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A B S T R A C T

Photogrammetry inspection is a Machine Vision (MV) technique intensely employed to assess the geometry of
industrial assets across several measurement scales, ranging from micro-scales focusing on surface to meso- and
large-scales targeting geometrical features and shape.

This research endeavors to conduct a comprehensive comparative evaluation of photogrammetry across
different dimensional scale domains, aiming to establish a framework for assessing performance levels in various
aspects, driven by the portability of the instrumentation, measurement performance and proficiency. Central to
the current methodology is employing a single camera, driven by the research’s forward-looking goal to integrate
drone technology equipped with a solitary camera as the primary payload. In addition, this work presents a
statistical quantitative investigation where the most relevant sources of uncertainty are taken into account. Three
case studies about a small truss, a ball-bar, and a collaborative robot accompany the analysis.

Finally, this study proposes a framework for assessing the expanded uncertainty and the relative uncertainty
across the scales, revealing that the latter decreases with larger measurand, providing a value of 0.2 % when
dealing with meso-scale objects.

Acronyms

3D Three-dimensional
ANOVA Analysis of Variance
C2C Cloud-to-cloud
DoE Design of Experiment
DoF Degree of Freedom
DPU Data Processing Unit
FCCS Local camera coordinate system
FWCS World coordinate reference system
FDM Fused Deposition Modeling
GUM Guide to the Expression of Uncertainty in Measurement
IQR Interquartile range
LSDM Large-Scale Dimension Metrology
LVM Large-Volume Metrology
MInd4Lab Manufacturing Industry 4.0 Laboratory
MPE Maximum Permissible Error
MV Machine Vision
MVS Machine Vision System
NDT Non-destructive testing

(continued on next column)

(continued )

PEEK Polyether Ether Ketone
PUMA Procedure for Uncertainty MAnagement
RANSAC RANdom SAmple Consensus
RGB Red-green-blue
UAV Unmanned aerial vehicle
VIM International Vocabulary of Metrology

1. Introduction

The progression of structural inspection techniques within the
aviation [1] and maritime [2] industries has primarily been guided by
the objectives of increasing precision, enhancing efficiency, and
bolstering safety. Traditional approaches have included hands-on visual
inspections [3], ultrasonic pulse techniques [4,5], and X-ray imaging [6,
7], all of which have been fundamental in paving the way for contem-
porary inspection methods. While effective, visual inspection is
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inherently subjective and constrained by the accessibility of the struc-
ture under examination. The limitations in timing, interpretability, and
accessibility arise from its static nature, reliance on subjective assess-
ments, and dependency on an unobstructed view [8]. These challenges
have spurred the adoption of noncontact methods, notably various
non-destructive testing (NDT) techniques [9,10] to perform reliable
inspection on structures. These techniques enable detailed analysis
without necessitating physical contact with the structure. Amongst the
others NDT, Machine Vision Systems (MVSs) are extremely attractive
since they couple high flexibility with high informativeness [11] and can
exploit diverse technologies, e.g., single cameras [12], multiple-camera
[13,14] systems, line lasers coupled with cameras [15], while often
leveraging on machine learning for feature extraction and identification
[12] and multi-sensor data fusion [16,17].

Photogrammetric inspection, a subset of MVS, represents an
advanced non-contact geometrical characterization method. It employs
cameras to assess the surface condition of industrial assets. The meth-
odology and its associated algorithms are advancing, and the scope of
research interest in its application for NDT is expanding [18]. This
progression is attributable to photogrammetry’s advantages, such as
cost-effectiveness, rapid execution, and the elimination of physical
contact requirements [19]. In contrast to traditional NDT sensors that
measure discrete points, photogrammetry offers the capability to
conduct full-field measurements. Photogrammetry produces an infor-
mative and accurate overview but the speed of reconstruction can be
slow and lacks the ability to reveal internal structural details. Further-
more, photogrammetry allows for more frequent measurements, which
can reduce the workload and health risks for inspectors [20,21],
particularly in the context of Large-Scale Dimension Metrology (LSDM)
[16,22–24]. The emergence of camera and computer vision-based sen-
sors has marked a significant advancement in the field, offering prom-
ising tools for the non-contact, remote measurement of structural
responses [25,26]. Photogrammetry allows the measurement with high
accuracy and precision of small [27,28] and large geometric features
[22,29,30], while coupling the capability of simply managing free-form
shaped parts [31].

The process of photogrammetry generates an output known as a
point cloud [32]. A three-dimensional (3D) point cloud consists of
three-dimensional points defined by their X, Y, and Z coordinates within
a spatial reference frame, each representing a part of an object’s surface
[33,34]. Additional attributes like red-green-blue (RGB) color values
and surface normals can be associated with each point, depending on the
capturing sensor [34]. Furthermore, 3D point clouds are inherently
unstructured and lack a specific order, contrasting with 2D images
represented on a regular grid [32]. The quality of photogrammetric
reconstruction depends heavily on the image overlap and coverage
within the process [35].

A relevant aspect discussed in the literature delves into the integra-
tion of photogrammetry with unmanned aerial vehicles (UAVs). Ioli
et al. [36] presented a UAV photogrammetry-based procedure for
accurately evaluating cracks in concrete bridges, underscoring the po-
tential of UAVs combined with photogrammetry in bridge inspections
and damage assessments. Zhao et al.’s research [26] introduced a dam
emergency monitoring and inspection model using UAV-based photo-
grammetry, showcasing notable enhancements in monitoring and in-
spection efficiency. Furthermore, concerning large-scale structures,
Benzon et al. [37] proposed a framework for classifying paint defects
and damage via coupling images collected from a drone and/or several
LiDAR scans.

Within this wide range of scenarios, photogrammetry is challenged
by application in high precision manufacturing for both micro- [28],
meso- [31] and large-scale dimensions [29]. These pose strict re-
quirements on the manufacturing tolerances to be met and verified by
the inspection system, which for the LSDM can go significantly beyond
the typical 0.1/

̅̅̅
x

√
ratio of the tolerance to nominal dimension (x) [29].

A comprehensive study of the impact of different factors on the optimum

point cloud is presented in Ref. [38], while measuring, modeling, and
correcting systematic errors in 3D coordinate measurement are dis-
cussed in Ref. [39]. However, a structured investigation of photogram-
metric metrological performance across multiple scales is missing in the
literature, to the best of the author’s knowledge. The current work aims
to contribute with a qualitative and quantitative discussion of the rele-
vance of some influence factors on different measurement scales and by
providing measurement uncertainty estimations extending beyond the
systematic errors. This study aims to provide a comparative evaluation
of photogrammetry’s capabilities across various scales of interest,
establishing a set of performance levels used to categorize aspects such
as simplicity/time of use, the measurement process, data analysis, and
scale-dependent proficiency. Furthermore, a significant portion of this
work is devoted to an in-depth assessment of expanded uncertainty. The
employed statistical methodology entails a robust estimation of uncer-
tainty at larger scales, where conducting experimental plans specifically
designed to study uncertainty propagation is not feasible. Moreover, for
the purposes of this study, a single camera was employed due to the
intention of advancing the research through the application of a drone
outfitted with one camera as its primary payload towards robust and
traceable applications of quantitative visual inspection through UAV for
LSDM, e.g., in aerospace and nautical field.

The paper is organized as follows: the fundamentals of photogram-
metry are introduced in Section 2, Section 3 describes the experimental
setup and the methodology; then, the results are shown in Section 4 and
the conclusions are drawn in Section 5.

2. Fundamentals of photogrammetry

Photogrammetry employs a distributed array of strategically posi-
tioned cameras within a designated measurement volume. This tech-
nique aims to accurately distinct visual features within each camera’s
field of view, as depicted in Fig. 1. In this study, a single camera is
employed, and the camera network is intended to be represented by
frames captured from multiple positions. Typically, an external Data
Processing Unit (DPU) is responsible for processing the captured data,
establishing connectivity either wirelessly or via a cable system. In this
context, the three-dimensional coordinates of a specific optical marker,
denoted as Mj, are correlated with the two-dimensional coordinates of
the corresponding image point, Pi,j, on the projection plane of the i-th
camera. This correlation incorporates the camera’s technical specifica-
tions, positioning, and orientation (see Fig. 2).

Fig. 1. Illustration of camera network setup in a photogrammetric system,
utilizing DPU Bluetooth connectivity.
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The process is executed through the application of collinearity
equations using homogeneous coordinates [40,41]:

λi×

⎡

⎣
ui,j
vi,j
1

⎤

⎦=Ki ×Wi ×

⎡

⎢
⎢
⎣

xMj

yMj

zMj

1

⎤

⎥
⎥
⎦=Pi ×

⎡

⎢
⎢
⎣

xMj
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1

⎤

⎥
⎥
⎦ (1)

where λi is the non-zero scale factor and Ki is the 3x4 matrix of internal
parameters, defined as follows:

Ki=

⎡

⎣
ufi 0 u0i 0
0 vfi v0i 0
0 0 1 0

⎤

⎦ (2)

where u0i and v0i represent the coordinates of the image center, while ufi
and vfi correspond to the focal length components related to the camera.
The matrix Wi is a 4x4 representation of external parameters, and
expressed as:

Wi =

⎡

⎢
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⎣

− xʹ
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− źCi

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3)

where Ri is the rotation matrix that establishes the relationship between
the world coordinate reference system (FWCS) and the local camera co-
ordinate system (FCCS), whereas xĆi , ýCi and źCi are the coordinates of the
projection center Ci in the local camera coordinate system FCCS. Ri is
defined as follows:

where κi, ϕi and ωi are the orientation angles for the i-th camera. Pi =
Ki ×Wi is commonly known as camera projection matrix.

In order to minimize lens distortion errors, appropriate corrections
are applied to the image coordinates. The predominant types of imaging
errors, namely radial, tangential, and skewness distortions, are

addressed [40,41]. Consequently, the collinearity equation is adapted
by incorporating distortion coefficients, which are introduced as
follows:

λi×
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where δuRi,j and δvRi,j account for the radial distortion, δuTi,j and δvTi,j
represent the tangential distortion and, eventually, δuSi,j is the
skeweness-related term. The distortion coefficients are expressed as
polynomial functions, as outlined in Eq. (6):
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δuRi,j = f1
(
ui,j, vi,j, kC1i , kC2i , kC5i

)

δvRi,j = f2
(
ui,j, vi,j, kC1i , kC2i , kC5i

)

δuTi,j = f3
(
ui,j, vi,j, kC3i , kC4i

)

δvTi,j = f4
(
ui,j, vi,j, kC3i , kC4i

)

δuSi,j = f5
(
vi,j,αi

)

(6)

with kC1i , kC2i , kC3i , kC4i , kC5i and αi known as correction parameters. kC1i ,
kC2i and kC5i are involved in the radial distortion definition, kC3i and kC4i
account for the tangential distortion, and αi is used for the skewness
distortion. Additional details on the polynomial formulation of these
coefficients are provided in Ref. [30].

In the context of photogrammetry, localization is the process of
deducing the three-dimensional coordinates of a marker, denoted asMj,
from its two-dimensional projections in images from several cameras. As
delineated in Eqs. (1) and (3), a single camera’s view limits the deter-
mination to only the direction ofMj. To fully ascertainMj’s coordinates,
observations from a minimum of two camera positions are necessary.
This method involves the intersection of multiple directional vectors. A
common practice is to use three points of overlap: the minimum two for
accuracy and an additional one for redundancy.

The calibration of the network is a critical step that involves esti-
mating the 16 specific parameters for each camera, as listed in Table 1.
The internal parameters represent the camera technical features, the
correction parameters are related to the distortions, and the external
parameters pertain to the position and orientation of each camera with
respect to a reference frame. An in-depth exploration of the methods for

extracting these parameters and their role in enhancing photogram-
metric accuracy is discussed in Ref. [30]. Proper parameters calibration
is essential to ensure precise and reliable photogrammetric data. In
measurement and mapping processes, accurate scaling is imperative and
is achieved by determining known distances between at least three
measured points. The scaling procedure can be accomplished by

Fig. 2. Setup of a generic camera-based localization problem in 3D space
(adapted from Ref. [23]).

Table 1
Summary of internal, correction and external parameters to be set up during
calibration.

Internal parameters Correction parameters External parameters

u0i kC1i xCi
v0i kC2i yCi
ufi kC3i zCi
vfi kC4i κi
 kC5i ϕi
 αi ωi

Ri =

⎡

⎣
cos(κi)cos(ϕi) cos(κi)sin(ϕi)sin(ωi) − sin(κi)cos(ωi) cos(κi)sin(ϕi)cos(ωi) + sin(κi)sin(ωi)

sin(κi)cos(ϕi) sin(κi)sin(ϕi)sin(ωi) + cos(κi)cos(ωi) sin(κi)sin(ϕi)cos(ωi) − cos(κi)sin(ωi)

− sin(ϕi) cos(ϕi)sin(ωi) cos(ϕi)cos(ωi)

⎤

⎦ (4)
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calibrating the measurement system parameters, employing reference
artifacts with known dimensions, or utilizing coded markers whose
positions and relative distances are precisely known. Coded markers can
be used with the aim of multiple capturing simultaneously under a single
viewing angle, and geometric relations determine the distance and pose
of the end. Coded markers offer a highly distinguishable design with
strong visual characteristics and, in most cases, also feature specific
coding as a safeguard against misidentification [42].

3. Instrumentation and methods

3.1. Instrumentation

The experimental setup incorporates a Basler acA2500-14uc camera
[43], selected for its suitable resolution capabilities. The key specifica-
tions of this camera include a resolution of 2590 x 1942 pixels, a sensor
format of 1/2.5”, pixel size measuring 2.2 × 2.2 μm, and a frame rate of
14 fps. Complementing the camera, a Basler Lens C125-0818-5M − P
[44] is used, featuring a focal length of 8.11 mm with a tolerance of ±5
%, an optimum working distance of 0.5 m, and an optimum magnifi-
cation of 0.016. The selected camera and objective represent a
customer-grade and cost-effective industrial camera solution, with
limited performances for scales lower than 1 mm. Additionally, the
camera system interfaces with a DPU having the following specifica-
tions: an Intel Core i7-1195G7 processor (2.90 GHz, 4 cores), 16 GB
DDR4 RAM, Intel Iris Xe Graphics, and running onWindows 11. A rotary
table reduces camera movement and maintains the required resolution.
This table, measuring approximately 400 × 400 mm2, facilitates
controlled rotation, as illustrated in Fig. 3.

The table enables the rotation of the object under measurement
while maintaining the camera in a stationary position. Notably, the
setup allows for rotation angle control, ensuring accurate (with a reso-
lution of 1◦) positioning for each image capture.

The point cloud generated as an output in this study is produced
using Agisoft Metashape© [45], a standalone software designed for
image-based 3D modelling. Agisoft Metashape© aims to create
professional-quality 3D content from still images, such as point clouds or
textured meshes. It is based on the latest multi-view 3D reconstruction
technology and operates with arbitrary images, proving efficient in
controlled and uncontrolled conditions. A significant advantage of this
software is the complete automation of image alignment and 3D model
reconstruction processes.

3.2. Reference artifacts

In the context of this research endeavor, a thorough investigation is
presently being conducted, focusing on the meticulous analysis of three
distinct object types distinguished by their diverse dimensions. These
objects are deliberately considered significant artifacts for the purpose
of this study.

• A truss structure fabricated through the Fused Deposition Modeling
(FDM) [46] process with a length of 170 mm and a thickness of 3
mm. The truss is manufactured with an APIUM P220 printer out of
Polyether Ether Ketone (PEEK) [47], and Fig. 4 illustrates the
in-plane representation of the artefact.

• A ball-bar, defined as a steel rod with two spheres, each featuring a
nominal radius of 19 mm, threaded onto its opposing ends (see
Fig. 5). The specified nominal distance between the centers of the
two spheres is established at 100 mm.

• A collaborative robot (cobot) UR3e (see Fig. 6), equipped with a
gripper end-effector [48], located within the Manufacturing Industry
4.0 Laboratory (MInd4Lab) at the Politecnico di Torino.

The truss structure, with its geometry of considerable complexity and
notably slender segments, presents an intriguing case for this study. This
object is readily manufacturable and amenable to investigation when
positioned on top of the rotary table. The ball-bar has a simpler geom-
etry but can be easily pre-calibrated; RANdom SAmple Consensus
(RANSAC) algorithms for sphere fitting are efficiently utilized. The
cobot features a larger footprint, broadening the scope of photogram-
metric application to diverse scales. Moreover, the cobot underscores
certain constraints inherent to photogrammetry, notably through its
glossy surfaces, which pose challenges to the accurate reconstruction of
the point cloud. Lastly, the application of RANSAC algorithms for plane
fitting is straightforward. According to Refs. [29,31], objects with a
characteristic length, denoted as Lc, exceeding 1000 mm are commonly
classified in the domain of Large-Volume Metrology (LVM), while the
mesoscale typically ranges from 0.5 mm to 1000 mm. Since the di-
mensions under consideration in this paper do not exceed 1000 mm, the
following terminology is suggested for the purpose of establishing a
precise classification:

• Small-scale: pertaining to objects of diminutive size, characterized
by Lc within the range:

1 mm< Lc ≤ 100 mm (7)

• Meso-scale: pertaining to objects of medium size, characterized by Lc
within the range:

100 mm< Lc ≤ 1000 mm (8)

As further elaborated in Section 3.4, the truss and ball-bar reside
within the small-scale domain, whereas the collaborative robot is cate-
gorized within the meso-scale.

Fig. 3. Rotary table employed for the photogrammetric process located within
the Manufacturing Industry 4.0 Laboratory (MInd4Lab) at the Politecnico
di Torino. Fig. 4. In-plane representation for the PEEK FDM-printed truss.
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3.3. Multiscale qualitative comparison

This research aims to provide a comprehensive exploration of the use
of photogrammetric instrumentation in the process of object recon-
struction, with a particular focus on its applicability across a spectrum of
different scales. To facilitate a systematic comparison between scale
domains, a set of sub-criteria is defined and presented in Table 2. A five-
level ordinal scale is proposed, categorizing performance levels as: Low
(L), Low/Medium (L/M), Medium (M), Medium/High (M/H), and High
(H) [49,50]. The hierarchical relationship between these performance
levels is represented as follows:

L ≺ L/M ≺ M ≺ M/H ≺ H (9)

Thus, ascending the scale corresponds to an enhancement in
performance.

3.4. Quantitative characterization

This study performs a quantitative evaluation of the

photogrammetry with respect to measurement scales. First of all,
considering literature and best practices, a quantitative investigation of
factors widely recognized as liable for affecting reconstruction quality is
carried out. Specifically, a Design of Experiment (DoE) [51] is proposed
as a crucial component of the statistical analysis to elucidate how the
output variables are affected by input factors and their interactions. The
application of Analysis of Variance (ANOVA) to the DoE framework
enables to separate contributions of output variability attributable to
factors under control from other uncontrolled sources and random er-
rors. Such investigation is essential to design the measurement process
while aiming at maximizing measurement performances.

Furthermore, the ANOVA analysis provides the percentual contri-
bution to the sum of squares (SS%), calculated as follows:

SS%=
SSi
SSTOT

× 100 (10)

where SSi is the sum of squares related to the i-th factor, and SSTOT is the
total sum of squares. Quantitative evaluations are carried out on selected
response variables of the three measurands described in Section 3.2.
Specifically, for the truss, it is considered the thickness Dtruss (see Fig. 7),
for the ball-bar the radius of the sphere Dsphere and the distance between
their centers Dballbar (see Fig. 8), and for the cobot the distance between
the arm roll and the centerpoint of the gripping end-effector Dcobot (see
Fig. 9).

Dtruss, Dsphere, Dballbar, and Dcobot are defined as the response vari-
ables of the case studies in this work, and the relative reference values
are summarized in Table 3.

Due to the compliant material out of which the truss and the ball bar
were made out of, it was unreliable to measure the selected features
dimensions with a CMM. The calibration of the truss and ball bar
reference artifacts has been carried out by means of a structured light
project system ATOS GOM ScanBox Series 4 [53]. The ATOS GOM was
calibrated according to ISO 10360–13:2021 [54,55], showing a length
measurement error of − 0.004 mm on a length of 160 mm (MPE of 34
μm), and spherical size measurement error of 0.0045 mm on a diameter
of 25 mm (MPE of 15 μm); the ISO 10360-13 procedure was performed
replicating 10 times in 3 different poses the measurements of a
CMM-calibrated ball plate artefact (with uncertainty of 1 μm) in an
accredited laboratory, providing an overall of 30 measurements. The
API iScan 3D laser line scanner [56] (with uncertainty of 14.64 μm

Fig. 5. Image of the ball-bar placed over the rotary table.

Fig. 6. Collaborative robot UR3e, with relative experimental setup. Information about geometry, dimensions and footprint can be retrieved in Ref. [48].
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retrieved during the calibration of a spatial length as per ISO
10360–10:2021 [57] on a ball plate artefact calibrated by an accredited
laboratory with CMM measurements having uncertainty of 1 μm) is
employed to calibrate the collaborative robot. By observing the refer-
ence value and comparing the value with Eqs. (7) and (8), it is deter-
mined that the truss and the ball-bar fall into the small-scale category,
while the cobot is classified within the meso-scale. The uncertainty of

the geometric features reported in Table 3 is computed at a 95 % con-
fidence level combining different contributions, as per PUMA method
[58,59]. The propagated contributions are: the uncertainty of the CMM
measurements performed in the accredited laboratories; the accuracy
reported in the calibration certificates of the measuring instruments (as
reported above according to ISO 10360) and as the MPE for the truss (for
calibration on the ball plate did not include any feature on such a small
scale); the reproducibility estimated as a type A contribution as the
standard deviation of five replicated measurements of the relevant
geometrical features when performing measurements changing the po-
sition of the artefact on the support plate and changing the number of
acquisitions; the fitting error due to RANSAC, estimated as standard
deviation of 100 replications; the contribution of micro-geometric er-
rors. The latter were estimated as the planarity error for the truss (as a
type A contribution from a CMM measurement), and as MPE for the
other measurands. As far as the accuracy is concerned, although more
refined approaches have been proposed [60], the methodology here
relies on the average error estimated from replicated measurements of a
calibrated artefact reported in the calibration certificate obtained as per
ISO 10360-10 (for the Laser Scanner) and as per ISO 10360-13 (for the
GOM ScanBox) [54,55,57,61,62]. Fig. 10 details the traceability chain
from accredited laboratory CMMs to Optical 3D CMS and Laser Scanner

Table 2
Description of (sub-)criteria used for multiscale qualitative comparison.

Criteria Description

1. Simplicity/time of use
1.1 Preparation 1.1.1 Portability Related to the spatial footprint of the instrumentation

1.1.2 Accessory tools Related to the utilization of tools for enhancing the photogrammetric process
1.1.3 Number of markers Related to the quantity of coded benchmarks
1.1.4 Marker placement Related to the positioning of markers around the component
1.1.5 Set-up time Related to the duration for positioning, warming up, initializing the instrument, and attaching any accessories

1.2
Measurement

1.2.1 Operator dexterity Related to the skill and efficiency of the operator in handling and operating the photogrammetric equipment
1.2.2 Number of images Related to the quantity of images required for the photogrammetric process
1.2.3 Time for acquisition Related to the total time taken to capture all necessary images for the photogrammetric analysis

1.3 Data analysis 1.3.1 Processing time Related to the time required to process the captured images into useable data or models
1.3.2 Post-processing
heaviness

Related to the complexity and resource intensity of post-processing tasks, including data cleaning and model refinement

2. Measurement performance
2.1 Information content Related to the amount of information extractable from a reconstruction
2.2 Reconstruction quality Related to the accuracy, resolution, and overall quality of the 3D models or data sets generated from the photogrammetric

process
2.3 Statistical investigation Related to the capability of conducting robust statistical analyses at a given scale
2.4 Noise Related to the presence of extraneous elements or artifacts in the reconstruction not belonging to the component (environment)
2.5 Detection of small geometrical variation Related to the identification of minute changes in an object’s shape or dimensions that are small in comparison to the overall

scale of the object

3. Scale-dependent proficiency
3.1 Skill improvement Related to the enhancement of operator skills when operating at different scales
3.2 Effective applicability Related to the practical convenience of using the photogrammetric tool at that scale, compared to other metrological instruments

Fig. 7. Reconstructed point cloud of the truss with the definition of Dtruss.

Fig. 8. Reconstructed point cloud of the ball-bar (a), and definition of the radius Dsphere and Dballbar (b).
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to, finally, photogrammetry.

3.4.1. Factor number of images
The factor number of images is chosen by means of a preliminary

investigation on its impact on the coverage of the artefact, i.e., the truss.
Specifically, three distinct configurations are analyzed.

• Employment of 72 images taken at every 5◦ interval of rotation on
the rotating table; namely Setup 1.

• Employment of 36 images taken at every 10◦ interval of rotation on
the rotating table; namely Setup 2.

• Employment of 24 images taken at every 15◦ interval of rotation on
the rotating table; namely Setup 3.

The investigation into the influence of coverage is undertaken
through a comparative analysis between the photogrammetric cloud
and a reference geometry, as illustrated in Fig. 11. The reference ge-
ometry is acquired using the ATOS GOM ScanBox Series 4 system [53].
This comparative assessment is conducted quantitatively, assessing
cloud density and the cloud-to-cloud (C2C) euclidean distance between
the photogrammetric output and the reference data. This approach
promotes the determination of the minimum number of images essential
for achieving a good-quality reconstruction of the artifacts, thus estab-
lishing the minimum level for the factor number of images. As further
discussed in Section 4.2, Setup 3 is ruled out from the DoE analysis since
the dispersion of C2C distances is too large compared to Setups 1 and 2
[38].

3.4.2. Sources of uncertainty
The identification of factors inducing systematic errors in the mea-

surements allows distinguishing different contributions to the mea-
surement uncertainty towards a metrological characterization of the
system. In this work, different contributions to measurement uncer-
tainty are considered, namely reproducibility, bias, resolution, uncer-
tainty of the reference, and numerical sources due to measurement
algorithms [63,64]. The first term considered is the reproducibility,
denoted as u2REPR. According to the International Vocabulary of
Metrology (VIM) [65], reproducibility is the closeness of agreement
between the results of measurements of the same measurand under
changed conditions. These conditions may include variations in the
measurement method, observer, instrument, reference standard, loca-
tion, conditions of use, and time. Reproducibility is quantitatively
expressed in terms of the dispersion characteristics of the results.
Accordingly, it will be evaluated as the total variance from the ANOVA
analysis [66]. This choice, although liable for including contributions
from systematic sources of variability, is conservative and allows
generalization of the estimation for cases in which the control of the
factors is not possible, e.g., whenever multiple camera poses are
required to obtain a sufficient coverage and reconstruction quality.

Measurements taken in a point cloud involve point-to-point, point-
to-line, point-to-plane, line-to-line, line-to-plane, and plane-to-plane
distances. Consequently, the RANSAC-based technique [67] is exten-
sively employed to construct the best-fitting primitive for a specific
subset of the point cloud, identifying two sources of uncertainty.

• A systematic contribution, as the deviation of the inliers with respect
to the fitting primitive, denoted as u2RANS,S.

• A random contribution, represented by the variance of the measured
value derived from multiple applications of RANSAC to the same
dataset, is indicated as u2RANS,R..

Another significant contribution is the bias, referring to the closeness
of agreement between the output and the true or accepted reference
value. It measures the systematic error in a measurement process and is
expressed as:

e=
⃒
⃒Lc − Lc,REF

⃒
⃒ (11)

Assuming the bias has a uniform distribution, its contribution to
variance is quantified as:

Fig. 9. Reconstructed point cloud of the cobot (a), and definition of the distance Dcobot (b).

Table 3
Calibrated reference values for the relevant geometrical features and measure-
ment uncertainty. Notice the decreasing relative uncertainty for increasing
measurement scale. The term kREF is the “coverage factor” [52].

Lc Reference
value/mm

kREF UREF/μm U%/- Metrological tool

Dtruss 3.13 2.04 55.7 1.79
%

ATOS GOM ScanBox
Series 4 [53]

Dsphere 18.87 2.31 42.3 0.22
%

ATOS GOM ScanBox
Series 4 [53]

Dballbar 99.33 2.36 39.7 0.04
%

ATOS GOM ScanBox
Series 4 [53]

Dcobot 363.95 2.23 84.6 0.02
%

API iScan 3D laser line
scanner [56]
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u2BIAS=
e2

3
(12)

The variance composition must also consider the uncertainty of the
reference measurement:

u2REF =
(
UREF
kREF

)2

(13)

Finally, another contribution is from the resolution of the photo-
grammetry, defined as the smallest change in a quantity being measured
that causes a perceptible change in the corresponding indication:

u2RES=
(RES/2)2

3
(14)

The composition of the variance then considered the sum of each
contribution:

u2 = u2REPR + u2RANS,S + u2RANS,R + u2BIAS + u2REF + u2RES (15)

Hence, the standard uncertainty can be easily extracted:

u=
̅̅̅̅̅̅̅̅̅
(u2)

√
(16)

Nevertheless, a coverage broader than the standard uncertainty is
needed, including the concept of expanded uncertainty denoted asU [52].
This is expressed as:

U= k⋅u (17)

The calculation of the effective Degrees of Freedom (DoFs) νy utilizes
the Welch-Satterthwaite equation, presented as follows:

νy =

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u4
∑n

j=1
u4j
νj

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18)

In determining the expanded uncertainty, the coverage factor is
selected to correspond with a 95 % confidence interval. Finally, the
uncertainty evaluation takes into account the percentage relative un-
certainty, defined as follows:

U%=
U
Lc

× 100 (19)

where Lc is the average characteristic length for the considered mea-
surements based on the entire dataset gathered from the DoE.

4. Preliminary results

The current section presents and discusses the results concerning the
reconstruction of the photogrammetric output of the case studies pre-
sented in Section 3.2. In particular, the investigation focuses on the
analysis of the image coverage on the point cloud and continues with the

Fig. 10. Traceability chain from accredited laboratory CMM to (a) Optical 3D CMS and (b) Laser Scanner to, finally, photogrammetry.

Fig. 11. Point cloud of the truss reconstructed with structured light project
system ATOS GOM ScanBox Series 4 [53].
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discussion concerning the qualitative comparison across different scales;
finally, a statistical investigation is carried out. To begin with, the
reconstructed clouds are presented, and the geometrical features used
for the analysis are briefly shown for the truss in Fig. 7, for the ball-bar in
Fig. 8 and for the cobot in Fig. 9.

4.1. Issues in glossy surface reconstruction

In the context of photogrammetric reconstruction (sub-criterion
1.3.2 of Table 2), it is essential to acknowledge potential challenges that
can impact the quality of the point cloud. These factors affect the
“Measurement performances” (criterion 2 of Table 2), in terms of in-
formation content (2.1), the capability of providing a robust evaluation
for quantitative investigation (2.3) and of detecting relatively small
features (2.5) and is liable of increasing measurement noise (2.4). Spe-
cifically, certain materials, such as metallic and glossy components, pose
unique difficulties in achieving accurate and precise reconstructions.
The challenges associated with the point cloud representation of shiny
surfaces have been the subject of considerable research and practical
experimentation. Various methodologies have been explored and
implemented to mitigate issues with glossy surfaces, e.g., the application
of matte spray. The quality of the reconstruction, in terms of geometrical
correspondence to the real object, can be influenced by low-contrast
images [68], reflectance [69], and black components [70]. In this
work, each sphere of the ball-bar is treated with a matte spray (see
Fig. 5) to significantly reduce their reflectiveness and generate a good
spherical reconstruction, as discernible in Fig. 8. In photogrammetry,
challenges arise with inconsistent feature detection on glossy surfaces
and a lack of visible texture on objects, leading to potential inaccuracies
in 3D reconstructions due to difficulties in matching and tracking sur-
face details across images.

Focusing on the UR3e collaborative robot [48], Fig. 12 delineates a
significant area for reconstructing the point cloud, notably emphasizing
the glossy region enclosed within the red dashed box. The reconstructed
cloud is discernible in Fig. 13, with a magnification on the glossy area.
Finally, Fig. 14 contains the C2C distance of the cloud from a reference
cloud, generated by using the API iScan 3D laser line scanner [56].

By observing the reconstruction, some considerations can be drawn.

• By observing Fig. 13, the shape of the metallic part is significantly
affected by the issues with the glossy surface, as the cylindricity is
wholly misplaced.

• The quantification of the C2C distance between the photogrammetric
cloud and the reference clearly shows significant discrepancies in the
metallic section, where the distance is around 9 mm on average, as
pointed out in Fig. 14.

4.2. Number of images

In this section, the investigation focuses on the effect of image
coverage on the point cloud of the truss, as introduced in Section 3.4.1.

The histogram depicting the C2C distance between the photogrammetric
point cloud and the reference cloud is displayed in Fig. 15. Remarkably,
the distribution of distances conforms to a right-skewed pattern.
Consequently, the chosen statistical parameters for the comparison
among the three cases encompass the median and the interquartile range
(IQR). In conjunction with the point count within the clouds, a
comprehensive comparative analysis of these parameters is elaborated
in Table 4.

By analyzing the results, some comments can be raised.

• Significant disparities are not observed in the histograms between
Setup 1 and Setup 2 (refer to Fig. 15a and b), a finding corroborated
by the data presented in Table 4. Specifically, it is worth noting that
the median value, when using 36 images, exhibits a modest increase
of 2.4 % when compared to the output generated from 72 images,
while the IQR registers a 1.1 % increment. In stark contrast, Setup 3
yields substantially higher results, a trend evident from the pro-
nounced right-skewness displayed in Fig. 15c. By employingFig. 12. Image of the collaborative robot UR3e [48], with a magnification in

the glossy metallic section.

Fig. 13. Point cloud of the collaborative robot UR3e [48], with a magnification
in the glossy metallic section.

Fig. 14. C2C distance in mm between the photogrammetric point cloud and the
reference cloud, obtained by employing the API iScan 3D laser line scan-
ner [56].
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nonparametric Mood’s Median Test [71], the statistical significance
of the difference in the medians is highlighted at a confidence in-
terval of 95 %.

• The inclusion of a higher number of images as input results in a
denser point cloud, as confirmed by the data presented in Table 4.
Specifically, the density increase is noteworthy when using more
images as input. Respectively, Setup 1 and Setup 2 exhibit an in-
crease in density of 5.3 % and 0.5 % compared to Setup 3.

• The significant dispersion of C2C distance in Setup 3 (24 images)
justifies the choice of considering the factor number of images on two
levels: 36 and 72 images, respectively.

4.3. Results of qualitative comparison

As anticipated, the aim of this study is to compare the photogram-
metric capabilities across two distinct scales. The criteria defined, while
essential, are inherently subjective; their selection is rooted in the
workflow specific to the photogrammetric process. Each criterion is
treated as independent, without incorporating any synthesis or aggre-
gation. Fig. 16 illustrates the profile chart for the two scales under

Fig. 15. Histograms of C2C distance between the reference cloud and photogrammetric cloud reconstructed with (a) 72 images, (b) 36 images, and (c) 24 images.

Table 4
Comparison of point cloud density, median C2C and IQR C2C between the
photogrammetric cloud and the reference.

Number of images Number of points Median C2C/mm IQR C2C/mm

72 60503 0.253 0.180
36 57704 0.259 0.182
24 57435 0.671 0.785

Table 5
Summary of performance levels of the photogrammetric process across the two
scales of interest. L Low, L/M Low/Medium, M Medium, M/H Medium/High, H
High performance.

Comparison criteria Performance Level

Small-scale Meso-scale

1. Simplicity/time of use
1.1 Preparation 1.1.1 Portability H H

1.1.2 Accessory tools M/H L
1.1.3 Number of markers H M
1.1.4 Marker placement H L/M
1.1.5 Set-up time H M

1.2 Measurement 1.2.1 Operator dexterity M/H M
1.2.2 Number of images M/H L/M
1.2.3 Time for acquisition M/H L/M

1.3 Data analysis 1.3.1 Processing time M/H M
1.3.2 Post-processing heaviness L/M M

2. Measurement performance
2.1 Information content M M
2.2 Reconstruction quality M/H M
2.3 Statistical investigation H L/M
2.4 Noise L M
2.5 Detection of small geometrical variation L/M M/H

3. Scale-dependent proficiency
3.1 Skill improvement M M/H
3.2 Effective applicability L/M M/H
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examination. A plot resembling a histogram is presented in Fig. 17a to
facilitate a comprehensive understanding of the comparison between
the scales. Fig. 17b encapsulates the median performance level among
the macro criteria, namely simplicity/time of use, measurement per-
formance, and scale-dependent proficiency. Additionally, a compre-
hensive summary of the results is provided in Table 5, where each
criterion is systematically delineated.

4.3.1. Simplicity/time of use

Portability: The use of a camera and markers for both small-scale and
meso-scale objects offers an advantage in terms of portability.
This commonality in equipment reduces the need for
specialized tools, making it a convenient choice for various
scenarios. Additionally, the compact nature of the equipment
makes it easy to transport to different locations, ensuring
flexibility in use. Consequently, both scales require compact
instrumentation, and no relevant differences can be detected.
Furthermore, the footprint of the instrumentation is
significantly lower than that of other metrological tools, e.g.,
laser scanners and laser trackers [53,56]. It is important to
note that the ease of transport and setup of photogrammetric
equipment significantly enhances its applicability in diverse
field conditions.

Accessory tools: It is convenient to use a calibrated instrument to facilitate the
image acquisition process. In detail, the use of a rotary table
makes it possible to keep the camera in a fixed position and
still acquire images of the component from multiple angles.
For this work, a rotary table is used, as shown in Fig. 3. In
addition, the use of the table allows the markers to be placed
on top of the plate in a fixed manner, thus making it possible to
avoid extracting their coordinates. Due to the size of the table,
only small-scale transportable objects can be placed on top of
the table, while larger objects are more complicated to
transport and place. For objects of a significantly larger scale
that align with the Large-Volume Metrology domain, the
utilization of tools as rotary tables is totally impractical.

Number of markers: The scale of the object also impacts the number of markers
needed. Larger reference scales typically require a greater
number of markers to ensure accurate reconstruction. This
consideration is essential for planning marker placement and
assessing the practicality of marker deployment in different
scenarios.

Marker placement: The ease of marker placement is more apparent with small-
scale objects, whose size and accessibility facilitate convenient
positioning. Conversely, meso-scale objects present challenges
due to spatial limitations and accessibility, potentially
increasing setup complexity. Optimization of marker
placement for meso-scale objects is key to enhancing efficiency
in larger-scale photogrammetric applications. For larger
scales, coded markers can potentially be substituted by
environmental features, discernible through the application of
MVSs, leading to an increase in the performance level of the
criterion.

Set-up time: Setup duration is pivotal in measurement processes. Small-
scale objects offer efficiency advantages, requiring minimal
surface treatment and camera startup time, thus rapidly
becoming operational. Accessory tools further expedite
marker placement. In contrast, meso-scale objects necessitate
extended setup times due to manual camera positioning and
marker coordinate extraction.

Operator dexterity: The skill level of an operator is crucial in achieving accurate
measurements. For small-scale objects, the operator’s role is
generally straightforward, focusing on framing a significant
number of markers in each image. However, when dealing
with meso-scale objects, the task becomes more complex. The
operator must adeptly capture a sufficient number of markers
along with a substantial portion of the object in each frame.

Number of images: The number of images required for measurement is influenced
by the object’s scale. Small-scale objects necessitate fewer
images to achieve adequate coverage due to their compact
size. In contrast, larger objects demand a higher number of
images to ensure comprehensive coverage.

Time for acquisition: The choice of equipment and techniques can significantly
impact the time required for data acquisition. The use of a
rotary table is particularly advantageous for reducing
acquisition time, as it eliminates the need for continuous

(continued on next column)

(continued )

camera movement. In contrast, meso-scale objects typically
require manual camera repositioning, increasing the time
needed to acquire a complete dataset of images. This
difference in acquisition methods affects the overall efficiency
of the measurement process.

Processing time: Data processing time is directly influenced by the number of
images collected during the measurement process. In the case
of small-scale objects, where fewer images are required, the
data processing time is shorter. This allows for a more
aggressive setting of reconstruction quality, resulting in
higher-quality reconstructions. However, for meso-scale
objects, the larger number of images leads to longer processing
times, which may necessitate a trade-off between processing
time and reconstruction quality.

Post-processing
heaviness:

Post-processing efforts are primarily dedicated to noise
reduction. Small-scale objects tend to have more pronounced
noise due to their smaller size, making noise reduction a
significant aspect of the post-processing workflow.

4.3.2. Measurement performan

Information content: Regardless of scale, photogrammetric methods
generally provide good geometry reconstruction and
color consistency. However, as depicted in Ref. [33],
no semantic information is present in the point cloud,
and it is necessary to pass through a processing phase.
Consequently, no relevant differences arise between
the two scales.

Reconstruction quality: The quality and density of the point cloud are
influenced by factors such as the number of images
acquired and the specific components encompassed
within each frame. It becomes evident that a larger
quantity of images results in a more favorable
reconstruction quality. Furthermore, as the project’s
scale increases, the camera’s precise positioning
becomes imperative for the accurate localization of
component features. Consequently, the reconstruction
quality increasingly relies upon the camera’s spatial
orientation, thereby augmenting the complexity of
achieving appropriate coverage. Other factors that can
affect the point cloud are discussed in Section 4.1.

Statistical investigation: With small-scales, proceeding with an experimental
campaign to fully propagate the measurement
uncertainty is less time-consuming. If the scale grows,
the number of images required is greater, and the time
to perform a robust uncertainty assessment becomes
untenable. More details are given in Section 4.4.

Noise: The proportion of objects captured relative to the
surrounding environment differs between small and
meso-scales. For meso-scale objects, the environment
has less impact on the captured images due to the
object’s dominance in the frame. In contrast, as the
scale decreases, the object occupies a smaller portion
of the frame, leading to increased environmental
influence.

Detection of small
geometrical variation:

When the objective is to detect damage or non-
conformities at the micro-scale in an object’s
geometry, the choice of measurement method becomes
critical. Photogrammetry may not be the most suitable
option for small-scale objects because the variations in
their dimensions are more likely to fall below the
measurement instrument’s uncertainty threshold.
More details can be retrieved in Section 4.4.

4.3.3. Scale-dependent proficiency

Skill improvement: At smaller scales, the technical and scientific skill enhancement
of the operator is less pronounced, as the process tends to be
simpler. However, with the increase in scale, the efficiency of
the operator’s skills can be enhanced, as the selection of
exposure settings and the positioning of the camera become
critical tasks for reducing processing time.

(continued on next page)
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(continued )

Effective
applicability:

Assessing the suitability of photogrammetry is crucial,
especially in relation to the specific context and objectives of the
measurement. For small-sized structures, photogrammetry
might not always be the most efficient approach, particularly in
scenarios where high precision and accuracy are paramount.
The level of detail achievable through photogrammetry may not
suffice for comprehensive experimental evaluation.

By observing the results, some comments can be raised.

• For the simplicity/time of use criterion at the small-scale, the median
is predominantly in theMedium/High range, whereas the meso-scale
is in the Medium range. Consequently, in terms of the first macro
criterion, i.e., the Simplicity/time of use, the small-scale demon-
strates a notably higher performance compared to the meso-scale, as
depicted in Fig. 17b.

• Upon examining Fig. 16, the profile charts exhibit multiple in-
tersections regarding the measurement performance, indicating no
distinct superiority of one scale over another. On the other hand,
scale-dependent proficiency shows the higher performance of the
meso-scale, as clearly shown in Fig. 17a and b.

4.4. Statistical investigation

In this section, the results of the statistical quantitative investigation
are presented and discussed following the methodology introduced in
Section 3.4. Small-scale objects can be placed on the rotary table,
allowing for the individual variation of certain factors of interest to
conduct a thorough investigation into their effect on reproducibility and
systematic errors. The time required for completing a full cycle of
photogrammetric reconstruction can be significantly reduced due to the

rotation of the table. This notwithstanding, each replication took
approximately 30’. Measurements were performed in common room
with a combination of artificial and natural light, which, thus, varied
through the experiments, resulting in variable illumination conditions.
As depicted in Section 4.2, the large dispersion of C2C distances ob-
tained with Setup 3 leads the factor number of images to be set on 2
levels. Specifically, as summarized in Table 6, three factors are consid-
ered, including three replications, and following a 2 × 2 × 2 × 3 DoE.

The ANOVA table (see Table 7) is utilized to assess the statistical
significance of the considered factors, including their interactions. For
both the truss thickness and the distance between the centers of the
spheres in the ball-bar measurements. The table includes the number of
degrees of freedom for each factor, the p-value, and the percentage
contribution to the sum of squares (SS%).

By observing Table 7 and it can be concluded that the camera

Fig. 16. Chart summarizing the performance levels for the two scales of in-
terest. The performance level related to each criterion is expressed using a five-
level ordinal scale: L Low, L/M Low/Medium, M Medium, M/H Medium/High,
H High performance.

Fig. 17. Histogram of (a) sub-criteria and (b) median performance level of the
macro criteria for the two scales. L Low, L/M Low/Medium, M Medium, M/H
Medium/High, H High performance. The sub-criteria follow the enlisting pro-
vided in Table 2.

Table 6
Influence Factors considered in the Design of Experiments.

Factors Levels Description

Camera position 2 More and less tilted with respect to the
measurand

Component
collocation

2 More and less centered with respect to markers

# of images 2 {36; 72}

Table 7
Analysis of Variance for Dtruss and Dballbar as output.

Dtruss Dballbar

ν SS% p-value ν SS% p-value

Camera position 1 57.86 % <0.01 1 41.02 % <0.01
Component collocation 1 0.25 % 0.71 1 12.05 % 0.04
Nr of images 1 1.40 % 0.39 1 3.67 % 0.24
2-Way Interactions 3 9.18 % 0.20 3 2.57 % 0.79
3-Way Interactions 1 2.76 % 0.23 1 1.94 % 0.38
Error 16 28.54 % 0.23 16 38.74 % 0.38
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position is the most significant factor. The SS% clearly indicates that the
variability is primarily influenced by the camera position and by unex-
plained random error. However, maintaining a fixed camera position
during the inspection of an object is not always possible, especially for
large-scale structures. In fact, in the case of the cobot, multiple positions
were required to ensure adequate coverage and quality of the recon-
struction, thus forcing to disregard such factor in the ANOVA. Conse-
quently, this work evaluates the reproducibility as the total variance of
measurements without distinguishing the effects of individual factors.
This reproducibility aligns with the VIM definition [52], as the variance
estimation is conducted under varying conditions, including the number
of images, the position of the component with respect to the markers and
the camera location. Furthermore, in the case of the cobot, the time
required to construct a sufficient set of images is considerably longer due
to its size. Therefore, five measurement subsets are considered, con-
taining 80, 85, 90, 95, and 100 images, respectively, each captured from
various camera positions. Since the number of images is different, this
change condition can account for the reproducibility.

Table 8 contains a summary of uncertainties, including the compu-
tation of the expanded uncertainty and the percentage relative uncer-
tainty. Specifically, it can be noticed that contributions from resolution
and numerical algorithms for dimensional evaluation, i.e., RANSAC, can
be considered negligible. Also, thanks to the calibration of internal and
external camera parameters, photogrammetry is highly accurate, thus
making negligible the bias uncertainty contribution; the related variance
is two order of magnitude smaller than the total variance. Thus, the
overall uncertainty budget is dominated by the reproducibility. The
considered methodology includes in the reproducibility some factors,
namely the camera position and number of images, that are liable for
systematic differences in the point cloud. These can be linked to quali-
tative effects related to coverage, quality of reconstruction, and inter-
action with the measurand surfaces; such effects cannot be corrected.
Furthermore, their elimination is strongly task-based dependent and not
always possible, e.g., large-scale mandate using multiple poses.
Accordingly, propagating them provides a conservative uncertainty
estimation by means of a practical methodology that allows ease of
replication also for industrial practitioners. Traceability is established by
relying on the measurement of reference artifacts calibrated, as detailed
in Section 3.4 and depicted in Fig. 10, and propagating the uncertainty
of the measured reference value and the bias related contribution [54,
57]. Specifically, the geometrical reference for the small-scale object is
generated with the ATOS GOM ScanBox Series 4 [53]. In contrast, the
reference geometry for the meso-scale is reconstructed using the API
Laser Tracker and API iScan 3D laser line scanner [56]. Fig. 18 illustrates
the best linear regression fit for the expanded uncertainty at each dis-
tance, also displaying the variation in percentage relative uncertainty

across different distances. Thoroughly, Fig. 18a reports the linear scale,
whereas the logarithmic plot can be observed in Fig. 18b.

By observing the results, the following comments can be made.

• The camera position affects the measurement, introducing a sys-
tematic factor, since it impacts the coverage and light interaction
with the measurand surface.

• Despite the effect of camera position, the bias of geometrical char-
acterization based on the average photogrammetric evaluation pro-
vides a negligible contribution to the measurement uncertainty,
especially for small-scale objects.

Table 8
Summary of uncertainties and estimation of expanded uncertainty.

Dtruss Dsphere Dballbar Dcobot

Variance/mm2 ν Variance/mm2 ν Variance/mm2 ν Variance/mm2 ν

Reproducibility 1.03E-03 23 6.18E-04 23 2.35E-03 23 8.04E-02 4
RANSAC Systematic 1.00E-20 100 1.00E-20 100 1.00E-20 100 1.00E-20 100
RANSAC Random 1.00E-04 100 1.00E-04 100 1.00E-04 100 1.00E-04 100
Bias 4.10E-04 23 1.12E-06 23 1.90E-03 23 6.21E-02 4
Referencea 7.47E-04 31 3.36E-04 8 2.82E-04 7 1.44E-03 10
Resolution 2.08E-04 100 2.08E-04 100 2.08E-04 100 5.33E-04 100

u2/mm2 2.49E-03 1.26E-03 4.84E-03 1.45E-01
u/mm 4.99E-02 3.55E-02 6.92E-02 3.80E-01
νy 86 51 57 8
K 1.99 2.01 2.00 2.31
U/mm 9.93E-02 7.13E-02 1.39E-01 8.77E-01
Lc/mm 3.13 18.86 99.26 363.52
u% 1.60 % 0.19 % 0.07 % 0.10 %
U% 3.17 % 0.38 % 0.14 % 0.24 %

a Reference artifact contributions from Table 3 [59].

Fig. 18. Best linear regression fit for the expanded uncertainty at each char-
acteristic length (R2

= 0.961), and variation of percentage relative uncertainty;
(a) linear scale, and (b) logarithmic scale.
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• Multiple camera positions are often required to manage meso- and
large-scale geometrical complexity.

• Measurement reproducibility, possibly including multiple camera
positions, dominates the uncertainty budget of dimensional charac-
terization based on photogrammetry measurements.

• Excluding the truss, the relative measurement uncertainty exhibits a
nearly constant pattern. The high expanded uncertainty observed for
the truss highlights the criticality of measurement at very small
measurand scales.

• The expanded uncertainty estimated across the different character-
istic lengths exhibits a linear tendency, demonstrating a good
agreement with the literature findings.

5. Conclusions

This work presented a combined qualitative and quantitative meth-
odology for evaluating the performance of photogrammetry across
different scales from 1mm to 1 m. The qualitative analysis compared the
scales by employing a set of sub-criteria that identified performance
levels aligning with a five-level ordinal scale. The quantitative evalua-
tion is carried out by identifying the sources of uncertainty and thus
expanding them to fulfill a robust estimation of the expanded
uncertainty.

The comparative qualitative analysis of photogrammetry across
different scales reveals nuanced insights into its performance, remark-
ably when evaluated against criteria such as simplicity/time of use,
measurement performance, and scale-dependent proficiency.
Specifically.

• For the simplicity/time of use criterion, findings indicate that
photogrammetry at the small-scale exhibits predominantly Medium/
High (M/H) performance.

• The meso-scale performance falls within the Medium (M) range,
suggesting that small-scale photogrammetry applications are notably
more user-friendly and efficient than meso-scale applications.

• In terms of measurement performance, the analysis does not high-
light a clear superiority of one scale over another. However, when
evaluating scale-dependent proficiency, the meso-scale demon-
strates higher performance.

• Consequently, while small-scale photogrammetry may offer benefits
in terms of ease of use, meso-scale photogrammetry holds its ad-
vantages, particularly in contexts requiring specialized scale-
dependent capabilities.

• The expected performance for larger scales of interest, specifically
large-scale structures, is projected to be enhanced in terms of scale-
dependent proficiency. The benefits derived from employing visual
techniques for measurement and inspection underscore the utility of
photogrammetry as a highly effective technique.

Additionally, this work provided a quantitative metrological

benchmark of photogrammetry performance across multiple scales.
Main results have highlighted that.

• Camera positioning introduces a systematic factor, which in setup for
meso- and large-scale applications requiring multiple camera poses
leads the reproducibility to be the primary contributor to the un-
certainty budget.

• The relative measurement uncertainty decreases with an increase in
the measurement scale, underscoring the applicability of photo-
grammetry in precision engineering applications.

• Furthermore, a discernible linear trend in expanded uncertainty
across different scales states the consistency and potential accuracy
of photogrammetry in dimensional analysis.

This paper significantly extends the application of photogrammetry
within the field of precision engineering, industrial metrology, and
quality control applications. By delving into the measurement accuracy,
bias, and uncertainty within photogrammetric evaluations, the research
provides a framework that enhances the reliability and precision of
photogrammetry as a critical tool in these fields. Future research efforts
will be directed toward integrating cameras with unmanned aerial ve-
hicles (UAVs) for precision and quality engineering applications to
measure and inspect large-volume structures considering an extension of
the scales of interest beyond the limits addressed in this paper. A
particular emphasis will be placed on the development of AI-Based
methods for identifying surface defects and damage detection.
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Appendix A

A.1 Simplicity/time of use

Portability: L: The equipment is very bulky and heavy, rendering it impractical for transportation and relegating its use to stationary or semi-stationary installations.
L/M: The equipment is bulky and heavy, requiring considerable effort to move and may only be suitable for some locations.
M: The equipment has an average weight and size, making it manageable to transport with some effort and planning.
M/H: The equipment is relatively easy to transport but may require some effort or additional resources for specific locations.
H: The lightweight and compact equipment allows easy transportation to any location without significant effort.

Accessory tools: L: The component’s size and fixed placement negate the use of accessory tools.
L/M: Some difficulties with the component’s manageability; accessory tools offer limited improvement.
M: The component handling is manageable with minor inconveniences; accessory tools are moderately effective.

(continued on next page)
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(continued )

M/H: The component is maneuverable well; accessory tools improve photogrammetric efficiency with slight limitations.
H: The component is easily maneuvered; accessory tools significantly enhance the photogrammetric process without restrictions.

Number of markers: L: A significantly high quantity of markers is necessitated, which complicates management and may affect the workflow due to the object’s size.
L/M: A high quantity of markers is required, influenced by the object’s dimensions, though it remains manageable with careful planning.
M: A moderate quantity of markers is needed, reflecting a balance between the object’s size and the ease of data management.
M/H: The number of markers is not streamlined; however, the object’s size has a minimal impact on the efficiency of the process.
H: The smallest practical quantity of markers is employed, optimizing the process in relation to the object’s size and facilitating straightforward data
management.

Marker placement: L: Marker placement is highly challenging, significantly impacting the measurement process.
L/M: Marker placement is challenging, with some impact on measurement efficiency.
M: Marker placement has a moderate difficulty level with a manageable impact on efficiency.
M/H: Marker placement is relatively easy and has a minor impact on efficiency.
H: Marker placement is straightforward, not impacting the measurement efficiency.

Set-up time: L: Set-up is very time-consuming, significantly affecting productivity.
L/M: Set-up takes longer than ideal, negatively impacting productivity.
M: Set-up takes moderate time with a manageable impact.
M/H: Set-up is reasonably quick, with minimal impact on productivity.
H: Set-up is rapid, enhancing overall productivity.

Operator dexterity: L: This level necessitates an elevated degree of proficiency and expertise from the operator, rendering the task challenging without specialized training.
L/M: At this level, operators are required to demonstrate a heightened level of skill, which may present challenges without a certain degree of training.
M: This classification calls for a moderate skill level attainable by operators possessing some degree of experience.
M/H: This level requires a certain skill level but remains manageable for most operators with basic training.
H: At this performance level, minimal skill acquisition is needed, rendering the task highly accessible for most operators.

Number of images: L: The process necessitates a significantly high number of images, thereby greatly enhancing the complexity.
L/M: The acquisition demands a large number of images, leading to extended processing duration.
M: A moderate quantity of images is required, balancing manageability in both complexity and processing time.
M/H: The operation calls for a slight number of images, yet this does not markedly impact processing efficiency.
H: The minimal number of images needed ensures a highly efficient processing workflow.

Time for acquisition: L: The acquisition process is prolonged, severely detracting from productivity.
L/M: The acquisition duration is long, with a noticeable negative effect on productivity.
M: The acquisition time is adequate, with manageable effects on productivity.
M/H: The acquisition process is relatively swift, slightly enhancing productivity.
H: The acquisition is expedited, significantly improving productivity.

Processing time: L: Processing is very time-consuming, creating a significant bottleneck.
L/M: Processing is time-consuming, affecting turnaround time.
M: Processing takes a moderate amount of time, with a manageable impact on project timelines.
M/H: Processing is reasonably quick, with minimal impact on timelines.
H: Processing is rapid, greatly enhancing project throughput.

Post-processing
heaviness:

L: Post-processing is extremely heavy due to significant noise reduction efforts.
L/M: Post-processing is heavy, with a considerable focus on noise reduction.
M: Moderate post-processing efforts required for noise reduction.
M/H: Lighter post-processing with minimal noise reduction efforts needed.
H: Minimal post-processing is required, with noise reduction being trivial.

A.2 Measurement performance

Information content: L: Poor geometry reconstruction and color inconsistency; semantic information is largely absent.
L/M: Below-average geometry reconstruction and color consistency; some semantic information is missing.
M: Average geometry reconstruction and color consistency; some semantic information may be present.
M/H: Above-average geometry reconstruction and color consistency; most semantic information is present.
H: Excellent geometry reconstruction and color consistency; all semantic information is present.

Reconstruction
quality:

L: The point cloud’s quality and density are significantly compromised, leading to poor reconstruction results.
L/M: The quality of reconstruction is suboptimal.
M: The reconstruction is adequate. Complex parts still produce issues in the reconstruction’s quality and density.
M/H: The complexity is well-managed, and improvements in cloud density can be made.
H: Exceptional quality and density of the point cloud are attained, ensuring superior reconstruction results.

Statistical investigation: L: The statistical investigation becomes extremely time-consuming and impractical, hampered by the high number of images and the extended duration
needed for uncertainty assessment.
L/M: The statistical investigation process is notably time-intensive, necessitated by an increased number of images, which extends the time for
uncertainty assessment.
M: A balanced approach to statistical investigation, requiring a moderate number of images, balances time efficiency with thorough uncertainty
assessment.
M/H: Statistical investigation is reasonably efficient, facilitated by a manageable number of images, allowing for a more streamlined uncertainty
assessment.
H: The statistical investigation process is highly efficient, minimized in both the number of images required and the rapid completion of uncertainty
assessment.

Noise: L: The environmental noise significantly impacts the reconstruction due to the object’s small proportion in the captured scene, overshadowed by the
surroundings.
L/M: The reconstructed cloud faces substantial environmental noise, as the object occupies a smaller area within the frame, reducing clarity.

(continued on next page)
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M: The impact of environmental noise is moderate, with the object and surroundings balanced in a way that neither overwhelms the other.
M/H: Environmental noise is less of a concern, with the object’s presence in the frame sufficiently large to mitigate its effect.
H: The object’s substantial dominance in the frame minimizes environmental noise, enhancing the clarity and focus of the analysis.

Detection of small
geometrical
variation:

L: Inability to detect small geometrical variations due to the high uncertainty threshold of measurement instruments.
L/M: Difficulty in detecting small geometrical variations with some limitations due to measurement uncertainty.
M: Moderate capability in detecting geometrical variations with an acceptable uncertainty threshold.
M/H: Reliable detection of small geometrical variations with low measurement uncertainty.
H: Excellent detection of small geometrical variations with minimal measurement uncertainty.

A.3 Scale-dependent proficiency

Skill
improvement:

L: Skill enhancement is minimal; operations are basic and do not benefit significantly from advanced technical or scientific skills.
L/M: Some improvement in skill can optimize the process, which remains primarily straightforward with routine operations.
M: Moderate skill development contributes to efficiency; the complexity of tasks is balanced with operational simplicity.
M/H: Improved skills lead to notable gains in efficiency; technical tasks like camera positioning and exposure settings start to impact processing time.
H: Advanced skill mastery greatly enhances operational efficiency; expertise in technical settings and equipment handling is crucial for process optimization.

Effective
applicability:

L: Photogrammetry is generally unsuitable; the required precision and accuracy are beyond the method’s capability, rendering it inefficient.
L/M: Limited suitability of photogrammetry; it can be used with some success but may not meet all the requirements for precision and detailed analysis.
M: Photogrammetry is moderately suitable; it provides a balance between ease of use and the level of detail required, though it may not fully meet high precision
demands.
M/H: Photogrammetry is quite suitable; it meets most of the objectives for measurement, offering a high level of detail, though with some limitations in precision.
H: Photogrammetry is highly suitable; it effectively meets the specific context and objectives of the measurement, achieving the necessary precision and accuracy
for comprehensive analysis.
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