

· · · 0 βq
xr,0

, (7)

with max(p, q) ≤ l ≤ p + q, K being a matrix whose columns represent an ortho-normal
basis of the null space of B.

As performed above, the condition of invariance requires that the normalized gradient
of f (x) is orthogonal to each column of the kernel matrix K (see also Equation (4)).

Adding the normalization condition of the coefficients α1, α2, . . . , αp and β1, β2, . . . , βq,
we obtain: 

(
∇ f̃
)

x0
· K = 0

α2
1 + α2

2 + · · ·+ α2
p = 1

β2
1 + β2

2 + · · ·+ β2
q = 1

(8)

with the partial derivatives being evaluated in x0. If the non-linear system in Equation (8)
is satisfied for the same exponents (α1, . . . , αp, β1 . . . , βq) in the entire feature domain (xi,

xj, . . . , xr), the two groups xα1
i xα2

j · · · x
αp
m and xβ1

j xβ2
k · · · x

βq
r are intrinsic variables as the

function f (x) is invariant with respect to both groups.
It is worth stressing that more general cases with three or more concurrent invariant

groups will imply additional rows for the matrix B. Furthermore, in general, the non-linear
system (8) is not necessarily closed (see Section 2.2.4).
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2.2.3. Further Generalization to Non Power Forms

The invariant group/set identification procedure, introduced for groups in the power
form, can be generalized to other functional relationships. For the sake of illustration, in the
following, we restrict to a single invariant group.

Let f (x) = f (x1, . . . , xn) denote a function invariant with respect to a group involv-
ing p variables according to a generic functional dependence g(xi, xj, . . . , xm), such that
f (x) = f (x1, . . . , g(xi, xj, . . . , xm) . . . , xn). When such group is a constant c, even varying
its components xi, xj, . . . , xm separately, f (x) does not change. This yields:

g(xi, xj, . . . , xm︸ ︷︷ ︸
p

) = c (9)

which translates into:

∂g
∂xi

dxi +
∂g
∂xj

dxj + · · ·+ ∂g
∂xm

dxm = 0. (10)

We can thus construct the (1× p) matrix B at a generic point x0 = (xi,0, xj,0, . . . , xm,0) as

B =

[
∂g
∂xi

,
∂g
∂xj

, . . . ,
∂g

∂xm

]
. (11)

Let K be a matrix whose columns represent an orthonormal basis of the null space of B.
Applying the invariance condition of Equation (4) leads to a non-linear system analogous
to Equation (6). Notably, the procedure illustrated here can be further extended to sets of
groups in any functional form, following a reasoning similar to that applied in Section 2.2.2.

2.2.4. Regression Model and Procedure Implementation

In this study, we assume that a database of physical data is available. Each sample
in our database consists of n features (x1, . . . , xn) corresponding to a target quantity f (x).
We further assume that the target quantity possibly depends on some invariant groups
expressed for instance in the power form. We thus try to detect such invariance following
the above procedure.

As already described, this requires the evaluation of the gradient ∇ f (x). To this end,
f (x) can be conveniently approximated with a Deep Neural Network (DNN), allowing
the computation of that gradient by means of automatic differentiation. The choice of
a DNN (instead of a simpler approximator) is also beneficial to the method’s versatility,
making it suitable for the generalized cases of non power forms. All of the DNNs of this
study are trained and validated over the 85% of the corresponding databases—of which
the 85% is used for the training and the remaining 15% for the validation—and tested
over the remaining 15%. The DNN structure, as reported in Supplementary Note S2, is
used for all the examples of this study. Upon network training and validation, automatic
differentiation is utilized to calculate the gradient of the function at a specific point x0 within
its domain. Here, the variables in the examined group are randomly chosen within their
domains, while the values of the remaining variables are held constant at their averages in
the original database.

The function’s gradient is computed and applied in Equations (6) and (8), depending
on the specific case. Subsequently, the system is solved using a least-squares optimization
method that utilizes the Trust Region Reflective [27] algorithm, which is suitable also for
under-determined (non closed) systems that may arise during the process of identifying
sets of groups.

This strategy is repeated with 20 different values of x0 and iterated multiple times,
each time updating the initial guess to the mean value of the exponents (α1, α2, . . . , αp)
averaged over the 20 solutions found in the previous iteration.
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An overview of the methodology for identifying invariant groups/sets is depicted in
Figure 2.

Figure 2. Overview of the procedure for identifying invariant groups/sets. A regression model is
trained on the physical data and used to compute the gradient of the objective function in a point
x0. The matrix B is constructed according to the functional structure of the investigated group/set,
and its kernel K is computed. Finally, the condition of invariance between gradient and kernel is
coupled to the normalization conditions of the coefficients. If the resulting non-linear system is
satisfied for the same coefficients over the f (x) domain, the group/set is an intrinsic variable and
f (x) is invariant with respect to it.

2.3. Searching for Good Variables by Classification Models

The methodology introduced above, based on regression models, is able to identify
groups and/or group sets of physical variables upon which a generic function f (x) depends.
If successful, this approach efficiently reduces the number of such primitive variables by
optimizing their combination.
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However, a similar goal can be achieved by means of an entirely different approach
based on classification models, and it has been initially proposed by Trezza and Chiavazzo
in [23]. The latter methodology, briefly reviewed in the following, enables the optimal
mixing of primitive features by performing classification and subsequent optimal class
separation of the available data samples.

Let x1, . . . , xn denote n features. Let (x̃1, . . . , x̃n) be the corresponding dimensionless
quantities

x̃i =
xi − xi,min

xi,max − xi,min
+ 1 (12)

normalized by construction within the range [1, 2] to avoid singularities in the procedure
below, where xi,min and xi,max represent the minimum and the maximum observed values
for the ith feature over the training set, respectively. It is possible to synthetically create a
set of m ≪ n mixed features (y1, . . . , ym) as

yj =
n

∏
i=1

x̃
αij
i (13)

with {αij} being an (n × m) matrix estimated by means of a multi-objective optimization
algorithm, as described below. Finally, the new variables yj can be normalized within the
interval [0, 1] according to

ỹj =
yj − yj,min

yj,max − yj,min
. (14)

The main idea is that the matrix αij shall be selected following an optimization criterion
attempting the largest possible separation between two (or more) different classes parti-
tioning the values of a physical property of interest. Clearly, this can be accomplished by
maximizing a certain distance between the classes. However, a multi-objective optimization
procedure could also be pursued.

For instance, in a binary classification, the matrix αij in Equation (13) can be chosen
to lie on the Pareto front while simultaneously pursuing: (i) maximization of a carefully
selected distance between the two classes; (ii) minimization of a norm of the covariance
matrix of the first class distribution; and (iii) minimization of a norm of the covariance
matrix of the second class distribution.

The main rationale behind the minimization of a norm of the covariance matrix for
class distribution (along with a distance between classes) is the aim of possibly obtaining
smooth distribution functions that can be analytically bet fitted. Following the latter idea,
below, we will pursue multi-objective optimization for all the examined cases and provide
some optimal solutions from Pareto fronts.

In this study, we adopt genetic algorithms for optimization whereas the Bhattacharyya
distance between the histograms of the two equally binned classes [28,29] is evaluated to be
maximized during the multi-objective optimization. However, as shown in ref. [23], other
options for class distance may be considered, such as the Wasserstein distance [30] or the
averaged number within a fixed radius of nearest neighbors of one class to each samples
of the other class. Furthermore, herein we utilize variable power-form mixing outlined in
Equation (13). Nonetheless, alternative grouping options (e.g., linear mixing as employed
in ref. [23]) are also possible with the overall methodology remaining unchanged. Also,
the procedure can be further generalized to a number of classes > 2.

In this case, the genetic algorithm aims at simultaneously maximizing the pairwise
distances between the classes [23]. For the remaining two objectives, in one-dimensional
cases, a numerical estimate of the standard deviation of the binned data in the two classes
is computed. In two-dimensional (or higher) cases, the determinant of the covariance
matrix can be utilized. From the practical standpoint, considering a dataset of physical data
samples characterized by features x1, . . . , xn and their corresponding response f (x), such a
dataset is partitioned into two classes based on a carefully chosen threshold for f (x). After
the aforementioned pre-processing steps, a genetic algorithm optimization is employed to
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identify the Pareto front. This optimization concurrently seeks to minimize the variances of
the two classes (in one dimension) or the determinants of the covariances of the two classes
(in two or more dimensions), while also maximizing the Bhattacharyya distance between
the classes. A summary of this procedure is illustrated in Figure 3.

Figure 3. Overview of the procedure to identify optimal mixed variables for class separation.
Threshold values are chosen to divide the physical data in classes. A Pareto optimization is performed
to construct a reduced set of synthetic features that simultaneously maximizes the Bhattacharyya
distance between the classes and (i) minimizes the variances of the class distributions, in the one
dimensional case, or (ii) minimizes the determinants of the covariance matrix of the class distributions,
in the multi dimensional case.

3. Numerical Examples and Discussion
3.1. Datasets Creation

We first create three datasets from physical models to be used to train and test Machine
Learning (ML) tools, aiming to predict physical properties of interest. More specifically,
the first two datasets are generated using popular thermo-fluid dynamic correlations (i.e.,
Dittus–Boelter and Gnielinski correlations) with the target quantity being the Nusselt
number. Those datasets are created starting from the physical properties of 16 real liquids
at ambient temperature and pressure [31], and evaluating the kinematic viscosity ν and
the thermal diffusivity κ of each liquid from tabulated data (see Supplementary Note S1).
Each fluid accounts for 500 value combinations of the flow speed u, the hydraulic diameter
D, and the friction factor f (the latter is only requested for the Gnielinski correlation).
The values of these three variables are randomly chosen in the ranges [0.1, 1], [0.01, 0.1],
and [0.02, 0.09], respectively. This leads to a total of 8000 samples for each dataset. The
Nusselt number is thus calculated according to the corresponding equations. Finally,
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emulating what is typically experienced in experimental measurements, noise is added
on top of the correct target values, sampling 8000 points ηi from a Gaussian distribution,
with mean µ = 0 and standard deviation σ = 0.1; the target value of each entry Nui is
then multiplied by (1 + ηi). The third dataset is created on the basis of Newton’s law of
universal gravitation. It is constructed in a similar fashion, by generating random values
within the range [1016, 1018] for the masses m1 and m2, and within the ranges [−1012,−1010]
and [1010, 1012] for the spatial coordinates x1, y1, z1, x2, y2, z2. Here, the target value is the
gravitational force Fg, which is computed with some noise added following the same
procedure as above.

3.2. Dittus–Boelter Equation

The Dittus–Boelter correlation for a fluid undergoing heating is expressed by the
following equation:

Nu = 0.023Re4/5
D Pr0.4 (15)

where ReD = ud
ν represents the Reynolds number and Pr = ν

κ denotes the Prandtl number.
The equation can be rewritten by substituting the dimensionless quantities Re and Pr, thus
obtaining

Nu = 0.023
(

ud
ν

)4/5(ν

κ

)0.4
= 0.023

u0.8d0.8

ν0.4κ0.4 . (16)

It is easy to verify that the objective value is invariant with respect to all the possible
combinations of input features, u, d, ν, κ, either couples or triplets.

3.2.1. Use of Regression Models

We attempt to recover the symmetries of the Nusselt number with respect to binary
and ternary groups in the form xα1

i xα2
j and xα1

i xα2
j xα3

k , only relying on noised data and by
adopting the methodology illustrated in Section 2.2. As outlined above, this requires the
evaluation of the gradient of the noised Nusselt number with respect to the input features,
namely ∇Nu(u, d, ν, κ), where for each sample i, Nui = Nui(1 + ηi) (see Methods for
details). This can be conveniently computed by automatic differentiation over a DNN model
approximating Nu(u, d, ν, κ). As input features of the DNN, the four variables u, d, ν, κ are
used. The dataset is thus divided into three parts: (i) a training set, (ii) a validation set used
to detect potential overfitting, and (iii) a testing set for the comprehensive evaluation of
model performance. Figure 4a showcases the model predictions over the testing set, while
in Figure 4b, the corresponding loss across epochs is depicted.

Notably, the model is highly predictive, with coefficient of determination R2 = 0.963
over the testing set, with no evidence of overfitting observed. The model is thus fed to
the optimization algorithm. For each of the ten expected invariant groups (six binary and
four ternary), the algorithm estimates the normalized exponents α1, α2, α3 20 times. Table 1
shows such true normalized exponents α1, α2, α3, together with the means µα1 , µα2 , µα3

and the standard deviations σα1 , σα2 , σα3 over those 20 evaluations. Our findings indicate
that the method correctly identifies invariant groups in both couple and triplet forms.
Furthermore, it demonstrates the ability to estimate normalized exponents α1, α2, α3 for
individual primitive variables within each group, with relative percent errors not exceeding
11.0% for couples and 16.6% for triplets. Clearly, we notice that normalized exponents are
obtained up to the sign: the exponents determined for the pair (u, d) are negative instead
of the expected positive values according to the Dittus–Boelter equation.
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Figure 4. Results of the DNN regression model for the noised Nusselt number Nu in the Dittus–
Boelter correlation. (a) Predictions over the testing set, and (b) corresponding loss curves for the DNN
model. Model performances are shown in terms of coefficient of determination R2, mean absolute
error (MAE), and root mean squared error (RMSE).

In Table 1, we label as found, all the groups with standard deviations σα1 , σα2 , σα3 ≤ 0.2,
since low values of σ imply that the results for the 20 evaluations are consistent. We also
label as reliable all the groups where none of the evaluated exponents approach 0 or 1,
since such cases would correspond to trivial solutions. Remarkably, all six binary groups
and all four ternary groups of input features are found to comply with the condition of
invariance, and the results for all of them are reliable.

Table 1. Normalized exponents α1, α2, α3 for the Dittus–Boelter correlation together with their average
estimates over 20 evaluations µα1 , µα2 , µα3 and the corresponding standard deviations σα1 , σα2 , σα3 .
Found groups refer to low standard deviation, reliable groups refer to average far from 1 and 0.

Group α1 α2 α3 µα1 σα1 µα2 σα2 µα3 σα3 Found Reliable

(u, d) 0.71 0.71 - −0.71 0.05 −0.70 0.05 - - yes yes
(u, ν) 0.89 −0.45 - 0.91 0.04 −0.42 0.07 - - yes yes
(u, κ) 0.89 −0.45 - 0.89 0.01 −0.45 0.03 - - yes yes
(d, ν) 0.89 −0.45 - 0.90 0.04 −0.42 0.11 - - yes yes
(d, κ) 0.89 −0.45 - 0.87 0.02 −0.50 0.04 - - yes yes
(ν, κ) −0.71 −0.71 - −0.67 0.10 −0.73 0.10 - - yes yes
(u, d, ν) 0.67 0.67 −0.33 0.68 0.03 0.65 0.04 −0.33 0.07 yes yes
(u, d, κ) 0.67 0.67 −0.33 0.66 0.03 0.64 0.03 −0.37 0.03 yes yes
(u, ν, κ) 0.82 −0.41 −0.41 0.87 0.04 −0.37 0.06 −0.34 0.10 yes yes
(d, ν, κ) 0.82 −0.41 −0.41 0.83 0.06 −0.35 0.11 −0.41 0.05 yes yes

3.2.2. Use of Classification Models

In a second attempt to reduce the number of input variables, we investigate the
possible existence of symmetries for classification, aiming at the construction of m mixed
features in the form yj = ∏n

i=1 x̃
αij
i , where (x̃1, . . . , x̃n) are the primitive variables properly

normalized within the interval [1, 2] and {αij} denotes an n×m matrix optimally estimated,
as detailed in Section 2.3. Such features are finally properly normalized as ỹj in the interval
[0, 1]. In the case of the Dittus-Bolter, we set class 1 for samples with Nu < 395 and class 2
for samples with Nu ≥ 395. We thus create a single mixed feature (m = 1) according to the
above procedure. Figure 5a reports the Probability Density Function (PDF) binning of the
training set data over the two classes (a higher value of the PDF means a higher number of
items in the corresponding bin), against the normalized flow velocity unorm, while Figure 5b
shows the same PDFs (i.e., class distributions) against the normalized mixed feature ỹ1.
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It is noteworthy to observe that when represented against the primitive feature, the two
classes exhibit considerable overlap, whereas the same two classes appear well separated
when plotted against the mixed feature. As a result, it is particularly convenient to attempt
an analytical bet-fitting of the two distributions depicted in Figure 5b approximated by a
Generalized Extreme Value (GEV) distribution, with density

g(ỹ1) =
1
σ

(
1 + ω

ỹ1 − µ

σ

)− ω+1
ω

exp

(
−
(

1 + ω
ỹ1 − µ

σ

)−1/ω
)

. (17)

The fitting is performed by means of the SciPy Python package [32]. The specific com-
puted GEV distribution for samples with Nu < 395 has factors µ = 0.338, σ = 0.137, and
ω = 0.342, whereas the GEV distribution for samples with Nu ≥ 395 has factors µ = 0.675,
σ = 0.077, and ω = 0.074. Figure 5c shows the PDFs over the binned data of the testing set
reported against the same mixed feature ỹ1, along with the GEV fittings computed on the
training set. Notably, the classes are still well separated, with a good agreement between
the GEV distributions and the testing set densities.

Figure 5. One dimensional example for classification on the Dittus–Boelter correlation. (a) PDFs over
binned data of the training set for the two classes (Nu < 395 and Nu ≥ 395) reported against the
normalized flow velocity. (b) PDFs over binned data of the training set for the two classes reported
against the mixed feature y1, constructed according to Equation (13) and choosing the point of the
Pareto front with the least overlapping of the two classes according to the Bhattacharyya distance,
along with a GEV analytical fitting of the two binnings. (c) PDFs over binned data of the testing set
for the two classes reported against the same mixed feature y1 together with the same GEV fittings of
the (b) subfigure. The mixed variable ỹ1 shown here is referred exclusively to this Dittus–Boelter one
dimensional optimization.

Furthermore, we make an attempt at the creation of two mixed normalized features
ỹ1, ỹ2 (m = 2) with the same classes. Specifically, Figure 6a shows the PDF two dimensional
binning of the training set data over the two classes, against the normalized flow velocity
unorm and the hydraulic diameter dnorm. Figure 6b shows the same PDFs against the nor-
malized mixed features ỹ1, ỹ2 constructed according to Equation (13) by power combination
of the four primitive variables and choosing the point of the Pareto front with the least
overlapping of the two distributions. Similarly to the one dimensional case, the classes
appear well separated when plotted against the mixed features, whereas there is a wide
overlap when plotted against the primitive variables. Figure 6c shows the PDFs over the
binned data of the testing set reported against the same mixed features. The two classes
still appear well separated.

Finally, we aim at the construction of m = 1 mixed feature for separating the data
samples into three classes: class 0 for Nu < 197.5, class 1 for 197.5 ≤ Nu < 395, class
2 for Nu ≥ 395. The multi-objective optimization is performed aiming at concurrently
maximizing the pairwise distances between the classes. Figure 7 shows the separation in
classes reported against the normalized flow velocity unorm and the new mixed feature ỹ1:
in line with previous cases, the substantial overlap observed when representing classes
against the primitive feature is significantly reduced when using the optimized mixed



Mach. Learn. Knowl. Extr. 2024, 6 1608

feature. The bet-fitting GEV distributions for the three classes are computed according
to Equation (17) over the training set samples. Specifically the GEV associated with
Class 0 has factors µ = 0.284, σ = 0.103, ω = 0.494, the GEV for Class 1 has factors
µ = 0.475, σ = 0.067, ω = 0.193, and the GEV for Class 2 has factors µ = 0.684, σ = 0.080,
ω = 0.103. When plotting the PDFs over the binned data of the testing set against the
mixed feature, the classes appear well separated, and there is good agreement between the
GEV distributions and the testing set densities.

Figure 6. Two dimensional example for the classification on the Dittus–Boelter correlation. (a) PDFs
over binned data of the training set for the two classes (Nu < 395 and Nu ≥ 395) reported against the
normalized flow velocity unorm and the normalized hydraulic diameter dnorm. (b) PDFs over binned
data of the training set for the two classes reported against the mixed features ỹ1, ỹ2, constructed
according to Equation (13) and choosing the point of the Pareto front with the least overlapping of
the two classes according to the Bhattacharyya distance. (c) PDFs over binned data of the testing set
for the two classes reported against the same mixed features ỹ1, ỹ2. The mixed variables ỹ1, ỹ2 shown
here are referred exclusively to this Dittus–Boelter two dimensional optimization.
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Figure 7. One dimensional example for the ternary classification on the Dittus–Boelter. (a) PDFs over
binned data of the training set for the three classes (Nu < 197.5, 197.5 ≤ Nu < 395, and Nu ≥ 395)
reported against the normalized flow velocity unorm. (b) PDFs over binned data of the training set
for the three classes reported against the mixed feature ỹ1, constructed according to Equation (13)
and choosing the point of the Pareto front with the least overlapping of the three classes according
to the Bhattacharyya distance, along with a GEV analytical fitting of the three binnings. (c) PDFs
over binned data of the testing set for the three classes reported against the same mixed feature ỹ1

together with the same GEV fittings of the (b) subfigure. The mixed variable ỹ1 shown here is referred
exclusively to this Dittus–Boelter one-dimensional optimization.

3.3. Gnielinski Correlation

The Gnielinski correlation for turbulent flow in tubes is expressed by the equation

Nu =
( f /8)(ReD − 1000)Pr

1 + 12.7( f /8)1/2(Pr2/3 − 1)
(18)

where ReD = ud
ν represents the Reynolds number, Pr = ν

κ is the Prandtl number and f
denotes the friction factor. The equation can be reformulated by substituting the dimen-
sionless quantities Re and Pr, resulting in:

Nu =
( f /8)

(
ud
ν − 1000

)(
ν
κ

)
1 + 12.7( f /8)1/2

((
ν
κ

)2/3 − 1
) . (19)

The Nusselt number is invariant only with respect to the combination of flow ve-
locity and hydraulic diameter (u, d) with real exponents (1, 1), normalized exponents
(0.707, 0.707).

3.3.1. Use of Regression Models

Here, we first attempt the detection of possible symmetries of the noised Nusselt
number Nu adopting the methodology proposed in Section 2.2.2. We obtain access to the
gradient ∇Nu(u, d, ν, κ, f ) by means of automatic differentiation over a DNN approximat-
ing Nu(u, d, ν, κ, f ). Figure 8a shows the model predictions over the testing set, while in
Figure 8b the corresponding loss across epochs is depicted. The model is highly predictive,
with coefficient of determination R2 = 0.978 over the testing set, and no evidence of overfit-
ting is observed. The trained model is thus fed to the optimization algorithm, looking for
binary groups in the form xα1

i xα2
j . The average µα1 , µα2 estimates of the exponents α1, α2,

together with their standard deviations σα1 , σα2 , are reported in Table 2.
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Figure 8. Results of the DNN regression model for the noised Nusselt number Nu in the Gnielinski
correlation. (a) Predictions over the testing set, and (b) corresponding loss curves for the DNN model.
Model performances are shown in terms of coefficient of determination R2, mean absolute error
(MAE), and root mean squared error (RMSE).

Specifically, the procedure correctly identifies the expected group (u, d), whereas for
most other groups, the results correspond to either the trivial solution (i.e., the absolute
value of one of the exponents is close to 1 and the other is close to 0), or at least one
of the evaluated values presents too high variance (i.e., σαi > 0.2). Remarkably, for the
remaining cases (namely (u, ν), (u, f ), (d, ν), (d, f ), (ν, κ), (ν, f )), the procedure identifies
groups complying with the invariance condition, albeit not explicitly expected in the
Gnielinski correlation. We thus concluded that the suggested procedure has detected a local
invariance and this can be numerically verified as follows (here we limit to groups of two
variables only). First, the features not appearing in the group are kept constant. Second,
a random sample i in the dataset is considered for the evaluation of the quantity c̃ = xα1

1,ix
α2
2,i.

Third, a vector x1 of evenly spaced points in the domain of the first feature is created.
As such, the array corresponding to the second feature is obtained as x2 = (c̃x1

−α1)1/α2 .
A new dataset is thus constructed, with the variables out of the group being constant
and with the variables in the group being replaced by x1, x2. For all those samples,
the response value f (x) is computed. The local invariance is demonstrated when f (x) is
approximately constant over all the new constructed dataset. Further details can be found
in Supplementary Note S3.

Furthermore, armed with the same DNN regression model, we try to detect invari-
ance of the Nusselt number with respect to sets groups in the form xα1

i xα2
j xα3

k and xβ1
k xβ2

l
employing the procedure presented in Section 2.2.2. Table 2 also reports the results for
selected sets of two feature couples, including sets appearing explicitly in the Gnielinski
correlation—i.e., [(u, ν), (ν, κ)] and [(d, ν), (ν, κ)]—and for selected sets of features compris-
ing a triplet and a couple—e.g., [(u, d, ν), (ν, κ)], which is extremely relevant as it comprises
the Reynolds and the Prandtl numbers. For all of the mentioned sets, the procedure correctly
identifies the exponents that make the groups compliant with the condition of invariance. In-
deed, the normalized exponents obtained with the procedure for the sets [(u, ν), (ν, κ)] and
[(d, ν), (ν, κ)] are [(0.730,−0.680), (−0.656, 0.755)] and [(0.695,−0.718), (−0.687, 0.727)], re-
spectively, whereas the analytical solution is [(0.707,−0.707), (0.707,−0.707)] for both
the cases. The normalized exponents obtained for the set [(u, d, ν), (ν, κ)] turn out to
be [(0.602, 0.552,−0.570), (0.698,−0.716)], whereas the analytical solution corresponds to
[(0.577, 0.577,−0.577), (0.707,−0.707)].
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Table 2. Normalized exponents α1, α2, α3, β1, β2 for the Gnielinski correlation, together with their average estimates over 20 evaluations µα1 , µα2 , µα3 , µβ1 , µβ2 and
the corresponding standard deviations σα1 , σα2 , σα3 , σβ1 , σβ2 . Found groups/sets refer to low standard deviation, reliable groups refer to average far from 1 and 0.

Group/Set α1 α2 α3 β1 β2 µα1 σα1 µα2 σα2 µα3 σα3 µβ1 σβ1 µβ2 σβ2 Found Reliable

(u, d) 0.707 0.707 - - - −0.673 0.067 −0.734 0.056 - - - - - - yes yes
(u, ν) - - - - - 0.801 0.022 −0.597 0.030 - - - - - - yes yes
(u, κ) - - - - - 0.949 0.010 −0.313 0.032 - - - - - - yes no
(u, f ) - - - - - −0.867 0.065 −0.468 0.161 - - - - - - yes yes
(d, ν) - - - - - 0.807 0.042 −0.587 0.055 - - - - - - yes yes
(d, κ) - - - - - 0.948 0.015 −0.314 0.049 - - - - - - yes no
(d, f ) - - - - - 0.868 0.068 0.479 0.111 - - - - - - yes yes
(ν, κ) - - - - - −0.918 0.035 −0.389 0.076 - - - - - - yes no
(ν, f ) - - - - - 0.756 0.052 −0.650 0.056 - - - - - - yes yes
(κ, f ) - - - - - 0.467 0.033 −0.883 0.017 - - - - - - yes yes

[(u, ν), (ν, κ)] 0.707 −0.707 - 0.707 −0.707 0.730 0.047 −0.680 0.054 - - −0.656 0.011 0.755 0.010 yes yes
[(d, ν), (ν, κ)] 0.707 −0.707 - 0.707 −0.707 0.695 0.028 −0.718 0.027 - - −0.687 0.008 0.727 0.007 yes yes
[(u, d), (u, ν)] - - - - - 0.313 0.000 −0.950 0.000 - - −0.950 0.001 0.313 0.002 yes no
[(u, d), (d, f )] - - - - - −0.576 0.056 −0.814 0.043 - - −0.593 0.017 0.805 0.013 yes yes
[(u, ν), (ν, f )] - - - - - 0.872 0.045 −0.482 0.074 - - −0.224 0.058 0.973 0.011 yes no
[(u, f ), ( f , d)] - - - - - −0.665 0.052 −0.744 0.044 - - −0.503 0.036 0.863 0.020 yes yes
[(d, f ), ( f , ν)] - - - - - 0.860 0.016 −0.510 0.026 - - −0.868 0.036 0.491 0.063 yes yes

[(u, d, ν), (ν, κ)] 0.577 0.577 −0.577 0.707 −0.707 0.602 0.043 0.552 0.065 −0.570 0.053 0.698 0.011 −0.716 0.011 yes yes
[(u, d, f ), ( f , ν)] - - - - - 0.580 0.002 0.660 0.014 −0.476 0.023 0.817 0.004 −0.576 0.006 yes yes
[(u, κ, f ), (κ, ν)] - - - - - 0.492 0.012 0.703 0.017 −0.512 0.026 0.625 0.012 −0.780 0.009 yes yes
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Table 2 also reports some identified sets that locally comply with the condition of
invariance (see Supplementary Note S3 for more details), together with some randomly
selected sets for which the procedure succeeds at finding the invariance property, but for
which the results are close to the trivial solution, meaning that at least one of the evaluated
exponents approaches either 0 or ±1, thus is not reliable. Following the same approach
above, Table 2 labels groups with low standard deviations as found and all the groups
in which none of the evaluated exponents approaches 0 or ±1 as reliable. Remarkably,
the analytically evident couple (u, d), sets of two couples [(u, ν), (ν, κ)] and [(d, ν), (ν, κ)],
and set comprising a triplet and a couple [(u, d, ν), (ν, κ)], are identified. Furthermore, eight
additional couples are found that locally comply with the condition of invariance, with six
of them being reliable, and only one couple is not found. In the case of the selected sets
of two feature couples, five more sets of two couples locally comply with the condition
of invariance, with only two of them not being reliable. Finally, the two additional sets
comprising a triplet and a couple are reliably found to represent a local invariance.

3.3.2. Use of Classification Models

In a second attempt at reducing the number of input variables, we aim at the con-
struction of mixed optimized features, such as power combinations of the normalized
primitive variables for classification, according to Equation (13). In the case of the Gnielin-
ski correlation, we set class 1 for samples with Nu < 500 and class 2 for samples with
Nu ≥ 500. Once the optimization routine finds the Pareto front, the mixed features are
created using the point of the Pareto front with the least overlapping of the two classes
according to the Battacharyya distance. Figure 9a reports the PDF binning of the training
set data over the two classes against the normalized flow velocity unorm, while Figure 9b
shows the same PDFs against the normalized mixed feature ỹ1; still, when represented
against the primitive variable, the two classes exhibit significant overlap, whereas they
appear distinctly separated when plotted against the mixed feature. Two bet-fitting GEV
distributions are computed for the two classes according to Equation (17) for samples in
class 1 with factors µ = 0.276, σ = 0.112, ω = 0.223; for samples in class 2 with factors
µ = 0.510, σ = 0.091, ω = 0.000. Figure 9c shows the PDFs over the binned data of
the testing set reported against the same mixed feature ỹ1, along with the GEV fittings
computed on the training set. Notably, the classes are still well separated, with a good
agreement between the GEV distributions and the testing set densities. Furthermore, we
attempt to create two mixed normalized features ỹ1, ỹ2 with the same classes. Figure 10a
shows the PDF two dimensional binning of the training set data over the two classes
against the normalized flow velocity unorm and friction factor fnorm. Figure 10b shows the
same PDFs against the mixed features ỹ1, ỹ2 constructed according to Equation (13) by
power combination of the five relevant features and choosing the point of the Pareto front
with the least overlapping of the classes. Similarly to the one-dimensional case, the classes
appear again well separated when plotted against the mixed features, whereas there is a
wide overlap when plotted against the primitive variables. Figure 10c shows the PDFs
over the binned data of the testing set, reported against the same mixed features ỹ1, ỹ2;
the two classes still appear well separated. Finally, we aim at the construction of m = 1
mixed feature for separating the data samples into three classes: class 0 for Nu < 400, class
1 for 400 ≤ Nu < 900, class 2 for Nu ≥ 900. The multi-objective optimization is performed
aiming at concurrently maximizing the pairwise distances between the classes. Figure 11
shows the separation in classes reported against the normalized flow velocity unorm and the
new mixed feature ỹ1: in line with previous cases, the considerable overlap observed when
representing classes against the primitive feature is significantly reduced when using the op-
timized mixed feature. The bet-fitting GEV distributions for the three classes are computed
according to Equation (17) over the training set samples; specifically, the GEV associated
with Class 0 has factors µ = 0.245, σ = 0.083, ω = 0.346, the GEV for Class 1 has factors
µ = 0.430, σ = 0.053, ω = 0.143, and the GEV for Class 2 has factors µ = 0.599, σ = 0.074,
ω = 0.017. When plotting the PDFs over the binned data of the testing set against the
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mixed feature, the classes appear well separated, and there is good agreement between the
GEV distributions and the testing set densities.

Figure 9. One dimensional example: (a) PDFs over binned data of the training set for the two classes
(Nu < 500 and Nu ≥ 500) reported against the normalized flow velocity. (b) PDFs over binned data
of the training set for the two classes reported against the mixed feature y1, constructed according to
Equation (13) and choosing the point of the Pareto front with the least overlapping of the two classes
according to the Bhattacharyya distance, along with a GEV analytical fitting of the two binnings.
(c) PDFs over binned data of the testing set for the two classes reported against the same mixed
feature y1 together with the same GEV fittings of the (b) subfigure. The mixed variable ỹ1 shown
here is referred exclusively to this Gnielinski one dimensional optimization.

Figure 10. Two dimensional example for the classification on the Gnielinski correlation: (a) PDFs
over binned data of the training set for the two classes (Nu < 500 and Nu ≥ 500) reported against
the normalized flow velocity unorm and friction factor f . (b) PDFs over binned data of the training set
for the two classes reported against the mixed features ỹ1, ỹ2, constructed according to Equation (13)
and choosing the point of the Pareto front with the least overlapping of the two classes according to
the Bhattacharyya distance. (c) PDFs over binned data of the testing set for the two classes reported
against the same mixed features ỹ1, ỹ2. The mixed variables ỹ1, ỹ2 shown here are referred exclusively
to this Gnielinski two dimensional optimization.
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Figure 11. One dimensional example for the ternary classification on the Gnielinski correlation.
(a) PDFs over binned data of the training set for the three classes (Nu < 400, 400 ≤ Nu < 900, and
Nu ≥ 900) reported against the normalized flow velocity unorm. (b) PDFs over binned data of the
training set for the three classes reported against the mixed feature ỹ1, constructed according to
Equation (13) and choosing the point of the Pareto front with the least overlapping of the three classes
according to the Bhattacharyya distance, along with a GEV analytical fitting of the three binnings.
(c) PDFs over binned data of the testing set for the three classes reported against the same mixed
feature ỹ1 together with the same GEV fittings of the b subfigure. The mixed variable ỹ1 shown here
is referred exclusively to this Gnielinski one-dimensional optimization.

3.4. Newton’s Law of Universal Gravitation

The module of the interacting force Fg for two objects of masses m1, m2 is expressed
via Newton’s law of universal gravitation

Fg =
Gm1m2

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 , (20)

where G is the gravitational constant, (x1, y1, z1) and (x2, y2, z2) are the coordinates of the
centers of their masses.

In this case, our aim is to identify the invariance of the noised Fg with respect to
groups (x1 − x2), (y1 − y2), (z1 − z2). To this end, we employ the procedure presented in
Section 2.2.3 for identification of general group form, focusing specifically on groups
with functional dependence α1xi + α2xj. As usual, we obtain access to the gradient
∇Fg(x1, x2, y1, y2, z1, z2, m1, m2) by means of automatic differentiation over a DNN ap-
proximating Fg(x1, x2, y1, y2, z1, z2, m1, m2). Figure 12a shows the model predictions over
the testing set, while in Figure 12b, the corresponding loss across epochs is depicted; specif-
ically, the model is highly predictive, with coefficient of determination R2 = 0.962 and
no evidence of overfitting is observed. The trained model is thus fed to the optimization
algorithm. The average µα1 , µα2 estimates of the coefficients α1, α2, together with their
standard deviations σα1 , σα2 , are reported in Table 3. Specifically, the procedure correctly
identifies the groups (x1, x2), (y1, y2), (z1, z2) with estimates µα1 , µα2 of (−0.679, 0.721),
(−0.711, 0.702), (−0.683, 0.722), respectively, compared to the true normalized coefficients
(−0.707, 0.707) for all cases. Table 3 flags groups with low standard deviations as found
and all the groups in which none of the evaluated exponents approaches 0 or 1 as reliable.
Specifically, other variables couples show high variance over the corresponding average
estimates, meaning that no further invariant group is identified.
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Figure 12. Results of the DNN regression model for the noised gravitational force Fg. (a) Predictions
over the testing set, and (b) corresponding loss curves for the DNN model. Model performances
are shown in terms of coefficient of determination R2, mean absolute error (MAE), and root mean
squared error (RMSE).

Table 3. Normalized exponents α1, α2 for the Newton’s law of universal gravitation, together with
their average estimates over 20 evaluations µα1 , µα2 , and the corresponding standard deviations σα1 ,
σα2 . Found groups/sets refer to low standard deviation, reliable groups refer to average far from 1
and 0.

Group α1 α2 µα1 σα1 µα2 σα2 Found Reliable

(x1, x2) 0.707 −0.707 −0.679 0.111 0.721 0.083 yes yes
(y1, y2) 0.707 −0.707 −0.711 0.023 0.702 0.023 yes yes
(z1, z2) 0.707 −0.707 −0.683 0.030 0.722 0.044 yes yes
(m1, m2) - - 0.105 0.556 0.759 0.322 no -
(m1, x1) - - 0.000 0.000 1.000 0.000 no -
(x1, y1) - - −0.604 0.369 0.335 0.622 no -

4. Conclusions and Final Remarks

In this study, we have implemented two innovative methodologies for searching
optimal variables to describe physical data, making use of both regression and classification
models applied to the data. Specifically, leveraged on well-suited datasets for machine
learning, with the goal of predicting a property of interest.

In particular, the methodology introduced for regression tasks has the ambition to find
groups of variables that are valid over all the parameter space spanned by the available data.
However, due to various factors such as noise in the data, this method might not converge,
even if the group exists. Conversely, the methodology introduced for classification tasks
gives up on this ambition in favor of the greater robustness of an optimization framework,
aiming to only find possible separations in the parameter space. This can be useful,
for instance, to find optimal areas in the parameters space with the highest values of a
properly defined objective function of interest, even if the group does not govern globally
such objective function. Due to their different objectives, the two methods generally do not
produce the same groups.

More precisely, the procedure based on the regression model introduced here enables
the identification of invariant groups and/or sets of variable groups with respect to which
the property of interest is invariant. We have demonstrated its effectiveness on noised data
generated by three well known functional relationships: the Dittus–Boelter correlation,
the Gnielinski correlation, and Newton’s law of universal gravitation. It is noteworthy that
we did not apply any particular noise reduction technique to the three datasets; instead,
our methods directly handle the noisy data as-is, demonstrating their robustness. Also, we
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acknowledge that direct measurement of the Nusselt number would not be feasible in real
world scenarios, and that the calculation method of the examined properties of interest
(i.e., Nusselt number and gravitational force) is already established. However, our selection
of such examples is only aimed at showcasing the effectiveness of our methodologies in
sufficiently simple cases. For the former two cases, the procedure has accurately detected
groups/sets in power form, while for the latter case, a generalized algorithm successfully
identified groups with a linear form. It is worth stressing that, in all the examples, our
procedure did not end up with any false negative, i.e., whenever a group exists, it is correctly
identified. Interestingly, the methodology is potentially applicable to any functional form,
as illustrated in Section 2.2.3. Additionally, the effectiveness of identifying a group in a
situation where that group is already known—like in this study—depends on a tolerance
threshold set between the identified group and the actual one. In real world scenarios,
the identified groups serve as candidates of mixed variables, whose validity has to be
verified a posteriori.

The procedure based on classification of the physical property values, allows for the
determination of an appropriate set of exponents to combine all the primitive variables
in power form, thus constructing mixed features optimized for the classification task.
Specifically, we have shown its effectiveness on the Dittus–Boelter and on the Gnielinski
correlations. Indeed, the methodology effectively enables the separation of classes even
with just one mixed feature, whereas a single primitive variable fails to achieve class
separation. Furthermore, we also provide examples with one and two mixed variables,
together with separation in two or three classes.

It is worth stressing that the methodologies presented in this study are blessed by
generality and, as such, are not restricted to the selected case studies, and are agnostic in
terms of data origin, being it numerical or experimental. Therefore, potential applications
can be envisioned in various other fields in the future. In particular, we notice that the
identification of effective good variables is not only interesting per se to possibly gain a
deeper insight on a physical system, but can also be practically advantageous when design-
ing experiments. Indeed, the methodology to detect groups/sets in regression facilitates
efficient group/set-level adjustments rather than individually fine-tuning variables within
the groups/sets themselves.

Moreover, the classification procedure can enable the reduction of the numerous
original primitive variables to a minimal set of optimized variables concerning a specific
physical property of interest. Notably, combinations of variables yielding identical mixed
feature values exhibit similar performance in terms of the property being classified. As
a result, it is possible to find alternative combinations of primitive variables without
compromising the overall performance of a given system under study. From a more
practical standpoint, the methodologies described here can help generalizing optimal
system conditions, thus helping decreasing the most resource-intensive components while
properly re-balancing the others. As an example, these general methodologies may thus
hold the potential to save resources, such as costly reagents (e.g., Bonke et al. [24] for solar
fuel production) or expensive materials as in perovskite solar cells optimization [33]. An
additional advantage associated with the correct identification of a reduced set of ruling
variables is their possible use for driving sequential learning or Bayesian optimization
processes [34,35].

Finally, we believe that an interesting development of the presented methodologies to
be pursued in the future, shall be in the direction of a possible handling of systems ruled
not only by numerical parameters, but also categorical ones.
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