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Abstract: Recently, the role of thermal resonance has been highlighted in living cells. As a conse-
quence of this approach, the electrochemical potential was obtained in a partial differential equation
concerning the cell membrane depth and its external temperature surface. In this paper, this last
equation is studied and its solution’s consequences are discussed concerning the cells’ ion fluxes and
their related entropy variation and power generation. Moreover, the metabolic power of the whole
body is evaluated by using these previous numerical results.
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1. Introduction

The wave model approach to heat transfer in solids pointed out the finite speed
propagation [1,2], analytically expressed by the relaxation time [3]. Experimental evidence
supports the wave model approach [4,5], with a particular interest in the thermal wave
speed and relaxation time for media with non-homogeneous inner structures [3]. Moreover,
the wave model resulted in being very effective for temperature ripples propagating
in solids under abrupt boundary heating [6] and thermal shock formation [7], for fast-
propagating crack tips [8], in transient stages of material damage due to thermal cracking [9],
and in solids subjected to periodic surface irradiations of heat flux [10]. In analysing the
interaction between waves and systems, the resonant effect plays a fundamental role in
physics. Any system has a proper oscillation frequency. Let us consider a wave (mechanical
or electromagnetic) with the resonant frequency of a system, which affects the system
itself. This wave forces the system to enter into vibration [11]. The resonant approach
was also introduced in a biophysical study of cancer cell behaviour [12–14] based on
the thermodynamic experimental analysis of heat flux [15–17]. Indeed, cells are open
systems that convert their metabolic energy into mechanical and chemical processes. A
thermodynamic approach models the cell as a thermodynamic engine able to convert inflow
energy into work [18]. Healthy and tumour cells have two different metabolisms [19]:

• Healthy cells use the Krebs cycle, based on the oxidation of acetyl-CoA, derived from
carbohydrates, fats, and proteins;

• Cancer cells use the Warburg cycle, which is a modified cell metabolism that favours a
specialised fermentation over the aerobic respiration pathway.

Independently of the metabolic cycle used, any cell must outflow heat into its envi-
ronment [18,20,21] through the cell membrane. However, different heat outflows occur for
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different cycles. Heat transfer through the cell membrane was studied using the thermo-
kinetic lumped model [12–14], obtaining a characteristic resonant time. The theoretical
results were experimentally confirmed [15–17], too.

This paper develops the analytical consequences of this approach to propose some
considerations on cell membrane interactions with the cell environment, which could
represent the analytical basis for experimental investigation with the aim of improving our
knowledge on the role of heat and mass transfer through living cell membranes.

2. Materials and Methods

The non-equilibrium thermodynamic approach was introduced [22] to study the heat
and mass transfer through the living cell membrane concerning cancer [14,23,24] and glau-
coma [25], obtaining a physical–mathematical model in agreement with the experimental
results reported in the literature [26–33]. To do so, the Onsager general phenomenological
relations were used [21,23,34,35]:

Je = −L11
∇µe

T
−L12

∇T
T2

JQ = −L21
∇µe

T
−L22

∇T
T2

(1)

where Je is the net current density [A m−2], related to ion fluxes through the membrane;
JQ denotes the heat flux [W m−2]; µe = µ + Zeφ [18,35] is the electrochemical potential
[J mol−1], with µ the chemical potential [J mol−1], ze the electric charge [A s mol−1],
and φ the membrane potential [V]; T is the living cell temperature; and Lij represents
the phenomenological coefficients, such that [18] L12(B) = L21(−B) (Onsager–Casimir
relation [36]), L11 ≥ 0 and L22 ≥ 0, and [18] L11L22 − L12L21 > 0. Starting from these
phenomenological relations, the following equation was deduced [22]:

∂µe

∂r
=

∂µe

∂T
α

λ

(
Tsur f − T0

)
(2)

where α and λ are the convection and conduction coefficients, respectively, Tsur f is the
temperature of the membrane’s external surface, and T0 is the temperature of the cell’s
environment.

In this paper, we develop the analytical solution of this last equation and the conse-
quences on cell behaviour. To do so, we consider splitting the electrochemical potential into
its spatial and thermal components:

µe = ϑ(r) ϕ(T) (3)

where r = −` is the internal cell membrane surface, while r = 0 is the external cell’s
membrane surface with temperature T(0) = Tsur f . Consequently, if we consider the
temperature gradient through the membrane, and introduce the dimensionless variable
x = r/`, it follows that

1
ϑ

dϑ

dx
=

1
ϕ

dϕ

dT
` α

λ

(
Tsurf − T0

)
(4)

The integration [37] of this differential equation results in

µe
(
r, T
)
= γ exp

(
λ

α ` (Tsur f − T0)
T +

r
`

)
(5)

where γ is the integration constant.
In Equation (5), the coefficient of convection can be evaluated as [12]

α ≈ 0.023 Re0.8 Pr0.35 λ

〈R〉 (6)
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where λ ≈ 0.6 W m−1K−1 is the conductivity of water, used also for the biological tissue [14],
Re ≈ 0.2 is the Reynolds number, and Pr ≈ 6.9 is the Prandtl number. The mean value of
the cell radius 〈R〉 is considered of the order of 10−5 m. Consequently, the coefficient of
convection results to be around 7.49× 10−8 W m−2 K−1.

The surface temperature changes in relation to the metabolic and biochemical activity
of the cell, but in stationary conditions it can be assumed that Tsur f − T0 ≈ 0.4 ◦C.

The constant γ can be obtained considering that the electrochemical potential on the
external surface of the cell membrane is µe(0, Tsur f ) = µe,out(Tsur f ), so Equation (5) results in

γ = µe,out(Tsur f ) exp
(
− λ

α ` (Tsur f − T0)
Tsur f

)
(7)

When r = −`, with ` ≈ 0.004µm as the mean value of the cell membrane depth, then
µe
(
`, Tsur f

)
= µe,in

(
Tsur f

)
. Equation (5) results in

µe
(
r, T
)
= µe,out

(
Tsur f

)
exp

(
λ (T − Tsur f )

α ` (Tsur f − T0)
+

r
`

)
(8)

remembering that µe
(
0, Tsur f

)
= µe,out

(
Tsur f

)
, µe
(
`, Tsur f

)
= µe,in

(
Tsur f

)
.

3. Results

These results are in agreement with the present knowledge on the physiological
behaviour of cells [38]. The result obtained is interesting because it represents the analytical
approach to the living cell membrane electrochemical potential gradient. Indeed, it allows
us to explain some experimental evidence that represents open problems in biophysics. In
this paper, we have suggested a new viewpoint in relation to these biophysical aspects of
cell behaviour, as deeply discussed in the next section.

Now, we consider the second law of thermodynamics [39]:

T
ds
dt

= ∇ ·
(

JQ −
N

∑
i=1

µi Ji

)
−

N

∑
i=1

Ji · ∇µi (9)

where s is the specific entropy, T is the temperature, and µ is the chemical potential. JS =
JQ −∑N

i=1 µi Ji is the contribution of the inflows and outflows, and Tσ = −∑N
i=1 Ji · ∇µi is

the dissipation function [34]. This law allows us to evaluate the effect of the ion fluxes. To
do so, we consider the better condition for life (Tσ ≈ 0) such that Equation (9) becomes

T
ds
dt

= −∇ ·
(

JQ −
N

∑
i=1

µi Ji

)
(10)

Following the Prigogine approach (ds/dt = 0) [39], with T constant, Equation (10)
becomes

∇ ·
(

JQ −
N

∑
i=1

µi Ji

)
= 0 (11)

Now, we consider the first law of thermodynamics for the cell membrane [23]

du
dt

dV = ρ c
dT
dt

dV = δQ̇ = −α (T − T0) dA (12)

where ρ ≈ 103 kg m−3 is the cell density, c ≈ 4186 J kg−1 K−1 is the specific heat of the cell,
α ≈ 7.49× 10−8 W m−2 K−1, as previously evaluated, A is the area of the cell membrane,
V is the cell volume, and β = α dA/dV is constant [23]. Thus, it follows that

∇ · JQ = α
dA
dV

(T − T0) (13)
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and
N

∑
i=1
∇ · µiJi =

δQ̇
dV

= α
dA
dV

(T − T0) (14)

N

∑
i=1

µiJi ≈
` · α
〈R〉 (T − T0) (15)

where ` ≈ 0.004 µm is the depth of the cell membrane [40] and 〈R〉 is the mean radius
of the cell, considered, in the first approximation, as a sphere of mean radius of the
order of 10−6–10−5 m, and T − T0 ≈ 0.4 ◦C [41]. To develop the physical analysis of the
mathematical results, we can evaluate the power generated by the cell by means of these
fundamental fluxes for its life. Considering that the electric potential at the membrane is
of the order of 10–100 mV and its electric field is of the order of 107–108 V m−1, we can
evaluate the basal metabolism as the power generated by the fluxes of the fundamental
ions (Na+, K+, Cl−, Ca2+)

Ẇ = ∑
i

` · α
µi · 〈R〉

(T − T0) · N · Zie · Ei · 4π〈R〉2

= ∑
i

` · 0.023Re0.8Pr0.35λ

µi · 〈R〉2
(T − T0) · N · Zie · Ei · 4π〈R〉2 =

= 4π · N e · (T − T0) · ` · 0.023Re0.8Pr0.35λ ·∑
i

Zi · Ei
µi

(16)

where N = 6.022× 1023 mol−1, e = 1.6× 10−19. Concerning the value of the elementary
electric charge, Zi = 1 for i = Na+, K+, Zi = −1 for i = Cl+, Zi = 2 for i = Ca2+, and
E is the electric field. The metabolic power of a cell is 5.79× 10−12 W. Considering the
total number of cells in a body (30.0× 1012 [40]), the metabolic power of a human body
is 174 W. Considering an efficiency of around 40% (around 60% is outflown as heat) [40],
the available power for the human body is around 70 W, of which around 75% is used to
perform essential body functions, while 25% is used to maintain the electrical potential of
the nerve cells in agreement with the accepted value in medicine [40].

4. Discussion and Conslusions

All living cells maintain a potential difference through their membrane. This results
from different concentrations and permeabilities of ions across the living cell membrane.
The transport of ions, nutrients, molecules, and water (active and passive) is achieved by
channels and pumps within the cell membrane. This transport changes the internal and
external ionic concentrations. Any change in membrane potential allows the cell to commu-
nicate and obtain information due to the electrical signals related to any potential variation.
Active and passive ion transports across the cellular membrane contribute to the change in
membrane potentials [42]. So, cells must continuously balance mass transport to maintain
their electric membrane potential to regulate normal cell functions [43], for example

• Mitogen-stimulated cell proliferation, mediated by K+ channel [44];
• K+ channel inhibitors can block the activation of murine B lymphocytes and murine

noncytolytic T lymphocytes [45];
• Ca2+ inflow drives G1/S transition [46];
• Mice teratocarcinoma cells express L-type Ca2+ and outward channels, and Na+ and

inward rectifier channels during differentiation.

The transport of some molecules, such as water, can occur due to concentration gradi-
ents, while for macromolecules, such as glucose or nucleotides, channels are needed [38].
For some ions, ATPase pumps are present as ion transporters and voltage-gated channels.
Moreover, transport proteins can pump ions against their concentration gradient. An
example is the transport of Sodium (Na+) and Potassium (K+). Table 1 represents their
concentration and respective electric potentials.
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Table 1. Concentration, chemical potential (in water solution), and electric membrane potential of
some ions in normal cells [42].

Ion Extracellular Intracellular Chemical Membrane
Species Concentration Concentration Potential µi Potential Ei

[mM] [mM] [kJ mol−1] [mV]

Na+ 18 150 −261.89 +56
K+ 140 5 −283.26 −89
Cl− 120 7 −131.26 −76
Ca2+ 1.2 0.1 −553.04 +125

Concerning the Na+/K+ pump, we can highlight that Na+ presents a higher concen-
tration outside of the cell while K+ presents a high concentration inside the cell. Conse-
quently, an active outflow transport of Na+ and an active inflow of K+ follows. Moreover,
for the Ca2+ ion inflow, concerning cancer, this induces a growth decrease.

In summary, this paper is an improvement of the previous one on thermal reso-
nance [13,14]. In that paper, a differential equation concerning the electrochemical potential
was obtained. Here, the analytical solution of that equation is obtained and its biophysical
consequences are discussed. The result obtained here allows us to evaluate the power
generation of the living cells obtained by ion fluxes through the cells’ membranes.

Author Contributions: Conceptualization, U.L.; methodology, U.L.; validation, U.L. and G.G.; formal
analysis, U.L.; investigation, U.L. and G.G.; resources, U.L.; data curation, G.G.; writing—original
draft preparation, U.L.; writing—review and editing, U.L. and G.G.; visualization, G.G.; supervision,
U.L.; project administration, U.L.; funding acquisition, U.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data are already provided in the manuscript, with quoted
reference.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chester, M. Second Sound in Solids. Phys. Rev. 1963, 131, 2013. https://doi.org/10.1103/PhysRev.131.2013.
2. Weymann, H.D. Finite Speed of Propagation in Heat conduction, Diffusion and Viscous Shear Motion. Am. J. Phys. 1967,

35, 488–496. https://doi.org/10.1119/1.1974155.
3. You Tzou, D. The resonance phenomenon in thermal waves. Int. J. Eng. Sci. 1991, 29, 1167–1177. https://doi.org/10.1016/0020-7

225(91)90119-N.
4. Peshkov, V. Second Sound in Helium II. J. Phys. 1944, 8, 381–389.
5. Kaminski, W. Hyperbolic Heat Conduction Equation for Materials With Nonhomogeneous Inner Structure. J. Heat Mass Transf.

1990, 112, 555–560. https://doi.org/10.1115/1.2910422.
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