POLITECNICO DI TORINO

SCUOLA DI DOTTORATO
Dottorato in Ingegneria Informatica e dei Sistemi — XX ciclo

Tesi di Dottorato

Design techniques for high-reliability
complex electronic systems

Massimiliano Schillaci

Tutore Coordinatore del corso di dottorato
prof. Matteo Sonza Reorda prof. Pietro Laface

Marzo 2008

Summary

As the market continuously requires ever more powerful systems, there is a huge economic
incentive in technological advances that can make that required power available to the
end user of the system. Conversely, more powerful devices make it possible to integrate a
large number of functions inside a single system. Eventually, users want to assign mission-
critical or safety-critical tasks to digital systems.

This kind of delegation makes reliability a major requirement for digital systems. The
activities to achieve system reliability include validation, verification, testing of the single
components and of the entire system, diagnosis of the components, system hardening.
These activities in turn benefit from the development of methodologies and tools for their
effective application.

The performed activity concentrates on test and diagnosis of digital programmable
circuits, with particular emphasis on microprocessor cores and micrcontrollers. In par-
ticular, the focus of activity has been the development of approximate methodologies for
circuit test and diagnosis, and the assessment of those methodologies on realistic case
studies. The activity also touched the field of system hardening, with the development of
a methodology having the property of being transparent.

As a support activity for the test and diagnosis field, work has been performed in the
field of evolutionary computation. The work includes the development of evolutionary
methodologies, the definition of tool architecture, the coding, total or partial, of such
tools, and the application of evolutionary approaches to problems seemingly far from the
CAD field, with the purpose of enhancing the tools performance.

The thesis is structured as follows. Chapter 1 provides a very brief introduction to the
fields of test, diagnosis, system hardening and evolutionary computation, also defining the
terminology for the following. In Chapter 2 the activities performed in the field of test
are presented. In chapter 3 the activities pertaining to diagnosis are described. Chapter
4 details the activity performed for system hardening. Finally, chapter 5 describes the
diverse activities performed in the field of evolutionary computation.

Contents

Summary
1 Introduction
1.1 Test Basics o oo e
1.2 Diagnosis Basics o
1.3 System hardening
1.4 Evoutionary Computation Concepts
2 Test Activity
2.1 Test generation for pipelined processors
2.2 Incoming inspection
2.3 Test of Peripherals
2.4 Compaction of existing test programs
3 Diagnosis Activity
3.1 Microprocessor Diagnosis oL
3.2 Modular Diagnosis L e
4 System hardening
5 Evolutionary Computation
5.1 puGP o
5.1.1 pGPv2. . o e
5.1.2 puGP3 . .
5.2 Populationless EAo
5.3 Local Analysis
5.4 Games e e e
6 Conclusions
Bibliography

11
13

19
19
24
34
44

50
50
64

69

75
75
76
83
89
94
97

105

108

Chapter 1

Introduction

The market increasingly requires complex systems, able to perform multiple functions
and satisfy user expectations in terms of performance, usability, safety, security and so on.
This need is satisfied thanks to the advancements in technology and design methodologies,
that make the complexity of digital circuits increase constantly over time. The increased
complexity of digital circuits makes it possible, and also desirable, to concentrate even more
functions in a single system or device, in a positive feedback loop. Users find themselves
relying on digital systems for more and more leisure and work activities, and critical
applications are delegated to digital systems. The sheer amount of delegation makes
reliability of digital devices and systems a crucial requirement.

Digital programmable systems, in particular microprocessors and microcontrollers,
provide the computational power needed for overall system operation. The use of pro-
grammable systems allows to move system complexity from hardware to software, with
several advantages: total cost can be reduced with a proper partition; the greater flex-
ibility of software with respect to hardware makes system upgrade easier and cheaper;
programmable components, even specialized ones such as DSPs and peripherals, can be
reused over different systems, leading to further reduced component and design costs.

The activities to achieve system reliability include validation, verification, testing of
the single components and of the entire system, diagnosis of the components, system
hardening. These activities in turn benefit from the development of methodologies and
tools for their effective application.

The purposes of these activities are different. Validation is necessary to ensure that
the requirements for a system reflect its intended purpose; since it is concerned with a
human idea of what the system should do, it is very difficult to automate. The purpose
of verification is checking that a given design of a system respects its requirements. Test
demonstrates whether a physical implementation of the system is defective or not. The
locaton of a defect in a faulty device is pinpointed through diagnosis. Finally, hardening
is performed to reduce the probability that a given system stops working properly after
deployment.

The activity focuses on the testing and diagnosis of digital circuits, with particular
emphasis on microprocessor cores. In particular the field of software based self test is

1 — Introduction

investigated, taking into account its possible applications as a cheap part of a complete
end-of-line test campaign, for on-line testing of digital systems, and for incoming inspection
activities. The software based diagnosis is also taken into account, developing specific
methodologies. As reliability benefits not only from fault discovery but also on fault
prevention and fault tolerance, techniques for hardening of digital systems are developed
and characterized.

As a support activity for the automation of test set generation, the development and
use of tools for evolutionary computation is undertaken. Development comprises the choice
of a theoretical model and definition of the general architecture for several tools, and at
least part of the coding. The tools, existing or newly developed, are then evaluated against
CAD applications, which constitute their main task. For better theoretical and empirical
understanding, and to improve their general performance, they are also proven in more
general environments, such as games.

1.1 Test Basics

As microprocessor and microcontroller technology is more widely used day after day, it
is essential for the manufacturers to provide well-functioning and reliable devices to cus-
tomers and end users. The most direct way to achieve this goal is through test of the
circuits [1]. Test is the activity through which correctly functioning devices are distin-
guished from malfunctioning ones. Circuits belonging to the first group are called good
devices, and the others are the faulty ones [2]. A manufacturer will then sell only the good
circuits, and discard the others. A part of the faulty devices, however, will normally be
subject to further analysis to discover the causes of failure.

Actually the activity is performed trying to demonstrate that a particular device is
faulty, by feeding it with inputs and comparing its outputs with a set of expected values.
If the actual outputs are all equal to the expected outputs then the circuit is labeled
good, otherwise it is faulty. If the circuit is labeled good the test is passed. From the
above description follows that a circuit can be demonstrated faulty, but confidence on the
correct functioning of a device cannot be complete.

The physical mechanisms by which a circuit may fail are uncountable, but to undertake
a quantitative approach to the test problem some simplification is necessary. To account for
the possible failure mechanisms several fault models have been introduced in the literature.
A fault model is an abstraction of the failure mechanism of a circuit. The use of a fault
model allows limiting the possibly infinite variety of physical defects and failures to a finite
set of logical faults belonging to the model. In this way a fault model provides a metric
with which the effectiveness of a test can be assessed.

Given a circuit containing a single fault belonging to a model, if a test detects a
difference between the faulty machine and the good one then the fault is covered by the
test. If, for a given fault, no test can exist that covers it, then the fault is untestable. Given
a circuit and a fault model, a set of possible faults for the circuit compose a fault list. If
the list contains all possible faults for the circuit, it is complete. A test set is a collection
of single tests for a circuit. It should be noted that the definition of test set is independent

1 — Introduction

of the fault model. Its measured effectiveness may change with different models, but its
definition remains intact, since it only includes a set of inputs and expected outputs. The
ratio between the number of faults covered by a given test for a circuit and the number
of faults in the complete fault list is the fault coverage for the test.

The most widely used fault model is the single line stuck-at fault. The hypothesis

is that in a faulty circuit a single input or output pin of a logical gate is permanently
fixed at a single logic value, thus modifying the logic function of the circuit. This fault
model has been introduced in the early ’50s, and now suffers from several drawbacks. It
is not physical, since there is little relation between the fault model and the actual failure
mechanisms, and it actually captures only a small class of real defects. It may be too
simplistic, because it postulates the presence of at most one fault within a circuit, even in
the case of very large devices. Most importantly, it does not take into account any timing
effects, as it is a static model. As the operation frequency increases the defects linked
with excessive delay and generally with incorrect timing within a circuit become more and
more important. This last drawback is the most serious, and it is the main driving force
behind the development of different fault models.
Even with these limitations, the stuck-at is still the most universally used fault model,
for several reasons. It is simple, allowing fault simulation even for large circuits. Its
cardinality, the number of possible faults for a given circuit, is limited, allowing simple
management of complete fault lists for most circuits. It provides a metric of fault coverage.
Most importantly of all, it has been empirically demonstrated that an insufficient fault
coverage on the stuck-at fault model leads to unsatisfactory defect levels at the end of the
manufacturing line. Thus, coverage of the stuck-at faults may not be enough to guarantee
product quality, but it has been proved necessary.

Other important fault models are the transition delay fault and the path delay fault.
These account for timing effects in circuits. A transition delay fault exists when a single
transition on an input or output pin of a gate is propagated with a delay too high with
respect to the nominal one. The effect of this fault may be the capture of incorrect values
on the outputs or the memory elements of a circuit. The transition delay fault model
is still relatively simple, since every fault is concentrated on a single circuit pin, and its
cardinality is the same of the stuck-at fault model. The path delay model is similar to
the transition delay model, but faults affect transitions along an entire path, a connected
sequence of logic gates.

All the above models describe permanent faults, that is faults that always exist in
the machine. As technology allows shrinking the devices, the associated electric charge
decreases. This makes the device sensitive to the action of charged particles, such as cosmic
rays and the products of radioactive decay, ionizing radiation and electromagnetic noise.
Even if these do not permanently damage the device, they may change the voltage levels
of one or more internal nodes in the circuit and lead to incorrect computation results.
Malfunctions that do not modify the logic function of the circuit, but only temporarily
change the logic values are modeled by transient faults.

If a transient fault exists in the circuit it might not pass a test. In this case the circuit
is faulty, but only at the time of test, so there is the risk that it is discarded incorrectly.
For this reason in some production environments a faulty circuit is tested again, and only

1 — Introduction

discarded if it fails twice.

Two important transient fault models are the single event upset (SEU) and the single
event transition (SET). They both model the effect of a particle or ionizing radiation hit
on the circuit. A SEU is the flip of single bit inside a memory element of the circuit, in
a given instant. This change can lead to incorrect result as the content of the memory
element is used as input for further logic gates. The SET is a natural extension of the
SEU model, and is relative to all nodes in the circuit, not only memory elements. The
SET can model interferences on long interconnection lines, or on circuit nodes driven by
very small transistors.

From the above discussion follows that it is important to test digital devices at-speed,
that is at their nominal work frequency. Indeed, many defects in the machine cause incor-
rect signal timing, and only show up when the circuit is used at its maximum frequency.
This is true even if the test has been generated targeting only a static fault model. The
incorrect results produced by a dynamic fault may be detected by such tests, but if the
test is performed too slowly, defective logic gates may have time to drive signals to their
correct logic value, and the timing error would not be apparent.

Despite the efforts spent by the research community over decades, testing of digital sys-
tems is far from a closed field. This is most apparently testified by the fact that no single
test methodology is able to satisfy all the needs of the different users. Different methodolo-
gies achieve different balances between effectiveness, cost, speed, data size. Furthermore,
as technology advances different physical mechanisms become responsible for malfunctions
in a digital system, and this change is reflected in the models of faulty systems.

Not all methodologies are applicable by all users, as they have different levels of in-
formation available about the system tested. Different users also have different testing
needs.

The circuit manufacturer has the highest level of information, since it knows all the
details of the device. It usually also has access to test facilities purposely built into the
circuit. On the other hand, the manufacturer needs to comprehensively test its device,
since very low defect levels must be guaranteed to the customer. Because of the production
volumes, however, test should take as little time as possible, to avoid the related additional
costs. Adding to the problem is the fact that the automated test equipment (ATE) used
at the end of a manufacturing line may cost millions of dollars each, and every second of
test can mean several dollars more in the production costs of a circuit. Since production
yields are usually not very high, to minimize costs manufacturers usually test their devices
before packaging them, and then a second time after that.

But the manufacturing process is not perfect, and by the time a customer assembles
the devices into its system, less than ideal transport and environmental condition may
have introduced new defects in the circuit, or worsened others that were too small to
cause failure. The customer, then, usually wants to test the device again to ensure proper
functioning, an activity called incoming inspection. The level of available information is
now lower, since the manufacturers protect the details of their circuits and technology as
trade secrets. Access to special test facilities is also impossible or reduced.

In the following the focus will be on the test of programmable digital devices, with par-
ticular emphasis on microprocessor cores and microcontrollers. Development of different

1 — Introduction

test methodologies is the subject of chapter 2.

Processor cores are among the most complex circuits used today, and can be tested
using several different methodologies. Test application techniques for microprocessors are
traditionally divided in hardware-based and software-based methodologies. The former
are directly derived from the traditional test tehniques for combinational and sequential,
not necessarily programmable, circuits. Hardware-based techniques postulate the use of
sophisticated ATE, able to impose the correct timing on the input signals and collect the
outputs measuring accurately their delay. The ATE is also in charge of providing the clock
signals, and possibly to skew the input signals within the nominal tolerances, to check that
the circuit works in all conditions matching its specifications. The cost for an ATE able
to test a high-end microprocessor at its nominal speed is very high.

Hardware-based techniques usually include the insertion of special hardware to ease
test application and improve fault coverage. The memory elements in the circuit are
linked together in one or more scan chains, that allow setting the values of at least some
registers and reading them afterwards. The memory elements of the circuit then become
additional controllable and observable nodes. The addition of scan chains to a circuit
impacts both area and delay, which translates to higher design costs and perhaps reduced
yield. Other scan structures containing the memory elements of a circuit are possible, such
as level-sensitive scan design (LSSD), first used by IBM, or other schemes. Hardware-
based methodologies are generally very effective, leading to high fault coverages, at least
for the stuck-at fault model. On the other hand, they can be very costly in terms of
design effort, area overhead and performance penalty. Such techniques also require the
use of very sophisticated ATE, since the test equipment is in charge of managing all the
timing. In addition, hardware-based techniques are effectively useable only by the circuit
manufacturer, since they require both detailed information about the internal structure
of the circuit and free access to the additional test structures. Scan chains are not readily
useable by the customer of a processor core, since he lacks essential information to use
them.

One of the difficulties with the use of scan chains is that the test generated to use them
can cause a power consumption that is even an order of magnitude higher than nominal
values. This happens because the scan chains allow putting the machine in a state that
would never be reached during normal operation, and has therefore not been catered for
in power computations. This excessive power consumption leads to overheating the device
(or, worse, parts of it), and may damage it. This problem is particularly vexing in very
large circuits. On the one hand, the scale of the circuit forbids a large overestimation of
the current drain, because that would lead to excessive costs in cooling systems for the
finished product. On the other hand, the use of test vectors specially generated to keep the
power consumption nearer to the nominal values can lengthen by far the test application
time, again impacting costs.

In contrast, software-based techniques, named software-based self test (SBST) tech-
niques, rely on the key idea of exploiting the computational power of the tested core
to apply test patters and collect the results. The technique, pioneered by Thatte and
Abraham [3], has been subsequently developed by numerous researchers [4] [7] [8]. The
processor under test is used in normal mode, without the need to resort to a special test

1 — Introduction

mode. The test is performed running a set of programs whose purpose is not to perform
useful computations, but to extract information about the microprocessor. Test programs
excercise the functional modules of the processor, collect the result and make them avail-
able for external observation.

The advantages of SBST are several. The circuit is tested at speed since it is used
in normal mode. It avoids problems of excessive power consumption. Since there is
no need for strict external control of signal timing, lower cost ATE can be employed.
Being a software methodology, SBST is relatively technology-independent, meaning that
technology changes have a much lower impact on SBST than they have on hardware
methodologies.

The attendant disadvantages are that SBST, providing less control and observation
power than scan-based techniques, generally has lower fault coverage capabilities, and
writing good test programs is a challenging task.

Several different metodologies have been proposed in the past to generate test programs
for processors. The classic approach [3] is based on the modeling of the processor as a
directed graph. In this graph the vertices correspond to registers inside the processor or to
memory systems outside the processor, and the edges represent the possible data transfers
between these memory elements. Edges may be labeled with additional information,
describing which instructions are responsible for the transfers. The test checks all the
possible transfers between the memory elements. It is theoretically very powerful, since
it takes into account many different parts of the processor, but also has some drawbacks.
First, it leads to very long test procedures, since the graph describing the processor may be
very big, especially regarding the number of edges. A long test procedure then translates to
a long application time. Additionally, it does not take into account several structures that
have become of widespread use after the methodology was devised, such as the pipeline or
the speculative execution blocks (branch predictor, secondary pipelines, ...). The pipeline
registers may be included in the model, further increasing the test length and size, but
other blocks cannot, and require different methodologies.

A newer approach [4] employs compact routines, each targeting a specific processor
module, obtaining a high fault coverage for that block. Blocks targeted in this way are
the functional units of the datapath: the multiplier, adder, shifter and arithmetic-logic
unit (ALU) are specifically tested. The purpose of each routine is to generate a set of
test vectors for the target module, apply them and collect the results. This approach is
generally effective on the datapath modules, but it has its own shortcomings. The control
part of the processor is not explicitly taken into account, and is tested only indirectly,
obtaining less satisfying and less predictable coverages. Control logic for a processor
includes not only the instruction sequencing blocks, but also the pipeline control logic and
the branch unit, where present.

A recent extention of the above approach targets the floating-point unit of a processor
[6]. The advantages and attendant drawbacks of the methodology are similar. The target
modules are extensively tested, but the control part is not explicitly exercised.

Another methodology, named DEFUSE, [7] has been proposed for generating test
programs for microprocessors, aimed at the arithmetic modules. Again, the control parts
are not directly tested, and their coverage is not optimal.

1 — Introduction

A different, and somewhat interesting, methodology resorts to the so-called FRITS
kernels [8]. These are programs that repeatedly generate and execute pseudorandom code
fragments. To allow the application of the methodology at the end of the manufacturing,
when the processor is not yet linked to a system, all the code is loaded into the processor’s
cache, and executed within it. To be able to use low-cost ATE, with low pin count, special
care has to be taken not to generate any external memory access. The methodology is used
by the industry, and it is reported to provide valuable additional coverage with respect to
other test techniques. However, it requires a deep knowledge of the processor under test to
optimally tune its parameters. It also puts some design constraints on the manufacturer,
since the processor must be able to load the test into the cache and then restart without
invalidating it. It is therefore a valuable methodology for the producer, but may not be
applicable by the user of the device.

Apparently, no single test generation or application methodology is able to satisfy the
needs of all users. Even in the field of test program generation several approaches achieve
different balances between complexity, effectiveness and widespread applicability.

Often the customer is usually only interested in testing the device for its own special
application. It also usually has lower manufacturing volumes than a circuit manufacturer,
so longer test times are affordable. Some defects only show up in environmental conditions
that are very different from those at the end of the production line, but may exist during
the field life, and are known by the customer of the device. Finally, the ratio of working
devices (the production yield as perceived by the customer) is high, so it makes sense to
skip a preliminary test phase and perform incoming inspection activities after the system
is assembled, by testing it thoroughly once.

The longer test times available and the application-specific nature of the system pro-
duced make it possible to undertake a stress test activity on it. The term stress test here
does not pertain only to environmental conditions, but also to the level of load induced
on the system and to the coverage of all possible working conditions.

1.2 Diagnosis Basics

Digital circuit technology suffers historically from low production yields. This is especially
true for high-end devices, which push the envelope of design procedures and technological
processes. The market, in fact, shows an almost insatiable request for faster computation
systems, and the manufacturers answer this need with aggressive design rules, intended to
get the most from the available technology. These design practices, however, also highlight
the existing criticalities in the manufacturing process, resulting in a large percentage of
failing devices. In the high-end market, however, the customer is willing to pay premium
prices for the most performing devices and systems, and procedures such as speed-binning
can recover at least a part of the production for the lower-end market.

The situation is different, but not necessarily better, for low-cost circuits. In this
case the strongest pressure is for cost reduction in the manufacturing phase. This is
achieved packing as many devices as possible on the silicon wafer, and at the same time
keeping yield as high as possible. These two last goals may be conflicting, as smaller

1 — Introduction

circuits usually mean smaller transistors and wires, and therefore a greater susceptibility
to localized defects.

Once a digital device is found to be faulty it is usually discarded. But the activity may
not end there. At least part of the failing circuits is analyzed to discover why a circuit
has failed. The goal of this search is to understand what parts of the circuit or of the
manufacturing process are most critical, and possibly correct them.

Manufacturers usually design and produce several successive releases of a given prod-
uct. Different releases may feature new or improved functions, speed enhancements or
logic design fixes. They also give the chance to modify critical parts of the design, in order
to lower the impact of physical defects on the device. The two interconnected activities
of fault localization and design update allow to increase production yield and to improve
the reliability of the manufactured systems.

Before undertaking a lengthy analysis of the circuit to find the defect that caused its
failure, it can be useful to limit as much as possible the area to explore. This can be done
by finding a minimal set of logical faults that can have caused the failure. Although it is
true that a logical fault does not necessarily describe a real physical failure mechanism,
the location of the faults belonging to that minimal set is directly linked to the location
of the actual fault.

The diagnosis is the activity through which, given a faulty device, a set of possible
faults causing the failure is found. Diagnosis is performed through the application of
diagnosis sets to the circuit. A diagnosis set is conceptually similar to a test set, but its
purpose is to distinguish the faults, not only to find them. Test patterns in the diagnosis
set must be accompanied not only by an expected response, but also with a criterion to
classify the different faulty responses.

A test detects a fault if the outputs of the faulty machine are different from those of the
good machine. Given two different faulty machines, if a test set obtains different results
from the two machines than the test distinguishes the two faults. If, given two faults, no
test set exists that can distinguish them, then the two faults are structurally equivalent.
It is important to note that this property only depends on the circuit topology and on the
fault model, it is not a property of the test sets. For a circuit it is generally possible to
split the complete fault list in sets of structurally equivalent faults purely on the basis of
a topological analysis.

Considering a different point of view, a diagnosis set splits the complete fault list into
several sets for which it obtains the same results. The faults of each set are equivalent with
respect to the diagnosis set. Every such set is an equivalence class (EC) for that diagnosis
set [14]. For a given diagnosis set, an equivalent fault class is a subset of the fault universe
including undistinguishable faults. Structurally equivalent faults will always belong to
the same EC, no matter the considered diagnosis set. Every individual EC is completely
disjoint from the others, and their union is the fault universe.

From the above definitions follows that every equivalence class must be composed
by one or more sets of structurally equivalent faults. Given a diagnosis set, the set of
equivalence classes relative to it define a partition of the complete fault set. No set
of structurally equivalent faults can belong to more than one equivalence class, no two
structurally equivalent faults can belong to two different equivalence classes.

1 — Introduction

The goal of diagnosis, therefore, is to split the complete fault set into the greatest
possible number of equivalence classes. Another way to express this is that diagnosis aims
at finding a partition into equivalence classes with the minimum possible average size.

Since it is already known that structurally equivalent faults cannot be distinguished
by diagnosis the reduced fault list is customarily used. In the reduced list every set of
structurally equivalent faults is represented by one fault. Even more than in the fault
coverage problem, the use of the reduced list avoids useless computation. Of course, using
the reduced list also decreases the average size of the equivalence classes. In the ideal case
the reduced list is split in classes composed by only one fault each.

A fault is said to be uniquely diagnosed if it is distinguished from every other fault. In
general this is possible only when using the reduced fault list as the fault universe.

Diagnosis is performed by applying a set of tests to the circuit. Every test splits the
fault universe in two or more subsets. Depending on the results of the tests applied until
a given moment, the set of possible faults in a circuit is reduced to a smaller one. The
following tests must be able to split this subset, otherwise it is useless to apply them. To
systematically indicate the tests to apply at every point in the diagnostic process, and
which subsets can be formed depending on the test results, a diagnostic tree is built [15].
Every level of the tree corresponds to one test, and the branches indicate the possible
outcomes for that test. Every node of the tree is associated with the set of possible faults
in the circuits, that is with the equivalence class isolated so far.

Together with a diagnostic tree a fault dictionary can be obtained. It describes all
the equivalence classes, and for every class it reports the outcome of each test. This
structure allows to apply all the tests in sequence and then statically look up the resulting
equivalence class, while the tree is more suited for a dynamic diagnosis process in which
tests can be skipped if not useful.

A diagnostic tree can be binary if it only uses pass/fail information or n-ary if more
complex information, such as multiple outputs, is used. Given a circuit and a set of tests,
an n-ary tree may split the fault universe in more equivalence classes or be more compact.
However, sometimes a pass/fail information can be obtained using cheaper equipment
than that necessary to gather the full output from a circuit. In fact, a small logic module
may be added to a circuit, whose purpose is to collect the outputs from the circuit and
compute a signature from them. Comparing the actual signature with the expected one
gives the pass/fail result.

The diagnosis activity is strictly linked to test. Exactly like test, it can be performed
using hardware-based techniques, including the use of scan chains, or through software-
based methodologies. Traditionally, tests have been applied using external ATE. However,
technological progress is pushing up the complexity and operating frequencies of low end
microprocessor cores. It has become apparent that parametric testing alone is not sufficient
to achieve the high quality goals required. Moreover, even though ATE effectiveness on
applying parametric test is unquestionable, the costs for an ATE able to run at-speed
functional tests are becoming prohibitive for manufacturers of moderate quantities of
units. As a consequence, the test community is heading towards alternative solutions.

The main alternative available is software-based diagnosis (SBD). In SBD the diagnosis
set consists in a set of assembly programs and does not rely on any special test point to force

1 — Introduction

values or observe behaviors during application. Several researchers have proposed software
methodologies for diagnosis, such as in [12]. SBD has the same advantages as SBST. It
can be performed using low-cost test equipment, since the only purpose of the ATE is to
load the diagnosis programs and collect the results. It is naturally performed at-speed,
as the system runs software in its normal working mode. It avoids power consumption
beyond the specifications of the circuit, for the same reason. It can be used when hardware
structures inserted for test are not available or not working.

SBD is generally less powerful than hardware-based techniques, since the control and
observation points are many more in the latter case. Lastly, it needs detailed structural
information. Indeed, while test can be performed without any structural information,
relying only on the functional specification of the system (although coverage measurements
cannot be obtained in this case), diagnosis can be performed only with it, since its point
is exactly to discriminate the faults from each other. No diagnosis can exist without a
structural fault model.

Even more than test set construction, diagnostic set construction is a time-consuming
activity. Most of the past effort in diagnosis was directed towards combinational cir-
cuits, whereas sequential circuits received less attention. This is due to the widespread
usage of scan chain methodologies for test, that effectively turn a sequential circuit in a
combinational one.

Hard to test faults require a high computational effort for their coverage, but once
detected they are usually easy to diagnose. Indeed, they are covered by a few, very
specific tests, which are different from each other. Faults that are easy to test, on the
other hand, may be difficult to discriminate from each other and require a special effort
for diagnosis. This difficulty can lead to long diagnostic tests, with correspondingly long
application times and high costs.

Several metrics exist to express the quality of a diagnosis set. The effectiveness of a
diagnosis set is usually assessed using measurements related to diagnostically equivalent
fault classes. A diagnosis set is most effective if it is able to split the fault universe in the
biggest possible number of ECs as small as possible.

The ability of a diagnosis set can be measured by means of its diagnostic power, defined
as the fraction of all faults completely distinguished from all other faults, that is, belonging
to fault classes of size 1 or comprising only structurally equivalent classes. The diagnostic
power for limit k dp(k) is defined as the fraction of faults that are classified into equivalence
classes of cardinality less than or equal to k by the used diagnosis set. The diagnostic
power then corresponds to dp(1). Another possible metric is the diagnostic expectation,
that is a simple average of EC sizes [16]. Finally, the diagnostic resolution or dr can be
used, defined as the fraction of all covered fault pairs that are distinguished.

Algorithms for fault diagnosis can be broadly divided into two classes: the first exploits
the effect-cause dependency, while the second one traces the cause-effect principle.

Algorithms in the former class analyze the actual responses and try to determine which
fault might have caused the observed failure effect. These techniques are also known as
dynamic fault diagnosis algorithms and they do not precompute a fault response database,
but trace backward from each primary output to determine the error propagation paths for
possible fault candidates. Effect-cause diagnosis methods can be further classified as either

10

1 — Introduction

symbolic or simulation based. Symbolic methods operate by building an error equation,
while simulation based algorithms perform simulations to verify that a candidate location
is capable to explain the faulty behavior.

On the contrary, algorithms in the latter class preventively store in a compact format
all the information required to locate the set of faults that may be the cause for a circuit
faulty behaviour. Memorization structures suitably aiming at this purpose are called
fault dictionaries and their creation first consists in selecting, within the circuit faulty
responses gathered by the used diagnosis set, a minimal subset of information allowing
fault diagnosis.

Several decisional processes have been proposed in the recent past, leading to different
dictionary organizations. Many approaches have been proposed to compress the dictionary
size resorting to encoding techniques exploiting the regularity of the different organizations.

The most used dictionary organizations store diagnostic data in suitable matrices,
tables, lists and trees. The quality of a dictionary organization may be given by the
diagnostic resolution they afford. A full resolution fault dictionary is organized in such
a way that no diagnostic information is lost during its generation with respect to the
diagnostic abilities of the diagnosis set.

Several techniques permit generating full resolution dictionaries. The tree-based solu-
tion allows preserving the fault universe diagnostic classification provided by the diagnosis
set.

In chapter 3 the activity performed is described. That activity belongs to the field of
software-based diagnosis, and uses evolutionary tools for generation of additional tests.

1.3 System hardening

Microprocessor-based systems are used in an ever increasing number of applications, in-
cluding mission-critical or safety-critical ones. Dependability for such applications is es-
sential, and should be guaranteed during the development of the system.

For this reasons, the adoption of techniques to guarantee such dependability is a pri-
mary concern in the CAD field. Hardening is one of the techniques that improves the
reliability and dependability of a system. Hardening is the activity through which a sys-
tem is made less susceptible to environmental conditions, reducing its probability to fail
during operation.

Environmental conditions that may concern developers are temperature, moisture,
mechanical vibrations, presence of chemically aggressive compounds, electromagnetic noise
and radiations. Of these, temperature and radiation take special places, for different
reasons. All the other conditions, in fact, can be countered by enclosing the system in
a robust, waterproof, suspended metal case. Depending on the environment, anodized
aluminium, stainless steel or special resin covering may be needed for chemical protection.
These are all mechanical or electro-mechanical hardening techniques, and only marginally
concern the logic design of the system. Temperature is a special condition because the
system itself will produce heat during operation, and dissipation or even refrigeration
systems may be needed. The design of digital devices in this case is more important, and

11

1 — Introduction

techniques to counter thermal effects are the subject of low-power design. It is, however,
out of the scope of this discussion, and is not generally considered a hardening technique,
although it does have effects on the long term reliability of digital devices.

Radiation is peculiar for a different reason. In some applications it may be pervasive,
meaning that no protection system is completely able to stop it. Indeed, ionizing radiation
is a common condition in aerospace applications, where the atmospheric shield is reduced
or absent. However, in these applications space and weight are luxury items, as the amount
of fuel (and therefore money) needed to send an object to orbit is many times its weight.
Heavy, bulky radiation-resistant cases are thus not an option for satellite systems, and
it must be assumed that radiation will hit the system. Radiation may also be caused
by the decay of particular chemical elements, such as thorium. This case is significant
because small quantities of thorium and other radioactive elements may be contained in
the ceramic packages of electronic circuits, that provide a good protection against other
disturbances.

The effect of radiation can be modeled through the use of transient faults, such as
single event upset (SEU) and single event transient (SET).

Hardening techniques can be hardware-based or software-based. Hardware techniques
are exemplified by the classic triple modular redundancy (TMR) approach. The basic
concept is that of executing the same operation more than once, and then checking to see
whether it was correctly executed. In TMR the operation is performed by three copies of
the device, and a voter block outputs the result that has been produced by the majority,
in this case by two or three devices. The voter block must be built with special care, as
it cannot be redundant. It should at least signal error conditions, even if the correct data
could be obtained.

Other techniques use two copies of the hardware, just checking for a mismatch. In
this case, the operation is repeated. Still other techniques may use even more than three
copies of the hardware, to cater for the possible onset of permanent faults in them.

Hardware techniques are generally effective, and only introduce a small performance
penalty. The common drawback of hardware techniques is cost. Even in the simplest case,
the hardware cost is more than doubled with respect to the base system, as special logic
for checking and recovery has to be implemented. Power consumption is also affected by
the hardware redundancy, as more devices have to be supplied with current. For some
applications, such as solar powered systems, this may be a greater concern than the total
energy spent for system operation, as time may not be critical.

Software-based methodologies are centered on the idea of modifying the software ex-
ecuted by the system to achieve fault detection or even fault tolerance, whereas the un-
derlying hardware is left unmodified. software may be modified at the high level or at the
assembly level. Two main approaches are used: instruction replication and control flow
checking [29] [30] [31].

For instruction replication all the program variables are duplicated, as well as the
data processing instructions. The operations are performed twice on the two copies of the
variables, and then the results are checked for consistency. If there is a mismatch then an
error is detected. In this case execution may be halted, or the single operation may be
repeated.

12

1 — Introduction

The idea of control-flow checking is that of inserting suitable instructions to track the
program’s execution flow. In particular it is checked that the flow is as expected every
time a basic block is left and another is entered.

Software-based methodologies are quite effective in increasing the dependability of
the processor-based system, but they usually introduce large time overheads, that may
reach one order of magnitude. The reasons for this large penalty are twofold. First, both
instruction replication and control flow checking introduce many additional operations
inside a program, that represent a large penalty by themselves. Second, if this operation
is performed at the high level, the optimization options of the compiler must be disabled
to avoid removal of the redundant instructions.

A third class of techniques for hardening processor-based systems is that of hybrid
methodologies. These have been originally introduced as an alternative to hardware only
watchdogs, in order to reduce the large time penalties of software-based methodologies.
Hybrid techniques exploit the concepts of instruction duplication and control flow checking,
as used in software methodologies, to introduce redundancy in the computation and to
track the execution flow. To this end they add a suitable hardware device, named monitor,
to the system. The purpose of the monitor is to check the consistency of the duplicated
computations and the correctness of the control flow execution.

This approach reduces the speed penalty by delegating the checks to the monitor.
This happens in two ways. First, the consistency checks are no more executed in the
processor, but the monitor takes care of them, working in parallel with the execution of
the hardened code. Second, only instructions that communicate the change of basic block
to the monitor are inserted in the code for control flow checking, while the monitor is in
charge of checking that the switch occurs correctly.

Software methodologies and hybrid techniques share some common limitations and
downsides, that may preclude their use in some applications. Instruction duplication and
control flow checking increase both the amount of data used by the program and the
program size significantly. This directly translates to a large memory occupation, up to 7
times that of the original system. These large memory requirements may not be acceptable
in some applications, for cost reasons or simply because the processor is not able to address
all the needed memory. If the hardened system is derived from an already existing one,
this may be a serious limit.

Both instruction duplication and control flow checking require access to the applica-
tion’s source code. Modification may be performed manually or using dedicated automatic
translators, but source code availability is nevertheless mandatory. Many applications, or
off-the-shelf components, cannot be obtained in source code, as their producer protects the
copyright on the product. One notable example is the code for operating system modules
or libraries. This limitation may be as serious as the previous one.

1.4 Evoutionary Computation Concepts

A research activity in the field of evolutionary computation (EC) has been undertaken
as a support for the test and diagnosis activities. Its primary goal was to automate

13

1 — Introduction

the generation of test programs for microprocessors, providing a general methodology to
complete existing test sets.

Although generally effective, manual methodologies for the generation of test sets suffer
from several drawbacks. The first, and most obvious, is that it takes a highly skilled test
engineer to devise a test set with high fault coverage. Although capable of covering critical,
perhaps difficult, corner cases, humans are not always able to cater for all possible usages
of the device. Furthermore, the very process of understanding the device may lead to some
bias in the test generation activity.

Evolutionary methodologies do not suffer from these limitations. They are stochas-
tic optimization processes, driven by a metric that expresses the quality of the attained
solutions. An evolutionary algorithm (EA) is able to cover usage cases that were not
foreseen by the test engineer. It does not necessarily possess any information about the
inner working of the device to test, so it does not exhibit any bias that may be due to
partial usage of that information. On the downside, an EA is seldom able to cover very
peculiar corner cases.

Evolutionary methodologies may be used in cases where other automated methodolo-
gies could not be applied, or where it would be difficult to obtain results in the desired
form. For instance, an EA can be used even if the detailed gate-level description of a
microprocessor is not available, or if it would be too computationally expensive to use
it. Functional metrics can then be used to generate a test set suitable for application by
the user of the device, in activities such as incoming inspection. Even in case an ATPG
can actually be used, it would still be very difficult to put the generated test vectors in
the form of a test program. This would make reuse of the test set on successive imple-
mentations of the device impossible, while conversely software-based self test is relatively
technology-independent.

Evolutionary computation is an optimization meta-heuristic that mimics the Dar-
winian paradigm of natural evolution. The Darwinian theory of evolution maintains that
living beings can develop complex structures and successfully adapt to their environment
through the two key activities of reproduction with modification and natural selection.
EC applies these concepts in a simplified manner, with the artificial evolution of possible
solutions to a problem.

EC borrows most of its terminology from biology, as it is heavily inspired by it. How-
ever, most of the times biological terms are not used with their exact meaning, albeit
transferred to an artificial field, but with subtle differences (sometimes not so subtle).

Given a problem, such as the generation of test programs for microprocessors, the
possible solutions to that problem are mapped to individuals. In the simplest scheme,
at every step of the process a finite number of individuals are kept, grouped in a single
population. Each individual has a defined fitness, that numerically describes its ability
to solve the target problem. It can be said that the problem to be solved represents the
environment that the individuals should adapt to.

Individuals in the population reproduce, generating other individuals. Reproduction,
however, is not a simple copy of one individual into another, as this would not lead to
any evolution. Individuals are evolved, and therefore transformed in different individuals,
through the random application of evolutionary operators. Individuals may reproduce

14

1 — Introduction

through mutation, a random change in one or a few points, or recombination, the random
merging of the characteristics of two (or, very seldom, more) individuals.

A population is generally defined as the set of individuals that can exchange genetic
material, and that compete with each other. This term is used also in evolutionary ap-
proaches that do not use recombination, and therefore do not perform recombination. The
population is not unlimited in size, so the individuals compete to survive inside it. Com-
petition just means that the fitness of the individuals is compared, and the worst ones
are discarded from the population. This mimics the natural phenomenon of competition
between living beings for limited resources.

Competition can occur also for reproduction: usually the best individuals are selected
preferentially to produce offspring, trying to exploit their good features for the next indi-
viduals.

Artificial evolution proceeds in discrete steps named generations. Every generation
starts with a fully characterized population, that is a population for which the fitness of
all individuals are known, as is any additional statistical information that may be needed.
Then a reproduction phase is performed. New individuals are generated, usually starting
preferentially from the best ones of the previous population, and evaluated, assigning them
a fitness. Depending on the exact scheme, the new population may replace the old one
or be merged with it. A survival phase then follows: based on the computed fitness, the
worst individuals are removed from the population, returning it to the previous size.

Evolutionary computation is termed a meta-heuristic, meaning that it is not a single
algorithm, applicable to a certain class of problems, but rather a scheme for the application
of stochastic optimization techniques and transformations.

EC can be applied for all those problems where the structure of an optimum solution
is not known exactly, or where the optimum itself is not known. It is generally suitable
for all those situations where an exact solution to a problem cannot (or should not) be
searched for. These include problems with multimodal fitness functions or large search
spaces.

One of the key concepts of EC is that it is not finalistic, exactly as the Darwinian
model of evolution. This means that it is applicable, in principle, to any class of problems,
because it does not embody any bias that a targeted heuristic may contain. It is a
stochastic optimization technique, so it does not guarantee that the optimum solution will
ever be reached. It may, however, be used multiple times to increase the confidence that
the obtained results are of good quality.

In the field of EC a distinction is made between the representation of an individual
inside an evolutionary tool and its form as a solution of a specific problem. The two forms
serve different purposes, as the internal representation should allow easy manipulation of
the individual, whereas the second form often has to satisfy specific syntactic constraints,
as is the case for an assembly program.

Copying biological technical terms, the internal representation of an individual is
termed its genotype, and its usual form as a solution is its phenotype. Usually the genotype
of an individual is the subject of explicit modification by the evolutionary tool, and the
phenotype is evaluated to compute the fitness. In classical evolutionary algorithms, the
phenotype is generated from the genotype, and never the other way round.

15

1 — Introduction

The genotype of an individual is divided in single genes, here defined as the indivisible
units of information that pass from an individual to its offspring. A gene may be a single
bit, a character, a numeric value, or even a very complex symbol, but are usually treated
as monolithic units.

Each gene occupies a specific place in the genotypic representation of the individual.
Every such place is a locus (pl. loci). An important difference between evolutionary
approaches is whether the genotypes of individuals are composed of a fixed number of
loci, or if they can increase. Clearly, theoretical analysis of the second kind of algorithm
is much more difficult. On the other hand, some problems do not lend themselves easily
to a fixed-genotype representation, as it is normal for different solutions to a problem to
have different sizes. Again, assembly program generation is a perfect example: different
programs usually differ in the number of instructions, and it is not simple to express all
that variety in a rigid frame.

Each gene inside an individual assumes one of a range of possible values. Every possible
value for a gene is an allele for that gene. One possible way to see the evolutionary process,
described in its original biological meaning by Dawkins [35], is as a competition between
alleles. In this view, all the alleles of a gene compete to occupy the locus. The measure of
their success is their diffusion in the population, and the measure of their effectiveness is
the differential fitness they give to the individuals that possess them. This depends on all
the other genes, so if many individuals in a population undergo a similar modification, a
successful allele may be supplanted by another one, previously not so valuable.

Evolutionary algorithms usually employ one of two different strategies to evolve good
solutions to a problem. They are customarily called plus strategy, or (u+ \), and comma
strategy, or (u,A). In this notation p refers to the size of the population at the beginning
of a generation, and X indicates the size of the offspring for every generation.

In the plus strategy the new generated individuals are evaluated, then the offspring is
merged with the old population, that temporarily grows from size u to size pu + A. After
this merger, the population is sorted by fitness, and only the first 1 individuals are retained
for the next generation.

In the comma strategy, in contrast, the new individuals replace the old population
entirely. The old individuals disappear, and the new population follows the same process
as seen above: individuals are sorted, and the first u are kept. To avoid losing the best
solution found during the evolutionary process the best individual is saved in a separate
storage if it enhances the best fitness obtained so far.

One trivial consequence of this scheme is that in comma strategy usually pu < A, while
in plus strategy there may be any ratio between them. More interesting properties can be
noticed, though, by observing that every individual can be seen as a point inside a search
space. The search space for a given problem is the set of all possible solutions to that
problem. Although it is not necessarily a space in the mathematical sense, it provides a
metric of distance between two individuals.

With (u,\) strategy individuals are always modified, and the process avoids the pres-
ence of fixed points in the search space. In a wide sense, individuals execute an unin-
terrupted random walk in the search space. In contrast, with (u + A) strategy the best
individuals found so far are always retained, and constitute the starting point for every

16

1 — Introduction

subsequent operation. The individuals in a plus strategy are clustered closer together than
in a comma strategy.

In general the comma strategy is preferred when the fitness function is deceptive,
meaning that it is easy to find a local optimum for it, but it may be very far from the
global optimum. In contrast, the plus strategy is preferred when the structure of the
solution is complex.

A third scheme is found in the literature, known as a steady state strategy. In this
scheme new individuals are added one at a time in the population, immediately discarding
the worst one. It is actually a special case of the plus strategy, in which A is 1, and is also
often referred to as a (u + 1) strategy.

It should be noted, however, that often different evolutionary schemes have been de-
veloped by different research communities, and there is not a universal agreement on the
terminology. So, for example, evolutionary strategies is a particular class of EA; the terms
plus strategy and comma strategy are borrowed from genetic programming, another rather
different class of EA, and the term steady state is sometimes applied to generically de-
scribe a plus strategy, opposed to the term generational, that refers to comma strategy.
These examples should be enough to warn the reader: it is easy to find confusing and
contradictory terminology in the literature.

An already existing, home-developed evolutionary tool, named puGP, has been used
for test program generation and diagnosis program generation. It has subsequently been
improved in various ways, and finally reimplemented from scratch. The improvement and
reimplemetation steps benefited from the use of the tool in fields different from its original
application, such as games.

The uGP is an evolutionary approach composed of three separated, but interconnected,
blocks. They are an evolutionary core, a fitness evaluator and a constraints library, origi-
nally called instruction library.

The evolutionary core cultivates a population of indivduals, using recombination, mu-
tation and search operators. It follows a variation of the (u + \) strategy, and features
self-adaptation of several parameters, such as the operator activation probabilities, the
operator strength and the tournament size. It also performs clone detection and fitness
scaling, with optional extermination. It uses entropy and delta entropy to measure and
maintain diversity in the population. Entropy is also used to implement an entropy fitness
hole, again to maintain diversity. It can use multiple fitness values, either in a prioritized
manner or as a true multiobjective optimizator. Finally, it supports parallel fitness eval-
uation by providing multiple individuals for evaluation and collecting the fitness values
accordingly.

The fitness evaluator accepts one or more individuals as input, and computes a fitness
for each of them. It often takes the form of a script that sets up and launches a sim-
ulation, collecting the results afterwards, transforming them in a form the evolutionary
core can use. The use of existing, possibly commercial, simulators is the main reason why
the evaluator is external. The external implementation of the evaluator, coupled with a
simple interface, provides the maximum flexibility to the approach. The fitness function
effectively defines the problem, and also the semantics of the individuals.

The constraints library has the purpose of limiting the possibly infinite variety of

17

1 — Introduction

productions from the evolutionary core, and at the same time of providing a mapping
between internal and external representation, that is between genotype and phenotype.
It contains a description of the allowed structure for the individual, and a description of
the possible contents of that structure. This information is used both when an individual
is generated, to check whether it is a valid solution to the problem, and in the mapping
phase when the external representation of the individual is generated.

Full details on the tool, its different versions and various applications out of the CAD
field are contained in chapter 5.

18

Chapter 2

Test Activity

Test is a basic activity for a device or system manufacturer. The basic theory of test has
been laid out in the past, and currently the main contributions are to be expected from
the development of new fault models. The industrial practice is an established part of the
manufacturing process.

Still, the problem of testing digital circuits is far from solved. Technology advances
allowed increasing the complexity of the circuits to the point where exact solutions could
not be searched for. Different subjects need to test a given circuit, but they own different
levels of information, so they need different methodologies to generate and evaluate a test.
New uses of existing circuits may hamper the possibility of testing them thoroughly.

One of the biggest challenges of test is cost. This can be seen as the cost for applying
the test, as well as the cost for generating it. As seen in section 1.1, software-based
methodologies can ease the application costs, so an effort is needed in improving generation
costs and effectiveness.

Most work in the test field has been devoted to the definition of approximate method-
ologies for test set generation, and to the improvement of the tools performance.

2.1 Test generation for pipelined processors

Generation of test programs has been performed for a medium-size microprocessor core.
The goal of the activity is to enhance the performance of an automatic tool for test
program generation. The purpose of the tool is to generate a set of test programs suitable
for end-of-line test. These are generated as a completion of a hand-written set of programs.

To assess the effectiveness of each test program the processor core has been instru-
mented and implemented in a FPGA device. For performance reasons a simplified fault
model is used, and coverages are reported relative to it.

The methodology has been developed on the LEON 2 microprocessor. This is a syn-
thesizable core conforming to the IEEE-1754 specification, which formalizes the SPARCvS8
architecture [19], equipped with hardware multiplier and divider circuits.

The core features a b stage pipeline, comprising fetch, decode, execute, memory and
writeback stages. It is also equipped with separated instruction and data caches [18].

19

2 — Test Activity

The description is written in VHDL and amounts to about 18,000 lines of code. The cir-
cuit has been synthesized with a commercial tool and targeted at a simple home-developed
library, containing only simple logic gates as AND, OR, flip flops and latches. The result-
ing netlist includes about 65,000 gates, excluding the RAM modules needed to implement
the caches.

The pipeline is described in about 3,000 lines of RT-level VHDL and its netlist is
composed of approximately 37,000 gates, including 742 flip-flops.

The netlist has then been mapped to a Xilinx Virtex 2000E FPGA device, to speed
up the activities of fault simulation.

Fault simulation is performed injecting one fault at a time in the model inside the
FPGA and running the test programs. Although the fault simulation is serial, its speed is
much higher than what could be attained in software, thanks to the speed of the FPGA.

The FPGA is hosted inside a PC, on a PCI board. This allows contolling the execu-
tion of the test programs from the PC. A management program effectively controls the
processor clock, allowing monitoring of the processor activity on a clock by clock basis.

To perform the fault injection the circuit has been instrumented after synthesis: every
flip flop is replaced by a scan cell that allows setting and reading its value at every clock
cycle. In this way it is possible to inject permanent stuck-at faults and transient SEU faults
in all the memory elements of the processor. In this case the memory elements constitute
the architectural registers of the machine and the hidden registers between pipeline stages.

Because of the space limitations on the FPGA device it was not possible to instrument
all the logic gates in the same way as the flip flops. The fault model targeted, therefore,
is the single stuck-at on the pipeline registers only.

The programs are evaluated according to their coverage of the above fault model.
The results of the test are stored in the architectural registers of the processor. The
management software allows retrieving them at the end of the execution.

First, a set of test programs is written by a test engineer according to the methodology
presented in [5]. Each of these programs targets a specific processor module. It executes
a loop in which patterns are generated for the module and results are collected. Since the
loops are long, the results are compacted in a signature, that is stored in the registers.

These programs are able to effectively test the processor’s functional modules, and are
especially targeted at the data path logic. In particular, the adder, multiplier, divider,
shifter, and logic unit are exercised, obtaining a high fault coverage.

Other parts of the processor, however, are not effectively tested. In particular, the
logic belonging to the pipeline is not targeted and the fault coverage on its registers is
unsatisfactory, at 58.89%.

To add content to the test set and raise the fault coverage figures an automatic test
program generation methodology has been employed. The uGPv2 tool has been used to
evolve the additional test programs.

Actually, several different releases of the tool have been used, to be able to assess the
effect of new features on the overall performance.

The reference version employs a plus (u + A) strategy, resulting in a totally elitist
scheme. It uses two types of recombination and four random mutations as evolutionary
operators. The selection scheme is a tournament selection with two contestants at a

20

2 — Test Activity

time. For survival the first u individuals in the ranked population are kept, discarding the
following ones.

To this basic scheme three independent features have been added. The first one is a
new evolutionary operator, named local mutation. It randomly selects a parameter inside
a macro of an individual and changes it by a small amount with respect to the entire
range. This operator has been introduced as a complement to the random mutation, that
changes a randomly selected parameter to any value in the allowed range. The purpose of
the local mutation is .

The purpose of the local mutation operator is to allow a random walk of the selected
individual inside the search space, rather than a large movement, allowing an efficient
searching of the nearby solution space around a high-fitness individual. This local search
enables faster exploitation of the local maximums.

The second is the self-adaptation of the tournament size (7) for tournament selection.
In the basic version the tournament size is fixed to two participants, resulting in a selec-
tion probability equal to that of a linearized-fitness roulette wheel. Modification of the
tournament size allows changing this probability distribution. An increased 7 polarizes
the distribution towards the best individuals, increasing the selective pressure. Decreasing
T, conversely, leads to a flatter distribution, so lower-ranking individuals see their chances
for reproduction increase. The allowed range for 7 is [1,00]

Self-adaptation is based on the success rate of the evolutionary process in the last
generation. Success in this case is measured as the generation of at least one offspring
whose fitness is better than that of any other individual so far. If the best fitness has been
improved, then

Tnew = QT + (1 - O5)7—771(190

where T,e is the tournament size for the next generation, and Ty,q. is the maximum
possible value for the tournament size. If, on the other hand, no new individual was
better than its parents, then 7 is decreased

Tnew = T + (1 — &) Tiin

In these formulas, « is an inertia factor, set by the user in the range [0,1]. The inertia is
fixed and never self-adapted.

The purpose of self-adaptation of the tournament size is to allow the tool to automat-
ically choose between a hard and a soft selection model, based on the proceedings of the
evolution. Selective pressure is increased when it seems easy to find a local maximum,
while it is eased, using a softer selection scheme, when that is not the case.

Tournament size is increased when the tool is able to obtain significant fitness improve-
ments and it is decreased when gains are small or nonexistent. In order to fine-tune the
selective pressure, a continuous model has been applied to tournament size, so it can take
on any real value between a minimum and a maximum. Expressing tournament size as
T = n+ p, where n is an integer value and p is a fractional number less than 1, then the
actual tournament size is n with probability 1 — p, and n 4+ 1 with probability p.

The third new feature is an aging mechanism for the individuals. In the basic version,
the individuals are removed from the population only in one case: when their fitness is

21

2 — Test Activity

low enough to put them beyond the first p individuals, or, better still, when at least
w individuals attain a better fitness. Individuals can be pushed off the population, but
otherwise they are immortal.

The purpose of aging is to tune the behavior of the tool from a pure plus strategy to
a comma strategy, that is to control the effects of elitism in the process.

A prototype of the proposed approach was built tackling such faults. The prototypical
tool is composed of about 2,000 lines of C code for implementing the fault manager and
the automatic test program generator. The hardware accelerator is driven by the fault
simulator tool, composed of about 1,000 lines of C code.

Experiments were run on a PC equipped with a Pentium IV processor running at 1
GHz and with 1GiB of memory. Fault simulation and evaluation function computation
were performed on the FPGA board. The whole process took about 26 hours to complete.

Table 2.1 summarizes the results: column “Fault Coverage” reports percentage of
faults detected on the pipeline registers. “Clock Cycle” reports the number of clock cycles
required to fully execute the test set.

The initial test set has been completed with automatically generated programs using
the different releases of the tool. The attained fault coverage is raised from 59% to 100%,
adding only 116 new instructions to the test set. The test application time is expanded
only 1.4 times.

Test Set Fault Coverage | Clock Cycles
Traditional 58.89% 11,263
Completed 100.00% 15,843

Table 2.1. Fault coverage results

To better evaluate the effectiveness of the proposed approach, a set of randomly gen-
erated test programs of comparable lengths were generated. Such a test set attains a fault
coverage slightly above 78%, indicating that the considered faults are not easily testable.

Indeed, experiments showed that a random program containing 20,000 different in-
structions is not able to test all of them.

Five experiments have been performed to evaluate the effect of the proposed improve-
ments to the evolutionary core. The first one has been performed using the previous
version of the evolutionary core, and is called the Reference. Three experiments were
made to isolate the effects of every single improvement to the tool, and are indicated by
AGE, LOC and TAU. The final one has been performed implementing all of the improve-
ments in the uGPv2 core, and is shown under the name Complete. The features employed
in the five experiments are shown in table 2.2.

All of these experiments use the same evolutionary parameters: p is set to 30 individ-
uals, A to 20 genetic operators. Evolution is performed for a maximum of 100 generations.
For every experiment the random number generator has been set to the same initial value.

The results for all these experiments are in table 2.3. The rows refer to the experiments
performed and to the result that could be expected if the effects of the modifications to
the tool were linear.

22

2 — Test Activity

Experiment | Elitism | 7 self-adaptation | Local search
Reference strong no no
AGE relaxed no no
LOC strong no yes
TAU strong yes no
Complete relaxed yes yes

Table 2.2. Experimental setup

Experiment | Fault coverage
Reference 97.8%
AGE 97.8%
LOC 97.7%
TAU 99.2%
Expected 99.1%
Complete 100.0%

Table 2.3. Fault coverage results for different improvements

All experiments start from nearly 97.5% fault coverage. The Reference then progresses
little.

It could be expected that the LOC experiment would not perform significantly better
than the Reference one because local search, although certainly useful to efficiently exploit
the fitness function, brings with it the risk of becoming stuck in a local optimum. This is
particularly true since a purely elitist scheme is implemented for this experiment.

In fact, it even performed worse than the original evolutionary process. This is a sure
sign that the fitness function is a deceptive one. Looking closely at the experimental
results it has been noted that the population is quickly filled by individuals that exhibit
the same fitness value. The evolution process then gets stuck in a local optimum and the
tool is not able to improve the population.

The AGE experiment greatly relaxed the elitist scheme, allowing greater freedom in
the search space exploration. However, contrary to expectations, this did not immediately
lead to improved results. The evolutionary process exactly followed the original one, so
in this particular case the relaxation of elitism does not, by itself, produce any effect.
It is noteworthy that in this experiment elitism has been relaxed, but not completely
eliminated.

It is also reasonable to expect that tournament size self-adaptation, exploited in the
TAU experiment, would give better results than a local search capability when used within
an elitist scheme, since the rationale for this self-adaptation is exactly to avoid getting stuck
in a local optimum. It gave better results than the simple elitism relaxation, since it was
also able to increase the selective pressure when it was needed, enabling fast convergence
of the evolutionary process.

23

2 — Test Activity

The complete experiment outperforms all the other ones. This was expected, since
several useful techniques were combined, composing their effects.

The differences obtained using every single tool update can be composed by summing
the difference in fitness between each of the single feature experiments and the Reference
one, obtaining an expected overall performance enhancement under the hypothesis of linear
addition. The real achievements were better than linear; this confirms the correctness
of the choice of the new features for the evolutionary tool. It can be noted that the
combination of techniques that by themselves do not lead to enhanced results do indeed
produce a sizable performance improvement.

2.2 Incoming inspection

An important test activity is incoming inspection, the activity through which the user of
a device obtains the confidence that the device is working properly after delivery by the
producer.

The user will employ the device in building an application specific system, so it usually
needs to acquire such confidence before manufacturing, although tere may be exceptions.
The reasons why a device may fail before assembly are various. Less than ideal trans-
portation conditions, or system manufacturing environment, may introduce new defects
in the device, or worsen the impact of others that did not previously cause failure. The
device may be used in systems that have to work in peculiar environmental specifications,
such as mechanical disturbances, electromagnetic interference, or thermal stress, that can
cause failure in the assembled system. Lastly, the end-of-line test may not cover all the
modes of operation required by the user. This last condition is uncommon, and generally
only possible for very cheap systems.

The user of the device, in general, is also a manufacturer for other systems containing
that device. These systems must satisfy end-user requirements of quality and reliability.
To achieve these goals, the user must perform incoming inspection and system testing.

One user of digital electronic devices is Magneti Marelli, an automotive subsystem
provider for several car brands. Magneti Marelli was born as a provider of magnets
for electrical engines in 1919. Through time the firm began diversifying its products,
manufacturing parts for submarines, trains, airplanes, and entering the consumer market.
In subsequent years it retargeted its core business to the automotive market, and now
provides engine control systems and body computers to several car makers.

Currently the average western car buyer puts several requirements on the car makers.
A car should be powerful, energy-efficient, safe, comfortable and reliable. It should assist
the driver in emergency maneuvers, signal mulfunctions, warn on potentially hazardous
situations, handle adaptive active and passive safety systems, and provide leisure for pas-
sengers. The growing list of requirements makes the use of electronic systems mandatory
for the automotive industry.

Also in seemingly mature fields, such as the powertrain control systems, market re-
quirements drive the transition to ever more complex and powerful devices. Powertrain
control system handle the operation of the engine, gearbox, differentials, turbochargers,

24

2 — Test Activity

and generally all the mechanical components from the air and fuel intake to the axles
on one side and to the exhaust on the other. In this case the requirements come not
only directly from the users, but also from governments and authorities. In fact, due to
environmental considerations, strict limits are put on the gaseous emissions that automo-
biles may produce per kilometer, both in terms of greenhouse gases and of other toxic
pollutants. National laws may impose compliance to some emission limit to allow selling
of the vehicles, directly pushing the producers towards the production of environmentally
friendlier cars. Furthermore, both national and local regulations may deny circulation to
vehicles not respecting the limits, this time putting the pressure on the user, who will in
turn ask the car manufacturer for a better vehicle.

An engine control system should not only provide energy efficiency and low emissions.
The car driver also expects power, a predictable torque, relatively low vibrations. All this
contributes to comfort and mechanical reliability. A generic powertrain control system
may also have to manage the gearbox, with either automated or semi-automated gear
selection. The system should be efficient and provide fast and smooth shifts, again to bal-
ance performance and comfort. Additional functionalities for the control of turbochargers
and differentials may be integrated in the engine control system or in more subsystems.

All these requirements contribute to the ever increasing usage of complex micropro-
cessor and microcontroller cores inside engine and powertrain control systems. These are
needed to provide the necessary computational power for the execution of all the intended
functions.

Currently failures in electronic devices are becoming a significant source of breakdown
in the automotive domain. Empirical evidence shows that a conventional screening ap-
proach aimed only at demonstrating overall system functionality is not effective in reaching
the quality requirements posed by the users. Testing of the individual devices inside the
system is therefore mandatory.

The activities of incoming inspection demand for environmental conditions more sim-
ilar to those of in field use than end-of-line test. In addition, the production rates for
automotive control systems allow longer test sessions to be carried out than is possible at
the end of a semiconductor manufacturing line. Also, it is possible to stimulate the circuit
with a workload similar to that expected during normal operation.

Automotive applications generally pose stricter requirements on electronic systems
than usual consumer applications. The engine control system, indeed, lies inside the car
engine compartment, and this implies a series of environmental stres conditions. First,
temperature under the hood may easily exceed 100 °C, far above what devices commonly
have to withstand. Electromagnetic noise exists in the vehicle, due to the presence of
high voltage circuits driving the sparks, and large currents that power electrical engines.
Mechanical vibrations are also present, as are potentially aggressive cheical compounds.
For these reasons engine control systems are housed in waterproof metal cases for adequate
protection. The case, however, cannot fully isolate the system from the environment,
because it has to exchange signals with the external world. Indeed, the engine control
system is directly responsible for at least part of the electrical spikes on the connection
wires, as it drives or contains the fuel ignition circuits.

Some defects in digital circuits may only manifest in special environmental conditions,

25

2 — Test Activity

not in normal applications. It is therefore essential to test the device in a condition similar
to that of field operation. This operation is sometimes possible only during system test,
as direct exposure of the device to the destination environment may damage or destroy it.
As a consequence, activities that, strictly speaking, would belong to incoming inspection,
are performed during system test.

A test program generation activity has been undertaken in collaboration with Magneti
Marelli, with the goal of developing a methodology for an incoming inspection activity on
the processor core inside a modern microcontroller. This is to be used in the latest gener-
ation of engine control systems for direct injection diesel engines (MultiJet™), compliant
with Euro 5 regulations.

The user of a device does not normally have access to low-level information about the
microcontroller. It cannot, therefore, use structural methodologies to generate the test.
It can, however, employ a functional test. In this case software-based self test (SBST) is
a privileged choice for test generation and application.

SBST methodologies rely on the computational power of the processor under test to
extract logical information about its functioning. This information is then returned to the
tester to discriminate faultu circuits from good ones. Logical information alone, however,
may not be enough to discover faults.

Modern processors employ several mechanisms to improve performance or enhance re-
liability. The first kind of features include speculative blocks, such as branch predictors or
auxiliary pipeline stages to perform computation that is not guaranteed to be needed later.
These blocks improve performance by performing logical operations that are statistically
useful in situations when, according to strictly sequential operation, the processor should
remain inactive.

The second type of features is exemplified by frequency scaling in response to tem-
perature changes. Since power consumption, and hence heat generation, is more than
linearly dependent on operation frequency, a speed decrease can protect the device from
overheating. Other techniques to limit heat include the selective switch off for logic blocks
that are not currently used. Resuming operaton on these blocks, however, may not be
immediate.

The common characteristics of these features is that they do not modify the logical
result of computation, but they change the speed with which it is computed. A speculative
module by definition may produce a wrong or useless result. This does not affect the
outcome of the elaboration, but it just decreases performance. A fault in one of these
modules, therefore, does not necessarily affect the numeric result of elaboration. A less
than expected performance may be the only visible effect of such faults.

Similarly, thermal protection mechanisms may be used when it would not normally be
appropriate. This may happen due to a fault in the module itself, or to faults elsewhere
in the circuit that cause an excessive current consumption. In this second case the protec-
tion mechanisms work properly, and reduce the elaboration speed, but the performance
decrease is not expected.

In all these cases a program takes significantly longer than expected for its execution.
This erroneous timing points to an underlying defect, and is an essential measurement to
detect it.

26

2 — Test Activity

Detection of a critical timing is not only important for system reliability. Automotive
applications such as engine control must operate correctly in real time. Severe damage to
the vehicle and safety hazards may occur if the control system does not properly drive the
power signals.

For these reasons a methodology has been employed, that performs a stress test on
the microcontroller, through the collection not only of logical results, but also of timing
measurements, to ensure proper functioning of the processor core.

In the case of microprocessors the stress test can take on several different forms, relating
to the variable considered. The application of high temperature and/or humidity leads to
a methodology called burn-in test: its main purpose is to eliminate parts whose reliability
is too low for normal applications. The combined application of different supply voltages
and clock periods is used to derive so-called schmoo plots, that define an area of logically
correct operation for the device. On the other hand, the definition of a given workload is
not trivial for microprocessor test, since its exact amount depends on the details of the
microarchitecture. Control of a single variable does not allow to meaningfully apply a
stress test.

For pipelined microprocessors, it is the sequence of instructions, and not only the single
ones, that determines the behavior of the machine. The number of different instruction
sequences is therefore a meaningful indicator of the usage level of the processor’s pipeline.
One hallmark of a stress test is that the processor is exercised for as long a period of time
as possible.

In this case the stress test is implemented by a set of programs composed of two
main subsets: focused and non-focused programs. Focused programs are those made to
specifically stimulate one module of the architecture. They include programs that test the
functional units of the processor, those that saturate internal resources such as a multiplier,
and those that exhaustively apply all possible opcodes and addressing modes. The purpose
of non-focused programs, instead, is to globally exercise the processor, making it execute
very diverse code.

On the basis of the above points, the proposed methodology is composed of a mix of es-
tablished SBST techniques. The first step tests the register transfers, based on the classic
methodology described in [3]. Subsequently, the arithmetic and logical functional units are
targeted, using an approach similar to [4]. Then the floating point unit is exercised with a
methodology similar to [6]. Another test is performed on the floating point unit using the
patterns from the classic approach for integer units. The pipeline is then targeted using a
program manually developed by a test engineer. This program contains two main sections:
one in which instructions are executed that have no data dependency from the previous
ones, and one in which the dependency exists. This second part is further subdivided in
several sections. In the first the dependent instructions are consecutive, in the others each
couple of dependent instructions is separated by one or more independent instructions.
The purpose of this methodology is to verify that all the forwarding mechanisms nomi-
nally available are actually active, and also that they are not used when there is no data
dependency. After that, a test is performed on the branch unit: the processor state is
purposely set, then a series of basic blocks is executed. These basic blocks are composed
by a series of data processing instructions whose purpose is to compute a signature for the

27

2 — Test Activity

test, ended by a single branch. To actually make the branches affect the sequential flow of
the instructions the basic blocks are executed in a pseudorandom order. All this code is in
turn executed inside a large loop. The initial processor state is chosen so that all branches
are taken. This approach does not still ensure that the whole code does not result in
an infinite loop. To enforce termination of the algorithm the branch condition codes are
divided in classes, for instance the “greater or equal” class and the “less than or equal”
class. Every class is associated with a register providing the state for the class. Before
every branch, the state is updated in such a way that the number of taken branches for
every class cannot increase. More formally, if a bit is assigned to every branch, where '1’
means that a branch is taken and ’0’ means it is not taken, and the complete bit sequence
is considered, then the processor state is updated so that the corresponding number starts
as all ones and decreases monotonically over time. When the bit string is composed of all
zeros, the basic blocks are executed sequentially. The state of the external loop is distinct
from that of the branch classes. Finally, the pseudorandom test phase is undertaken. The
program set incrementally computes an arithmetic signature composed by the content of
all the registers. The global test information is composed by this signature and a measure
of the time needed to execute the code.

The methodology described above is applied to an engine control system for a direct in-
jection diesel engine (MultiJet™), compliant with Euro 5 regulation, and manufactured
by Magneti Marelli. To match the computational needs the Freescale PPC5553 micro-
controller is used [20] [21], running at 80MHz. The processor core is a 32bit, single-issue
implementation of the PowerPC architecture, including a 7-stage pipeline, one integer unit
for singleand multi-cycle operations, a vector unit also performing floating point computa-
tion, a branch processing unit with a branch target buffer (BTB), and 8kiB unified cache
[18]. The controller also includes 1.5MiB flash memory and 64kiB static RAM. Addi-
tionally, both a time base and an externally clocked timing unit (eTPU) are available.
The microcontroller implements the user level specification of the PowerPC architecture,
extending it with a signal processing module and various interfaces.

The complete system runs a control software that occupies about 70% of the flash
memory. Since it is part of an automotive system, the core runs a real-time environment.

The test is to be performed offline, during system manufacturing. As the manufactur-
ing rate is in the range of 1 million units per year the total duration of the test has to
be less than 6 minutes to perform all test activities, including subjecting the system to a
predefined thermal profile and verifying power output and consumption. The time budget
for functional test of the microcontroller is 10 seconds, about 3 of which are necessary to
load the test program on the microcontroller and unload the results.

Since the core runs at 8OMHz, this leaves about 500 million cycles available for test.
Almost all tests are designed to incrementally compute a signature during execution. This
is then provided back to the test machine through a serial connection. As time is a critical
measure to determine the test outcome, it is measured in two independent ways, and then
this information is added to the signature. The first measure is made using the time
base registers, allowing to approximately count the clock cycles elapsed for the test. The
second is is read from the eTPU; since this is clocked externally, it allows to measure
wall-clock time. Both measures are necessary to reliably ensure correct execution. In

28

2 — Test Activity

fact, the number of elapsed clock cycles indirectly measures the amount of computation
performed, whereas actual time allows determining the speed at which this computation
has been executed. Both measures should be within an expected range to conclude that
the device is working correctly. In summary, a correctly working device has to produce
the right logical value through the right amount of computation within the correct time.

To perform the functional test five main sections of code have been implemented. The
first one tests the correct working of the general-purpose registers, and is derived from
the original methodology detailed in [3]. Second, a series of short routines, taken from
[4] and [6], is applied to test the integer and floating point units. Then a code fragment
implements the test of the forwarding mechanisms. Since the execution module of the
pipeline is implemented in three stages then the data dependent part of the code is split
in three subsections: in the first the data dependent instructions are consecutive; in the
second each couple is separated by one independent instruction; in the third they are
separated by two independent instructions.

The approach has been implemented using instructions with different timings: single
cycle instructions and three-cycle instructions. Actually the pipeline also contains a divider
stage, but that is not pipelined, so it has been neglected. Subsequently a section of
code containing a subset of all possible branches is executed. As described before, this
section is composed of a series of basic blocks executed in a pseudorandom order. The
initial state of the processor is chosen so that all branches are taken at least once. Not
all possible branches are used for practical reasons: absolute branches can only have as
target instructions within a small address range; the processor implements very complex
and seldom used branch mechanisms, such as decrementing a count register, checking its
equality with zero, branching to the address contained in the link register and saving the
return address in the same link register. The use of such complex instructions is clearly
limited. These four are focused code sections.

Finally, a non focused section is run. This is obtained using an instruction randomizer
that obtains information about the processor ISA through an external library. In this way
the user can target the test generation to different microprocessor cores, possibly from
different families, and can also easily decide which opcodes to use during the nonfocused
test and which to avoid. This is useful because many microprocessors provide instructions
that require special care to use, such as cache management or multiprocessor synchroniza-
tion. These instructions could hardly be expected to work at all inside random code, and
are better handled in hand-written tests.

The randomizer used allows to make sure all opcodes in the library are used at least
n times. The size of the code is predetermined to fit a memory budget, and the code
generated by the instruction randomizer may not fill it. The remaining space is filled by
pseudo-random code. This code can be seen as both focused and non-focused.

Indeed it extensively exercises the instruction decoder, implementing a nearly exhaus-
tive test, but it also generally excites the processor’s functions. The first four code sections
have been written by hand, whereas the rest is automatically generated.

For the production test it has been decided to limit the occupied memory by code and
data to 64kiB, but statistical results have been collected also for other allocated sizes.

Since no structural description of the microcontroller is available the results cannot be

29

2 — Test Activity

expressed in terms of fault coverage, but only in terms of functional coverage.

The focused programs are characterized by the patterns they provide to a specific
functional unit, and the expected fault coverage for that unit. Both the register test
procedure and the short routines targeting the arithmetic unit are known to achieve a
high fault coverage and very high functional coverage on their targets. The test program
targeting the forwarding mechanism is designed to cover all possible forwarding paths,
considering the fact that only three, out of the seven pipeline stages, can provide data to
a subsequent instruction. Likewise, the branch testing routine is designed so that every
branch instruction is executed at least two times, at least once as a taken branch and at
least once as not taken. Actually, the majority of branch instructions are taken several
times before switching to non-taken. Thus the targets for these instructions are stored in
the branch target buffer (BTB). The storage of the branch address in the BTB and its
subsequent removal when the branch is no more taken also affect the total execution time.

The target unit for an instruction randomizer is the instruction decode unit. Since all
opcodes are used this amounts to a thorough testing. At the same time, executing the
opcodes in a random order makes it possible to use the randomized opcodes as non-focused
code.

In table 2.4 the application times for the five test sections are reported. It can be
noticed that the non-focused code takes much longer (about three orders of magnitude)
than focused code. As described above, not all instructions in the ISA have been used for
non-focused code.

Target module Execution time
Register 91.20us
Datapath (ALU + FP) 899.02us
Pipeline 39.03us
Branch unit 49.95us
Non-focused 2.994s

Table 2.4. Application times for the test sections

The instructions have been classified into several categories: Book E (those that a
processor core must provide to be a compliant PowerPC architecture), cache locking,
debug, Book E implementation standard (EIS), signal processing engine (SPE), scalar
SPE floating point (SPFP), vector SPFP, variable length encoding (VLE) 16 bit, VLE 32
bit. Not all types of instructions are used during operation of the system, so they have
not been included in the library. The excluded categories are SPE, vector SPFP and both
VLE. This is important to note, because the excluded categories amount to a large number
of opcodes.

Of the remaining opcodes those belonging to the cache locking, debug and EIS classes
have not been used in the implemented tests, as they require specific programming se-
quences. Table 2.5 reports the coverage figures for the five instruction classes considered.

It can be noticed that not all the Book E opcodes have been used. These can be further
divided in several subclasses to better gauge the properties of the non-focused test.

30

2 — Test Activity

Inst. class | Used | Unused | Total | Coverage
Book E 150 54 204 73.53%
Cache 1. 0 5 5 0.00%
Debug 0 1 1 0.00%
EIS 0 1 1 0.00%
Sc. SPFP 23 0 23 100.00%
Total 173 61 234 73.93%

Table 2.5. Opcodes covered for the considered instruction classes

Subclass | Used | Unused | Total | Coverage
Branch 1 11 12 8.33%
Cond. R. 11 0 11 100,00%
Inst. Syn. 0 1 1 0.00%
Integer 138 13 151 91.39%
PCRM 0 8 8 0.00%
St. Ctrl. 0 16 16 0.00%
Sys. Lin. 0 3 3 0.00%
Other 0 2 2 0.00%
Total 150 54 204 73.53%

Table 2.6. Covered opcodes for subclasses of the Book E instructions

Table 2.6 reports the details of the used instructions. In the first column Cond. R.
denote instructions that operate on the condition registers, Inst. Syn. are those that
perform instruction synchronization, PCRM stands for process control register manipu-
lation, meaning instructions that operate on registers for process control, St. Ctrl. are
instructions for storage control, and Sys. Lin. stands for system linkage. The greatest
part of unused opcodes is clearly critical when used in random code. Branch instructions
are hardly used, but this is not a problem because a focused test exist for the branch unit.

The purpose of the non-focused code is to cover as many working cases as possible on
the processor core. For this reason it is meaningful to measure the number of different
instruction sequences executed by the core. The PPC5553 features a seven-stage pipeline
and is a single-issue machine, so instruction sequences are significant up to a maximum of
seven instructions. In the following the coverage figures refer to the used opcodes, not to
all the available ones.

The available memory space allows enforcing many times the execution of all opcodes.
For instance, with 16kiB available the opcodes can be executed from 1 to 16 times before
exceeding the memory budget. Varying the number n of executions changes the results in
terms of coverage of instruction sequences. Considering the instruction couples, for small
code sizes there is a definite coverage maximum for an intermediate value of n, whereas
for larger code sizes the maximum coverage of instruction couples occurs for the largest

31

2 — Test Activity

possible value of n. For the longest instruction sequences the opposite behavior can be
seen: the maximum coverage occurs for the minimum value of n, that is 1. This different
behavior is directly linked to the fraction of sequence space covered by the code: for a
small coverage it is better to fill the space in a random way, whereas for larger coverages
it is possible to increase the coverage by enforcing additional bounds.

Since the coverages are very low for sequences of more than four instructions, it is
interesting to consider the maximum coverage that can possibly be obtained with every
memory budget for instruction couples and triples.

Mem nOccur 1 2 3 4 5 6 7
16kiB 6 | 100% | 9.7% | 0.07% | 4.4E-06 | 2.6E-08 | 1.5E-10 | 8.7E-13
32kiB 16 | 100% | 16.9% | 0.13% | 8.6E-06 | 5.2E-08 | 3.0E-10 | 1.7E-12
64kiB 54 | 100% | 28.1% | 0.23% | 1.6E-05 | 1.0E-07 | 6.0E-10 | 3.5E-12
128kiB 108 | 100% | 45.3% | 0.44% | 3.0E-05 | 2.0E-07 | 1.2E-09 | 7.0E-12
256kiB 216 | 100% | 64.7% | 0.85% | 5.8E-05 | 3.9E-07 | 2.4E-09 | 1.4E-11
512kiB 520 | 100% | 78.6% | 1.46% | 1.0E-04 | 7.2E-07 | 4.6E-09 | 2.7E-11
1,0MiB 1040 | 100% | 82.4% | 2.73% | 1.9E-04 | 1.4E-06 | 9.1E-09 | 5.4E-11
1,5MiB 1560 | 100% | 82.6% | 3.93% | 2.8E-04 | 2.0E-06 | 1.4E-08 | 8.1E-11

Table 2.7. Coverage optimizing instruction couples

The various columns represent the coverages for single instructions (guaranteed to be
100%), couples, triples and so on, up to sequences of seven instructions.

The figures are low for the longest instruction sequences because the number of possible
sequences is very large, on the order of 10'®. The reported data are consistent with what
can be expected following a statistical analysis.

It can be noticed that the coverage for instruction couples is near 100%, and also that
a saturation effect exists. Increasing the memory budget does not pay off for the coverage
of couples as it does for other sequences.

The generation times for the non-focused code scale about linearly with memory size
and tend to increase for large values of n.

Code size | Time (n=1) | Max n | Time (n=max)
16kiB s 16 4s
32kiB 9s 32 7s
64kiB 18s 65 17s
128kiB 40s 130 44s
256kiB 97s 260 124s
512kiB 230s 520 412s
1MiB 621s 1040 1,477s
1.5MiB 1167s 1560 3,097s

Table 2.8. Generation times for non-focused code

32

2 — Test Activity

The total coverage figures for the complete test set has been computed taking into
consideration not only the focused and the non-focused code, but also the initialization
sequences necessary for correct execution of the programs. The overall figures are reported
in the tables below. The final coverages are unevenly distributed among the considered
subclasses: the scalar signal processing and floating point instructions are completely
covered, whereas the instructions belonging to the Book E are partially covered. The
instructions belonging to the other considered classes are not used at all.

Inst. class | Used | Unused | Total | Coverage
Book E 173 31 204 84.80%
Cache 1. 0 5 5 0.00%
Debug 0 1 1 0.00%
EIS 0 1 1 0.00%
Sc. SPFP 23 0 23 100.00%
Total 196 38 234 83.76%

Table 2.9. Total coverages for the considered instruction classes

Again, a subdivision of the Book E opcodes in subclasses allows to better understand
the characteristics and limitations of the methodology.

Branch instructions are used except for the absolute branches. This has a simple
reason: the address field for absolute branches is a 16 bit wide signed integer, so they can
only have as target an instruction in the first 32kiB of memory; the test routines, however,
are not guaranteed to reside in a specific memory section. This forces the exclusive use
of relative branches. The missing integer instructions deserve an explanation: actually, of
the nine missing instructions two are traps, four are load/store instructions with reverse
endianness, two are synchronized memory reads and writes, and one is an instruction that
copies the exception register in the condition register.

Subclass | Used | Unused | Total | Coverage
Branch 8 4 12 66.67%
Cond. R. 11 0 11 100.00%
Inst. Syn. 1 0 1 100.00%
Integer 142 9 151 94.04%
PCRM 4 4 8 50.00%
St. Ctrl. 4 12 16 25.00%
Sys. Lin. 1 2 3 33.33%
Other 2 0 2 100.00%
Total 173 31 204 84.80%

Table 2.10. Total coverages for the subclasses of Book E instructions

33

2 — Test Activity

2.3 Test of Peripherals

System-on-chip (SoC) and system-in-package (SiP) devices integrate several logic cores
into a single silicon chip or into a single compact package. This integration, made possible
by the advances in manufacturing technology, allows designing systems that are faster and
consume less power than traditional designs. The SoC design paradigm, introduced in the
’90s, makes it possible to keep the time to market low, by reusing already existing logic
cores. On the downside, the tight integration of SoC components reduces accessibility to
the internal nodes of the circuit, making test of the single logic blocks harder.

SoCs are generally composed by one or more processor cores, some memory cores

and several peripheral cores, possibly in addition to application-specific logic modules.
Peripheral cores in the SoC need to be tested before being put to service. Traditionally the
activity of test generation for peripheral cores has not attracted very much the attention
of the research community.
There are several reasons for this. Peripheral cores are often much simpler than other cores
in the SoC, usually an order of magnitude smaller than processor cores. Being smaller,
peripheral cores constitute less of a problem for test generation and fault simulation.
Stand-alone peripherals are relatively easy to test, thanks to their structure, simpler than
other circuits, and to their function. In fact, whereas a processor devotes most of its
resources to computation of its internal state, materialized in registers, the main purpose
of a peripheral is to transform inputs in a particular format into outputs with a different
electrical or logical representation. Additionally, when methodologies based on hardware
insertion are used, the resulting overhead in area and performance is often negligible.

However, the integration of peripheral cores in a SoC introduces new problems in
the test of peripherals. First of all, the reduced accessibility of the module makes both
test application and collection of the results harder. In addition, peripheral cores may
be purchased as IP cores, and thus not modifiable. This may also happen when an
obsolescent product is reimplemented: cores are reused unchanged to avoid design costs
and compatibility problems. If the SoC uses multiple clocks, scan insertion is complex
and may not obtain the desired coverage results. Finally, if the SoC architecture employs
three state buses to share resources among modules, quite complex constraints have to be
defined for the proper generation of test vectors. These factors may make traditional test
methodologies, aimed at stand-alone peripherals, ineffective.

Cores inside a SoC can be tested with either hardware-based [24] and software-based
[23] methodologies. In the case of peripheral cores, however, hardware techniques may
imply high area overhead, impair performance and even require unacceptably long appli-
cation times. In addition, testing the SoC at-speed may not be always economically sound
using scan chains, but is required to preserve the effectiveness of the test.

An external ATE is supposed to be available for test application: its purpose is to
load a test program in the microprocessor memory, start execution, and interact with the
peripherals applying data to the input ports and collecting values from the outputs while
the program is running.

In the case of processor cores SBST has already been used successfully for processor
test. On the other hand, application of software methodologies to the test of peripherals

34

2 — Test Activity

has not been deeply explored. The advantages of software techniques in peripheral test
are the same as for processor test: cheap application, at-speed testing, no requirement for
additional hardware.

A methodology has been developed for the generation of test sets for peripheral cores
starting from the RT-level description of the circuit. The methodology follows a software-
based approach, exploiting the processor inside a SoC to test the peripherals. Test gener-
ation was performed using an evolutionary tool. The feedback for the tool was made up
by the RT-level code coverage metrics (CCM).

Several attempts have been presented in the literature to use high level metrics as
a proxy for fault coverage measurements. The reason is simple: CCMs on a high-level
description of a circuit are faster to extract than stuck-at fault coverage, by orders of
magnitude. A gate-level description of a circuit contains much more information than the
corresponding RT-level. Furthermore, a fault simulation has to be repeated many times,
even using parallel simulators. In addition, techniques based on high-level descriptions
can be exploited not only by users, but also by soft-core developers.

However, there is not a clear relationship between CCMs and coverage of the stuck-at
faults in the general case. This is especially true when large combinational blocks exist in
the circuit, as their testability can hardly be forecast resorting only to high-level metrics.
Even if they are inaccurate to get a quantitative coverage measure, high-level metrics can
be fruitfully used to drive test set generation.

On the other side, such large blocks are not often contained in peripheral cores, whereas
they are present in processors. Thus there is a correlation between CCMs and fault
coverage. It is not complete, but strong enough for generation of test sets.

Testing a peripheral core requires specification of both the test program and the in-
put/output data for the peripheral. The base unit of test application is therefore the test
block. This is defined as a basic test unit composed of two parts: a configuration and
a functional part. The configuration part includes a program fragment that defines the
configuration modes used by the peripheral, and the functional part contains one or more
program fragments that exercise the peripheral functionalities as well as the data set or
stimuli set provided/read by the external test machine.

The methodology has been originally developed as a manual test generation technique
[25]. The process is performed by hand and mainly relies on the experience of a test
engineer, who must have a deep knowledge of the peripheral high level description. The
goal of the test engineer is to produce a set of test blocks in order to maximize the CCMs.

The order in which the CCMs will be maximized must also be selected. In this work
every test block follows a quite rigid framework that allows an easy configuration of the
peripheral cores in all possible operation modes by only changing a few parameters; and
additionally, to set up a carefully chosen stimuli-set based on the specific test block goals.

The process goes as follows: in the first step, an initial test block is generated, based
only on functional information about the targeted peripheral, to maximize the statement
coverage; then, the generated test block is simulated using a RT-level description, gathering
the first code coverage metrics figures. Based on the obtained information, additional test
blocks are generated, with the goal of maximizing the rest of the chosen metrics.

Once the first coverage metric is saturated, another one is tackled in order to increase

35

2 — Test Activity

the testing capabilities of the final test set. This process is repeated until sufficiently high
coverage values are obtained for all the chosen metrics. Remarkably, it must be taken into
consideration that for different peripherals the metrics chosen as critical may also differ,
as well as the number of considered CCMs for sufficient code coverage.

The test engineer produced every test block based on a quite rigid framework that
allows her to easily configure the peripheral cores in all possible operation modes by only
changing a few parameters; and additionally, to set up a carefully chosen stimuli-set based
on the specific test block goals.

The methodology has been subsequently automated and enhanced through the use of
the uGP? evolutionary tool. The goal was to enhance the obtained results and, especially,
to reduce the dependence of the methodololgy from the knowledge of the test engineer.

Test set generation is performed with the goal of maximizing the CCMs. Some code
coverage metrics suitable for guiding the development of the test sets for peripheral cores
embedded in a SoC are: statement coverage (SC), branch coverage (BC), condition cover-
age (CC), expression coverage (EC), toggle coverage (TC). These are listed in the order
in which usually it is most effective to maximize them.

Many authors hold that it is not possible to accept a single coverage metric as the most
reliable and complete one; thus, a coverage of 100% on any particular metric can hardly
guarantee a 100% coverage on the stuck-at faults [26]. Nowadays, thanks to modern logic
simulators features, different metrics can be exploited to guarantee better performance
of the test sets. Therefore, the test set generation trend is to combine multiple coverage
metrics together to obtain better results. It is essential to carefully choose the set of
metrics to be maximized to reduce redundant efforts on the test set generation.

To perform the generation process, an automatic incremental methodology has been
implemented by which test blocks are iteratively generated, that collectively obtain the
desired high-level metrics coverage. Clearly, the configuration code fragment, functional
fragment and stimuli set composing a test block must be generated concurrently, in order
to maximize the profits obtained by each test block. The generation process ends when
either the targeted CCM figures are satisfactory or after a predefined time limit, producing
one test block for every performed step.

The evolutionary core acquires information regarding the SoC under evaluation from its
constraint library. It describes the syntax of the processor core and provides information
about peripheral constraints, such as data length and controlling information, such as
external signals and configuration words. The constraints concurrently define two different
entities, the functional part and the external data. Each individual, which represents a
test block, is then composed of a test program and a set of stimuli; it is evaluated by a
high-level simulator. Results obtained from the simulation are fed back in the form of a
fitness value to the evolutionary core closing the generation loop.

Since the GP? is able to receive multiple feedback information for a single test block,
it can simultaneously maximize all the chosen coverage metrics. The relative importance
of the coverage figures is enforced simply by the order in which they are communicated to
the tool.

The methodology has been applied on a simple, purposely designed SoC. This includes

36

2 — Test Activity

a processor core compatible with the Motorola 6809, a serial universal asynchronous re-
cetver and transmitter (UART), a parallel peripheral interface adapter (PIA), and a RAM
memory module. The system is derived from one freely available on an open source site
[22].

The high-level description of every component was written in VHDL at RT-level; the
whole SoC is described in about 12,000 lines of code, and the synthesized circuit contains
approximately 20,000 equivalent gates.

Measure PIA | UART
statements 149 383
branches 134 182
conditions 75 73
expressions 0 54
toggle bits 77 203
gates 1,016 2,247
faults 1,938 4,054

Table 2.11. Implementation statistics for the SoC

Table 2.11 shows details of both peripherals the PIA and the UART, including infor-
mation at high and low-level. In the case of the PIA there are no available expressions
to be considered; this is due to the specific design style used to describe the peripheral at
RT-level.

Both the PTA and the UART peripherals can be configured to work in two functional
modes with different communication schemes. The PIA can be used in polling or interrupt
mode, and with parallel data communication (transmit and receive) with different control
schemes. In the case of the UART, available configurations include polling or interrupt
mode, serial data communication (transmit and receive) with different data bit numbers,
with or without parity, with 1 or 2 stop bits, and with different communication rate ratios.

To more thoroughly assess the methodology, a test set for each peripheral core was
generated resorting to both the manual and EA-based methodology. In both cases, the
generation process uses only, as feedback or fitness values, information extracted from the
RT-level simulation of the SoC. The manual method has completely been implemented by
an expert test engineer.

Both test sets have been assessed performing a gate-level fault simulation after gener-
ation. No data from the gate level, in contrast, is used to drive the generation.

The evolutionary methodology proceeds as follows. For every peripheral module the
description style is analyzed to choose the most critical coverage metrics and their relative
importance. A first test block is then generated and evaluated for code coverage. If the
attained results are not satisfactory, more test blocks are generated, but the measurements
are modified in order not to take into account the previously covered parts. For example,
for statement coverage only the newly covered statements are considered and maximized,
neglecting the already covered ones.

37

2 — Test Activity

To adequately handle the requirements on peripheral testing, two constraints libraries
were devised, one for each peripheral core. To quickly generate satisfactory test blocks
it has been decided to reduce as much as possible the size of the search space for the
evolutionary tool. Basically, the constraints libraries were implemented using two sections:
the first one concerning program generation, and the second one data generation.

Program sections include two subsections, one for each operation mode: polling and
interrupt. In both cases, the generated code resembles the structure of a hand-written
program: the initial section configures the peripheral core via a small number of fixed
initialization sequences, whereas the second one applies or asks some data. In the case
of interrupts, the second part of the program is adequately placed in memory in order to
correctly resolve an interrupt request. In the end, a fixed observation sequence is provided
to send the test results to the ATE.

The configuration sections are multiple because the final goal is to generate a set of
test blocks that collectively test the peripheral, not just one that does everything. Data
sections, on the other hand, contain some macros able to bring the peripheral core with
input data, as well as with appropriate control signals in order to exercise the peripheral
inputs. External data does not undergo any arbitrary restriction. Additionally, a waiting
macro was included in order to better match timing constraints.

The evolutionary tool uses as fitness values a sequence of floating point values rep-
resenting the CCMs figures obtained by RT-level simulation. All the available coverage
values were fed back to the evolutionary tool, in order to simultaneously optimize all of
them. The order of the metrics was SC, BC, CC, EC, TC.

The experiments were launched using a multi-run scheme. Thus, once the steady state
was reached a new run is launched excluding the elements covered during the previous
experiments. This scheme is followed until no further progress is possible.

The main evolutionary parameters have been set differently for the PIA and the UART.
For the PIA they were p = 50 and A = 70. As the UART is more complex than the PTA
simulations take a longer time, so the parameters were kept lower, at © = 30 and A = 40.
Clone extermination was used, as well as a fitness entropy hole of 1.0.

PIA manual | PIA EA || UART manual | UART EA
Steps 8 5 7 3
SC 100.0% 100.0% 95.5% 100.0%
BC 96.9% 96.9% 92.9% 98.9%
CcC 89.3% 90.7% 97.3% 98.6%
EC NA NA 72.7% 94.5%
TC 100.0% 100.0% 89.2% 100.0%
FC 89.78% 90.20% 80.96% 91.43%
Test time (ck) 800 5,800 5,000 101,685
Generation time 30h 2h 60h 1.5h

Table 2.12. Comparison between manual and automatic results

38

2 — Test Activity

In table 2.12 the results for the manual and automated methodology are compared,
both in terms of coverage and with respect to the times needed for application of the
methodologies.

For the PIA, the manual methodology produced 8 test blocks, occupying about 200
bytes in program code and employing 19 data, whereas the evolutionary method generated
5 programs, occupying about 480 bytes, and 80 input data.

For the UART, the manual technique ended with 7 programs, about 250 bytes long,
and 10 input data. The automatic technique generated 3 test blocks, including about
1,380 bytes of code and 231 input data.

The EA is also able to reduce the generation times by about an order of magnitude.

These results, most importantly, experimentally prove that a correlation between high-
level coverage metrics and stuck-at fault coverage indeed exists, since an increase in the
first group of metrics is followed by an increase in the second.

The main drawback of the automated methodology is that a high setup time is still
needed. This happens because, for each peripheral, a complete set of program templates
has to be written and subsequently included in the constraints library for the tool. This
not only requires time, but also the work of a skilled test engineer, and a deep knowledge of
the modes of operation for the target peripheral. One of the most challenging requirements
of the manual method, therefore, is not removed.

To overcome the need for deep knowledge of the peripheral core a relaxed evolutionary
methodology has been implemented. The basic framework closely matches the above
description, but the constraints library for each peripheral no longer contains a separate
framework for each main mode of operation. Only two general operation modes are kept,
namely polling and interrupt, since the program structure changes between the two. In
contrast, no configuration information is included to specify transmission rates, formats,
or the like.

This means that the evolutionary algorithm must be able to autonomously generate
the code for correct exercising of the peripheral. Likewise, the data section of the library
has been reduced, eliminating the neat distinction between data and control signals. A
parametric delay was left in the library to allow respecting timing constraints.

The experiments have been repeated, with the same multi-run incremental scheme
and preserving the order of the CCMs used. The evolutionary parameters have also been
preserved from the previous methodology.

Table 2.13 reports the best results obtained with each of the two methodologies. In
this table PIA rig. and UART rig. refer to the rigid evolutionary methodology, whereas
PIA rel. and UART rel. refer to the relaxed methodology.

Table 2.14 shows that in both evolutionary experiments the memory occupation and
application time of the set increase; however, it is also possible to note that the elaboration
time required to devise the complete test set is strongly reduced.

Repetition of the experiments and close analysis of the results allowed discovering that
a significant variation exists within them. In fact, differences of as much as 13% in fault
coverage were detected on the UART, in contrast with no more than 3% on each of the
high-level metrics.

This means that the correlation between the two kinds of metrics, though useful, is

39

2 — Test Activity

PIA rig. | PIA rel. | UART rig. | UART rel

Steps 5 3 3 2

SC 100.0% 100.0% 100.0% 100.0%

BC 96.9% 97.7% 98.9% 98.9%

CC 90.7% 90.7% 98.6% 98.6%

EC NA NA 94.5% 94.5%

TC 100.0% 100.0% 100.0% 100.0%

FC 90.20% 91.95% 91.43% 90.68%

Table 2.13. Comparison between rigid and relaxed methodologies
PIA rig. | PIA rel. | UART rig. | UART rel.
Test time (ck) 5,800 9,506 101,685 28,842
Setup time 54h 3h 60h 3h
Generation time 2h 3.2h 1.5h 2.1h
Memory (bytes) 480/80 | 1,572/93 1,380/26 1,953/72

Table 2.14. Comparison between manual and automatic results

not strong enough to give the user the confidence that the generated test sets are of good
enough quality.

The methodology has again been modified to address this problem, searching for a
metric that more accurately reflects the actual fault coverage.

Whereas the ideal metric to exercise all the system functions would be the path cov-
erage (PC), it lacks an explicit correlation with data. Moreover, its use is not practical:
enumeration of all the possible paths has exponential complexity and it is not feasible to
cover them within a reasonable amount of time.

Furthermore, the RT-level descriptions use, especially in the case of complex cores,
many modules that interact among each other in order to perform the core functionalities.
The traditional CCMs do not consider these interactions and only aim at maximizing
the coverage metrics in each module. After the synthesis process, at the gate level, the
distinction between modules of a core is less clear and therefore it is important to consider
the interactions to enforce a correlation between high-level metrics and low level ones.

One way to model a system is to represent it with a finite state machine (FSM).
Coverage of all the possible transitions in the machine ensures thoroughly exercising the
system functions.

Additionally, the use of FSM transition coverage has the additional advantage that it
makes the interactions between functional modules in the peripheral explicit.

The approach is then based on modeling the entire system as a FSM which is dynam-
ically constructed during the test generation process. Thus the FSM extraction is mostly
automated, and requires minimum human effort: the approach only requires the designer
to identify the state registers in the RT-level code and does not require a deep knowledge

40

2 — Test Activity

of the peripheral and its hierarchy between modules.

Given the dynamic nature of the FSM construction, it is not possible to assume known
the maximum number of reachable states, not to mention the possible transitions. For
this reason it is impossible to determine the transition coverage with respect to the entire
FSM.

As no approximate metric can be taken as the only important one, maximizing more
than one metric usually leads to better quality tests.

Thereby, the developed methodology exploits concurrently all the available CCMs to
thoroughly exercise the peripheral functionalities and the FSM transition coverage that
enforce a maximum interaction between peripheral modules.

The generation of test blocks follows again a relaxed approach, in which the evolution-
ary tool is left the task of discovering the optimum operation sequences for the peripheral.

The previously used test case has been augmented with the introduction of a wideo
display unit (VDU), able to provide the system with a text-based interface. It manages a
display area 80 characters across by 25 down, contained in a text buffer memory of 2kiB
and a character attribute memory of 2kiB.

Measure PIA | VDU | UART
statements 149 153 383
branches 134 66 182
conditions 75 24 73
expressions 0 9 54
toggle bits 7 199 203
gates 1,016 | 1,321 2,247
faults 1,938 | 2,234 4,054

Table 2.15. Implementation statistics for the SoC

Table 2.15 reports the implementation statistics for the three considered peripheral
cores.

The FSM is dynamically constructed starting from the RT-level simulation. RT-level
code must be instrumented to make the value of all state registers observable. The evalu-
ator of the evolutionary tool collects this and filters it in order to identify the global state
of the peripheral; every global state in the peripheral represents a possible configuration
of values of all the state registers.

Thus, whenever, in the simulation, a state register in any module changes its value,
the global state of the peripheral is affected; every newly discovered transition between
the global FSM state is stored in a hash table, for efficiency. At the end of the simulation
the number of different keys in the hash table represents the number of transitions. This is
fed back to the evolutionary tool together with the traditional CCM figures, also available
from the RT-level simulation.

The number of possible transition could be very high, but this does not impair the
methodology. The FSM extraction is dynamic and unsupervised, and only effectively

41

2 — Test Activity

explored transition are taken into account.

Table 2.16 summarizes the results obtained for the targeted peripherals, reporting the
number of FSM transitions covered, the high-level CCMs and the stuck-at fault coverage
in percentage. It is important to note that the value of traditional CCMs are expressed
as absolute values, instead of percentages.

PIA VDU | UART
FSM transition 115 | 191,022 142
Statement 149 153 383
Branch 129 66 180
Condition 68 23 72
Expression 0 9 51
Toggle 7 191 203
FC 91.4% 90.8% | 91.28%

Table 2.16. Results for the considered peripherals

In the case of the VDU the number of transition is very high; this is due to the state
registers that hold the current position on the screen. But, since the FSM extraction is
dynamic, this did not lead to any additional problems.

To experimentally demonstrate that the use of the FSM transition coverage allows
strengthening the correlation between high an low level metrics 100 experiments on the
UART have been performed, using both the relaxed methodology without using the FSM
coverage and the generation process augmented with it.

Max | Min | Average | Std. dev.
Statement 383 381 381.8 0.36
Branch 180 178 178.7 0.39
Condition 72 70 70.7 0.30
Expression 51 50 50.7 0.32
Toggle 203 201 201.3 0.40
FC 90.7% | 77.0% 84.8% 6.37%

Table 2.17. Results without the FSM coverage

Table 2.17 reports the results of the experiments performed. The table illustrates the
average and the standard deviation of the different coverage metrics (Statement, Branch,
Condition, Expression, Toggle) and of the stuck-at fault coverage (FC). It is worth nothing
that the CCMs are very near to the absolute maximum with a little standard deviation
while the fault coverage has a greater standard deviation. Even if the values of the CCMs
are about the same among all the experiments, the standard deviation in the fault coverage
of each test set is relatively high. A large standard deviation implies that the distribution
of the solutions found is sparse so there is a considerable difference in fault coverage

42

2 — Test Activity

between the test set found: the methodology, although it obtains good results, is not as
robust as desirable, and the obtained solution may not exhibit the expected quality.

Max | Min | Average | Std. dev.
FSM transition 142 138 141.0 1.49
Statement 383 382 382.2 0.28
Branch 180 178 179.3 0.33
Condition 72 71 71.8 0.22
Expression 51 50 50.8 0.24
Toggle 203 201 202.2 0.36
FC 91.3% | 89.6% 90.9% 1.10%

Table 2.18. Results using the FSM coverage

Table 2.18 shows the results of the experiments performed using also the transition
coverage on the peripheral FSM as a high-level metric; the table reports the average and
the standard deviation of the different coverage metrics (Statement, Branch, Condition,
Expression, Toggle) and the stuck-at fault coverage (FC) as in table 2.17 in order to make
a fair comparison.

It could be noted that the CCMs are slightly but consistently better than those re-
ported in table 2.17 and the average fault coverage is increased by more than 6%. Much
more importantly, the standard deviation of the fault coverage is dramatically reduced.
This means that the robustness of the methodology has been increased, and solutions of
consistent quality can be obtained.

The methodology is able to find test blocks that, on average, reach nearly the maximum
possible value of CCMs at RT-level and, above all, have a similar fault coverage at the gate
level. This experimentally demonstrates that the correlation between high-level metrics
and low-level one has been improved.

Table 2.19 reports a comparison between the two methodologies in the case of the
UART, in terms of obtained fault coverage (FC), average generation time (Tgen), average
application time (Tapp) in clock cycles, and average size of the test sets, reported as
program bytes and data bytes.

FC | Tgen | Tapp Size
Without FSM | 90.7% 5.1 | 28,842 | 1,953/72
Using FSM 91.3% 2.2 | 32,762 | 2,345/87

Table 2.19. Methodology comparison for the UART

It is worth noting that the generation time also benefits from the use of the additional
metric, even if it was not one of the pursued goals.

43

2 — Test Activity

2.4 Compaction of existing test programs

SBST methodologies, especially manual ones, often have as a result one or more test
programs organized in the form of one or more nested loops. Well-known methodologies
[4] are exemplar in this. The loop structure is natural for these programs, since they are
targeted towards specific processor blocks. One or more feeder instructions are selected
among those provided by the instruction set architecture (ISA) of the processor that use
the target block. The feeder instruction is then put inside one or more nested loops
to provide the test patterns to the block. The control part of the loops is in charge of
generating the patterns.

Such methodologies are very general and highly portable, since the original test pro-
grams [5] can be adapted to a different processor by translation of the assembly instruc-
tions. This generality, however, has a drawback: loop-based test programs are often very
compact in memory but redundant in the number of executed instructions. For very small
microprocessors it is possible to test the arithmetic blocks exhaustively, due to the low
parallelism, whereas for larger machines this is totally infeasible.

To contain the complexity and length of these test programs usually the available
parameters are the loop extremes and the stride. More test patterns generally mean
better fault coverage, but also longer test application times. Even when the program does
not simply implement an exhaustive test, the test program strikes a balance between the
number of test patterns, their effectiveness, and the algorithmic complexity required to
generate them. This balance may not be optimal, or the only one possible.

It can be experimentally proven that, in such programs, not all the input patterns
provided by the feeder instruction are actually necessary to obtain the final fault cover-
age. Many of the values provided to the block under test turn out to be just convenient
intermediate steps between really useful test patterns.

It is possible to prove the above assertion using an analytic methodology that de-
composes an arbitrary test program into a large number of very small, independent code
fragments. These fragments are called spores to emphasize their small size and the fact
that each one is targeted towards a single specific operation. The purpose of a spore is that
of reproducing, as exactly as possible, the state transitions that occur during execution
of a single instruction in a test program, and then make the result visible to the outside
world. The instruction whose execution is to be reproduced is called objective instruction.

The structure of the spore follows directly from its function. An initial instruction
sequence puts the processor in the state existing before the objective instruction, then
the objective instruction is executed, and finally further code propagates the results to
the external world, using either the processor ports or the external memory. The initial
state includes the values in the source registers of the objective instruction, so that it is
executed with the correct operands.

The spore concept was initially developed for non-concurrent on-line test applications,
but it is a powerful analytical tool to get insight in the operation of a test set. In particular
it allows measuring the contribution of every single instruction to the final fault coverage,
at least for data processing instructions targeting the data path blocks.

Spores can be useful for diagnosis, as their low fault coverage allows partitioning the

44

2 — Test Activity

fault universe in small sets. They could even be useful for silicon debug, since they show
the results of single instructions executed in specific conditions.

The generation of a set of spores from a program, also called sporification, is performed
through the use of a tool, named frantumator, specifically developed for the target proces-
sor [11]. It is essentially an instruction set simulator (ISS) augmented with the capability
of generating a small test program for every instruction executed.

The sporification process performs a logical decomposition of the original program,
generating a self-contained test program for every instruction execution. This allows to
evaluate the effect of every single instruction instance.

The only real drawback of sporification is that it generates a very large number of
programs. It is easy to obtain tens of thousands of spores from the decomposition of a
test loop.

Redundance in the loop-based test programs was shown in the following way. First,
the program has been decomposed in spores. Then those corresponding to the feeder
instruction in the loop have all been fault simulated, to obtain the necessary coverage
data. To avoid measuring the fault coverage due to the initialization or propagation
parts of the spore, a test program has been chosen that targets a block not used by any
instruction in the spore except the objective instruction, and only the faults in the target
block have been taken into account. In this way it is ensured that only faults covered
exclusively by the feeder instruction are accounted for.

The second step has been a greedy set covering to obtain a minimal set of spores that
obtain the full fault coverage of the original program on the target block. The reason
for the use of a greedy algorithm instead of an exact one is that set covering is an NP
problem, so the exact solution could not be found in reasonable times. This is, however,
not an issue because the solution found perfectly illustrates the point: less than 2% of the
original feeder instructons were actually needed to achieve the full fault coverage.

Compaction of test patterns for digital crcuits is a widely investigated field. Indeed,
test application time is one of the most critical metrics for a manufacturer, since it directly
reflects on product cost. For on-line applications, conversely, test program size may be as
important as application time, especially for embedded applications, where memory is at
a premium.

For combinational test, there is a direct relationship between test size and application
time, so the two goals go hand in hand, and efforts are spent only for elimination of the
redundant patterns. For scan-based methodologies the picture is more complex, since a
large part of the appication time is consumed by the operation of the scan chain itself.
A careful choice of the pattern sequence, and optimal use of the scan chain, can improve
test application time as much as discarding redundant patterns. It may even be more
time-effective to keep more patterns, that can be applied with a limited usage of the
load /unload operations, than to use a minimal pattern set || [].

Test programs cannot be compacted in the same way, for various reasons. The first
is that a test program generally contains flow control instructions. These include loops,
conditional execution of data processing instructions, jumps to subroutines, and so on.
Test length is no more related to test application time, not even in a rough manner.

45

2 — Test Activity

Test program compaction has been investigated by the research community. A method-
ology [9] has been presented to manually generate test programs suitable for micropro-
cessor validation. The methodology is based on the the definition of test specification
expressions (TSE), used to describe the properties desired for test programs. The proce-
dure leads to the generation of a large number of test programs. A subsequent procedure
tries to merge programs with similar instructions. The main drawback of the compaction
methodology is that it is heavily dependent on the TSE, so it is not easily applicable to
programs generated with differnt methodologies.

Differently from the case of combinational or scan-based test, test programs cannot
usually generate an arbitrary input sequence. Inputs for one instance of the feeder in-
struction are derived functionally from the previous ones or from loop counters. Once the
complexity of this function becomes greater than a certain threshold, it becomes cheaper
and more convenient to store the input values as data inside the test program itself, losing
the advantages in small size that SBST may provide. Similarly, a test program obtaining
full fault coverage might be obtained, after the greedy set covering, simply joining together
the corresponding spores, but it would be even longer.

To make a loop-based test program execute in less time while preserving its fault
coverage it is necessary to change the function that generates the input patterns. Different
values should be generated, so that the full fault coverage is obtained with less patterns.
Small program size and short application time are in general conflicting goals.

The methodology described below is based on three steps: decomposition of an existing
loop-based test program into a spore set; fault simulation of the spores corresponding to
the feeder instruction; aggregation of a suitable subset of the spores to form again a loop-
based test program. The goal of this methodology is to preserve the compactness of the
original program while reducing the loop count. It is important to note that, due to
reasons exposed above, the subset selected may well not be minimal.

To be useful, the resulting loop must satisfy three minimum requirements: it must be
smaller than the sum of the spores composing the minimal covering set; it must take less
time than the original loop; it must generate a sequence of values able to fully cover the
faults detected by the original program.

Since the functional dependence between an input pattern and the next cannot be
arbitrarily complex the spore subset is not directly selected. Instead, a couple of functions
is built, able to generate a subset of the input patterns with the desired properties. In
this way it is possible to simultaneously take into account the fault coverage obtained and
the complexity of the functions.

The two functions to build are f,(a) : N — N and f,(b) : N — N, depending on two
variables. These functions are to be used inside two nested loops in a way that mimics
the structure of the original program. f,(a) and f,(b) must be able to iteratively generate
a sequence of value pairs for the feeder instruction that allows reaching the full fault
coverage. Each pair P; corresponds to a set C; of covered faults. The union of all sets C;
gives the total fault coverage of the program generated in this way.

Two points are worth noting now: the first is that there is no particular requirement
on the order in which the value pairs should be produced within the loops; the second
is that, following this methodology, only value pairs already computed by the original

46

2 — Test Activity

program are associated with a nonzero fault coverage, while others are deemed useless,
even if they are not. This last consideration has further implications. One is that the
greatest potential for optimization is given by the most redundant programs, since many
pairs are associated with a non empty coverage set, giving more opportunity for efficient
coverage. Another is that, given a test program, the fault coverage on the target module
may only increase or remain unchanged at the end of the process, but not decrease.

The search space for the problem is large. The original program feeds n input patterns
to the target module. These are generated in a nested loop, so n = ngny, where n, is
the number of distinct values for the first operand and ny is the number of values for the
second. The compacted program has to produce m = mgmy value pairs, m < n. Since
there is no restriction on the ordering of these patterns, they may be generated in mg!mg
different ways. Each sequence can be produced by one or a few minimal-cost functions.
The total number of function that may solve the problem is therefore huge.

To limit the complexity of the problem only functions that use integer and logic op-
erations have been used. In particular a small, functionally complete set of operations
has been selected, including addition, subtraction, bitwise AND, bitwise OR, XOR, shift,
binary negation, least significant byte, most significant byte. This choice has several ad-
vantages. It avoids all the approximation problems associated with the use of floating
point arithmetc, both in the intermediate computations and in deciding whether a given
value has actually been produced. It also avoids the computational cost of floating point
arithmetic, usually higher than that of integer operations. Most importantly, the chosen
operations are easily mapped to assembly language instructions. The generated functions
can closely match the desired result, fragments of code computing the sequence of input
patterns. This close match makes computation of a cost metric easier.

The methodology was applied to compact a post-production test program written for
an i8051-compatible microcontroller. The microcontroller is available as a synthesizable
VHDL description, freely downloadable from the opencores site [22]. A fuller description
of the microcontroller is contained in section 3.1.

A small infrastructur IP (IIP) is supposed to be available and connected to the pro-
cessor ports. Its purpose is to collect an incremental signature of the test program, as it
repeatedly outputs the intermediate results of the computation. The signature is collected
through the use of a 24-bit linear feedback shift register (LFSR).

The program has been written according to a methodology similar to that exposed in
[4], and targets the multiplier unit. This multiplies two 8-bit inputs and produces a 16-bit
output. In this program the feeder instruction is the MUL operation, that multiplies the
content of the A and B registers, storing its result in the same registers. The inner loop is
repeated 2,048 times, providing the same number of input patterns to the multiplier. The
attained fault coverage is 82.9% on the multiplier module.

All fault simulations have been performed using a fast, in-house developed fault simu-
lator. It has been used to contain times, since the number of fault simulations to perform
is very large, and the corresponding times very long.

The sporification process has been carried out using another home-made tool, since no
available open-source or commercial tool performed the required functions. The generated
spores set the input registers and the program status word to the values they had during

47

2 — Test Activity

program execution, execute the objective instruction and then write its output values and
the new program status word on the processor’s output ports.

The spores containing the multiplication instruction have been selected and fault sim-
ulated. This stage provides all the sets of covered faults to be used in the following steps.

For the final step the uGP version 2 has been used. The revision used features self-
adaptation, local mutation, individual aging and selectable elite size, but not the scan
mutation operator.

The reasons for the use of an evolutionary approach are several. First, there is not a
simple relationship between a possible solutin to the problem and its effectiveness. Solu-
tions in this case are the representations of the f, and f; functions. Although the single
operators composing the functions are simple there is no predefined limit to the complex-
ity of the resulting program behavior [32]. The sequence of values produced can be seen
as the emerging behavior of the operators that compose the function. An evolutionary
approach can evolve a function with arbitrarily complex behavior, meaning that the full
fault set can be covered, no matter what spores are needed to achieve the result.

The evolutionary tool has been used to evolve the dataflow graph of the functions.
In the graph every vertex can contain a constant integer value in the range [0...255], a
unary operator or a binary operator. Two additional constant values, in the same range,
are associated with each function. These are the initial values for the a and b variables,
and the number of iterations for each of the nested loops. In sort terms, the evolutionary
tool has been left the widest possible freedom in evolving the solutions.

The fitness is computed by a script that parses the graph, executes the two nested
loops the prescribed number of times while computing a cumulative fault coverage. No
new fault simulation is needed at this stage because the data computed for each spore is
used. If input patterns outside the set generated by the original program are produced
their contribution is not considered, as if they covered no fault. The pseudocode of the
coverage evaluation is as follows.

a=initialValueA;
doA{
b=initialValueB;
do{
evalFeederInstruction(a,b);
onePass(b);
} while ('bCompleted());
onePass(a);
} while (!aCompleted());
return (coveredSet);

The fitness is composed of two terms. The first one is the fault coverage attained by
the current solution, and its upper bound is the full fault coverage of the original program.
The second term is a cost metric, computed as the sum of the computational cost for every
evaluation of f, and f;. The first term has the priority over the second, expressing the
fact that preservatin of the fault coverage is a hard bound for the problem.

48

2 — Test Activity

Two series of experiments have been performed to search a suitable solution. A (u+\)
strategy has been used, since a complex structure of the solution was expected. The
population parameters were set at © = 500 individuals and A = 500 evolutionary operators
per generation. In the first series the evolution has been carried out for 200 generations.
In the second series of experiments two normal evolutionary steps have been executed,
separated by an intermediate relaxation step. In the relaxation step the two fitness terms
are exchanged. The number of generations in the second series is larger, comprising 150
generations for the normal steps and 10 for the relaxation step.

The population parameters have been chosen based mainly on previous experience in
the use of the evolutionary tool, with the goal of maintaining sufficient diversity in the
population to avoid premature convergence.

The experiments with the relaxation step were aimed at the same goal. A normal
evolutionary process might have converged to a local optimum, and the purpose of the
relaxation step is that of escaping that optimum, without losing too much in terms of
quality of the generated solutions.

For comparison an individual exactly corresponding to the original program has been
written manually. It is named original individual, although it does not necessarily cor-
respond to any individual generated during evolution. The original program does not
perform an exhaustive test, but executes less operations for speed reasons.

The evolutionary process is able to share vertices and edges of the dataflow graph
between the two functions. In this way, if a link between the two functions is useful, it
can be transmitted from an individual to its offspring, even if the shared components are
mutated.

Individual ‘ Size ‘ Iterations ‘ FC ‘ Cost ‘
Original 3 2,048 | 100.0% | 16,408
Sample 5 6,630 | 100.0% | 53,235
Best 3 600 | 100.0% | 4,216

Table 2.20. Comparison between individuals

In table 2.20 the final statistics for the experiments have been collected. The table
reports the indication of the individual, its size in assembly instructions for the computa-
tion of the functions, the number of iterations of the feeder instruction, the fault coverage
relative to the original program, and the cost metric for the programs.

The results show a 74.3% reduction in computational cost is achievable with respect
to the original program without any penalty in fault coverage. The best solution found,
furthermore, is as long as the original program, so no additional memory is necessary.

Some of the basic assumptions turned out not to be true. Indeed, the resulting func-
tions were expected to be significantly more complex than the original ones, which are
very simple. On the contrary, no increase in complexity was found in the final solution,
even if some intermediate individuals were actually very complex. Also, the second series
of experiments did not obtain better results than the first.

49

Chapter 3
Diagnosis Activity

Diagnosis, like test, has been theoretically investigated in the past, and is a standard
industrial practice. Like test, diagnosis is an integral part of the design and manufacturing
process. The roles of the two activities, however, are different. This difference is reflected
in the amount of dedicated hardware support: extensive test structures are commonly
added to a processor whereas little hardware is inserted specifically for diagnosis.

Even more than test, diagnosis is a costly activity, both for generation and for appli-
cation. As for test, software-based methods can decrease the application costs, but the
problem of diagnosis set generation is not solved.

The work in diagnosis has been focused on the definition of general methodologies for
the generation of effective diagnosis sets. Some of the main goals for these methodologies
have been economic viability and scalability, so they can be applied to a large range of
processor cores.

3.1 Microprocessor Diagnosis

A complete software-based methodology for the diagnosis of microprocessor cores has been
developed. It starts from existing test programs, and can exploit a small, already existing,
infrastructure IP (IIP) to perform the diagnosis.

The basic idea behind the methodology is that a processor, once developed, is accom-
panied by a set of test programs able to reach a high fault coverage. Since diagnosis can
only be performed using structural information, it is an activity performed almost ex-
clusively by the manufacturer of the processor core. Usually the manufacturer generates,
during development of the circuit, a series of programs for validation, verification and then
test of the device. Simply discarding them because they are probably not good diagnostic
programs seems wasteful.

Indeed, the generation of a test set with high fault coverage implies a high effort,
either manual or computational, to detect the subset of hard to test faults. Neglecting
the existence of these programs means that the same efforts would need to be repeated to
cover the very same faults with the diagnosis set.

50

3 — Diagnosis Activity

Software based diagnosis has its own special set of problems when compared to hard-
ware methodologies. First, there is usually a common part of logic, including at least the
fetch logic and part of the decoder, excited each time one instruction is executed, since test
programs rely on instructions rather than on test patterns. Additionally, a test program
suited to excite a specific module of the processor could also cover a wide number of faults
not belonging to the pinpointed part, and therefore offer a very reduced classification abil-
ity. Finally, many of the internal processor circuit elements cannot be accessed directly
using a specific instruction, thus resulting hardly diagnosable.

These problems are exhacerbated when using an effective test program for diagnosis.
Test programs cover large sets of faults, but are not usually written to distinguish them.
Indeed, the constraints in terms of application time and memory size for test programs
forbid the pursuing of this goal. A better diagnostic capability could be obtained by
writing a large set of programs each of which covers a few faults [13].

Usually the high fault coverage is obtained by the stimulation of the functional modules
of the processor with a great amount of input data, generated in a looping section of the
test program. Many faults, especially in arithmetic units, need specific bit patterns on the
execution unit inputs to be covered. If a program can be written that delivers only those
data needed to detect a specific fault, and not others, that program would exhibit a very
low fault covering ability, but a fairly good diagnostic capacity.

The real problem becomes then that of enhancing the diagnostic capability of a rel-
atively small set of test programs, by transforming them in a much larger set. This is
obtained by a decomposition of the test program using an analytic methodology. The
purpose of this methodology, called sporing, is the decomposition of an arbitrary test pro-
gram into a large number of very small, independent code fragments [11]. These fragments
are called spores to emphasize their small size and the fact that each one is targeted to-
wards a single specific operation. Each spore reproduces, as exactly as possible, the state
transitions that occur during execution of a single instruction in a test program, and then
make the result visible to the outside world. The instruction whose execution is to be
reproduced is called objective instruction.

The sporing tool is essentially an instruction set simulator (ISS), that traces the proces-
sor state for every instruction executed. It is augmented with the capability of producing
a program that, for every instruction in the test program, is able to infer each instruc-
tion data flow graph. From this the sporing tool generates an independent fragment of
code able to replicate the processor behavior during that particular execution. Sporing is
applied to the initial test set, or post-production test set, generating a spore diagnosis set.

It is of particular importance that the spores are independent from each other. Each
one has to be a self-contained program, and should ideally need no particular support.
Secondly, and more importantly, it must be possible to execute the spores in any order to
perform diagnosis, so the execution of every one must be independent from the execution
of any other code.

The structure of a spore is simple, performing just three operations. The first is
controlling the processor. This means setting the processor state, including the operands
of the objective instruction and the flags of the program status word (PSW) to the value
they had before the execution of the instruction in the test program. The second is the

51

3 — Diagnosis Activity

execution of the objective instruction. The third is the propagation of the results of this
execution to an observable location, such as the memory or the processor ports.

In the case of pipelined processors, a spore generated for an objective instruction should
include an initialization sequence able to reproduce the exact state of the pipeline stages.
This is possible by including in the spore code all those instruction preceding the target
one and still influencing the pipeline stage state during its execution.

One noteworthy point is that the sporing process does not depend on the methodology
used to write the test program, since no assumption is made about the code. Another
important consideration is that, since the spores are not generated from scratch, but
obtained from an existing test program, the global fault covering ability is preserved.

Two types of spore may be generated by the sporing tool. There are executive spores,
originated from data processing instructions, performing arithmetic or logic operations,
or memory transfer instructions. There are additionally branch spores, originated from
instructions performing jumps in the initial test program.

Spores have some minimal test capability and own the nice property of being small, in
terms of both code size and test duration. The spores set reproduces totally the execution
of the initial programs, thus preserving completely its fault coverage. The number of
spores obtained by the fragmentation of each test program increases linearly with the
number of instructions executed by the original program.

Once the spores are generated it is necessary to perform a fault simulation for each
unique spore. In this way the set of faults covered by every spore is found. The result of
this step is a coverage matriz storing for each spore the information about covered faults.

The only serious drawback of the sporing process is that it produces an inordinate
number of programs, since a spore is produced for every execution of every instruction
in the test set. It is not exceptional to obtain a spore diagnosis set comprising tens
of thousands of different spores, derived from the iteration of loops inside the test set.
Application of all these programs to a processor for diagnosis purposes would take an
unacceptably long time. An effort to reduce this diagnosis set is therefore appropriate.

This goal is obtained through sifting. It is a heuristic filtering methodology, whose
purpose is to reduce the number of programs in the diagnosis set by eliminating redundant
code. Sifting must also guarantee that no fault coverage is lost in the process, and that
the diagnostic capacity of the spore set is preserved.

First of all, the fault covering ability of each spore is considered in the context of the
entire diagnosis set. The important thing for a spore is not covering a large number of
faults, but covering faults which are not detected by other spores: all the spores able to
do this have to be retained in the final diagnosis set.

Every fault is detected by a certain number of spores, depending on whether it is easy
or hard to detect. This leads to the concept of density of the fault, that is, the number of
spores able to detect it. The density of a fault F' is denoted by df.

The diagnostic capability of a spore is then evaluated with respect to the whole set,
using the density concept. Indicating with N F the number of faults covered by spore s,
every spore is assigned a preliminary fitness value

52

3 — Diagnosis Activity

1 1
= (S5)

The possible vaules of fs range from 0 to 1. Higher values correspond to better diag-
nostic capability of the spore. A spore can have fitness 1 if and only if it covers only faults
that are not covered by any other spore. In general this fitness measure rewards spores
that cover faults that only a few other spores cover. Every such spore must undergo a
probability greater than average to be included in the final set.

For sifting the spores are sorted by fitness value in decreasing order. After this is
done, a sequential selection process begins: starting from the top of the list, spores are
kept until their cumulative fault coverage equals that of the post-production test set, and
the others are discarded as redundant. These selected spores form the basic diagnosis set.
The pseudocode for the sifting phase is as follows

foreach (s in SporeSet)
evaluateSporeFitness(s);
sortSporeSet () ;
T=faultCoverage (SporeSet) ;
foreach (s in SporeSet)
B:=B+s;
exit if (faultCoverage(B)=T)

After the sifting phase, the diagnostic ability of the set is evaluated. Omne of the
major costs for such evaluation activity consists in the computational effort required by
fault simulation experiments. For processors, the fault simulation setup is often a severe
bottleneck in test programs generation. In order to reduce the impact of this computational
cost, the illustrated procedure for diagnosis set generation considers two kinds of fault
simulation. The first is pass/fail fault simulations, stopped as soon as a faulty behavior
is observed and providing pass/fail information. The second is complete fault simulations,
which require the execution of the entire test program and returns the faulty circuit
syndromes. These two differ in required computation time and in the results obtained.

Pass/fail simulation only provide a single bit of information for every fault at the end of
program execution, allowing a coarse classification. In contrast, complete fault simulation
provides several bits of information for every fault and test program, allowing to better
distinguish faults, leading to a fine classification.

Such a differentiation allows implementing a tree-based classification methodology that
may requests for many “fast” pass/fail fault simulations, but leads to the need of only few
“slow” fine fault simulations. The subdivision of the process in two steps reduces the total
computation time needed.

The coarse classification is based on the construction of a compact diagnostic tree
obtained by processing only the pass/fail information related to each test program included
in the initial test set; this information is extracted from the coverage matrix.

53

3 — Diagnosis Activity

The fine classification is then performed for all the equivalence classes isolated by the
coarse classification and still composed of more than one fault. This second classification is
generally done by using the faulty circuit responses on primary outputs, or the syndromes,
to build in parallel an n-ary tree for each EC to be further divided.

To reduce the impact of this second fault simulation process aimed at retrieving the
faulty syndromes, an incremental approach has been used. First, the n-ary tree structure
is updated at the end of the fault simulation of each test program in the initial diagnosis
set and faults included in ECs of size 1 permanently dropped from the fault list. Second,
faults not yet classified and not covered by the next test program to be fault simulated are
temporarily dropped from the fault list as their syndrome is not useful for classification.

This process allows the generation of a compact fault dictionary composed of a pass/fail
sequence leading to a coarse EC and the set of discriminating syndromes for each fine EC.

At this phase of the workflow, there is still a set of unsatisfactorily large ECs. Thus,
an effort is appropriate to partition these large classes.

To improve the diagnostic ability of the test set an improvement step has been per-
formed using the uGP evolutionary tool. It is an evolutionary approach to generic opti-
mization problems with a focus on the generation of test programs for microprocessors.
It is based on an evolutionary core, an instruction library that allows targeting a specific
microprocessor and an external evaluator to provide the core with the necessary feedback.

The evolutionary approach receives the information about the large ECs and generates
new assembly programs able to split them. The fitness function provided as feedback to
the evolutionary core is the size of the largest EC found using the fine classification. During
this phase, the ability of a generated program in dividing the large EC is directly obtained
by analyzing the faulty syndrome. The fine classification tree is directly updated after
each program generation. The time taken by the process can be traded with the quality
of the obtained results.

The methodology has been applied to a small microcontroller, compatible with the
Intel i8051, supposed to be embedded into a SoC. The target fault model is the single line
stuck-at.

One of the major problems in testing a SoC is the reduced accessibility of each single
embedded core: to improve the observability of the i8051 to be diagnosed, an already
developed solution to support the software based self test procedure of processor cores has
been employed. The i8051 core was complemented with a 24 bit multiple input signature
register (MISR) connected to its parallel output ports [10]. The faulty signature, stored
by the MISR can be read at the end of each test program execution.

The synthesized microcontroller, obtained using a generic home-developed library, con-
tains 37,864 equivalent gates, and the collapsed fault list counts 13,078 faults. These faults
do not include those inside the RAM module, since specific procedures are customarily
used for memory test and diagnosis.

The reference metric used is the diagnostic power for limit n, dp(n). Using this metric
dp(1) is the percentage of faults that are uniquely classified; dp(10) is the percentage of
faults that can be considered correctly classified, because the exact analysis of equivalence
between faults cannot be performed for medium or large sequential circuits.

The sporing process has been performed starting from a manually devised post-production

54

3 — Diagnosis Activity

test. It is composed of 8 test programs written by a skilled test engineer, reaching a fault
coverage of about 92% on the collapsed list. 7 out of 8 programs aim at covering the
ALU faults and are generated by following the deterministic approach described in [4];
the remaining program has been written resorting to the same technique, but it aims at
the coverage of those faults in the decoding and control units still not covered.

The sporing process generates about 60k test programs. Each spore includes an initial
and a final part, required to obtain the signature.

The fault simulation process required to proceed to the sifting phase has been done
exploiting an in-house developed tool and required about 75 hours on 3 workstations based
on SUN Blade processors.

Post production test set | Basic set | Final set
Programs 8 7,231 7,266
Test set size 4kiB 165kiB 177kiB
Application time (cl. cycles) 1.00M 1.93M 2.02M
dp(1) 11.56% 35.70% 61.93%
dp(10) 32.90% 58.02% 84.30%

Table 3.1. Results of the methodology

The sifting phase, including the fault simulation, required about 100 hours on the same
hardware. And the test set obtained processing coverage matrix is composed of 7,231 test
programs (about 12% of the original set).

Table 3.1 shows the main characteristics of the three test sets: post-production; basic
(sifted); final (enhanced). The rows reports: the number of test programs in the test set;
the test set size; the maximum length of a test program in clock cycles; the result of the
diagnostic assessment dp(1) and dp(10). Table 3.2, on the other hand, details the size of
the equivalence classes for the three test sets. The rows refer to the size of the equivalence
classes, and the columns report the number of faults belonging to classes of that size for
a given diagnosis set. Only faults covered by the diagnosis sets are reported in this table.

It is interesting to note that the initial test set demonstrates a dp(10) equal to 58%
of the processor faults. The biggest class, composed of 3,755 faults, is the one including
those faults detected by all the test programs of the test set. Apart from this class, the
greatest class has size 84.

The diagnostic enhancement of the test set has been performed using the pGPv2
evolutionary tool. This activity eventually led to the generation of 35 new test programs.
Each generation process is started by evolving an initial population of 20 test programs.
The biggest class obtained by this enhancement process has size 1,092.

If the diagnostic test set is considered as a monolithic block to be entirely uploaded
and executed on the ATE, it is composed of all 7,266 programs and requires 2,020,656
clock cycles.

However, if an intelligent /interactive ATE enabling the diagnostic process to be stopped
as soon as the fault (or the faults) responsible for the wrong behavior has been individ-
uated, the diagnostic process can be reduced to the execution of an average of 3,762

95

3 — Diagnosis Activity

programs, corresponding to 900,858 clock cycles.

EC size | Initial test set | Basic set | Final set
1 1,334 4,120 7,148

2 802 872 1,106

3 543 522 546

4 360 264 336

5 255 150 155

6 138 150 180

7 112 154 91

8 80 224 72

9 63 81 36

10 110 160 60
11 - 100 2,335 1,090 720
>100 5,410 3,755 1,092

Table 3.2. Equivalence class summary

One of the drawbacks of this methodology is its computational intensity. Generation
times total nearly 500 hours of CPU time for all the phases. Another problem is that,
despite the sifting phase, the final diagnosis set is large, comprising thousands of programs.

An improved technique has then been developed to mitigate these problems and allow
a better scaling of the methodology.

The new generation methodology is based on the existing workflow, but the individual
steps have been redesigned to improve results. The starting point, an already existing
test program, is the same: the main justification for its use is not just technical but also
economic and is independent from the details of the methodology.

The sporing process also remains identical, since its purpose is to decompose an existing
program into small fragments corresponding, as closely as possible, to single instruction
executions. As the base concept of a spore does not change, neither does the process for
their generation. Subsequent steps, however, have been refined.

Two manufacturing test sets, Ty and T4, were devised to evaluate the robustness of
the approach. The first one was manually generated by an expert engineer, whereas the
second one was obtained resorting to an automatic tool. The choice of two test sets is
intended to evaluate the robustness of the methodoloogy when applied to different test
environments.

The manual post-production test set is the same described above. T4 was devised
resorting to a completely different method. The approach is based on the uGPv2 tool.
In this case, the evolutionary algorithm was exploited in a step-by-step approach: the
whole process consists of iterative runs of the evolutionary algorithm, dropping the faults
covered at each step. This process generated a set of test programs for manufacturing
testing composed of 3 assembly programs. The fault coverage capacity of the set reaches
about 90%.

o6

3 — Diagnosis Activity

In terms of code organization, Th; and T4 are quite different; T, is loop-intensive, thus
executes many times compact instruction sequences with different operands; on the con-
trary, T4 sequentially executes a set of selected instructions with suitably chosen operands
values and avoids loops.

Such differences in terms of code organization reflect on test application costs. Results
gathered by the fault simulation of T3; and T4 underline such an influence, as shown in
Table 3.3. In the table test application times are reported in clock cycles. While both
test sets attain similar coverage figures, the execution time of the programs contained in
the Ty is about 300 times greater than the time of the programs belonging to the T)4; on
the contrary, the memory occupation of the set of test programs automatically generated
is larger than the space required to save the programs written by the test engineer. The
diagnostic ability (shown for the sake of result completeness but not strictly needed in the
proposed generation flow) guaranteed by the two test set is low, as could be expected.

Initial test set | Programs | Application time Size FC dr
Ty 8 IM | 3.6kiB | 92.52% | 92.16%
Ta 3 47.5k | 4.3kiB | 90.06% | 89.17%

Table 3.3. Characteristics of the manual and automatic test sets

At the end of the sporing process, two spore diagnosis sets, sDT4 and sDTys, are
generated from T and T4, respectively.

The new sifting process is as follows: the fitness of every spore is evaluated; then
the spore with the highest fitness is considered for inclusion in the sifted set. If the total
number of equivalence classes increases then the spore is included, otherwise it is discarded,
and the one with the next highest fitness is analyzed.

Every time a spore is included in the sifted set the fitness evaluation has to be repeated,
since some faults may be uniquely diagnosed. Taking into account these faults is useless,
so they are eliminated from the fault list when computing densities.

newClasses:=0;
B:=0;
do
equivalenceClasses:=newClasses;
foreach (s in SporeSet)
evaluateSporeFitness(s);
sortSporeSet () ;
foreach (s in SporeSet)
newClasses=evalClasses(B+s);
if (newClasses>equivalenceClasses)
B:=B+s;
break;
while (newClasses>equivalenceClasses);

o7

3 — Diagnosis Activity

Having produced a pass/fail information, every spore has the ability to partition the
entire fault set into two disjoint sets. When multiple spores are considered, all these
partitions overlap, possibly producing further fragmentation of the fault set.

An increase in equivalence class number directly corresponds to a greater fragmenta-
tion. Given an existing partition of the fault set the additional information given by a
spore cannot move a fault from a subset, not even that of uncovered faults, to an already
existing subset.

Exactly like glass splinters belonging to a slab, fault sets can only be broken up, not
merged. Unlike glass splinters, equivalence classes can only be divided up to individual
faults, and, more important, they are much more difficult to aim at for splitting.

The advantage of dynamically recomputing fitness is that several spores with similar
(static) fitness may help isolate the same subset of faults. Once the first one is included in
the sifted set the others become nearly useless, but a static fitness does not reflect this fact.
Worse, with a static fitness some of those may be included as well in the sifted set but only
give a very small contribution to diagnosis. If many such contributions accumulate they
may mask the existence of a few spores able to more effectively split the set. Experimental
results show that this is indeed the case.

The new sifting process leads to vastly improved results with respect to the previous
one: the same diagnostic power is obtained with just a fraction of the spores. Since
spores are very short programs they are relatively easy to fault simulate. One drawback of
the spore set is that, although very large, it does not include all opcodes and all operand
combinations, even for opcodes present in the set. This is a consequence of their generation
process: it starts from an existing set of test programs, and can only extract information
contained therein, but does not generate more.

This leads to a simple idea for evolutionary improvement of the spore set: generate
more spores by mutation of existing ones. Every spore has a fixed structure, composed
of initialization of the processor state, execution of a single instruction, called target
instruction, and observation of the results. The mutation is not intended to change this
scheme, but rather to work within it.

The performed modifications are of two kinds: small changes of the operands related
to the target instruction, and arbitrary changes of executed operation. An operand can
be incremented or decremented by 1 or 2; it may undergo a single bit flip; the opcode can
be changed with a different one having the same encoding length and addressing mode of
the one replaced. The reason for this different treatment of operands and opcodes is that
the cardinality of the opcode set is much lower than the cardinality of the operands space.

The evolutionary process starts from the basic set and generates one new spore from
a randomly chosen one.

This is first compared with the existing ones to discover if it is identical to one of
them: if it is, there is no need to evaluate it. To evaluate the spore a fault simulation is
performed, collecting the signature for each fault, after which the equivalence class number
is recomputed. If the new spore is able to split some fault subset then it is retained in the
final set, together with simulation data; otherwise it is still retained as an existing (but
useless) spore, and its simulation data are discarded. In this way it is ensured that every
generated spore is only evaluated once.

o8

3 — Diagnosis Activity

To experimentally assess the effectiveness of the modified method, the same case study
presented above has been tackled, allowing to perform a systematic comparison at each
step of the proposed workflow. All the experiments were performed in a SUN Blade
processor-based workstation.

In the case of T, the sporing process generates about 60,000 spores. This huge number
of spores in sDT}js is mainly due to the loop-based code organization of Th;. On the other
hand, by applying the sporing process on T4, 406 spores are generated, since T4 does not
contain loops. Those numbers reflect in the execution time.

Spore characteristics have to be separately considered for executive and branch spores.
Spores in first category are composed in average of 10 instructions and their execution has
duration of 140 clock cycles; in terms of memory occupation, an executive spore ranges
between 18 byte and 22 byte. In the branch scenario, spores are up to 21 instructions long
and requires for up to about 180 clock cycles to be executed; a branch spore may occupy
up to about 50 bytes.

The methodology prescribes that the spores set should be fault simulated. Since this
step had not undergone any change, it has not been repeated, and the existing coverage
matrix has been reused.

Spore set | Spores | Application time Size FC dr
sDTyy 60k 8.7M | 1.56MiB | 92.52% | 97.96%
sDTy4 771 112.3k | 19.4kiB | 90.06% | 95.87%

Table 3.4. Results of the sporing process

Table 3.5 summarizes the main aspects of the initial spores sets obtained in both cases.
The diagnosis application time of the sets is measured in clock cycles. The dr values for
sDTy and sDT4 obtained during this phase will remain unchanged until the evolutionary
improvement phase.

In the case of T)s, the sporing process generates about 60,000 spores. This huge
number of spores in sDT)s is mainly due to the loop-based code organization of Th;. On
the other hand, by applying the sporing process on T4, 406 spores are generated, since T4
does not contain loops. Those numbers reflect in the execution time.

Reduction in the number of spores belonging to sDTy; and sDT}y is performed by the
new sifting process. It is worthwhile to note that the modified sifting guarantees that the
diagnostic properties of the spore set are preserved intact in the basic set. Indeed, spores
in the spore diagnosis set are discarded from the basic set if they do not contribute useful
diagnostic information. They are, however, all considered for inclusion in the basic set.

Basic set | spores | Application time Size FC dr
bDTy 449 146.7k | 13.2kiB | 92.52% | 97.96%
bDTy 261 78.0k | 6.5kiB | 90.06% | 95.87%

Table 3.5. Results of the sifting process using the coarse classification

99

3 — Diagnosis Activity

Table IV presents the information concerning bDT); and bDT, obtained by heuris-
tically sifting sDThs and sDT4. bDTh; presents a significantly smaller cardinality with
respect to sDTyy; bDT)y is composed of 449 test programs, corresponding to about 1%
of the spore set. This result is due to the high redundancy of sDT; and implies also a
considerable reduction in both execution time and memory requirements for the reduced
spore set.

The cardinality of the bDT4 is also smaller than that of sDT4, but not so much if
compared with the other sets. The reason for this result lies in the generation methodology
for T4; in fact, T4 does not present so high fault coverage redundancy, therefore sDT4.

Up to this point, diagnostic ability evaluation relied on pass/fail information, only. dr
values shown in table IV are obtained by performing coarse classification procedures.

To further increase the diagnostic capability of bDTy; and bDT 4, additional spores are
included in the basic sets by means of the incremental evolutionary improvement detailed
above.

This process starts with a fine classification process, performed on bDTy; and bDT .
The results of this preliminary operation are shown in table 3.6. Obtained fine equivalent
fault classes whose cardinality is larger than 10 are targeted for extra partitioning. A
minimal fault list, only comprising the faults in each class, is built purposely for the
improvement process, so that only the faults in the target equivalence class are finely fault
simulated.

Basic set | Spores | Application time Size FC dr
bDTyy 449 146.7k | 13.2kiB | 92.52% | 98.22%
bDTy 261 78.0k | 6.5kiB | 90.06% | 98.91%

Table 3.6. Results of the sifting process using the fine classification

The mutation process starts from those spores dividing coarse equivalence classes dur-
ing the fine classification process. The final diagnostic test sets, f DTy and fDT4, own a
very high diagnostic ability.

Final set | Spores | Application time Size FC dr
DTy 852 239.8k | 18.3kiB | 92.52% | 99.91%
fDTy 622 190.6k | 15.6kiB | 90.06% | 99.85%

Table 3.7. Results of the improvement process

The results reported in table 3.7 deserve a more detailed explanation. fDT), is en-
larged by 403 new spores after the evolutionary improvement with respect to the bDT)y.
On the other hand, the number of programs in fDT, is 361 more than in bDTy.

Table 3.8 summarizes the evolution of the diagnostic power dp(1) and dp(10) and the
diagnostic resolution dr along the generation steps for both initial sets test sets Th; and
Ty.

60

3 — Diagnosis Activity

It can be noted that the gap between the dp(10) of fDTys and fDTy is of 3.1%. It
means that about 650 faults classified in classes smaller that 10 by fDT}ys are included in
classes greater than 10 by fDT4. Explanations for this difference have to be sought for
in the Tys and T4 characteristics.

First of all, the difference in the fault coverage figures impacts on final results; in fact,
332 faults not covered by T4 are classified in classes faults smaller than 10 when starting
from Th;. Moreover, Thy and T4 code organization may affect the generation process.
The very large number of spores originated from Tj; does not provide a high diagnostic
capability in bDT);, but it provides much more information to the final generation process
during the fine classification process. In contrast, the small number of spores originated
from T4 confers a better diagnostic capability to bDT 4, but provides little information to
the final generation phase. In this case, the fine classification process mainly partitions
small classes while the greatest classes are less touched.

sDTn; | bDThs | fDTar || sDTa | bDT4 | fDTA
dp(1) || 332% | 47.0% | 70.6% | 262% | 49.6% | 61.8%
dp(10) || 54.7% | 69.2% | 87.0% || 50.0% | 76.3% | 83.9%
dr 97.96% | 98.22% | 99.91% || 95.87% | 98.91% | 99.85%

Table 3.8. Changes in the diagnostic power along with the generation steps

More precisely, tables 3.9 and 3.10 report in detail the diagnostic results during the
generation process for both manufacturing test sets. The rows refer to the size of the
equivalence classes, and the columns report the number of faults belonging to classes of
that size for a given diagnosis set. Only the sets obtained after sporification are considered,
as the initial test set is supposedly not suitable for diagnosis. Only faults covered by the
diagnosis sets are reported in this table, whereas uncovered faults are neglected.

EC size SDTM bDTM fDTM
1 4,017 5,686 8,542

2 948 1,034 886

3 630 675 444

4 260 312 244

) 185 225 130

6 132 96 90

7 189 98 84

8 104 96 56

9 99 81 36

10 60 70 10
11 - 100 1,403 1,184 1,271
>100 4,073 | 2,543 307

Table 3.9. equivalence class summary for generation starting from Ty,

61

3 — Diagnosis Activity

EC size | sDTa | bDT s | fDTa

1 3,084 | 5,845 | 7,275
2 868 | 1,360 | 1,240
3 621 651 501
1 460 536 424
5 200 260 200
6 174 138 108
7 140 84 56
8 144 56 40
9 90 36 18
10 110 20 10

11 - 100 1,660 373 1,315
>100 4,227 | 2,419 591

Table 3.10. equivalence class summary for generation starting from T4

Costs for the discussed methodology should be considered from two distinct points of
view. The former concerns the generation costs, e.g., fault simulations, heuristics com-
putations, classification processes. The latter involves the application costs on suitable
ATEs such as the amount of memory or the application time.

As a measure of generation costs, both the experiments shown in this section have
been executed on a SUN Blade I workstation with 1GB of RAM.

In general terms, major generation costs are fault simulation processes. Initially,
pass/fail fault simulations are required to proceed to the sifting phase; the fault simula-
tion process of the spore sets sDTy; and sDT4 asked for about 225h and 3h, respectively.
The fault simulation process is considerably lighter for the spore set generated from the
evolutionary test set due to its smaller cardinality.

The sifting process, operating on the stored pass/fail information, is a minor cost that
requires no more than a few CPU hours. Similarly, few minutes are required for the
consequent coarse classification process consisting in the pass/fail tree construction. This
process occupied about 2.2h to generate bDT);, and a few minutes for bDT 4.

A reduced number of fine fault simulations complete the preliminary diagnostic eval-
uation of bDT); and bDT 4. Respectively, the fine classification processes, including fine
fault simulations and output-based tree construction, required about 6 and 3.5 hours to
compute the diagnostic level the evolutionary improvement starts from.

The evolutionary improvement consisted in evaluating 8,107 and 3,157 new spores to
obtain fDTy; and fDT4. The time required to improve bDT 4, 129h, is more than twice
the time required to improve bDTM, 51h. This difference is due to the better diagnostic
resolution initially own by bDT4. Table 3.11 summarizes the generation costs in both the
considered scenarios.

From the point of view of application costs, the execution of fDTys on an ATE lasts
for about 18.3k clock cycles. Supposing a 50 MHz application frequency, this means 4.8
ms. This cost for fDTy, which is 15.6k clock cycles long, is 3.8 ms.

62

3 — Diagnosis Activity

Generation phase Thr Ta
Sporing 0.3h | 0.1h
Coarse FS 225h 3h
Sifting 2.2h | 0.02h
Fine FS 6h | 3.5h
Ev. improvement 129h 51h
Total 362.5h | 57.6h
Table 3.11. Times comparison for test set Ty

Regarding the created Fault Dictionaries, the size required for storing the Fault Dic-
tionary created for the fDTys is about 1.3 MB, while it is about 1.1 MB for the fDTy
generated by the evolutionary approach.

It is interesting to compare directly the results of the two methodologies, to better
assess the differences between them. Table 3.12 shows the overall comparison in the final
results between the former methodology and the new one. Since the former methodology
has only been applied to the manually written test set, only T)s is considered in the
following.

Old Method | New method
Programs 7,266 852
Final set size 177kiB 18.47kiB
Application time (cl. cycles) 2,000.0k 246.7k
dp(1) 61.39% 70.60%
dp(10) 84.30% 84.31%

Table 3.12.

Results comparison for test set Ths

The new results compare very favorably with the old ones: the diagnostic power in-
creases by about 9% and the percentage of correctly classified faults remains almost the
same. These results are obtained with a diagnostic set much smaller than previously, both
in terms of program number, memory occupation and application time. All of these figures
decrease by about ten times.

Table 3.13 presents a comparison in terms of required time to perform both strategies.

The total generation time decreases by about 30%. Since both the sporing process and
the fault simulation needed for the coarse classification (Coarse F'S) remain unchanged, so
do the related times. The sifting process is slower, but amounts to a small fraction of the
total. The basic test set is much smaller with the new methodology, so the fault simulation
performed for the fine classification (Fine F'S) is much faster. Finally, the times needed for
evolutionary improvement are roughly similar. It should be noticed that a trade-off exists
between the duration of the evolutionary improvement and the quality of the obtained
results.

For the sake of comparison, two additional experiments have been performed in order to

63

3 — Diagnosis Activity

Old Method | New method
Sporing 0.3h 0.3h
Coarse FS 225h 225h
Sifting 0.5h 2.24h
Fine FS 100h 6h
Ev. improvement 168h 129h
Total 493.8h 362.54h

Table 3.13. Times comparison for test set Ty

assess the suitability of the new algorithm improvements. Thus, mixed experiments were
launched using in the first case the old sifting or static sifting, and the new evolutionary
improvement method, and in the second case the new sifting or dynamic sifting, and the
old evolutionary improvement tool. Table 3.14 presents the values obtained mixing old
and new approaches. The results are reported in terms of the diagnostic capability reached
by the different sets of diagnostic programs.

dp(1) | dp(10)
Static sifting alone 35.70% | 58.02%
Static sifting + old EI 61.39% | 84.30%
Static sifting + new EI 60.37% | 69.42%
Dynamic sifting alone 47.31% | 69.20%
Dynamic sifting + old EI | 51.50% | 73.71%
Dynamic sifting + new EI | 70.61% | 83.41%

Table 3.14. Mixed experiments

This table shows that the modified methodology allows reaching results with the same
diagnostic properties of the first one, but saving significant resources. It also shows that
the two halves of the methodology are not independent from each other. The type of infor-
mation provided by the sifting phase strongly influences the performance of the subsequent
evolutionary improvement.

3.2 Modular Diagnosis

Diagnosis is an important activity not only because it can allow process characterization,
but also for product repair by the usage of backup resources.

Locating faulty components in manufactured circuits is one of the major tasks involv-
ing industries and EDA producers. The efforts in this sense chase both the generation of
effective diagnostic tests and the identification of the faulty components as soon as pos-
sible. Tools for this purpose are indispensable for yield improvements as they permit the
identification of critical sub-areas, due for example to final chip layout or of systematic

64

3 — Diagnosis Activity

marginalities in library components.

In the memory field, the use of diagnostic information to repair memories resorting
to spare resources is common practice. For logic circuits there is no similar accepted
solution but the emergence of new design paradigms, such as those based on more reg-
ular structures, like structured ASICs, and the availability of far more silicon area than
strictly required by the functions to be implemented pave the way for new solutions that
embed the capability to enhance yield by reallocating backup resources at the end of the
manufacturing process.

Several possible structures have been elaborated for microprocessor repair. These
schemes consist in the introduction of modular redundancy inside a single processor or
shared with other processors embedded into the same system. One critical aspect, other
than the reconfigurable structure organization, is the efficient identification of a faulty
module to be repaired without significantly decreasing the performance.

An activity has been undertaken pursuing the automatic generation of software-based
diagnosis sets able to isolate failing functional modules inside a microprocessor, possibly
to be remapped exploiting the available resources left unused in the chip.

The approach follows in its general lines the methodology for microprocessor diagnosis
detailed in section 3.1, but is targeted at discriminating faulty modules instead of single
faults.

The rationale for this is simple: in reconfigurable architectures, or generally in any
architecture that can be repaired by substitution of a logic resource with a backup one,
entire logic modules are exchanged. If diagnosis is used for repair, then, it is not useful to
exactly pinpoint the location of a fault. It is, instead, important to isolate a faulty module
in order to replace it.

The methodoloogy relies on the manipulation of a post-production test set and its
subsequent enhancement adopting evolutionary techniques. This test set, that must guar-
antee high fault coverage, is divided in shorter test programs, called spores, and a subset
of these is selected as the basic diagnosis set. The diagnostic ability of this set of programs
is then evaluated recurring to a diagnostic tree. The construction of each tree branch ends
when a leaf contains only faults belonging to the same module.

The leaves that contain faults belonging to different units after the basic diagnosis
set analysis are processed by an evolutionary test program generator (TPG) and new
programs are added in order to improve the basic set.

One of the goals of the approach is to obtain smaller diagnosis sets compared to
traditional diagnosis sets, since it only concentrates on isolating a faulty module instead
of a single gate.

The methodology exploits an existing Infrastructure IP (IIP) whose original purpose
was aiding software-based self test (SBST). The IIP is able to provide the processor with
the diagnosis code, and to gather and store the compressed results.

The advantages are numerous. The construction of the diagnosis set exploits an ex-
isting test set, avoiding part of the efforts in covering hard to detect faults. The process
is automated, requiring limited human intervention. Being software based, the diagnosis
can be performed at-speed, reducing the application time. Since the process only col-
lects the final results of a diagnosis program, the methodology does not require the use of

65

3 — Diagnosis Activity

high-performance, costly test equipment.

The approach is based on three automated steps, similarly to the activity described
in section 3.1: initial diagnosis programs generation, diagnostic tree construction and
evolutionary improvement of the diagnosis set.

The approach is fully automated and guarantees to attain almost the same coverage
of the stuck-at faults obtained by the original test set. It can be noticed that the data
path of the processor is fed with exactly the same input set induced by the original test
programs. Consequently, the fault coverage on the functional modules is unaltered. The
control part, on the other hand, may not follow exactly the same state sequence, so its
fault coverage may vary.

Since each spore corresponds to a single instruction instance in the original test set the
sporing process generates a vast number of diagnosis programs, and then it is necessary
to select an appropriate diagnosis set by choosing the fittest ones. To cope with this issue,
the programs were evaluated by computing this fitness function:

Fp = Z HoNume
C

where P denotes the program, C' is an equivalence class with respect to the applied
spore, and H¢ is a pseudo entropy value computed as:

N
Ho == pilogp;
=1

where p; is the fraction of faults belonging to the equivalence class affecting module 1.
Finally, Numc is the cardinality of the equivalence class.

This function needs some explanation. Since an equivalence class is a set of indistin-
guishable faults only a statistical measure can be used to characterize it. Intuitively it
is desirable for an equivalence class to contain faults from as few modules as possible: if
faults only belong to a single module no further discrimination is necessary. During the
application of successive spores an equivalence class may be split in two or more; for anal-
ysis purposes it can be assumed that this partition happens randomly. If a class contains
faults from different modules a random splitting of this class is more likely to generate at
least an equivalence class containing faults from only one module if the starting class is
already very polarized.

An entropy measure is able to numerically express all these concerns. To make sure
that spore evaluation is fair and to keep fault coverage as an objective undetected faults
are always considered a single equivalent class affecting all the modules in the processor.

Once the fitness function was applied on all the programs, a rank was performed and
the redundant programs were eliminated. In this case the elimination was performed
as follows: a cumulative set of equivalence classes, with an associated fitness function,
is maintained; each spore is successively evaluated to determine how the cumulative set
changes after its application: if the corresponding fitness function decreases the spore is
kept, since it either splits some multi-module equivalence class or it detects some additional
faults.

66

3 — Diagnosis Activity

This process guarantees to preserve the diagnostic properties of the generated spore
set, since the cumulative fitness decreases for any useful splitting performed, and every
program that performs such a split is kept.

To evaluate the ability of the diagnosis set in isolating faulty modules, a module ori-
ented diagnostic tree has been constructed. The goal is to develop a diagnosis set cor-
responding to a diagnostic tree whose leaves only contain faults belonging to a single
module.

Once the initial diagnostic tree is built, there is the possibility that some leaves, denoted
as weak leaves, contain faults belonging to different modules. These correspond to sets of
faults that affect more than one module, and are generated by test programs that are still
unable to uniquely diagnose a faulty module.

Then, to improve the diagnostic tree, these sets of faults, corresponding to weak leaves,
are targeted by an evolutionary process able to generate additional assembly programs.
The tool used is the pGPv2. In this case, the fitness for the tool is the same fitness
function described above.

The methodology was applied for evaluation to a microprocessor compatible with the
Intel i8051. A more detailed description of the processor core can be found in section
3.1. The core is complemented with an Infrastructure IP (IIP) able to deliver the test
programs and to collect the results. It includes a 24 bit MISR, connected to the parallel
output ports, to compute a signature obtained from each diagnostic program execution.
Every different signature obtained from the execution of a test program identifies a fault
equivalence class. The faults in a class can affect one or more of the processor modules.

Inside the architecture, 5 modules have been singled out: 3 in the ALU unit (ALU1-3)
with about 1,700 faults in each module, one in the control unit (CTRL) including 6,062
faults and another in the decode unit (DEC), with 1,090 faults. Neither the internal
memory nor the ITP hardware have been included in the diagnosable modules.

The workflow, has been started choosing a set of post production test programs, whose
total fault coverage is about 93% of the 12,462 processor faults. Application of the sporing
process generated about 60,000 programs, each 7 instructions long on average.

These spores have been fault simulated computing the signatures for each. This process
required about two weeks on 3 SUN Blade processor-based workstations exploiting an in-
house developed fault simulator vaguely based on the PROOFS algorithm [17].

The spores have been evaluated according to the fitness function and sorted in ascend-
ing order. The subsequent elimination of the redundant programs, performed as outlined
above, selected 346 spores, composing the basic diagnosis set.

Then the module oriented diagnostic fault tree was built. The post production test set
is able to isolate 1,883 single module equivalent classes, including 3,167 faults. The bqasic
diagnosis set improves these figures identifying 4,632 single module equivalent classes, or
6,248 faults.

Resorting to the evolutionary approach described above, the diagnosis set has been
improved. The percentage of diagnosed faults, that is, faults belonging to leaves that
contain faults from only one module, increased by about 25%.

The evolutionary tool took about 6 hours to run, producing an additional set of 120

67

3 — Diagnosis Activity

programs. The final diagnosis set, containing 466 programs, isolates 7,716 classes corre-

sponding to 9,252 faults.

Module number | Test set | Basic set | Final diagnosis set
1 3,167 6,248 9,252
2 1,471 1,082 921
3 820 197 174
4 668 173 171
) 5,464 3,757 1,092
Undetected 902 1,005 852
Table 3.15. Equivalence class summary for the analyzed processor core

Table 3.15 contains a result summary of the fault classification. The first column shows
the number of modules in every equivalence class. The columns 2 to 4 report the number
of faults contained in each type of equivalence class. For example, the basic diagnosis set
isolates 1,082 faults in equivalence classes affecting exactly two modules. It is interesting
to note that the total fault coverage decreases by less than 1% after the sporing process;
the use of the evolutionary approach further increases the final fault coverage by about
1.5% with respect to the basic diagnosis set.

The final diagnosis set has the greatest diagnostic capability; using its diagnostic results
it is in theory possible to repair more than 80% of the faults replacing at most two modules.

In general, gate-oriented fault diagnosis for microprocessor cores requires the use of a
large number of diagnosis programs with respect to the total number of isolated faults.
On the other hand, module-oriented fault diagnosis is cheaper both in terms of diagnosis
set size and of application time.

The methodology could be an effective approach for reconfiguration at the end of the
production line.

68

Chapter 4

System hardening

Many of the considerations about test and diagnosis may be repeated for system hardening.
This is true even if it is not a part of the design and manufacturing flow in the same way
as test or diagnosis are. Hardening is rather a goal of the design process, than a step or
the provider of feedback information for the subsequent design iterations.

Nevertheless, the demand for cheap and effective methodologies is far from satisfied.
Even in the case of software techniques, the inconvenience of having to fully control the
executable code may add to the time and costs of hardening.

An activity in system hardening has been undertaken with the goal of easing some of
the limitations in existing software and hybrid methodologies.

It is based on a technique different from those presented in section 1.3. The method-
ology belongs to the family of hybrid techniques, but features some differences. First, the
additional hardware no longer performs all the checks needed to achieve hardening. These
checks are executed by the processor, and the approach exploits its computational power
to save hardware resources. Second, it is transparent, in the sense that the application
code needs no modification for the approach to work.

In this approach, the system is augmented with a small infrastructure IP (IIP) that sits
on the processor-memory bus. This IIP takes care of duplicating all the data processing
instructions, and of inserting the corresponding checks. In addition, it recognizes branches
in the code, and checks that the basic block switch is correct.

The basic assumptions for the methodology are as follows. The system to protect is
assumed to be a SoC, in development phase, inside which a processor is used to run a
software application. It is therefore possible to add an IIP core in the system. It is also
assumed that the processor either has no cache, or all the cache hierarchy can be disabled.

The SoC can either be implemented on an application specific integrated circuit (ASIC),
or inside a field-programmable gate array (FPGA) embedding a processor core. For ex-
ample, the Xilinx Virtex II Pro contains a PowerPC core, and the Actel M7 proASIC3/E
embeds an ARM core.

The IIP monitors each instruction fetch, so it must be connected to the processor-
memory bus. In addition, it has to provide duplicated instructions to the processor. This
means that the processor-memory bus must be entirely interrupted, and the IIP works as

69

4 — System hardening

an interface between the two components. It acts as a memory when seen by the processor,
and as the processor if seen by the memory. It has to sit on the memory bus since the
processor-cache bus is usually not available for insertion of additional hardware.

It is necessary that the caches are disabled for the approach to work. The IIP inter-
cepts every instruction fetch and replaces every fetched data processing instruction with
a complex sequence. If an instruction cache was active, the entire sequence would be
stored in it, and the actual following instructions would not be fetched from memory. The
problem with data cache is more subtle: data duplication is not employed, so any fault
affecting the data cache would propagate to both replicas of instructions using that cache
line.

This assumption is consistent with the common practice of disabling the caches to
increase the dependability of commercial processors when deployed for critical applica-
tions. Indeed, instruction or data caches are seldom equipped with error-correction codes
(ECC) or parity, while external memories featuring these dependability options are freely
available.

The adopted fault model is the SEU on the processor’s memory elements. These
include the register file, the status registers and the pipeline boundary registers. To apply
the methodology to other fault models it should be extended with more complex replication
and check techniques, such as replicate with shifted operand (RESO).

In the developed methodology, the IIP duplicates the instructions the processor has to
execute, also inserting instructions for consistency check. The actual check is performed
by the processor, and if it fails an error handling routine is called. The IIP itself, however,
has to check control flow: every time the processor fetches a new instruction, the IIP
checks whether its address is as expected. If not, an error handling procedure is called.

The complete procedure is as follows.

e The processor fetches instruction I.

e The address A of the instruction following I in the program is computed and
recorded.

e The state of the processor is saved.

e The instruction [is executed, producing result Ry.

e The state of the processor is restored.

e The instruction I is executed again, producing result R;.
e The state of the processor is saved.

e The two results Ry and R; are compared, and in the case they differ, an error
handling procedure is activated.

e In case Ry and Rq match, the state of the processor is restored, and the instruction
sequence of the program is re-established by executing a jump to the address A.

70

4 — System hardening

As an example, a simple data processing instruction can be considered. Supposing
an increment instruction is stored at the address 0, it is replaced by thirteen instructions
implementing the instruction duplication part of the methodology.

0x0000: add R2, 1, R1

becomes
0x0000: push R4 31
0x0004: push R5 ;2
0x0008: mov PSW, R4 ;3
0x000C: add R2, 1, Rb ;4
0x0010: mov R4, PSW ;5
0x0014: add R2, 1, R1 ;6
0x0018: mov PSW, R4 37
0x001C: cmp R1, RS ;8
0x0020: bne error ;9
0x0024: mov R4, PSW ;10
0x0028: pop RbH ;11
0x002C: pop R4 ;12
0x0030: jmp 0x0004 ;13

The original code computes the sum of R2 and 1, storing the result in R1.

The transformed code executes the following operations. At lines 1 and 2 it stores the
contents of two registers, on the stack. These registers, R4 and Rb5, are to be used as a
scratchpad for the following operations. R4 is used to save and restore the program status
word (PSW), and R5 contains the redundant copy of the result. At line 3 the PSW is
stored, then the redundant result is computed. At line 5 the PSW is restored in order
to perform the computation starting from the correct conditions. The duplicated data
processing instruction, in fact, can modify the processor’s flags, so it is essential that their
value is preserved. At line 6 the original instruction computes the actual result. At line
7 the PSW is stored again. This time it has the correct value for the computation. It is
stored because at line 8 the check is finally performed, necessarily modifying the PSW. If
the check fails, that is if R1 and R5 are not equal, the program jumps to an error handling
routine, otherwise it proceeds with lines 10 to 13. Here some housekeeping is performed,
restoring the PSW and the scratchpad registers. Correct execution is resumed by jumping
to the correct address.

The criterion for choosing the two scratchpad registers is simple. They may be any
two registers whose content is not critical for interrupt handling routines, and that are
not used by the replicated instruction.

It is worthwhile to note that branch instructions, load and store instructions, and
compare instructions are not duplicated in this way. Therefore, there is no problem in
computing the correct address for resuming execution, or in preserving correctly the PSW.
Also, data memory accesses are performed only once.

71

4 — System hardening

The hardening of the control flow is performed differently. The IIP implements a
simple mechanism to check that instructions are executed according to the expected flow.

Each time the IIP recognizes the fetch of a sequential instruction stored at address
A, it computes the next address as Apert = A+ of fset, where of fset is the size of the
fetched instruction. Conversely, when the IIP recognizes the fetch of a branch instruction,
it computes two possible addresses, Aigren and Ageqt for the next instruction. The first is
the address in case the branch is taken, and is computed taking into account the branch
type. The second is the next instruction, and is computed exactly as above.

When the next instruction is fetched at address A’, the ITP checks whether the program
is proceeding along an expected flow. If A’ differs from A,z in case it just executed a
sequential instruction, or if it differs from both A,er; and Asgpen for a branch instruction,
then an error signal is raised, to indicate that an unexpected address has been fetched.

The effectiveness of the methodology has been assessed experimentally through the use
of a test bed. It is composed of a LEON2 processor, a memory, and a software prototype
of the ITP. The LEON2 processor executes a benchmark application residing in memory.
The test bed has been used both without and with the IIP, in order to compare the results.
In both versions of the test bed the instruction cache has been disabled.

The LEON2 is a pipelined microprocessor implementing the IEEE1754 architecture,
compatible with the SPARCvS8. It is available in the form of a synthesizable VHDL
description. The core has been synthesized, instrumented for fault injection and mapped
to a FPGA device for speed. More details on the core and the fault injection methodology
are reported in section 2.1.

A benchmark suite of three applications has been used:

Matriz computes the product of two 3x3 integer matrices
Ellipf computes an elliptic filter function on a set of 32 samples
Viterbi computes the Viterbi encoding of a stream of 64 symbols

For each version of the test bed, and for each of the three benchmark applications, a
fault injection campaign has been performed. To this end, 10,000 randomly chosen SEUs
were injected in the register file and in the pipeline boundary registers.

Faults of this kind may be classified in three main categories, depending on the effects
they have on the system. Silent faults do not affect computation, either because the
content of the affected memory element is no longer used, or because it is overwritten
before being used again. Faults are classified as error if they are detected and elicit an
error message or signal. Wrong answer, instead, is the label for faults that do affect the
computation but are not detected. The name refers to the fact that the results of the
computation are not correct, and no indication is given about that.

Clearly, the really critical faults are those in the last category. Indeed, silent faults
are an issue only because they might affect system integrity from a physical point of
view, but do not concern its logical functioning. In case of an error the obtained results
are meaningless, but the elaboration might be repeated to obtain the correct results. In
contrast, a wrong answer will propagate through the system without much chance for
subsequent detection, possibly affecting the integrity of the mission.

In table 4.1 the number of wrong answers is reported for the test bed without the I1P
and with the IIP. The ratio between those is also reported, showing a significant decrease

72

4 — System hardening

Bench | No IIP | With IIP | Ratio
Matrix 393 40 9.8
Ellipf 561 76 7.4
Viterbi 12 2 6.0
Average 7.7

Table 4.1. Results of the fault injection campaign

in the rate of wrong answers.

Bench | No IIP | With IIP | Ratio
Matrix 10,758 74,807 6.9
Ellipf 37,987 243,626 6.4
Viterbi 99,971 719,718 7.2
Average 6.8

Table 4.2. Execution times in clock cycles

Table 4.2 reports the execution times for both the non hardened and the hardened
system. It can be seen that the execution times increase by a large amount, but on
average less than the ratio of wrong answers. This is an important point, since in radiated
environments it is assumed that the rate of SEUs is constant, so if a program takes longer
to execute it also stands a larger chance of being affected by a fault.

Since not all the faults are detected by the methodology, further investigation has been
carried out. On close examination, it is observed that the faults giving a wrong answer
are those that modify the execution of banch instructions.

The following code fragment can serve as an example.

if (a == b)
true_branch();
else

false_branch();

Some faults escaping detection are those that change the execution flow in one of two
possible ways: either a !'= b, but true_branch() is executed, or a == b, but false_branch()
is executed.

It is not possible to detect this kind of error just looking at the sequence of fetch
addresses generated by the processor, since they always correspond to valid target in-
structions for the branch, and to the beginning of a basic block.

The only way to detect these faults is to transmit information about the processor
state to the IIP, that should also decode in a more complete way the branches to discover
their exact type.

Another possible source of wrong answers are the faults that affect the register file.
These faults affect the memory area for both the original and the replicated instruction.

73

4 — System hardening

Thus, if a fault affects a source operand before the instruction using it is fetched, it will
affect equally both replicas of the instuction, which will compute the same wrong result.
It should be noted that even RESO techniques could not cope with this kinds of faults,
because the same copy of an operand is used two times. The problem can be solved using
real data duplication, but this requires sacrificing the transparency of the approach.

The advantages of the presented methodology with respect to software methodologies
or hybrid techniques are several. First, the designer of the hardened system no longer
needs to modify the application code. Speed optimizations can therefore be freely used
during compilation, and commercial off-the-shelf components are allowed in the system.
Moreover, the methodology is totally independent from the application, and can be used
as is for hardening any system. Additionally, it saves hardware resources by exploiting
the computational power of the system processor. Finally, it introduces no memory over-
head, meaning that also memory-tight applications are amenable to hardening with this
technique.

It shares its main drawback with software methodologies: the time penalty for ap-
plication execution is large, amounting to 6.8 times on average for the benchmark suite
used.

74

Chapter 5

Evolutionary Computation

Evolutionary computation is a very large and diverse field. The research community has
investigated and is still tackling many facets of the field, from theoretical analysis of
the mathematical properties of evolutionary methods to real-world applications, without
overlooking the introduction of specialized methodologies.

Differently from the test and diagnosis field, there is still the need for stronger theo-
retical foundations in the field of EC. Statistical analysis of the evolutionary tools is not
trivial, and often the analysis performed on a simple evolutionary scheme is not appli-
cable to its supposedly natural extensions. Sometimes the effort for analyzing a general
methodology has led to the creation of different tools, in some respect more abstract than
their predecessors.

The difficulty in mathematical analysis has also led to a flowering in applications of
EC. A number of general schemes and tools exist, and new applications are proposed at a
sustained rate.

During the activity, EC has been approached in two complementary ways: as an
instrumental technique for solving CAD problems and perform targeted optimizations,
and as a generic optimization technique. The use of a flexible, even if targeted, tool
allowed approaching problems for which it had not been thought. On the other hand, this
extended usage allowed gaining better insight in the inner operation of the tool, and led
to enhancemets and revisions whose effect reflects on its original application field.

5.1 uGP

A large part of the test program generation and diagnosis program generation activities
have been performed using the uGP tool. It is a generic evolutionary approach to problem
solving with an emphasis on assembly program generation. In fact, its purpose is to
generate Turing-complete assembly programs [36].

This means that the tool should be able, at least in theory, to generate programs that
compute any computable function.

Two main different versions have been used during all the activity. The first, named
1GPv2 or simply uGP, has been developed inside the CAD group in the time span between

75

5 — Evolutionary Computation

2001 and 2006. It was derived from a previous prototypical tool with limited capabilities,
whose purpose was to instance and reorder a series of code macros in the attempt to
maximize the fault coverage on a microprocessor. The main application goal of the uGP
is therefore test program generation.

The second is named pGP3, and is a complete reimplementation of the tool. The
decision to rewrite it from scratch derives from the realization of the limits of version 2.
The general architecture of the tool was preserved, but it has been improved in several
ways, making it more general, versatile and, especially, more modifiable and maintainable.

In the following the architecture of the tool is described, along with the various features
added. A large part of the description is common between the tools, so they are collectively
referred to as uGP. When it is necessary to distinguish between them, reference is made
to pGPv2 or uGP3, respectively.

5.1.1 uGPv2

The uGP is not just a single tool. It is an evolutionary approach to problem solving and
optimization. It is composed of three independent but connected blocks: an evolutionary
core, a fitness evaluator, and a constraints library. It also comprises some other auxiliary
tools, useful for practical application of the approach.

The purpose of the evolutionary core is that of evolving the individuals in a population.
To this end it employs several evolutionary operators, grouped in three main categories:
mutation operators, recombination operators and search operators.

The external evaluator is in charge of assigning a fitness to every individual generated
during the evolutionary process. It often is a script that launches an external simula-
tion tool, feeding it with the individual to evaluate as an input, and collects the results,
transforming them in a form usable by the tool.

The constraints library, called instruction library in pGPv2, is used to decide the
allowed structure for the individuals, and also to map individuals to their external repre-
sentation for evaluation.

Internally, the uGPv2 represents an individual as a graph made of loosely connected
subgraphs. Each subgraph begins and ends with two special vertices, named prologue and
epilogue, respectively. In between these two vertices all the other vertices have a prede-
cessor and a successor vertex. This ordering determines the order of appearance of the
vertices in the external representation. Additionally, every vertex can have references to
other vertices in the same subgraph, or to the prologue of another subgraph. This repre-
sentation mimics the appearance of assembly programs. In assembly programs, generally
branches are made to other instructions in the same function, or to the initialization code
of called functions.

Each vertex can contain a fixed number of parameters. These may be integer, hex-
adecimal, floating point numbers or symbolic constants. The number and type of allowed
parameters and references for each vertex is specified in the instruction library.

All individuals in pGPv2 are contained in a single panmictic population. In a panmictic
population any individual can exchange genetic material with any other individual. It is
therefore not structured geometrically or logically.

76

5 — Evolutionary Computation

The pGP employs a variation of the (u + \) strategy. Starting from a population of p
individuals, it applies A evolutionary operators to produce offspring. Since every operator
can produce a different number of descendants, and since every operator may succeed or
fail in producing valid individuals, the offspring is of variable size.

The evolutionary process ends when at least one of three possible termination condi-
tions is met. The first is the length of the evolutionary process, measured in generations.
After the maximum number of generations has elapsed, the evolution ends. The second
is a so-called steady state. When a certain number of generation is elapsed without any
improvement in the best fitness, then the process is said to have entered steady state,
and evolution is ended. The third termination condition is the reaching of a maximum
fitness. For some problems the maximum possible value of fitness is known in advance,
and can be provided as input to the uGP. When that fitness value is reached the process
is terminated, saving computation time.

The initial population may be generated from scratch in a random way, or loaded
from an existing population. In both cases, there is the option of generating an initial
population of v individuals, and then bringing it to p individuals after the first generation.
Often v > p is used, in order to perform a preliminary random exploration of the search
space before starting the evolution. If, instead, v < u, the population gets silently filled
during the next generations. This second scheme is usable when the fitness function is
expected to be both computationally demanding and deceptive.

New individuals are generated from parents by application of evolutionary operators.
An evolutionary operator in uGP is a non deterministic function that transforms one or
two individuals in one, two or more new individuals. Every evolutionary operator has an
activation probability, that is the probability that it is used to produce offspring. The
probability for a given operator can be different from all others.

Mutation operators in uGPv2 are the following. The add mutation inserts a new
random vertex in a random point of the individual. The sub mutation removes a randomly
chosen vertex from the individual. The add/sub mutation randomly performs either an
add or a sub mutation on the individual. The modify mutation changes a single parameter
inside a vertex in a totally random way. The local mutation changes a single parameter
by a random quantity that is small with respect to the entire range of the parameter.

Local mutation deserves a more detailed discussion. The purpose of the local mutation
operator is to perform an efficient searching of the nearby solution space around a high
fitness individual, thereby enabling faster exploitation of the local optimums. The local
mutation operator performs a small change in one of the parameters of the macro. The
meaning of “small change” depends on the type of the mutated parameter. For numeric
types, decimal integers or float values, it indicates an offset computed with a Gaussian
model; for a constants list it is a substitution with the previous or the next constant in the
list; for hexadecimal values it is implemented as a bit flip; for references it is treated much
like it is for a constants list, so a small mutation on a reference moves it to the previous
or the next vertex in the subgraph; for every other parameter type it is ignored.

Recombination operators are two. The crossover tries to find two compatible cores
in the graphs of the two individuals, and exchanges them. A core is defined as a portion
of the subgraph in which no vertex refers to other vertices of the same subgraph outside

7

5 — Evolutionary Computation

the core and no vertex is referred by other vertices. More intuitively, a core is a portion
of a subgraph that is connected to the rest of the subgraph only by the previous/next
relationship between vertices, and not by other references. It should be noted that it
is perfectly possible for a core to reference different subgraphs. If this is the case, the
referenced subgraphs are moved from an individual to the other without modification. Two
cores are compatible if they belong to compatible subgraphs, that is to subgraphs described
by the same sections in the constraints. The safe crossover is a special implementation of
crossover for problems where individuals are either very small or contain a large number of
references between vertices. In these cases the cores may span all nodes of the individuals,
which get then exchanged and not recombined. The safe crossover works around this
limitation by transforming all references in the selected subgraphs in offsets. After this
transformation, the two subgraphs are cut in two places, and the intermediate sections
are exchanged. After exchange, the offsets are transformed back into actual references.

1GPv2 also features a search operator. The scan mutation randomly selects a vertex
parameter, then generates a new individual for every possible value of the parameter.
It silently fails in the case of floating point parameters, since their cardinality would
be excessive. The rationale for this kind of operator is that of providing a long-range
exploration operator for particularly deceptive, or highly multimodal, fitness functions.

Mutation operators also support the concept of strength, indicated with the symbol
0. The value of o is always in the range [0...1]. In the case of add, sub and add/sub
mutations, it represents the probability that the operator is applied again on the same
individual after a successful application. More specifically, the operator is always applied
once. After that, a random number between 0 and 1 is extracted. If it is less than o,
then the process is repeated, applying the operator and extracting again. Therefore, the
probability that the operator is applied only once is p(1) = o(1 — o), the probability that
it is applied twice is p(2) = 0%(1 — o), the probability that it is applied three times is
p(3) = 03(1 — ¢), and so on. The expected number of applications is then

=0
OO .
=(1-0)) io’
i=0
oo o0
—1-03 >
i=0 j=i
00 i
o
= 2(1—0)1_0
1=0
1
C1-o0

In the case of local mutation o is the fraction of the parameter’s range that is used as the
standard deviation in the probabilistic choice.
Individuals are chosen for reproduction by means of a tournament selection. Whenever

78

5 — Evolutionary Computation

an operator needs an individual to use as parent for new ones, then a competition is held.
7 individuals, not necessarily distinct, are selected from the population and compared to
each other. The one with the best fitness wins the tournament and is used for reproduction.
In uGP 7 can be any real number greater than 1. But it is not possible to select only a
part of an individual for comparison, so 7 is split in two parts: 7 = 7; +7¢, where 7; = | 7]
and 77 = 7 — 7;. 7; individuals are always selected, and an another one is added to the
tournament with probability 7.

If 7 = 2 then the tournament selection can be proved to be equivalent to the so-called
linearized-fitness roulette wheel selection. Roulette wheel is the name of a scheme that
assigns a selection probability that is proportional to the fitness of the individual. An
individual that has a fitness two times higher than another one will also have twice its
probability of being selected. It is a popular technique, but it is dependent on the actual
value of the fitness, instead of the ranking of the individual in the population. This may
be undesirable when a few individuals have very large fitness values, or when there are
many with nearly the same fitness. To counter this uncontrolled probabilistic distortion,
fitness linearization is used. In this scheme, in a population of p individuals, after sorting
them by fitness, the last one will be assigned fitness 1, the second from the bottom assumes
fitness 2, and so on, up to the best individual which will have fitness p. In linearized-fitness
roulette wheel selection, thus, the probability of selection grows linearly from the bottom
of the population up to the top.

The £GP does not use fitness linearization because in it fitness is always ordinal, and
not cardinal, meaning that it is not the absolute value of the fitness that matters, but its
ranking among all the others.

An evolutionary process usually progresses through a first exploration phase, followed
by an exploitation phase. Exploration means that the search space is probed in several
distant regions, searching for promising solutions to the problem. As the survival phase
eliminates the worst performing individuals, and the best ones are preferentially selected
for reproduction, individuals cluster closer together, presumably near an optimum of the
fitness function. With the clustering of the solutions the exploitation phase ensues: more
and more individuals are generated around the optimum, presumably approaching it as
the evolution progresses.

In classical evolutionary schemes, the exploitation phase ends with convergence of the
individuals around the optimum. Convergence is defined for each gene in the population
as the situation where one allele accounts for more than a certain part (usually above
90%) of all the copies of the gene. When all genes have converged, so has the population.
There is premature convergence when this happens early in the evolutionary process, and
all the individuals cluster closely around a local optimum, usually far from the global one
and of poor quality. In the uGP the strict definition of convergence does not necessarily
apply (see below), but the concepts do.

The evolutionary core employs several mechanisms to preserve genotypic diversity
within the population. Diversity is important because it allows to undergo a longer explo-
ration phase, with a better probability of finding good regions in the search space. Even
more importantly, diversity is the primary means to escape local optimums and search for
better ones when convergence is reached.

79

5 — Evolutionary Computation

The most direct way to preserve diversity is the detection of clones, individuals geno-
typically identical to others already in the population. The uGP allows to scale down their
fitness by a given ratio .S and possibly keep them in the population, or to set their fitness
to zero, effectively exterminating them. When simple scaling is used the first individual
in a group of clones retains its fitness f, the second gets a scaled fitness f; = fS, the
third is assigned f; = fS2, and so on. The conditions for the fitness scaling to work are
two: first, S must lie in the range [0...1]; second, no individual should ever get a negative
fitness, otherwise even clones that are supposed to be exterminated would remain in the
population and be ranked better than those individuals.

In order to have a metric of population diversity the uGP computes the total entropy
of the population. The computation is performed by considering every vertex inside the
individuals, complete with the values of its parameters, as a symbol. Then, starting from
the frequency of different symbols, entropy is computed with the classical formula from
information theory. The contribution of every individual to population diversity in uGPv2
is computed while the total entropy is computed. The value of the entropy is computed
incrementally, adding one individual at a time. The difference between the entropy after
the symbols from an individual are added to the total message and the entropy before
that addition is the individual’s pseudo delta entropy.

The computed pseudo delta entropy can be used in the so-called entropy fitness hole.
A fitness hole is a probabilistic distortion of the selection process. In its original formu-
lation [34] it is a method to control bloating in evolutionary processes. Bloating is the
uncontrolled, and often undesired, growth in the size of the genotypes of the individuals.
The effects of bloating are two: the evolutionary tool occupies an excessive amount of
memory, and every fitness evaluation becomes computationally intensive. Bloating occurs
because during the evolutionary process some individuals appear, bigger than average,
that obtain a marginally better fitness with respect to the others. Most often a large part
of the genotype of such individuals is actually useless, but mutations that remove genes
from the individual are far more likely to disrupt its structure, and therefore to worsen its
fitness, than mutations that increase the genome size.

The original mechanism for the fitness hole is a direct way to counter this phenomenon,
modulated probabilistically. With a certain probability p, the selection criterion is not the
fitness, but the size. When two individuals are compared, the smaller one wins, regardless
of the fitness values. With probability (1—p), instead, the fitness is the selection criterion,
as normal. This does not really hamper evolution, because the best individuals always
remain in the population, and they can be selected as long as they are not pushed off.
In problems where the bloating phenomenon is severe, privileging small individuals may
not only save resources, but allow obtaining higher quality results, since evolution can be
carried on for a greater number of generations. The name fitness hole comes from the fact
that this mechanism represents a hole in the probability distribution for selection.

In the puGP, the fitness hole is used to enhance diversity in the population. With
probability e, an entropy measure is used as the selection criterion during tournaments.
In the uGPv2 this is the pseudo delta entropy. This mechanism favors the individuals
that contribute the most to population diversity.

Older releases of the uGP can only follow a plus strategy, that is a strongly elitist

80

5 — Evolutionary Computation

scheme. Elitism can be seen as the persistence of high fitness individuals in a population.
This has two aspects: the duration of this persistence, which in a pure elitist scheme is
infinite; and the number of long lasting individuals who belong to the elite (indicated as
elite size).

It is stated above that the comma strategy is preferred when the fitness function is
deceptive, and the plus strategy can be better when solutions show a complex structure.
The puGP features two mechanisms to tune its behavior from a pure plus strategy, as
originally developed, to a pure comma strategy. These are aging of the individuals and a
configurable elite size.

In the first mechanism every individual has a defined age, measured as the number
of generations elapsed since it first entered the population. After a certain number of
generations, individuals are removed from the population. Individuals die not only because
of bad performance, but also of old age. Aging allows to calibrate one aspect of elitism,
namely the persistence of elite individuals in the population. This enables the user of the
tool to choose how much elitism should be incorporated in a single evolutionary process. A
pure comma strategy is therefore obtained by setting the maximum age of the individuals
to one generation, whereas a pure plus strategy is used when the maximum age of the
individuals is infinite, or any number greater than the maximum number of generation for
the process.

Comma strategy, completely replacing the population between generations, also dis-
cards the best individual obtained during the process. To avoid losing the best solution,
two different modifications to the base strategy are possible. The first, minimally intrusive
one, is the addition of an auxiliary population. In this population the best individuals
obtained during the process are saved, in order to have them available at a later stage.
The auxiliary population in usually small, and in the minimal case it contains just a single
individual. The second mechanism is the creation of an elite inside the population. The
elite is the set of the first E individuals, after ranking by fitness. During the replacement
phase, the elite is retained, and only the rest of the population is discarded. In this case
the individuals in the elite remain available for further evolution. Usually also the elite
is kept small, possibly containing a single individual. Choosing the elite size again has
the result of tuning the effect of elitism in the evolutionary process. If the elite is very
small compared to the total population then the evolutionary process is allowed a greater
freedom in the exploration of the search space.

The pGP implements the concept of an elite as a number of individuals that do not
age as the generations pass. If a pure plus strategy is used in evolution, the concept loses
meaning, but it becomes significant as soon as individuals have a chance to die of old age.

Both mechanisms allow tuning the behavior of the tool from a pure plus strategy to a
pure comma strategy with many possible intermediate steps.

The core uses all the parameters described above to direct the evolutionary process and
optimize performance. Some of these are provided by the user and never changed, while
others are self-adapted to follow the various phases of the evolution. The self-adapted
parameters are the operator activation probability, the operator strength, the tournament
size. The user can specify an initial value for all these parameters, and can also specify
a range for the operator activation probabilities and the tournament size. Self-adapted

81

5 — Evolutionary Computation

parameters are also called endogenous parameters, since their value depends on the internal
state of the algorithm.

The activation probabilities are adapted based on their success rate. Success is mea-
sured classifying the newly generated individuals in five categories, that depend on whether
they are better than the best individuals, their parents or the last individual in the popu-
lation. The success index for every operator is computed as the ratio between the weighted
sum of the number of successful individuals and the number of operator applications in
the last generation. If an operator is successful, its activation probability increases, and
decreases if it is not successful. Since the operator probabilities should add up to 1, they
are normalized, and the actual variation may be different from the expected value.

Tournament size is also self-adapted based on success rates. In this case what matters
is the global success rate, not that of any single operator. If the current best fitness is
improved the tournament size is increased, if all individuals are worse than the last in the
population it is decreased, otherwise nothing happens.

Operator strength is adapted exactly as the tournament size. In case of success it is
increased, whereas in case of failure it is decreased.

The amount by which every parameter is adapted depends on a further parameter,
named inertia. Inertia is set by the user, not self-adapted, and should lie in the range
[0...1]. For every parameter a new target value is computed, and the actual new value is
computed as Ppey = aPpq+ (1 — @) Pigrget, where o is the value of the inertia. The larger
the inertia, the smaller the change in parameters from one generation to the next.

The uGPv2 has been used for a host of different applications, some of which very
different from its intended original field of microprocessor test and validation. It has
been used for polynomial approximation in the field of antenna array design, for function
generation, much like a conventional GP tool, and for generation of warriors for the
CoreWar game. All these activities allowed enhancing the tool, starting from a simpler
version than that described here, and adding many of the features detailed above. Over
the years, it proved very useful, and was the workhorse for many activities. However, this
extended usage also brought to light the limits of the tool.

1wGPv2 is able to handle only a single panmictic population. Support for any other
configuration would require significant coding effort. A multipopulation run is only ob-
tained by launching the tool several times and then merging the results. An island model,
that is a configuration comprising several independent populations but where at prescribed
intervals individuals, and thus genetic material, can migrate from one to the others, is not
supported. The fitness is not a general multiobjective fitness, since values are used in a
prioritized manner. In general, the most serious limitations were that many modifications
required a significant programming effort. The tool, though implemented in a modular
manner, was tightly knit together. Modifications and updates layered one on top of the
others, and the original structure of the tool became obscured by all these additions.

The decision was then reached to rewrite the tool from scratch, employing sound soft-
ware engineering concepts, with the goal of obtaining a solid, reliable and easily modifiable
tool.

82

5 — Evolutionary Computation

5.1.2 uGP3

The first activity for the new tool has been the development of its specifications. This
step is critical because both performance and computational capabilities depend on it.

The final decision for the functional specifications has been to make it open-ended.
The purpose for this is to allow experimenting with different configurations, involving
the evolutionary strategy, the structure and number of the populations, and so on. This
required flexibility suggested implementing the tool in library form. This means that a
lower layer of services useful for evolutionary activity is provided, and the high level layers
implement the actual evolutionary algorithm and its configuration.

One of the requirements was that the tool be modifiable with relative ease in several
of its internal mechanisms. It should be possible to define new evolutionary operators and
possibly modify existing ones to adapt the tool to new application fields.

It is required that the user is able to change the internal structure of the populations.
This can be useful to promote differentiation inside the population. A single panmictic
population tends to cluster its individuals close to each other in the search space, whereas
a geometrically structured population, such as a lattice, can develop subsets of genetically
similar individuals isolating them by distance.

The number of populations is also subject to change, since many problems benefit from
a multi-population configuration. Mechanisms for the transfer of genetic material from a
population to the others should be easy to define, to make actual island models possible.

Another desired point of intervention was the replacement policy. The choice between
comma strategy, plus strategy, steady state and possibly others is important to tackle
different problems.

Programming language choice constitutes part of the specification: in order to be
able to use as flexibly as possible the concepts made available by the library, these are
implemented using an object-oriented language. This choice allows, for example, to define
new evolutionary operators by simply writing a new class that inherits its main properties
from an Operator base class. Since evolutionary methods are typically CPU-intensive
the project should be implemented with a language that allows generation of efficient
executable code; on the other hand, no particular presentation (graphic or otherwise)
capabilities are needed, since the tool is to be used mainly from a command line. This
makes C++ the language of choice for implementation.

One of the earliest choices to be made was how the program interacts with the out-
side world. For portability reasons it has been decided not to make graphic capabilities
available, and stick to the command line interface, as in the previous version of the tool.
This choice is also coherent with the expected use of the tool as part of a larger problem
solving or optimization process. In this way it is easy to use the uGP from inside a script
that launches it repeatedly, changing some setting.

The absence of a GUI, and the large number of possible settings for the tool implies
that configuration files are extensively used. Portability of these files has been deemed
important, so XML with XSLT has been used. The constraint library, the general settings,
the settings for every population, and the settings of the log subsystem are all in XML.
The use of a standard language allows inspecting the files with graphical tools, such as

83

5 — Evolutionary Computation

web browsers, available on many platforms.

This choice has been extended to the intermediate files produced by pGP? at the end
of every generation to describe the internal status of the evolutionary algorithm, so these
also can be inspected. The internal status of the algorithm includes all the populations,
the individuals inside them, their fitness values, their ranking, the statistics for every
operator, and also the internal state of the random number generator. This is important
to allow resuming a process as if it had never been interrupted.

On the other hand, the use of XML is at least inconvenient for the files containing
the individuals, as they have to be syntactically valid for evaluation. In the case of test
programs, for instance, the XML description would have to be translated to assembly
language.

Lastly, fitness representation has been defined. The solution previously developed for
1wGPv2 has been preserved, that is to represent the fitness as a sequence of floating point
values, all on one line, separated by spaces and optionally followed by a comment string.
The number of values is set at the start of each run, and is equal for every individual
inside a population for the duration of the run. The number of values can, however, be
changed from one run to the next. This format never limited the use of the tool, and is
also suitable for multiobjective optimization.

The puGP? implements a layered architecture, built on the base concepts of tagged
graph (TG), constrained tagged graph (CTG) and constraints library (CL).

The goal of the layered architecture is to neatly separate base concepts, such as the
internal structure of the individuals and the details of the CL, from higher level concepts,
more directly related to the evolutionary method. Ideally the base classes will never be
modified, but those using them will, to reflect the shifts in underlying concepts.

The TG is the base structure used in the pGP3, providing the foundation for every
operation on the cultivated individuals. The constraints library describes the possible phe-
notypic content of an individual, as well as its structure. Constraints define the syntactic
appearance of wvalid individuals. The application of these constraints turns the tagged
graph into a constrained tagged graph.

The concept of individual lies upon the CTG, as a number of CTGs compose an
individual. In pGP? the Individual class, implementing the corresponding concept, is
meant to be the lowest level class subject to user modification. Modifications are foreseen
mainly to store additional data inside the individual, such as a hash signature or an entropy
measure.

Above the Individual class there is the concept, and corresonding class, of population.
This class is also subject to modification, since the activities of selection, mating, repro-
duction and survival are managed inside it. A population, in addition, is associated with
a set of applicable operators.

Finally, the evolutionary algorithm exploits the Population class. This class is one of
the most volatile, since it is expected that users of the tool will act mainly at this level to
change the operation of the tool.

The tagged graph is conceptually a directed graph, whose non directed version may
be connected or unconnected, in which every vertex and every edge owns at least one tag.
Every tag is identified with a name, unique inside every vertex or edge, and has a value.

84

5 — Evolutionary Computation

In this way information can be attached to every element of the graph in the most generic
possible way. Every element of a tagged graph has a name. Names of the vertices are
unique within a population, whereas names of the edges are unique within the set of edges
starting from a vertex.

The edges starting from a vertex belong to that vertex, so that when the vertex is
removed from a graph they too are removed. In addition every vertex stores a set of back
references, to track other vertices that refer to it.

The tagged graph, in itself, could take on any shape or content. In the constrained
tagged graph information is stored in a way that corresponds to the indications contained
in the constraints library. Every vertex is in direct correspondence with one macro in the
library, described below. The CTG uses tags to store information whose type is defined
in the constraints.

In 4GP? the CTG must be able to represent an assembly program, so its structure
reflects this fact. Every CTG is composed of a number of subgraphs, each of which
corresponds to a program subsection or function. Subgraphs are not necessarily connected
to the rest of the graph. Every subgraph possesses two special vertices, the prologue and
epilogue. Every vertex in the subgraph, except for the prologue and epilogue, has two
privileged edges, one going to the next vertex and one going to the previous. In this way
the subgraph forms a linear structure, able to match exactly the sequential structure of
an assembly program. The edges going to the next and previous vertices are distinguished
by the tags that contain the name of the edge. For instance, the edge to the next node
will have a tag asserting that the name of the edge is “next”. In this way it is easy to
distinguish the tags that represent te linear structure of an individual from those that
represent explicit references, such as jumps or references to data.

The CTG generalizes the concept of linear graph, first introduced in [33].

The individual in £GP? is a non empty set of CTG. This distinguishes conceptually
the new tool from the pGPv2, since to represent any possible assembly program one CTG
is enough. The use of a set of CTG allows representation of arbitrarily complex objects.
This feature has been used, for instance, in the evolution of test blocks for peripheral
test: the assembly part and the VHDL part of the individual were contained in different
CTGs. The dependence of the individual upon the CTG is not modifiable, since all the
evolutionary operators rely on this dependance.

It is worth noting that some modification to the Individual class may affect the higher
classes, as happens with the introduction of an entropy measure, or of aging. The entopy,
in fact, is used to alter the selection statistics inside the population, and the concept of
aging directly affects the evolutionary algorithm.

Operators act upon ordered sets of individuals to generate offspring, defined as an
unordered set of individuals. This definition generalizes the traditional mutation and
recombination operators. Input individuals are ordered to cater for operators that treat
them differently depending on their position as parents. On the other hand, offspring is
not necessarily ordered since the only operations new individuals must undergo before the
next generation are evaluation and ranking, and the order of generation is not significnt
for these.

Introduction of new operators or redefinition of existing ones is obtained deriving them

85

5 — Evolutionary Computation

from a base Operator class. Operator application is atomic from the point of view of the
evolutionary algorithm, and its outcome does not depend on the past history, but only on
the list of input individuals and on the value of the random seed.

The minimalist view for a population considers it just as a set of individuals, a pool
on which to operate. In the uGP3, however, a population is associated with the operators
that can be applied to its members, so it is natural to delegate operator activation to
the Population class. Also selection of the individuals for reproduction has to be done
by taking into account the possibility that the population has some geometrical or logical
structure.

In view of these considerations many activities have been delegated to the Population
class, even if they are, strictly speaking, part of the EA. Population manages all the
details in a generation, including the choice of operators to use based on their past success
statistics, the selection of individuals for reproduction, application of operators, aging and
survival of the individuals.

Operator activation probability is an endogenous parameter, so for adaptation a statis-
tic of past success is stored for every operator. This is taken care of by the Population
class.

The current release of the tool features a base Population class and two derived classes:
EnhancedPopulation and MOPopulation. The first implements all the features contained
in the pGPv2, including clone scaling and entropy fitness hole, whereas the second is used
to perform true multiobjective optimization, using the concepts of Pareto dominance and
subdivision of the population into levels. It is necessary to have a separate population class
because the use of actual multiobjective optmization changes radically both the survival
and the selection criteria.

One noteworthy modification with respect to the previous version is that in uGP3
the fitness hole uses a real delta entropy measure, instead of a pseudo delta entropy, in
both available population types. The entropy of the entire population is computed first.
Then, for every individual, the entropy is computed again removing the symbols from
that individual from the total message. The difference between the second entropy and
the first is the delta entropy of the individual. It exactly measures the contribution of
every individual to the total entropy of the population. The delta entropy of an individual
can be positive or negative.

Possible modifications to the Population class are several, starting from the population
structure. A panmictic population imposes no restriction upon the choice of individuals
to recombine, whereas in a lattice-based one the first one may be chosen at will, but
subsequent ones have to lie near the first one. Another aspect of parent selection is its
criterion: traditionally the most used one is some variation of roulette wheel selection
based on fitness, and a simple and successful alternative, used in uGP3, is tournament
selection. It may be useful, however, to use different criteria for parent selection, especially
to promote diversity within a single population.

Another possible modification for the population is the addition of a small auxiliary
population to store the best individuals generated. Generational strategies, such as comma
strategy, avoid premature convergence better than elitist schemes like plus strategy. On
the other hand they do not guarantee preservation of the best individuals generated. The

86

5 — Evolutionary Computation

auxiliary population serves as a repository of “officially dead” individuals that preserves
the best ones found. From this storage one or more individuals may be extracted and
reinserted into the population when evolution seems not to progress. This technique,
which can be seen as a variation of elitism, has been employed by practitioners in the
evolution of corewar programs.

In the new tool the evolutionary algorithm is a lightweight scheme that heavily relies on
the underlying classes and methods for operation. The main duties of the corresponding
class are to instantiate the predefined number of populations, associate all or only some
of the operators with them, execute the evolutionary steps.

In case an island model is used, Evolutionary Algorithm also has to manage migration
of individuals from one population to the others. The delegation of strategy implemen-
tation to the Population class also permits to have an island model in which not only
the population structure can be different among islands, but there can even be different
strategies, like comma and plus, within different islands, without affecting the general EA
scheme.

Although not strictly an evolutionary activity, this class also provides a regular dump
of the internal state to allow crash recovery.

The constraints library is conceptually separated from the evolutionary concepts and
classes outlined above; however, it is extremely important because its purpose is to provide
the transformation function from genotype to phenotype. Its implementation in the form
of a class that reads an external description makes the tool versatile. The fact that the
CL is specified externally is indeed one of the main strengths of the uGP3 tool.

It provides a synthetic descripton of the possible morphology of the TG, by constraining
at the same time the structure and the information that the graph can contain.

A CL is composed of macros, each of which can include zero or more parameters.
These are referenced inside the CTG by some of the tags associated with every element
of the graph. This indeed is what makes the tagged graph constrained: every parameter
in every macro has a legal set of values, which can be less than the whole value set for the
base type. Every vertex of a CTG is an instance of a macro in the IL, and part of its tags
materialize the content of the macro parameters, containing the actual value.

Macros are included in subsections, that describe the possible form of the subgraphs
of he individual. Every subgraph in the individual is mapped to a subsection in the CL,
but several subgraphs may map to the same subsection. Every subsection specifies the
minimum and maximum number of vertices allowed in the corresponding subsections, as
well as the allowed number of subgraphs that can map to that subsection. Subsections
may also be compulsory in an individual. In this way they are generated and dumped in
the individual even if they are never referenced. This mechanism is useful to generate, for
instance, interrupt handlers.

Subsections, finally, form part of the sections, whose purpose is to describe complete
objects. Every section in the CL describes the form of one or more CTGs in the individual.
Every subsection, every section and the complete library all specify a prologue and an
epilogue macro. These are always generated in the individual, and if they are ot needed
they may be left empty. This compositional hierarchy in the CL allows representing
arbitrarily complex concepts, not limited to assembly programs.

87

5 — Evolutionary Computation

The purpose of the fitness evaluator is the orderly recollection of the evolutionary
feedback for the tool. The presence of an implementing class is required to be able to
support the parallel fitness evaluation feature. The purpose of this class is to act as a
queue of individuals to be evaluated: when the queue is full, or when there are no more
individuals to evaluate, all the individuals in the queue are dumped, converting them into
actual code, and the external evaluator is run.

The external evaluator may in turn fork several processes, possibly on different ma-
chines, taking advantage of available parallelism in computation. This is, however, out
of the scope of uGP3. The only requirement from the tool is that the fitness values are
returned in the same order in which the individuals are dumped, since there is no explicit
correspondence between individuals and their fitness.

A number of details had to be taken care of when implementing ;GP3. These range
from down-to-earth choices to considerations regarding the computational capabilities of
the instrument, not just its performance.

It is worthwhile to give some consideration to the concept of equality between indi-
viduals: as an evolutionary algorithm exploits three different levels of description for an
individual, namely genotype, phenotype and fitness, there are three different ways to com-
pare individuals. Two individuals are genotypically equal if their CTGs are equal: the
graphs must be isomorphic and all the tags have to be equivalent. Tags can be equivalent
in two ways: tags that contain data have to store the same value; tags that represent refer-
ences have to refer equivalent elements of the CTG. Even if their genotype is different, two
individuals may give rise to equivalent phenotypes; CL macros can describe instruction
sequences instead of only single instructions, and it is not necessary that distinct macros
describe different instructions, so different macro sequences can be transformed into equiv-
alent code. Fitness comparison is conceptually much simpler, as the only needed activity
is the comparison of a series of floating-point values, possibly specifying some tolerance to
let the fitness be computed through some measurement. Currently the tool implements
the checks for genotypic and fitness equality.

Comparison between fitnesses is also necessary to perform population selection at the
end of every evolution step. The concept of inequality between fitnesses changes whether
single objective or multi objective optimization is pursued: in the first case a simple
lexicographic comparison fits the purpose, whereas in the second dominance is taken into
account.

An operator does not need to store an internal state, therefore conceptually all op-
erators should be implemented statically. However, all operators are applied through a
method whose name is the same for all: the “operator.generate()” method is necessarily
polymorphic. This means that operators have to be instantiated like a normal (stateful)
class, but instantiation may be considered an artifact imposed by the language.

An easily overlooked activity is crash recovery: it is essential to confer reliability to
lengthy runs, but also comes handy when the user wants to launch a new run starting from
the results already obtained. Crash recovery requires rebuilding of all the populations and
reloading of the corresponding operator statistics. The Evolutionary Algorithm class is in
charge of this, so it is advisable to take particular care when modifying this class.

88

5 — Evolutionary Computation

5.2 Populationless EA

Evolutionary computation is a very wide field, in which different and sometimes counter-
intuitive methodologies are proposed. One of these is the use of populationless evolutionary
algorithms.

Studies on populationless EAs have been undertaken since the first half of the ’90s,
when several researchers independently proposed the concept [38] [39] [37]. The theoretical
or practical reasons for giving up an explicit representation of the population are several,
but the resulting tools show striking similarities.

The concept has been explored within the CAD group [40] starting from the gene-
centric view of biologic evolution developed by Dawkins [35]. According to the selfish
gene theory, evaluation is performed on the individuals, but the real unit of selection
is the gene. The genes are considered the real replicators of the reproduction process,
as individuals, at least in the world of multicellular organisms, are never copied exactly.
Genes are successful if they are able to spread in the population, while individuals act
merely as vehicles for their reproduction.

A population, thus, can be seen as a pool of genes, in which the genes themselves
spread and reproduce. Individuals, on the other hand, are mortal and their reproduction
is not a replication: their genomes are lost with their death like hands of cards as soon as
they are dealt.

This view, rapidly absorbed in mainstream biology as a valid complement to the tra-
ditional view centered on the individual, has far-reaching consequences. For instance, it
implies that the well-being of the individual or its own reproduction are not important as
long as it is somehow able to promote the reproduction of its own genes. The selfish gene
theory provides insight in otherwise puzzling phenomena, such as altruism and general
behavior in social insects.

A new, modular architecture has been developed and implemented for the selfish gene
(SG) algorithm, first proposed in [40], to extend its applicability field to mixed integer
programming.

In the SG, an entire population is described by its first-order statistics. This means
that, for every gene, the frequency distribution of all its alleles is kept. This allows, in
principle, to describe an infinite population with a finite amount of information. This
population will of course not show an infinite variety of individuals.

Individuals are not explicitly stored in the population, but are generated probabilis-
tically only when they are needed for fitness evaluation, and discarded as soon as the
evaluation is performed. The generation of a single individual is equivalent to a random
sampling of the described population.

Evolution proceeds through discrete steps: individuals are first extracted from the pop-
ulation, then collated in tournaments and finally the winners’ offspring spreads back into
the population. This statistically mimics the biological phenomenon of gene propagation
in the population.

Since the fitness evaluation depends on the specific application individuals are pushed
to compete against each other in pairs. The winner of the competition gets the prize of
an increase of its alleles probability at the expense of the alleles of the loser. In this way

89

5 — Evolutionary Computation

it is not necessary to be able to assign a single fitness value to every individual, but it
is enough to be able to compare two individuals and determine which one is the winner.
This is a property of the SG algorithm that allows to broaden its application scope.

The concept of generation has been introduced in the SG algorithm. As in the stan-
dard GA, a fixed number of individuals is evaluated before any update is made on the
population. In the SG this means that the random sampling and competition are repeated
a fixed number of times before any frequency modification is performed. The frequencies
are then modified using the results of all the comparisons performed in the generation.

The generations themselves are repeated a large number of times. Theory holds that
initial random fluctuations in the genetic distribution induce a positive feedback phe-
nomenon, in which favorable allele combinations are rewarded over poor ones and become
more probable, further increasing the chance of being chosen and rewarded again. In this
way the algorithm converges to an optimum of the fitness function. As biological theory
suggests, while evaluation is performed at the phenotypic level, selection is performed at
the level of genes. And, since the selection process is guided, the linkages between the
genes are implicitly enforced, as the famous rower experiment from Dawkins shows.

The Selfish Gene algorithm employs random mutation to maintain diversity and avoid
being caught in a local optimum during the evolution process. Since there is not an explicit
population the concept of mutation is subtly different from its classical meaning. In this
context it means that, for every gene of a generated individual, there is a configurable
probability that its contents are chosen at random instead of following the statistical
representation of the population.

In the original implementation of SG, an individual is identified by its N genes, each one
occupying a fixed locus. Each locus [can be occupied by a certain number of alleles. Alleles
are indicated with al(i = 1...n;), where [is the locus and n; is the number of diferent
possible values for it. Each allele may appear more or less frequently into individuals
composing the population. Let pé be the probability of allele aé in the population.

After each competition, the probability of each allele belonging to the winner is in-
creased by a given amount, while the probability of each allele belonging to the loser is
reduced. For the sake of effectiveness, probabilites are stored in the original SG through
integer numbers. Let Kzl be the value stored for allele aé, the corresponding probability is:

! K!

_ 7

Allele probabilities are modified by adding or subtracting the constant value 1 to the
relevant K! . The strength of the feedback is defined indirectly by the value of summation
of all coefficient Kf

The approach used in the original SG is intrinsically inappropriate when the set of
alleles is not enumerable, like real values over an interval. Since the probability to select
a single point in the continuous set of possible values is 0, no number of generations could
be enough to sample twice the very same point. This makes it conceptually impossible
to obtain a meaningful modification of the frequency distribution of alleles by changing
it for single points. This consideration, among others, led to the decision to rewrite the
algorithm from scratch, employing a new, modular architecture.

90

5 — Evolutionary Computation

The new framework has been built with an extensible architecture to allow the use of
any type of gene in the population representation. The main aim is to clearly separate
the high-level evolutionary procedure from the low-level details of the implementation.

The architecture of the framework is hierarchical, centered around the concept of
population. The population is composed by a set of loci, each of which contains a gene.
Every gene can belong to any type. The frequency distribution of alleles is managed by
each gene, with the possibility of a different representation for each type.

Every gene representing an enumerable set is described by a discrete probability distri-
bution, while non enumerable sets are associated with a continuous probability function.
Every variable can have its own range of existence, independent of the other ones.

To make the evolutionary process independent from the implementation details the
exact mechanism for handling the frequency distribution is further confined inside specific
modules. The purpose of this isolation is to be able to change a specific module with a
different one without affecting the rest of the framework.

A similar but simpler architecture is employed to handle the explicit individuals: an
individual is composed of alleles, each of which may be of a different type, and finally
contains a specific value.

A modular architecture also allows to tune the behaviour of the algorithm just by
setting a few parameters; these are the strength of the feedback, determined by the total
area of the feedback function, and a form of viscosity in the feedback, given by its overall
width. The program may approximate a random-mutation hill-climber when the feedback
is very strong and a genetic algorithm when a weak feedback is used. A further advantage
is that the high-level details of the evolutionary mechanism can be freely tuned; this allows
to select the types and number of loci in a simple way, and made it possible to experiment
on the concept of generation, as outlined above.

As a preliminary approach to the problem it has been decided to represent real-domain
frequency distribution with an equal-interval histogram. Inside an interval the frequency
distribution is assumed to be completely flat. This is a coarse representation, but it has
been decided to neglect this point on the consideration that it is nearly always possible
to tune the number of intervals to cope with the ruggedness of the fitness function. The
use of a feedback function ff(x) makes evolution independent of the number of intervals
used.

To obtain a meaningful and effective update of the population while employing continuous-
valued genes, in the extended SG the statistical distribution of a locus is modified by adding
or subtracting an appropriate feedback function f¢(z). The function is centered in 2’ = z,
and 2’ = x; , the actual values of the winner and loser gene, respectively.

The chosen feedback function is

fr(w) = pe= Vi

It decreases rapidly near the center point but at the same time propagates the feedback
on a broad interval.

o« and (are constants over a single run and can be tuned to modify the feedback effect.
Since the gene values are defined on a limited interval while the feedback function has an

91

5 — Evolutionary Computation

infinite domain, renormalization of the probability distribution is necessary. If the fitness
landscsape is smooth enough this approach is perfectly adequate.

During the experiments it has been noticed that, at various stages of the evolutionary
process, random fluctuations of the population’s statistical distribution may occur. The
reason is simply that individuals are randomly generated based on the genes frequency dis-
tribution. In the basic scheme, two random individuals are compared, and the population
is updated following this comparison. Just two individuals, however, are a poor statistical
sample of a conceptually large population, and a decision to modify a big population based
upon such a small sample may lead in the wrong direction.

It has then been decided to increase the size of this sample, extracting a larger number
of individuals and obtaining the fitness information for all of them before any update is
done. This wider sampling of the population mimics the effect of generations in traditional
evolutionary approaches, where numerous individuals compete for selection, and all the
offspring undergoes the survival phase. In the prototypical tool this has been done simply
by extracting an even number of individuals, comparing them in pairs and storing the
result of this comparison for the later update. This is performed exactly as in the simple
scheme, but increasing the allele frequency for all the winners and decreasing it for all the
losers at the same time. The main point is obtaining a significant statistical sample from
a population before updating it.

Compaction of an infinite population into a finite statistical description loses informa-
tion. In particular, the correlation between the alleles occurring in an explicit population
is not recoverable from simple first-order statistics, and infinite possible populations exist
that can be represented by a single statistical description. It has been decided to neglect
this effect, since the theory tells us that the gene linkages are implicitly enforced by the
selection process.

One important advantage of the approach is that when an individual is evaluated and
its frequency in the population is altered the same thing is implicitly done on many other
neighboring individuals. In fact, if an individual is made more probable by increasing the
frequency of all its alleles, then all the individuals that, at least partly, share its alleles
also become more probable. This introduces a great deal of implicit parallelism in the
evaluation process and consequently in the evolution.

All this makes the Selfish Gene algorithm suitable for a different class of problems with
respect to a traditional, population-based evolutionary algorithm. Generally speaking,
being able to implicitly represent a very big population, the Selfish Gene allows fast
exploration of the research space. Due to the positive feedback that is established in the
evolutionary process, moreover, it is also able to perform a fast exploitation of an optimum.
Without mutation, however, the algorithm is likely to converge to a local optimum without
being able to leave it for a better solution.

A prototypical version of the framework has been developed in ANSI C, and comprises
about 3.8k lines of code. Currently two gene types are implemented: enumerable (i.e.,
integer or boolean) and continuous set of alleles (i.e., bounded real value). Following a
competition round the probabilities associated with the various alleles are modified. For
integer and boolean genes the alleles of the winners are rewarded and those of the losers
are punished by simply transferring a constant amount of probability from the latter to

92

5 — Evolutionary Computation

the former, and no other probabilities are modified. For floating point genes, instead,
probabilities are modified over a range larger than a single interval, as defined by the
feedback function.

In general for an evolutionary method real function optimization is a difficult task,
since the cardinality of the search space is huge. It is therefore interesting to observe the
behavior of the proposed algorithm with a varying number of real parameters over the
total.

To this end, several experiments have been performed to evaluate the effectiveness of
the approach, minimising a function with mixed integer and real parameters. The new
Selfish Gene implementation allows doing so in an easy and consistent manner, by simply
tuning a compilation parameter.

The function used is:

N-1 N-1
= > (0.140.018)z7 + Y (1 - 0.024) sin z;
=0 =0

€ [-10,10] xz; €N or z; €ER

This function has been chosen as a reasonable compromise between deceptiveness and
simplicity. Its global minimum cannot in general be found by a simple hill climber. Any of
its parameters can be configured as an integer or real number within a predefined range.

In these experiments the total number N of parameters has been fixed to 10 in order
to be able to perform several different experiments.

Real parameters make function optimization harder than integer ones for an evolu-
tionary approach. Convergence on the global minimum becomes slower as the number of
real parameters increases. On close examination of the results it has been found that the
greater complexity of real parameter optimization also affects the convergence velocity of
the integer genes. With 20% real genes the integer genes converge to their final value
after less than 44,000 fitness evaluations, while with 50% real genes this happens after
nearly 77,000 evaluations. When the real genes are 80% convergence of the integer genes
is achieved earlier, but they are very few so the result is not statistically significant.

For comparison, a pure random search has been performed using the same fitness
function and mix of integer and real parameters as detailed above.

Random search does not undergo significant performance variations with a varying
number of real parameters over the total. This can be expected since a random search
does not use any information about the problem structure. It performs significantly worse
than the Selfish Gene algorithm, being both unable to reach a comparable fitness level
and to approximate the optimum value within the given number of fitness evaluations.

The observation of the evolution of probability distribution for the first real gene is
interesting. The initial probability distribution is completely flat. After 33,000 generations
the distribution possesses two maximums, a broad one near —1.8, and a narrow peak near
2, caused by the existence of a local minimum near it. As the evolution progresses the
secondary peak shrinks, until it ultimately becomes negligible. The actual minimum of
the fitness function (about —1.3), meanwhile, becomes ever more probable.

93

5 — Evolutionary Computation

Another interesting issue is the effect of the generation concept on the performance of
the algorithm. To see it a few more experiments have been performed, fixing the quota
of real parameters. Using the concept of generation allows better convergence of the
algorithm in the initial phases of the evolution, but can have a detrimental effect in later
stages. A generation size of 10 pairs of individuals has a small effect on the performance,
while using 100 changes drastically the behaviour of the tool.

This may be interpreted in a conceptually simple way: in the early stages of the evo-
lution, when the gene pool is still unpolarized, a large generation size allows a statistically
significant sampling of the search space, making it possible to update the population in
a promising direction; later on, however, the big inertia introduced makes population
modification slower, thus hampering performance.

5.3 Local Analysis

In order to gain a better theoretrical understanding of the evolutionary processes used
a local analysis has been performed on a simple evolutionary tool. This is the same
incremental tool used in 3.1 to enhance the diagnostic power of the program set. The
tool, though simple, is peculiar in some of its characteristics, so it deserves a separate
discussion.

The goal of the tool is to enhance the diagnostic capability of a set of very simple
programs, the spores, obtained first through a decomposition phase and then filtering
them. The spores follow a fixed and very simple scheme. First the values of the program
status word and of the input operands are set, then the feeder istruction is executed, and
finally the results are propagated to the processor’s ports.

The evolutionary process starts using the reduced set of programs as its starting popu-
lation. The only allowed operators are mutations, when possible small ones. The operands
can be modified by adding or subtracting 1 or 2 to them, or by toggling a single bit. The
operator can be changed to a different one with the same length and operands. Mutations
can affect one single operand or the operator, but not both.

Recombination is entirely avoided, both to keep the tool simple and to avoid disrupting
the fixed structure of a spore. Modification of the structure may have the undesired
side effect of making the program dependent on the processor state at its beginning,
since initializations may be lost due to the random nature of recombination. Also result
propagation may be affected, making the program less effective.

The rationale for using only small mutations is that very similar spores are supposed
to cover similar fault sets. A small difference between the covered fault sets directly
translates to small equivalence classes (ECs) during diagnosis. Proving the correlation
between small spore differences and small differences in coverage directly validates the
diagnosis methodology.

The operand mutations can be claimed to be small, since either the arithmetic distance
or the hamming distance between parent and offspring is kept small, but mutations in
the operator may not have small consequences. Nevertheless, it has been decided to allow
them on the basis of two considerations. First, they can actually add value to the diagnosis

94

5 — Evolutionary Computation

process. Mutations in the operator can allow reaching regions in the operand space that
would never have been explored changing only the operands for a given operator, but
that are traversed for another, compatible one. Second, it is not so trivial to decide what
is a small operator mutation. Some imply changing the target processor block, so they
may safely be disallowed, but for others the situation is not clear. For simplicity and
effectiveness considerations it has been decided to leave all these mutations in the process.

Conceptually, every newly generated spore is fault simulated to obtain the correspond-
ing set of covered faults, even if this is actually done only when needed. The fitness function
for each new spore is the number of new equivalence classes produced. A spore is discarded
only if its fitness is 0, meaning that it provides no new diagnostic information.

A fitness function defined in this way is dynamic, since it depends on the already
existing population. In fact, every spore, taken alone, defines a partition of the fault
universe. Whether or not that partition further splits the fault universe depends on the
currently existing ECs.

Spores are evaluated only once during the process, and never reevaluated. If they
are discarded, they will never enter the population, but once accepted they are certainly
retained in the final set. This also means that the order in which spores are produced is
significant, since their ability to split older classes in general will decrease.

From an evolutionary point of view, thus, the approach is peculiar and interesting.
First, it evolves one individual at a time, but its goal is that of producing a population
of diagnostic programs that collectively split the fault universe in as many subsets as
possible. It is thus hybrid in nature, as it evolves a population through the addition of
single individuals. Indeed, the evolutionary operators manipulate single individuals, and
the fitness is computed for every single spore, but its dynamic nature reflects the final
goal. At the end of the process the population will not necessarily be minimal. This is not
a requirement for the process, and if necessary a final sifting phase may be performed. It
is also worth noting that, although the goal is the evolution of a population, there is no
competition between different populations.

A very low selective pressure is needed for the process, for two reasons. One is that the
fitness is dynamic. One implication of a dynamic fitness is that, once computed for a given
individual, it progressively loses meaning as other individuals are added to the population.
Another is that the first individuals added to the population will probably have a higher
fitness than later ones. It would therefore not be reasonable to enforce selection schemes,
such as a roulette wheel, based on fitness. The other reason is that the population in
this case grows indefinitely, as long as the memory space allows it. No individual is ever
discarded from the population, so there is no need for competition among individuals.
The simplest available alternative is to entirely suppress selective pressure, giving every
individual an equal chance for reproduction.

This also matches well the final goal, which is to evolve a population able to finely split
the fault universe, without the need for well-performing individuals. Indeed, whether the
definition of best individuals is those that cover the most faults, or those that split the
fault universe in the greatest number of ECs, it is not particularly useful to concentrate
evolving them. To be diagnosed, faults need to be covered (or not covered) by them in
different ways from other faults. Concentrating only on a few individuals limits the sets

95

5 — Evolutionary Computation

of covered and uncovered faults to those covered by them plus a small additional set,
because their offspring will be very similar to those individuals. The hypothesis, however,
is that very similar individuals cover similar fault sets. Additionally, a spore has a low
fault coverage, meaning that similar spores will leave a large set of faults uncovered, and
therefore undiagnosed.

The main tenet on which the evolutionary process is based, that is, very similar spores
cover very similar fault sets, has to be proved. The most direct metric to compare two sets
is the hamming distance between their binary representations. Each set associated with a
spore is represented by a sequence of bits, one for each fault in the processor; a bit is one
if the spore covers the fault, and zero if it does not. The hamming distance between any
two such representations gives the number of faults that only one of the spores covers. It
does not tell the complete diagnostic properties of the two programs, but gives an upper
bound to the size of the smallest EC that they alone can produce.

For diagnosis it is desirable to have small, but not zero, hamming distances, because
this means that two programs cover almost, but not exactly, the same programs, and
define small ECs.

To perform analysis an initial set of spores has been selected. These are chosen to
represent all the possible instructions in the processor’s ISA. For every one of them an
exhaustive set of mutations has been performed, generating all possible offspring for every
member of the initial set. Every new spore has been fault simulated, obtaining the covered
fault sets. The main difference with the process described in section 3.1 is that, to keep the
analysis as independent as possible from the actual problem, only a coarse fault simulation
is performed, gathering just pass/fail information. After the fault simulations the hamming
distance between every new coverage and that of the parent spore is computed.

The spores are grouped based on the functional module of the processor they tar-
get. For every group the averasge fault coverage, the average hamming distance and the
standard deviation of the hamming distance are computed. The results are in general as
expected, with some noteworthy points.

As is shown in table 5.1 the average hamming distances are significantly smaller than
the average fault coverages for the group. This confirms that a mutated spore generally
covers almost the same fault set as the original spore, but not exactly the same.

A very interesting, and important, point is that the standard deviation in the hamming
distances for these sets is large, and comparable to the average hamming distance. This
means that the distribution is very dispersed, with a large number of different values.
Many different values in the distribution imply a good fragmentation of the fault universe.
One possible scenario, in fact, is that many mutated spores cover the same fault set as
each other, although they cover different faults from the parent one. This possibility must
be ruled out if the methodology is to be of any real effectiveness. A similar scenario would
imply a small number of different hamming distances in the distribution, represented
graphically by a few very high and narrow peaks. In contrast, the actual distribution
features a large number of different values, and no single values with very high frequency.

A small but non negligible subset of the offspring features zero hamming distance,
meaning that those spores cover the same faults as their parent. These are useless for
diagnosis. A large part of the offspring has a little hamming distance from their parent,

96

5 — Evolutionary Computation

presumably providing the best contribution to the diagnostic process. Finally, there is a
part of the offspring corresponding to very high hamming distances. These spores may
also contribute to diagnosis, but they may generate small ECs only in conjunction with
other spores. The origin of these high distances may be the mutation of the opcode in the
feeder instruction. This mutation can, as seen above, change the target module, drastically
modifying the fault coverage for the original target.

Functional Average Average | Standard
module fault coverage | hamming distance | deviation
Multiplier 356 210.11 141.28
Divider 360 118.22 100.05
ALU 604 44.80 54.89

Table 5.1. Results of the analysis

In table 5.1 results are summarized for three different processor modules. It can be
seen that the statistical properties of the offspring may change significantly, but there is
always a strong correlation between the average hamming distances and their standard
deviation. This fundamental property allows achieving good diagnostic results.

The best results are obtained for the ALU. In this case there is the greatest probability
that mutation of the opcode does not change the functional module involved, since many
operations share the same hardware.

In the end, it can be said that the analysis performed proved the main assumptions
behind the simplified evolutionary process described in 3.1 are justified, highlighting at
the same time the existence of some small but significant exceptions, whose overall value
is not necessarily negative from the diagnostic point of view.

5.4 Games

The games field is seemingly very far from either CAD or evolutionary computation.
Indeed, game theory is mainly concerned with the analysis of the mathematical properties
of different game types, such as deciding whether a two-player game is an always winner
or an always drawer.

The first phrase denotes games where the first player to act can follow a strategy that
will always lead to victory, no matter how the second player counters the actions of the
first. The phrase always drawer, in contrast, indicates a game where the second player
can always obtain a final tie result. For completeness, the category of always loser game
should exist, but in this case the first player has always the option of not entering the
game in the first place.

Game practice, on the other hand, is more concerned on the actual development of
strategies and tactics for a particular game. It may be of little value knowing that a game
is an alway winner, in fact, if one has no idea how to achieve victory.

One activity that links games with evolutionary computation, then, is the artificial

97

5 — Evolutionary Computation

evolution of strategies for a given game. Depending on the game, a strategy can take on
many different forms.

Interesting games offer a large range of possible game scenarios. Ideally an evolved
strategy has a fitness that depends on how it fares when confronted with all these scenarios.

The same choice, followed in two slightly different situations, can have very different
outcomes. Using chess as an example, changing the position of a single piece on the board
can turn a winning move in a disadvantageous one. This suggests that the fitness function
for a strategy can be a deceptive one.

For practical reasons it is not generally possible to evaluate a strategy in every possible
situation. Even if the set of game situations is in principle finitely enumerable, its cardi-
nality can be simply excessive for actual evaluation using limited computational resources.

If it can be difficult or impossible to evaluate exactly a single game strategy, evaluating
all possible strategies may be absolutely prohibitive. In the absence of proven methodolo-
gies to build these strategies starting from the properties of the game, a player is forced
to stick with a good enough strategy, without being sure it is the optimum one.

In these two characteristics the game field resembles the CAD field. In both cases
it may not be simple to build a good solution to the problem using simple techniques.
Apparently small changes to a solution can lead to large variations in its final quality.
Finally, it may not be feasible to search for an exact solution to the problem. In this case,
a trade off is usually struck between computational effort and quality.

Games can then be a good benchmark for an evolutionary tool, even if it has been
developed emphasizing its application to test program generation. The advantages of
games are two. First, as seen, they provide problems of comparable complexity with
respect ot CAD applications, so the enhancements obtained in one field can be applied to
the other. Second, games offer a competitive environment to evaluate the methodological
improvements. In games solutions are customarily evaluated comparing one against the
others, so even small differences in effectiveness can be readily detected.

One particular game, that makes a particularly good match to test program generation,
is corewar [41]. It is a very peculiar game where two or more programs fight in a virtual
computer memory. Programs are written in an assembly-like language called redcode and
run on a virtual machine named memory array redcode simulator (MARS). The memory
in MARS, also called core, is organized as a circular array, so that there are no absolute
addresses but only relative offsets.

The instructions available in redcode are few, but with a vast array of addressing
modes, including immediate, indirect, self-postincrement indirect, and so on. Indeed, it is
computationally a rather powerful language. The final goal of a redcode program, however,
is not to compute something useful but to win a competiton.

Programs are executed in a time-slicing style, one instruction at a time each. Every
program may be composed of different threads; to ensure a fair competition the MARS
always gives each program, and not each thread, an equal amount of time. Having multiple
threads means being able to perform more operations, but at a slower pace.

A program wins if it causes all processes of the opposing programs to terminate,
remaining in sole possession of the machine. This is eventually accomplished by overwriting
the opponents’ code and making them execute an illegal instruction, either directly or by

98

5 — Evolutionary Computation

jumping to a location containing it.

When a thread executes an illegal instruction it is removed from the execution list; to
seriously kill a program all of its threads have to be removed from execution, and this is
definitely not an easy task.

In the past years, researchers and amateur players developed impressive programs and
subtle strategies, most labeled with evocative names such as scanners, vampires, dwarves,
stoners. Redcode programs are commonly called warriors, stressing the aggressive nature
of the game.

Common strategies to defeat the adversary include laying bombs on the core, which
means writing illegal instructions at some location; capturing the enemy instruction flow
inside useless routines, thus slowing their operation; jumping right inside the other pro-
gram’s code, effectively becoming a second copy of that program. On the other side, to
avoid enemy attack many warriors are written small, sometimes giving up some of the
flexibility that a longer code allows.

Corewar contests are called hills. When a new program is submitted to a hill, it plays
G one-on-one games against each of the N other programs currently on the hill. Each
warrior gets s,, points for each win and s; point for each tie. Warriors already present on
the hill do not rematch one against each other, but their old scores are recalled. Finally,
all programs are ranked from high to low and the last one is pushed off the hill. Thus, as
long as a program is present on a hill it can get to the top as the result of a new challenge.

Several hills are currently maintained on the internet. Different hills accept different
redcode styles, where the instruction set or program length may change. Games are
run with different parameters on different hills. It is customary for corewar servers to
offer a choice between different core sizes. The number of matches, maximum number of
concurrent warriors or scoring systems may also change.

The dimension of the MARS memory, or core size, profoundly influences all strategies,
and is probably the key parameter. The most common core size is ¢ = 8,000, followed by
c = 8,192, ¢ = 55,400, and ¢ = 800.

The oldest and most famous server is simply named KOTH [43] and still hosts seven
hills with different settings. However, the hardest hills at the time of writing are on a
server called SAL [44], run by the Department of Mathematical and Statistical Science of
University of Alberta, Canada. Differently from other hills, the source code of warriors
posted to SAL is not visible to all users, and authors who are not willing to expose their
strategies send their latest warriors to this server only, contributing to make the challenge
very hard.

All hills with a core size ¢ = 800 are called tiny, and usually do not accept warriors
containing more than 20 instructions. Tiny hills are commonly targeted by evolutionary
tools and other automatic optimizers, since the program length allows a certain flexibility
while the search space is not huge.

Interestingly, before the tiny hills were introduced, corewar was investigated mainly by
humans, writing programs according to strategies set out in advance. However, as happens
with other games, such as go, changing the space available to the players effectively turns
one game into a fairly different one. Strategies devised to play effectively in a big core do
not necessarily fare well in a tighter environment.

99

5 — Evolutionary Computation

In theory, a hill with a reduced core is where humans should achieve the best perfor-
mance, since they can take into account a very small number of independent elements while
planning, but have a fairly deep understanding capability. On the other hand, the reduced
size of the search space also encourages the use of automatic optimization methodologies.

The tiny hill has been the subject of a previous and separate work in games [42], also
with the purpose of eventually enhancing the performance of the evolutionry process in
tet program generation.

Nano hills are played by exceptionally short warriors, composed by 5 or less instruc-
tions. Contests in this case take place in a reduced memory space of 80 locations. The
restrictions in the number of child processes and execution time are also tighter than in
the common and tiny hill.

These characteristics make these hills even more attractive for users of evolutionary
methodologies. First, the small size leads to a search space that is smaller than that
associated with other hills, while still too large to make an exhaustive search practical;
this leads to the interesting situation where an automated method to generate the warriors
has a chance to perform a significant sampling of the search space, but still needs to use
some heuristics to avoid getting lost.

Automated methods are not all the same, however; the usual metric for a corewar
warrior is the outcome of its confrontations against other warriors: this not only depends
upon the exact composition of the hill, but is also a strongly nonlinear function of the
warrior’s parameters. Simple hill-climbing does not guarantee to find good results. Evo-
lutionary methods, with their ability to perform both an exploration and an exploitation
phase during the search process, can be suited for the task.

The activity has been performed using the pGPv2 tool, and has led to two specific
improvements. These are the safe crossover and the scan mutation.

The tool has been augmented, in a separate activity, with an assimilation tool, able
to translate existing test programs into pGPv2 individuals. The purpose of this tool is
allowing to further evolve hand written programs, supposed to be already very good. This
technique can also be applied successfully to corewar programs.

Recombination is certainly an essential operation in an evolutionary methodology;
however, its implementation in early releases of uGPv2 relies on the concept of graph
core to avoid disrupting the structure of the individuals. The small size of programs
leads most of the times to graph cores that are as big as the entire individual. This makes
crossover decay in either a swap of the two individuals, which is useless, or a concatenation,
which often produces individuals that exceed the 5 instruction limit for the nano hill. The
purpose of the safe crossover is being able to cut through the graph cores of the individuals
and correctly joining the obtained sections.

Warriors for the nano hill are very small programs, whose functioning depends strictly
upon the exact values of all their constants. It makes sense, then, to be able to fine-tune
any one of them in the search for an optimum. Even if a local mutation already existed,
the strong nonlinearity of the fitness function made a long range search more effective.
The scan mutation answered exactly that need, allowing to find the (local) best value for
a given parameter, even when the fitness function is very rough.

The fitness function plays a fundamental role in every evolutionary approach. Fitness

100

5 — Evolutionary Computation

must be able to lead the evolution toward the desired goal, or at least away from the less
promising region of the search space.

However, due to the peculiar rules of the hills, defining such a fitness function is not
easy. Once a certain program has entered the hill, its author can help it by submitting new
warriors designed to lose with the first one and struggle reasonably with all the others.
Maybe such a warrior is instantly pushed off from the hill, but as a result of its challenge
the first program improves its position.

This is a fairly standard practice among expert redcoders and it is considered perfectly
acceptable. As mentoned above, the source code of warriors on SAL is not available, and
a great amount of expertise is required to exploit such team work between programs.

The problem of devising a fitness function is also hardened by the fact that good repos-
itories of strong warriors for the nano hills do not exist. This lack also affects negatively
the assimilation technique.

Four different fitness functions have been implemented for the purpose of the experi-
ments. Three of them are based on the warriors downloaded from the koenigstuhl infinite
nano hill [45], whereas the fourth relies on an endogenous approach.

The publicly available warriors compose what is called a reference hill. They are a
reference because the effectiveness of generated warriors is often measured against this
static set of warriors.

The first fitness function, in the following referred to as fitness A, simply measured the
points earned by the warrior against all programs in the reference hill.

This function can be highly ineffective because, unlike those on the tiny hill, the
warriors taken from koenigstuhl infinite nano hill were not competitive, and as a result
evolution may be biased. Another source of ineffectiveness in this approach comes from the
risk of overspecialization: the search may lead to a warrior that only compares favorably
to the warriors in the reference hill, but not against other ones. This risk is common to
all approaches that use a reference and lowers as the size, or rather the diversity, of the
reference hill increases.

For the second fitness reference warriors were ranked and partitioned into 5 different
sets according to their relative strength. The points earned by the warrior against pro-
grams in different sets were considered separately, and the 5 contributions were used as
terms of strictly decreasing importance for the fitness.

The idea behind this approach is to favor warriors able to compete well with strong
warriors. However, the ranking is able to measure only the relative strength. Since these
warriors are not a significant sample of the SAL nano hill the approach could be useless
if the purpose is entering the latter hill.

In the third approach reference warriors were ranked, and the points earned by the
generated warrior against all programs were weighted considering the relative strength of
the opponent.

The idea behind this approach is analogous to the previous fitness, as are its draw-
backs. However, in this case the distinction between reference warriors is not fixed and an
erroneous classification for some of them could be less deleterious.

Further experiments have been performed with a totally different, endogenous ap-
proach, referred to in the following as fitness D. The process in this case started from

101

5 — Evolutionary Computation

scratch, with 20 random warriors that only serve as a starting point. These initial war-
riors compose the first reference, and are replaced as the evolutionary process advances.

The evolutionary tool is used to produce warriors that maximize their performance,
using fitness A, against these random warriors. The best 20 warriors of the obtained
population are then substituted to the existing reference warriors, and the process is
iterated until a predetermined timeout.

The use of an endogenous approach allows to avoid overspecialization, but requires
a greater computational effort to obtain results, as the warriors have to be coevolved
together with their reference.

Four different experiments have been run, using the different fitness functions. The
first three experiments used a population of 300 individuals, applying 200 evolutionary
operators at each generation. The delta entropy fitness hole was set to 100% to promote
diversity. Evolution continued until a steady state was detected, and lasted approximately
one day each on a AMD-K7 with 1,024GB of RAM, running Linux.

The fourth, different, experiment has been run using a larger population of 1000 indi-
viduals, using 1000 operators per generation, and took about three days to complete.

It is worth noting that some experiments had been performed before the new evolu-
tionary operators were available, but none of them led to a satisfactory warrior. Indeed,
none of the obtained programs was even able to enter the hill.

Exploiting the two new operators and the first fitness, the evolutions of warriors follows
a distinctive trend. In the early generations the warriors are composed basically of SPL
instructions. Such programs replicate themselves into the core (SPL stands for split, and
is the instruction for spawning a new process), with no aggressive strategy. Then, some
DJN (decrement and jump if zero) instructions appear. Finally, the population is invaded
from warriors composed of SPL, MOV (move) and DJN, performing a core clear, i.e.,
systematically writing illegal instruction on the core.

Warriors evolved using this fitness were all called Bob. The first one entered the hill
at the 6th position, and later managed reaching the 4th with 155.3 points.

;redcode—nano

;name Bob v2.1r1.7408

;author The MicroGP Corewars Collective
org START

START:

mov.i <-30, $-9

spl.a #-36, >18

mov.i >-14, {0
mov.i >-29, {-2
djn.f $-2, $-3

Interestingly, submitting a newer Bob (Bob v2.1r2.6680) produced the team work
mentioned above, pushing the first Bob to the 4th position.

Far more interestingly, although less productively, using the second fitness and the
assimilation process, the uGP cultivated a series of warriors named Onions.

102

5 — Evolutionary Computation

;redcode—-nano

;name Crazy Onion I

;author The MicroGP Corewars Collective
org START

START:

spl.f #23, >57

mov.i >-1, {42
mov.i >23, {72
mov.i {40, {-3
mov.i {25, {50
end

Crazy Onion I is composed of an SPL and 4 MOV instructions. It tries to cover the
core with bombs at the maximum available speed. Since the nano hill parameters allow
only 5 child threads, the SPL instruction is critical, and if it is hit the warrior is defeated.

And according to Zul Nadzri, a very expert corewar practitioner and quite a recognized
player, Crazy Onion I is almost identical to his Polarization 05, the KOTH of the nano
hill at the time Crazy Onion I was submitted. However, no warrior of the Polarization
series was assimilated by the pGP since their source code is kept secret by the author.
The reason for the large performance gap between the two is the marked dependence on
the exact parameter values.

Crazy Onion I was thought to be able to survive long on the hill, but has been subse-
quently removed.

More interesting results were produced using the third fitness and not exploiting as-
similation. Warriors cultivated in these experiments were named from small animals, real
or inspired by real living beings. The first one, Paedocypris horridus, is shown below.

;redcode—-nano

;name Paedocypris horridus

;author The MicroGP Corewars Collective
org START

START:

spl.x #-5, >41

mov.i #37, <2

mov.i {-1, {-2

mov.i >-20, {23
djn.f $-3, <31

end

Before submitting it, all other uGP generated warriors were removed to avoid the team
work effect. Paedocypris horridus scored 155.9, ranking 2nd on the hill.

It’s quite hard to understand why Paedocypris horridus won, and kept on winning.
According to corewar experts, it lays a carpet of MOV instruction from 20 locations away
which eventually combines with the main program, overwriting the DJN instruction, and

103

5 — Evolutionary Computation

creates a 23 line long warrior (a SPL followed by 22 MOVs). This greatly increases the
proportion of time available for bombing with respect to the total. Some of the threads
execute the newly created code, resulting in a more effective bombing, and making it more
difficult to Kkill.

The warriors generated using the fourth approach have been named as fancy animals.
In about three days of computation, a warrior, named Foggy Maus, has been produced
using the fitness D. Its structure, reported below, resembles that of Paedocypris horridus:
a split followed by three mov and a djn. However, all constants have different value.

Interestingly, these give the warrior a great versability: Foggy Maus, first entered the
hill at the 5th position and has been subsequently pushed to the top of the hill, where it
resisted for more than 20 challenges.

;redcode—nano
;name Foggy Maus (beta)
;author The MicroGP Corewars Collective

org start
start:

spl.a #-35, <35
mov.i >-24, {-1
mov.i >-21, <33
mov.i @-5, {-8
djn.i $-1, <50
end

Another warrior generated by the uGP, named Muddy Mouse, has been submitted to
the SAL nano hill. The couple perfectly illustrates the difference between winning against
a hill and remaining inside it. Indeed, Foggy Maus has ranked higher than Muddy Mouse
for a long time. As more warriors have been submitted to the hill, however, the two
positions reversed, and finally Foggy Maus was pushed off the hill, while Muddy Mouse
resisted and is still, at the time of writing, on the hill.

At the time of writing the two warriors generated using the uGP detain the record for
the two longest lived warriors on the SAL nano hill.

104

Chapter 6

Conclusions

The activity performed has been quite a diversified one. The fields of system test, processor
diagnosis, system hardening have been approached with the goal of defining a series of
methodologies to solve existing problems. Evolutionary computation, first used as a mere
tool to automate the activity, has been subsequently explored as a stand-alone field.

All these fields, apparently disjoint, are actually linked together. The activities of test,
diagnosis and hardening all contribute to system reliability. While hardening of a system
is one of the design goals, test and diagnosis can be seen as part of the design process
itself.

Methodologies developed for test can be used for verifying intermediate design steps,
enhancing the confidence that the final product meets its requirements. From the point
of view of the user, test guarantees the first part of system reliability, that is its correct
functioning.

Diagnosis enters the design process in a different way, providing feedback about the
most frequent failure mechanisms. Using that information, designs can be updated to
lessen the effect of marginalities in the manufacturing process or in the design procedures.
Diagnosis is used to improve production yield, and by reflex reliability.

Hardening is performed to allow using a given system in environments where it could
not operate correctly in its basic form, or to decrease the probability of its failure below a
target value for safety-critical or mission-critical tasks. The purpose of hardening in many
cases is to directly increase reliability.

Evolutionary computation is one of the possible tools to automate these activities.
Accomplishment of the goals in system testing, diagnosis, and hardening with manual
methods is possible, but it requires a deep knowledge of the system on which these activities
are performed, as well as a large amount of labour.

The focus of all CAD activity has been the development and use of software method-
ologies for the test, diagnosis and hardening of programmable systems, with particular
emphasis on microprocessors and microcontrollers. The techniques are meant to be as
general as possible, even if they have all been applied to specific systems and refined using
them.

In the field of test the activities performed are aimed at several purposes: improvement

105

6 — Conclusions

of the automatic tools used for test set generation, definition of a general methodology
for incoming inspection and stress test of processors for automotive applications, test of
peripheral cores inside a SoC, reduction of test application time for a particular class of
software methodologies.

The enhancements in the automatic tool have actually been continuous, and trace a
path from the first prototype to the latest revision that is much longer than the activity
presented above. The end result is that the tool is certainly able to add content to a
qualifying test campaign, covering possible use cases that the manual methods do not
account for.

A methodology for incoming inspection can only be evaluated from a functional point
of view. By definition, the user of a device does not have detailed structural information
about it, so no fault coverage can be computed. Nonetheless, the methodology defined
takes into account microprocessor features that are now commonplace, but are not con-
sidered in more traditional software-based methodologies.

Peripheral test is as important, to ensure correct system operation, as microproces-
sor test. However, it has been traditionally considered an easy task, not deserving spe-
cial efforts. But when these peripherals are integrated in a SoC, traditional approaches
may become ineffective, due to the reduced accessibility of the peripheral. The proposed
methodology uses the computational power of the processor to apply the test to the periph-
eral core, and is able to reach coverage levels comparable to those obtained on processor
cores. Additionally, in its last version, it is mostly automated, reducing human effort to a
minimum.

It has been demonstrated that test application time can be reduced for a certain class
of test programs without significantly increasing their complexity and size. The general
problem of test program compaction, however, is very far from solved, since the adopted
methodology is very specialized.

In the field of diagnosis there is a main goal driving all activity. This is the reduction
of generation and application costs for a diagnosis set, while improving its effectiveness.

The adopted methodologies all comprise three steps: the decomposition of an ini-
tial test set, the filtering of the program set obtained from the decomposition, and an
improvement phase using an evolutionary tool.

In one case the goal is diagnosis of single stuck-at faults inside a processor, with the
purpose of providing detailed information about the existing faults to the manufacturer.
This information is then meant to be used in subsequent design revisions, to improve yield.

In another case the methodology is targeted towards statically reconfigurable archi-
tectures. In several applications the size of a silicon die is determined not by the area of
the circuit, but by the number of pins. In these cases, backup resources can be put on
otherwise useless silicon, and used to repair a faulty device at the end of production. In
this case, it is not necessary to diagnose single faults, but only to isolate the module in
which a fault lies. The detailed methodology has been demonstrated effective for a large
percentage of faults.

The activity in system hardening had the purpose of improving the reliability of a
processor-based system, being at the same time as unintrusive as possible. The developed
methodology, indeed, is completely transparent with respect to the software development

106

6 — Conclusions

of the system, and takes up very little resources in hardware terms. Its drawback is that
it is not, and could not be, totally effective.

The activity in evolutionary computation has followed various purposes. First, the
evolutionary tools have been extensively used to automate the activities of program gen-
eration for test and diagnosis. Their usefulness as generic optimization tools has also been
probed and enhanced. Generalization of existing instruments for wider applicability was
also one of the goals.

Several enhancements have been added to the main evolutionary tool used during all
activity, the uGP. New evolutionary operators have been added, features introduced, up
to the point where it has been completely reimplemented. The last version is applicable to
generic problem solving, and allows using different evolutionary schemes, even during the
same run. This added flexibility allowed developing previously unfeasible methodologies.

An existing populationless EA was also reimplemented, to make it appllicable to a
larger set of problems with respect to the original version.

Performing a local analysis of an evolutionary process used for diagnosis allowed gaining
better understanding of both. It has been possible to prove that the basic assumptions
behind the use of a simplified process were true, and therefore that its use was perfectly
adequate for the problem.

Finally, a venture in the field of games has been attempted. The results of this activity
have been good, and allowed improving the tool in previously unforeseen ways.

In general, the CAD activities provided the original motivation for the use of evolution-
ary tools, and application of these tools outside of their intended field allowed gaining a
better understanding of their functioning, and made possible to add enhancements which
reflected positively on test and diagnosis set generation.

107

Bibliography

[1]

[12]

[13]

Jha, N., Gupta, S., Testing of Digital systems, 2003, Cambridge University Press
Agrawal, V., Bushnell, M., Essentials of Electronic Testing for Digital, Memory and
Mixed-Signal VLSI Circuits, 2000, Kluwer Academic Publishers

Thatte, S. M., Abraham, J. A., “Test Generation for Microprocessors”, IEEE Trans-
actions on Computers, vol. C-29 n.6, June 1980, pp. 429 — 441

Paschalis, A., Gizopoulos, D., Kranitis, N., Psarakis, M., Zorian, Y., “Deterministic
software-based self-testing of embedded processor cores”, IEEE Design, Automation
and Test in Europe, March 2001, pp. 92 — 96

Kranitis, N., Xenoulis, G., Gizopoulos, D., Paschalis, A., Zorian, Y., “Low-cost
Software-Based Self-Testing of RISC Processor Cores”, IEE Proceedings of Com-
puters and Digital Techniques, vol. 150, issue 5, pp. 355 — 360

Xenoulis, G., Psarakis, M., Gizopoulos, D., Paschalis, A., “Testability Analysis and
Scalable Test Generation for High-Speed Floating-Point Units”, IEEE Transactions
on Computers, vol. 55, issue 11, November 2006, pp. 1449 — 1457

Chen, L., Dey, S., “DEFUSE: A Deterministic Functional Self-Test Methodology
for Processors”, IEEE Vlsi Test Symposium, 2000, pp. 255 — 262

Parvathala, P., Maneparambil, K., Lindsay, W., “FRITS — a Microprocessor Func-
tional BIST Method”, IEEE International Test Conference, 2002, pp. 52 — 58
Fallah, F., Takayama, K., “A New Functional Test Program Generation Method-
ology”, IEEE Proceedings in International Conference on Computer Design, 2001,
pp. 76 — 81

Bernardi, P., Rebaudengo, M., Sonza Reorda, M., “Using Infrastructure IPs to
support SW-based Self-Test of Processor Cores”, IEEE International Workshop on
Microprocessor Test and Verification, 2004, pp. 22 — 27

Sanchez, E., Sonza Reorda, M., Squillero, G., “On the Transformation of Manufac-
turing Test Sets into On-Line Test Sets for Microprocessors”, IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, 2005, pp. 494 — 504
Chen, L., Dey, S., “Software-based diagnosis for processors”, IEEE/ACM Design
Automation Conference, 2002, pp. 259 — 262

Pomeranz, 1., Reddy, S. M., “A diagnostic test generation procedure based on test
elimination by vector omission for synchronous sequential circuits”, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, issue
5, May 2000, pp. 589 — 600

108

Bibliography

[14]

Veneris, A., Chang, R., Abadir, M. S.,; Amiri, M., “Fault equivalence and diagnos-
tic test generation using ATPG”, IEEE International Symposium on Circuits and
Systems, vol. 5, May 2004, pp. V-221 — V-224

Boppana, V., Hartanto, 1., Fuchs, W. K., “Full fault dictionary storage based on
labeled tree encoding”, IEEE VLSI Test Symposium, 1996, pp. 174 — 179

Ryan, P. G., Fuchs, W. K., Pomeranz, 1., “Fault dictionary compression and equiv-
alence class computation for sequential circuits”, IEEE International Conference on
Computer-Aided Design, 1993, pp. 508 — 511

Niermann, T., Cheng, W., Patel, J., “PROOFS: A Fast Memory Efficient Sequen-
tial Circuit Fault Simulator”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 11, issue 2, February 1992, pp. 198 — 207
Patterson, David A., Hennessy, John L., Computer Architecture - A Quantitative
Approach (Second Edition), 1996, Morgan-Kaufmann Publishers

The SPARC Architecture Manual, SPARC International

€200z6 Reference Manual, Freescale Semiconductor Inc.

MPC5554 and MPC5553 Reference Manual, Freescale Semiconductors Inc.
http://www.opencores.org/

Jayaraman, K., Vedula, V. M., Abraham, J. A., “Native Mode Functional Self-
test Generation for System-on-Chip”, IEEE International Symposium on Quality
Electronic Design, 2002, pp. 280 — 285

Chandramouli, R., Pateras, S., “Testing Systems on a Chip”, IEEE Spectrum,
November 1996, pp. 1081 — 1093

Sanchez, E., Veiras Bolzani, L., Sonza Reorda, M., “A Software-based Methodology
for the Generation of Peripheral Test Sets Based on High-level Descriptions”, IEEE
Symposium on Integrated Circuits and Systems Design, 2007, pp. 348 — 353
Chien-Nan, J. L., Chen-Yi, C., Jing-Yiang, J., Ming-Chih, L. Hsing-Ming, J., “A
novel approach for functional coverage measurement in HDL Circuits and Systems”,
IEEE International Symposium on Circuits and Systems, 2000, pp. 217 — 220
Pomeranz, 1., Reddy, L., Reddy, S. M., “COMPACTEST: A Method to Generate
Compact Test Sets for Combinational Circuits”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 12, issue 7, July 1993, pp.
1040 — 1049

Pomeranz, 1., Reddy, S. M., “Static Test Compaction for Scan-based Designs to
Reduce Test Application Time”, Asian Test Symposium, 1998, pp. 198 — 203

Oh, N., Shirvani, P. P., McCluskey, E. J., “Control-Flow Checking by Software
Signatures”, IEEE Transactions on Reliability, vol. 51, issue 2, March 2002, pp. 111
- 122

Huang, K. H., Abraham, J. A., “Algorithm-Based Fault Tolerance for Matrix Op-
erations”, IEEE Transactions on Computers, vol. 33, issue 6, June 1984, pp. 518 —
528

Oh, N., Mitra, S., McCluskey, E. J., “ED*I: error detection by diverse data and du-
plicated instructions”, IEEE Transactions on Computers, vol. 51, issue 2, February
2002, pp. 180 — 199

109

Bibliography

[32]

[33]

[41]
[42]
[43]

[44]
[45]

Koza, J., Genetic Programming: on the programming of computers by means of
natural selection, 1992, MIT press

Banzhaf, W, Nordin, P., Keller, R. E., Francone, F. D., Genetic Programming
- An Introduction: On the Automatic Evolution of Computer programs and its
Applications, 1998, Morgan Kaufmann

Poli, R., “A Simple but Theoretically Motivated Method to Control Bloat in Genetic
Programming”, FuroGP, 2003, pp. 204 — 217

Dawkins, R., The Selfish Gene - new edition, 1989, Oxford University Press
Squillero, G., “MicroGP — An Evolutionary Assembly Program Generator”, Journal
of Genetic Programming and Evolvable Machines, vol. 6, issue 3, 2005, pp. 247 —
263

Harik, G. R., Lobo, F. G., Goldberg, D. E., “The compact genetic algorithm”,
Proceedingsof the IEEE World Congress on Computational Intelligence, 1998, pp.
523 — 528

Juels, A., Baluja, S., Sinclair, A., The Equilibrium Genetic Algorithm and The Role
of Crossover, Technical Report CMU-CS-94-163, Carnegie Mellon University
Baluja, s., Caruana, R., “Removing the Genetics from the Standard Genetic Algo-
rithm”, Proceedings of the 12" Annual Conference on Machine Learning, 1995, pp.
38 — 46

Corno, F., Sonza Reorda, M., Squillero, G., “The Selfish Gene Algorithm: a new
Evolutionary Optimization Strategy”, Proceedings of the 13** ACM Symposium on
Applied Computing, 1998, pp. 349 — 355

Dewdney, A. K., “Computer recreations: In the game called Core War hostile
programs engage in a battle of bits”, Scientific American, 250(5), 1984, pp. 14 — 22
Corno, F., Sanchez, E., Squillero, G., “Evolving Assembly Programs: How Games
Help Microprocessor Validation”, IEEE Transactions on Evolutionary Computa-
tion, vol. 9, issue 6, December 2005, pp. 695 — 706

http://www.koth.org/

http://sal.math.ualberta.ca/

http://www.ociw.edu/ birk/COREWAR /koenigstuhl.html

110

