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Abstract—We demonstrate the use of an unsupervised
autoencoder-based LSTM approach to automatically detect road
traffic patterns. The model is trained on the dataset acquired from
the deployed metropolitan fiber cable in the city of Turin.

I. INTRODUCTION

In recent years, optical transmission infrastructure has trans-
formed the telecommunications sector to meet the enormous
demands of quickly growing worldwide internet traffic. At the
physical layer, most existing infrastructure utilizes wavelength
division multiplexing (WDM) technology across core, metro
and access networks. Consequently, optical fiber deployment is
expanding throughout most of the world, especially in densely
populated areas. In addition to providing high-capacity data
transmission, optical fiber is the best candidate for use as
a sensor to monitor the surrounding environment due to its
exceptional intrinsic characteristics. Fiber optic sensing (FOS)
has attracted a lot of interest from the research community and
has been deployed in a number of applications over the past few
decades. FOS utilizes the already deployed telecommunication
fiber infrastructure for sensing large areas. The core idea of
all FOSs is to measure changes in the state of polarization
(SOP), frequency, intensity and phase of light waves. Most
FOS applications are based on dedicated equipment and rely
on distributed acoustic sensors (DAS), phase-sensitive optical
time-domain reflectometers (OTDRs), or interferometric setups.
An alternative cost-effective solution is to compute the SOP
fluctuations from the already deployed optical channels instead
of using dedicated equipment. The solutions based on SOP
computations are proposed in [1] and [2] for underwater earth-
quake detection and [3] demonstrates its application for road
traffic monitoring.

Recently, use of artificial intelligence techniques has sig-
nificantly improved the sensing capabilities of FOS, enabling
the identification or segmentation of particular events based
on the understanding of key characteristics that define them.

Some works that demonstrate the advantages of employing
machine learning in FOS include detection and classification

of vehicles [4], real-time intruder detection in railways [5],
and earthquake detection [6]. Although machine learning al-
gorithms have made significant progress in traffic monitoring
applications, the detection of road traffic in SOP observations
is yet to be addressed, particularly for one based on a real
SOP dataset acquired from an experimental setup. In this work,
we demonstrate the use of an unsupervised machine learning
approach trained on real SOP measurements over a period of
24 hours, collected from an optical link laid in the city of
Turin. This approach is used to detect the road traffic patterns
automatically for 96-hour SOP measurements, for the first time
to the best of our knowledge. The goal of this approach is
to extract and learn the relevant features of road traffic from
the given time series data without employing any previous
knowledge about the physical characteristics of the time series
generation mechanism.

In particular, we investigate the autoencoder Long Short
Term Memory (LSTM) model for road traffic detection. It is
believed that the proposed method presented in this work has
the potential to contribute significantly to the development of an
automatic road monitoring system based on SOP measurements.

II. AUTOENCODER-BASED LSTM APPROACH FOR
AUTOMATIC TRAFFIC DETECTION

We have acquired the real-time 96 hour SOP measurements
from the experimental setup presented in [3]. A standard WDM
card configured with an SFP+ TRX module is used at the
transmitter end as an optical source. On the receiver side, a
standard ROADM integrated with a DWDM filter and an EDFA
is used, serving as a 10G dropping node and as a pre-amplifier.
Two different receiver setups for polarization change detection
based on a standard polarimeter (Novoptel PM-1000) and a
polarization beam splitter (PBS) are examined. Both techniques
were configured to store data for up to 96 hours at a sampling
rate of 95 samples per second. The optical signal is intensity
modulated at a rate of 10 Gbps to carry data traffic. The optical
signal travels through the 38 km optical fiber laid in the city of



2. Encoder

LSTM layer

5
= 5
= =
=
' =
5 £
2
-

. 4
Repeat Vector
¥

Encoded Features

L1: LSTM(500) L2: LSTM(64)

Input:5x1 Input : 5 x 500

Output: 5 x 500 Output: 1 x 64
L3: RepeatVector(5)
Input: 1x 64
Output: 5 x 64

3. Decoder

L4: LSTM(64)
Input : 5 x 64
Output: 5x 64 Output: 5 x 500

4. Traffic
Detection

Time Distributed

L5: LSTM(500)
Input : 5 x 64

L6:
TimeDistributed(1)
Input : 5 x 500

Output: 5x 1

Reconstruction
Loss

Fig. 1: Architecture of the proposed autoencoder LSTM

Turin. Both ends of the fiber are accessible through an optical
terminal box available at the LINKS lab where the SOP is
measured in terms of the Cartesian coordinates S, S2 and Ss.

We propose an unsupervised methodology based on LSTM
combined with an autoencoder for the automatic detection of
road traffic. An autoencoder is an unsupervised artificial neural
network that leverages a backpropagation algorithm to obtain
output identical to the input vector. Firstly, it reduces the
input data dimension, and then this compressed representation
is used to regenerate the actual data, learning the nonlinear
underlying relationships in the data using multiple LSTM layers
and a nonlinear activation function. The schematic diagram
of our proposed approach is shown in Fig 1. We obtain a
96 hour time series which consists of a single feature. This
feature has been define as the norm of the SOP variation in
time. In the first step, we normalize the time series and then
break it into different input sequences with a window size of
5 timestamps (with a time interval of 2 milliseconds). The
input sequences are reshaped into a 2-dimensional (2-D) array
comprising of timestamps and data samples, represented as a
5 x 1 vector. In step 2, these input sequences are fed into the
encoder module which consists of the input layer, with 500
LSTM units operating in sequence to process the data samples.
The major function of the LSTM encoder is to extract the
important information from the input data and map it to a lower
dimension. The input layer L1 process the data and outputs a
vector of 500 features with 5 timestamps as a 5 x 500 vector.
The L2 layer with 64 LSTM units takes an 5 x 500 input from
L1. Each LSTM unit performs operations on a data sample to
decide whether to keep the information or to discard it. If the
LSTM unit marks the information as important, it is written into
long-term memory and passed to the next LSTM unit. The last
LSTM unit in L2 possesses all of the important information
processed by the previous units and outputs it as a 1 x 64
encoded feature vector. Then we add the RepeatVector as the
3rd layer to link the encoder and decoder modules. This layer
duplicates the encoded feature vector equal to the number of
timestamps (5 in our case) and outputs a 5 x 64 vector. This
layer is necessary to prepare a compatible 2-D input for the next
LSTM layer of the encoder module. In the third step, the 5 x

64 output vector from L3 is fed to the decoder module, which
contains layers 4 and 5. The purpose of the decoding module
is to unfold the encoded representation in order to restore
the original input data. Consequently, the LSTM layers in the
decoder module are placed in the reverse order of the encoder
module. In the proposed decoder module, the LSTM layer L4
consists of 64 units, with each unit generating an output that
corresponds to the output learned from the encoded feature; this
output is multiplied with the 1 x 64 vector generated by layer
L3. Note that both the L4 and L5 layers in the decoder module
are exact copies of L1 and L2 present in the encoder module.
To get the final output, the TimeDistribution layer L6 is added
at the end of the model. This layer is used to generate a vector
equal to the number of features fed by the previous layer. In
our case, LS5 outputs 500 features, thus L6 generates a vector
of 500 and matrix multiplication between the output of the 5
x 500 L5 vector and the output of the 5 x 1 L6 vector are
performed, giving a final 5 x 1 output which is equal to the
original input size. Our model uses a tanh activation function
and adds two dropout layers with 0.3% and 0.2% rates in order
to avoid overfitting. For model training, we have used a 24
hour portion (starting at 9.30 a.m. on Friday, Jan 21) of the
given 96 hour dataset. The obtained training dataset is split into
80% training, 10% validation and 10% test datasets respectively.
The model is trained on 100 epochs in order to minimize the
loss function, and optimized using an “Adam” optimizer with a
learning rate of 0.05. In step 4, we compute the absolute mean
error between the original input and the output to determine
the reconstruction error. The distribution of computed loss in
the training and test sets is plotted to determine the appropriate
threshold value for traffic detection. Once the threshold is fixed,
we have evaluated the performance of our model on the full 96
hour dataset to compute the predicted score for each data point.
The data points with a loss greater than the threshold value are
labeled as traffic detected while those with a loss below the
threshold as traffic not detected.

III. RESULTS AND DISCUSSION

The training and validation loss of the proposed model during
training at various epochs is shown in Fig 2a. We observe
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Fig. 2: (a) MSE loss versus epoch of the proposed model durin(é)training, (b) Traffic detected over 96 hours, red circles indicate
the detected traffic,x-axis indicates month-date and time (c) Average count of detected traffic per hour versus time.

a similar loss trend for both training and validation datasets,
converging very quickly after a few epochs, demonstrating
that the model is well-trained and performs well on unseen
data during training. Fig 2b shows the performance of our
model on 96 hours of data for traffic detection, where red
points indicate the detected traffic. Our model is visibly able
to correctly distinguish traffic from noise, and able to detect
all traffic peaks effectively in 96 hours of measurements. To
further evaluate the performance of our proposed approach, we
computed the number of traffic instances per minute on the
complete 96 hours of data as shown in Fig 2c. The results
show that our proposed approach is able to capture the hourly
and daily traffic patterns very well. For instance, variations
in patterns are clearly evident for day and night, weekdays
and Sunday, Jan 23, and aligned well with the expected traffic
pattern. We also compare the number of average traffic instances
per hour with the statistics obtained from the experimental setup
— our approach detected and computed traffic instances with
approximately 97% accuracy.

IV. CONCLUSION

Our results demonstrate that training an autoencoder-based
LSTM model with 24 hours of real SOP measurements, can
capture and learn important features of road traffic, provid-
ing reliable detection of traffic in SOP measurements in an
unsupervised manner. Our proposed method and findings can
serve as a first step towards the development of an automatic

traffic monitoring system based on SOP measurements. This
approach is not limited to detecting road traffic, and can be
further evaluated also for traffic classification, and other fiber
sensing applications based on SOP measurements.
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