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Abstract 

Human-robot collaboration (HRC) is one of the paradigms of the emerging Industry 5.0, aimed at supporting humans in production 
processes. However, the introduction of an industrial robotic system in close contact with a human opens new challenges not only 
for safety but also for ergonomics. This paper aims to study whether the introduction of a collaborative robot into an assembly 
process can support the human operator not only physically but also cognitively. To address this research question, shifts of a 
repetitive assembly process were implemented in both manual and HRC settings. The two settings were compared over time by 
analyzing the evolution of generated process failures and physiological response, revealing potential differences in process quality 
and operator stress. 
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1. Introduction 

Human-robot collaboration (HRC) has emerged as a new paradigm for humans and collaborative robots (or cobots) 
to work together in a shared environment [1]. By joining the capabilities of cobots and humans, HRC can increase 
productivity, flexibility, and process quality in manufacturing [2]. One of the main industrial applications of cobots 
are in assembly processes [3]. 
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The in-depth study of HRC involves several dimensions, including human-related aspects such as human factors 
[4]. Fatigue and stress have become key factors in manufacturing since they may lead to negative performances of 
operators [5]. The adoption of cobots may affect not only system efficiency and flexibility, but also the well-being of 
human operators [6, 7]. However, little attention has been paid to the analysis of cognitive support of collaborative 
robotics in repetitive assembly processes.  

The aim of this paper is to explore the evolution of operator performance and physiological response over time 
during emulated shifts of a repetitive assembly process, comparing a classical manual setting with an HRC one. The 
following research questions will be addressed: (i) Are there differences in the evolution of operator process failures 
between a repetitive HRC and manual assembly process? (ii) How does the robot impact operator stress over time? 

To this end, four-hour shifts involving a repetitive assembly of a reference case study (i.e., a tile cutter) was 
implemented in two modalities: manual and HRC. The study analyzes (i) the number and type of process failures to 
track the evolution of human performance and learning rate, as well as (ii) physiological signals measuring physical 
exertion, stress, and cognitive workload over time.  

The paper is organized as follows. Next section describes the experimental methodology. Afterwards, the main 
experimental results are reported. Finally, discussion of the main findings and conclusions are presented. 

2. Methodology 

To examine whether a cobot can provide aid in repetitive assembly processes, 4-hour shifts of assembling a tile 
cutter were conducted at Mind4Lab at "Politecnico di Torino" involving the UR3e cobot [8]. Twelve participants (six 
males and six females), aged 20 to 25 with no prior experience with cobots, were involved in the study. 

2.1. Assembly process 

A tile cutter assembly process was implemented in two modalities: HRC and Manual. Fig. 1 shows the four main 
phases that compose the assembly: 

 
Phase 1:  The supports for the rail rods are mounted on the base. 
Phase 2:  The cutting mechanism is assembled. 
Phase 3:  The cutting mechanism with base is joined through the rail rods. 
Phase 4:  The tile cutter is completed by mounting the handle. 

 
Table 1 contains the detailed list of operations of the assembly process, also showing their allocations between 

human operator and cobot in the HRC modality. In Manual modality, cobot’s operations are carried out by the 
operator. A single tile cutter assembly takes approximately 240s, leading to about 60 products in a 4-hour shift. In 
total, the experimental data refer to approximately 720 assemblies. 
 

2.2. Process failures 

To keep track of operator’s performance over time, the number and type of process failures were collected. Four 
main macro-groups of process failures were identified: 
• Incorrect part selection (D1): the operator picks up a component not needed to perform the following task. 
• Incorrect part positioning (D2): the operator places a component in a way that is not suitable for proceeding with 

the next task. 
• Incorrect part assemblies (D3): the operator misassembles a component. 
• Part droppings (D4): the operator drops components/screws/nuts/washers or tools. 
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Fig. 1. Main phases of the tile cutter assembly. 

Table 1 – Sequence of the operations in the tile cutter assembly process for HRC modality.  

Phase 
Operation allocation 

Human Cobot 

Phase 1 

 1. Picking the Base and placing it in the 
workarea.  

2. Soft screwing of lateral supports to the 
base.  

 3. Placing sub-assembly (base and lateral 
supports) out of the workarea. 

Phase 2 

 4. Picking the sliding support. 
5. Screwing the cutting support component 
to the sliding support.  

6. Screwing blade to the cutting support 
component.   

7. Screwing the tile blocker to the cutting 
support component.   

 8. Placing the cutting component out of 
the workarea. 

Phase 3 

 
9. Picking the subassembly (base and 
lateral supports) and place it back in the 
work area. 

10. Picking cutting component.  
11. Insertion of the two rods in the cutting 
component.  

12. Insertion of rods against the lateral 
supports.  

13. Final tightening of lateral supports to 
the base.  

Phase 4 
14. Screwing the handle to the cutting 
component.  

 15. Picking the final product. 
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To better highlight potential differences between HRC and manual assembly from a cognitive point of view, the 
learning curve phenomenon for process failures will be explored. Among the different learning curve models, the 
power-law is one of the most used [9, 10]. In the present study, the evolution of process failures for each modality 
will be modeled with a power-law learning curve of the following form [11]: 
 

𝑌𝑌 = 𝑎𝑎 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇! + 𝑐𝑐     (1) 
 
where 𝑎𝑎 represents the starting performance at the first trial, 𝑏𝑏 is the learning rate (i.e., the learning velocity), and 𝑐𝑐 
represents the asymptotic steady-state performance [12, 13]. In our case, 𝑐𝑐 was set equal to 0 since there are no 
technical limitations in operator learning that cannot lead to a steady state of zero failures and the number of trials 
considered is limited, leading to the classical Wright’s learning model widely used in manufacturing [12, 14]. In 
addition, the lower 𝑏𝑏 is, the faster the learning and consequently the achievement of zero failures. 𝑌𝑌 is the response 
variable, i.e., the process failures. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 represents the number of trials performed by the operator. 

2.3. Physiological signal collection 

Various physiological responses were collected with the noninvasive biosensor Empatica E4 [15] to obtain 
information on the evolution of operator stress, cognitive effort, and fatigue during the assembly process. The device 
allowed to collect electrodermal activity (EDA) data at 4Hz and photopletismogram (PPG) data at 64Hz. Heat rate 
(HR) data were derived by processing and analyzing PPG data though an internal Empatica algorithm. By analyzing 
the heart rate, information on stress and fatigue can be obtained. 

The EDA data were processed using "Ledalab", a MATLAB-based software. Through continuous decomposition 
analysis (CDA) [16], the phasic activity was extracted from the EDA signal. Phasic activity refers to short-term 
fluctuations in EDA which have been elicited by a usually identified and externally presented stimulus. Through the 
analysis of the phasic activity signal, skin conductance response (SCR) peaks can be detected and their frequency 
provides information on arousal and stress. A threshold of 0.05 µS was used for selecting significant SCR peaks. 

Skin conductance level (SCL) was also derived through CDA, representing the long-term variations of EDA (i.e., 
tonic activity). The slow fluctuations can occur in response to prolonged or continuous stimuli, providing information 
on prolonged stress and cognitive effort. 
In this study, the average HR, number of SCR peaks, and average SCL were computed for each trial to investigate the 
evolution of fatigue, stress, and cognitive effort [17, 18]. Z-scores for HR and SCL were used, as this type of 
standardization allows the removal of each person's bias related to heart activity and SCL, thus providing a better 
framework for comparison between participants. The following formula was used to calculate the z-scores: 

𝑧𝑧"# =
𝑥𝑥"# − 𝑥𝑥#
𝑠𝑠#

 (2) 

where 𝑧𝑧"# is the i-th z-score for participant j, obtained by the ratio of the difference between the observation 𝑥𝑥"#and 
the sample mean for participant j (𝑥𝑥#) with the sample standard deviation for participant j (𝑠𝑠#). 

2.4. Experimental procedure 

At the beginning, each participant was informed about the objectives and procedure of the study. Next, the 
participant was guided to the work area and was presented with the details of the assembly task. The Empatica E4 was 
placed on the left wrist of the participant and a wait time of 15 minutes was observed to ensure the electrodes properly 
adhered in order to obtain reliable EDA data. Next, he/she was instructed to relax and remain still to record 2 minutes 
of physiological signals at rest. Following this, the 4-hour assembly task work shift began, during which a 10-minute 
break was provided every two hours to simulate real-life working conditions. Another person oversaw the process by 
keeping track of process failures. At the end of the shift, each participant was asked for general feedback on the overall 
experience. Each participant carried out the 4-hour shift in both manual modality (Manual) and HRC modality (HRC) 
with random order. 
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3. Results 

In this section, the obtained results are presented. For each response variable, no relevant effect was observed due 
to the order of the modalities. 

3.1. Process failures 

Fig. 2 shows the evolution of the average number of process failures over the 12 participants for both manual and 
HRC settings and the fitted learning curves with the power law model. Slightly more process failures were present in 
the manual setting, although there was some overlap between the curves. The learning curve for the manual modality 
was found to be above that of the HRC modality, highlighting the tendency to observe more process failures in the 
manual setting. This phenomenon may be due to the fact that the cobot was also a cognitive support for the operator 
during assembly. In fact, participant feedback revealed that the cobot, indirectly with its operations, helped the 
operator in remembering the various assembly steps, thus making fewer mistakes. 

 

 
Fig. 2. Comparison between HRC and Manual modalities of average process failures evolution and fitted power-law learning curves. 

Table 1 contains the parameter estimates of the power-law learning curves, which resulted all significant as 0 was 
not contained in each of the 95% confidence intervals. It can be seen that the two learning curves have a rather similar 
learning rate (HRC: 𝑏𝑏 = -0.389; Manual: 𝑏𝑏 = -0.356), while the initial value of average process failures is higher in 
the manual setting (HRC: 𝑎𝑎 = 0.940; Manual: 𝑎𝑎 = 1.144). However, it was not possible to conclude that the difference 
was statistically significant since the 95% confidence intervals overlap. 

Table 2 - Fitted power-law learning curve models for process failures. 

Response variable Modality Coefficient Value Confidence interval (95%) 

Process failures HRC 𝑎𝑎  0.940 [0.661, 1.219]  

 𝑏𝑏  -0.389 [-0.507, -0.271] 

Manual 𝑎𝑎  1.144 [0.907, 1.382] 

 𝑏𝑏  -0.356 [-0.435, -0.276] 
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Fig. 3 shows the evolution of process failures categorized into incorrect part selections (D1), incorrect part 
placements (D2), incorrect part assemblies (D3), and part droppings (D4). No significant differences emerged between 
manual and HRC modalities, except for D2. Observing the curves, more incorrect part placements can be noted in the 
manual setting. One of the main difficulties encountered by the participants was to correctly position the components 
of the cutting mechanism. Since the cobot always presented and held one of the components in the same way, it was 
easier for the operator to remember how to correctly position the others. This effect is also reflected by the coefficients 
of the learning curves, where the starting performance was better in the HRC modality (HRC: 𝑎𝑎 = 0.338; Manual: 𝑎𝑎 
= 0.717). In addition, this difference was statistically significant as there was no overlap between the 95% confidence 
intervals (HRC: CIa = [0.209, 0.467]; Manual: CIa = [0.528, 0.907]). The learning rate in the HRC setting had a slightly 
higher magnitude (HRC: 𝑏𝑏 = -0.607; Manual: 𝑏𝑏 = -0.583), however, the difference with the manual setting was not 
significant when observing the 95% confidence intervals (HRC: CIb = [-0.808, -0.407]; Manual: CIb = [-0.717, -
0.450]). 

3.2. Physiological response 

A descriptive analysis of the physiological responses will be provided in this section, comparing the different 
modalities within each participant. 

Fig. 4 contains the evolution of the z-scores for average HR along the trials comparing HRC and Manual modalities 
for each participant. In general, the curves tended to overlap, consequently there were no glaring differences between 
the values of the two assembly modalities. However, for 2 out 12 participants (i.e., 1 and 3) higher average HR can 
be observed in HRC modality in the first half of the shift, potentially suggesting greater initial stress than in the Manual 
setting. No particular trend generally emerged in both settings. However, slightly decreasing trends can be observed 
in the HRC setting for participants 1, 3, and 7, but an increasing one for participant 6. Therefore, comparison of the 
average HR showed no clear difference between the HRC and Manual setting. 

The evolution of the number of SCR peaks comparing the two assembly modalities is reported for each participant 
in Fig. 5. Observing the Manual setting, there was a tendency for a stationary or decreasing trend (participants 1, 7, 8, 
9, and 11). In addition, at the beginning of the shift, values tended to be higher than in the HRC setting, revealing a 
significant difference (Wilcoxon signed-rank test: p-value<0.001). This result highlights greater stress in the early 
phase of the manual setting, mainly due to having to learn and become familiar with the task. This aspect highlights 
the support of the cobot from a cognitive point of view, especially in a learning phase. It is interesting to note that for 
a group of participants (i.e., participants 1, 3, 9, 11, and 12) there was an increasing trend in the number of SCR peaks 
in the HRC setting. This growth in stress is likely due to the fact that some participants began to perceive the cobot as 
an obstacle to their efficiency once they learned the task. In particular, they would have liked the cobot to be faster in 
performing its operations. However, despite the increasing trend, the maximum values observed were less than or 
similar to those of the Manual setting (except for participant 3). 

Fig. 6 shows the evolution of the z-scores for average SCL along the trials comparing HRC and Manual modalities 
for each participant. The trends observed in the Manual setting were decreasing or stationary (except for participant 
7), indicative of a progressive reduction in cognitive effort. For the HRC setting, increasing trends were observed in 
several participants (i.e., participants 1, 3, 6, 9, 11, and 12), mainly attributable to a sense of frustration with the cobot. 
In fact, once the collaborative assembly process was learned, most participants would have liked the cobot to be faster 
in its operations. Thus, not being able to change the speed of the cobot led to a sense of powerlessness and frustration. 
However, it is worth noting that at the beginning of the trial, mean SCL values tended to be higher in the Manual 
setting (participants 2, 4, 5, 7, 8, 10, and 11), revealing a significant difference (Wilcoxon signed-rank test: p-
value<0.001). This fact suggests a lower use of cognitive resources in the learning phase due to the presence of the 
cobot during the operations.  

These preliminary results highlighted how differently operators can experience a certain work setup and how 
important it is to take into account any user preferences when implementing new technologies to obtain the full 
benefits. 
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Fig. 3. Comparison between HRC and Manual modalities for the categories incorrect part selections, positionings and assemblies and part 

droppings. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of the evolution of average heart rate (Mean_HR) between Manual and HRC modality for each participant. Dotted lines 
represent the trend. 
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Fig. 5. Comparison of the evolution of number of SCR peaks between Manual and HRC modality for each participant. Dotted lines represent the 
trend. 

Fig. 6. Comparison of the evolution of average SCL between Manual and HRC modality for each participant. Dotted lines represent the trend. 
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4. Discussion and conclusions 

The objective of the paper was to explore how the introduction of a cobot can impact the human operator 
cognitively over time in an assembly process by analyzing the evolution of process failures generation and 
physiological responses. 4-hour work shifts for a tile cutter assembly process were emulated in both manual and HRC 
modalities.  

Some interesting results emerged from the comparison of the two modalities. Slightly more process failures were 
observed in the manual modality. In particular, more incorrect part placements were observed. Many participants, 
especially in the beginning, could not remember some operations or how to assemble some components together. The 
cobot's actions allowed to indirectly guide the operator in the assembly, helping to remember which operations to 
perform. In addition, the cobot helped the operator remember how to correctly position and assemble certain 
components by always handing them to the operator in the same way. These aspects highlight the contribution of the 
cobot in reducing the cognitive load involved in human operations, especially in the initial learning phase where better 
starting performance emerged. 

The participants' physiological responses (i.e., heart activity and EDA) were collected during the assembly process 
and descriptively analyzed to provide some insights on the evolution of operator stress. Comparing the evolution of 
the average HR in the two modalities, no clear differences emerged. However, looking at the number of SCR peaks 
and average SCL higher values were often observed in the manual modality, especially in the initial learning phase. 
This result highlighted the cognitive support of the cobot in the learning phase also from a physiological viewpoint, 
reducing the initial operator stress. In general, operators' stress level tended to decrease or remain quite stationary over 
the shift. Interestingly, an increasing trend of stress in the HRC modality was observed in some participants. This 
increase can be traced to a sense of annoyance toward the cobot that gradually emerged once participants had fully 
learned how to carry out the assembly process. In order to feel more efficient in the process, some participants would 
have liked the cobot to be faster in its operations to reduce potential downtime as much as possible. This fact may 
provide a clue towards the need for human-centered collaborative process planning that can consider potential 
operator’s preferences in order to take full advantage of HRC. 

The order of the modalities in which the assembly process was carried out did not reveal any particular differences 
in terms of the response variables. However, it could be observed that in switching from HRC to manual modality, 
the participants were initially slightly bewildered in the assembly operations, as they were also used to the support of 
the cobot in remembering the correct positioning of the parts. Similarly, in switching from manual to HRC modality, 
participants had to get used to the presence and pace of the cobot during various operations. However, further 
investigation of this phenomenon is needed. 

In conclusion, from the preliminary results of the conducted study, the cobot proved to be particularly useful during 
the learning phase of the assembly process, both from the point of view of process quality and operator stress. This 
result suggests that cobot implementation may be quite useful in operator training. In addition, to take full advantage 
of the HRC's potential, the operator should be able to be able to adjust interaction parameters, such as the cobot's 
speed of movement, according to his or her needs. 

Future work will focus on deepening the analysis of physiological responses to investigate their link to the 
operator's user experience. In addition, a larger sample of participants will be needed to strengthen the results and 
further investigate the role of the cobot as a cognitive support in repetitive tasks, by also involving people with 
different prior experience with cobots and broader age range. 
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