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Abstract

Visual Place recognition is commonly addressed as an
image retrieval problem. However, retrieval methods are
impractical to scale to large datasets, densely sampled from
city-wide maps, since their dimension impact negatively on
the inference time. Using approximate nearest neighbour
search for retrieval helps to mitigate this issue, at the cost
of a performance drop. In this paper we investigate whether
we can effectively approach this task as a classification
problem, thus bypassing the need for a similarity search. We
find that existing classification methods for coarse, planet-
wide localization are not suitable for the fine-grained and
city-wide setting. This is largely due to how the dataset is
split into classes, because these methods are designed to
handle a sparse distribution of photos and as such do not
consider the visual aliasing problem across neighbouring
classes that naturally arises in dense scenarios. Thus, we
propose a partitioning scheme that enables a fast and accu-
rate inference, preserving a simple learning procedure, and
a novel inference pipeline based on an ensemble of novel
classifiers that uses the prototypes learned via an angular
margin loss. Our method, Divide&Classify (D&C), enjoys
the fast inference of classification solutions and an accuracy
competitive with retrieval methods on the fine-grained, city-
wide setting. Moreover, we show that D&C can be paired
with existing retrieval pipelines to speed up computations
by over 20 times while increasing their recall, leading to
new state-of-the-art results.

1. Introduction

Visual Place Recognition (VPR) is the task of recogniz-
ing the location where a photo was taken with an accuracy
of a few meters [43, 1, 25, 42, 28, 11, 13, 5, 18, 49, 31,
15, 44, 52, 6, 8, 7, 12, 24, 16]. This problem, also known
as visual geo-localization [3, 4, 25] or image localization
[28, 13], is commonly approached as an image retrieval
problem: the query to be localized is compared to a database

Figure 1: Experiments demonstrating the scalability prob-
lem of retrieval-based VPR methods, using the state-of-the-
art CosPlace (with exhaustive kNN and with Approximate
Nearest Neighbor - ANN - search through Inverted File In-
dex with Product Quantization, IVFPQ). Combining our
Divide&Classify method with the retrieval approach yields
an optimal performance-efficiency trade-off when scaling
up to the city-wide setting.

of geo-tagged images, typically via a k-nearest neighbour
(kNN) in features space, and the most similar images re-
trieved from the database are the predictions of the query’s
location. Even though retrieval methods work remarkably
well when the VPR task is limited to a small map [4, 52, 3],
scaling them to large and densely mapped areas, such as an
entire city, is impractical because both the time and memory
required to execute the kNN grow with the dimension of the
database [52, 4, 35, 2].

Certainly, the space and time requirements of the kNN
can be reduced by resorting to Approximate Nearest Neigh-
bors (ANNs) algorithms [22, 29, 2, 39], which grant im-
pressive speed ups while simultaneously reducing memory
footprint. However, their accuracy may be significantly
worse than the one obtained with the exhaustive kNN,
which is their upper bound. This trade-off is easily demon-
strated with an experiment. In Fig. 1 we show the behav-
ior obtained using the state-of-the-art retrieval method Cos-
Place [3] on SF-XL [3], a dataset for urban VPR that cov-
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ers the whole city of San Francisco, with an area of nearly
170km2 and over 40M images. Starting from a reduced
version of SF-XL and gradually increasing the size of the
database up to its full version, we can observe that the in-
ference time quickly explodes with the exhaustive kNN. On
the other hand, with an ANN the inference time grows much
more slowly (yet still linearly w.r.t. the size of the database),
at the cost of a big drop in accuracy.

A different route to address the scalability problem is to
frame VPR as a classification task, so that predictions of
the query’s location can be obtained without a similarity
search over a database. So far, this formulation has been
applied in the setting of planet-wide, coarse geolocalization
[33, 50, 38, 27]. All these methods are designed to divide
the globe in very coarse classes, spanning up to hundreds
of kilometers each and following the sparse and uneven
distribution of photos in the planet. We question whether
these classification approaches can be adapted to the fine-
grained city-scale VPR setting, where the required localiza-
tion accuracy is in the order of a few meters. We find that
the global-scale classification methods [33, 50, 38, 27], al-
beit being much faster than their retrieval counterparts, are
unsuitable for this setting because they are far too impre-
cise and because they do not account for the visual overlap
among classes that arises when the photos are densely sam-
pled from the map.

Therefore, we propose a novel classification-based VPR
technique that is specifically designed for the dense and
homogeneous configurations of large urban areas. Our
method, called Divide&Classify (D&C), has the speed ad-
vantage of classification approaches while being competi-
tive with retrieval methods in terms of accuracy. Most im-
portantly, we demonstrate that the predictions from D&C
can be used to restrict the search space of retrieval meth-
ods, combining both in a unique pipeline with more accu-
rate results than previous works and a faster (and constant)
inference time (see Fig. 1). We also show that such a com-
bination of classification and retrieval is not effective with
currently viable classification methods for planet-wise geo-
localization due to their lack of accuracy.

Contributions. To summarize our contributions:
• We are the first to tackle the problem of fine-grained

(error ≤ 25m) and city-wide (map area >100 km2)
VPR through classification, demonstrating the inade-
quacy of existing global-scale approaches in this set-
ting and proposing a first feasible solution (D&C).

• In D&C we propose a new classifier, named Additive
Angular Margin Classifier (AAMC), which uses the
learned prototypes from a Additive Angular Margin
Loss to classify new images. The AAMC is scalable
and produces remarkably robust results.

• We show that our method not only achieves compet-
itive results with retrieval methods, but above all it

Figure 2: Architecture of Divide&Classify.The different
groups, and their relative classifiers, are color coded. The
picture explicates how cells are distributed into groups.

can be combined to create a fast, scalable and accurate
pipeline that harnesses the best of both worlds.

Code and trained models will be made publicly available
upon acceptance of this paper.

2. Related Work

Retrieval-based VPR. Most commonly, approaches for
VPR are retrieval-based, where the predicted coordinates
are obtained with a similarity search over a database of
pre-computed embeddings of either local [9, 20, 23, 34]
or global features [1, 25, 28, 51, 52]. In recent works,
deep feature-extractors have become the de facto standard,
complemented with an aggregation or pooling layer. A
notable example of the former is NetVLAD [1], in some
cases equipped with attention mechanisms [25]. Popular
pooling strategies are [37, 41, 36]. A complete discussion
on retrieval-based algorithms can be found in [4, 30]. All
these approaches leverage contrastive learning via triplet
loss, which requires a mining procedure to compute a cache
containing suitable triplets, to be updated periodically. Due
to this formulation, all retrieval pipelines suffer from poor
scalability: at training time, as the database size increases,
the computation required for mining becomes predominant
with respect to the actual training; at test time, the time re-
quired to perform the similarity search grows linearly with
the database size, thus leading to potentially unacceptable
delays for applications. Recently, CosPlace [3] has ad-
dressed the training time scalability problem by using an al-
ternative approach to contrastive learning, allowing to learn
from large scale databases and achieving state of the art re-
sults across many datasets. Yet, it uses retrieval for infer-
ence, thus the scalability problem at test time still persists.

Classification-based VPR. There is another branch of lit-
erature that casts the place recognition problem as a clas-
sification task, but on a world-wide scale. Seminal works
in this setting are RevIm2GPS [45] and PlaNet [50]. These
global-scale classification methods partition the earth into
a set of geo-classes, and the geographic center of the pre-
dicted class is used as output geolocation. This approach
to VPR has many advantages, mainly in terms of space and
time complexity. However, the final accuracy is highly de-



pendent on the adopted partitioning scheme. Fine-grained
partitions are necessary to increase the resolution of the lo-
calization, but scaling up the number of classes is not trivial
as it causes the number of parameters to grow and reduces
the number of samples per class. In Hierarchical Geolo-
cation Estimation (HGE) the authors exploit a geographic
hierarchy of classes to mitigate this issues [33], whereas
CPlaNet [38] is based on a combinatorial partitioning of
multiple geoclass sets. Other works [27, 19] aim at learning
the classes centers. For the fine-grained urban setting, the
idea of addressing it as a classification problem has been
explored back in 2013 [14] using SVM classifiers, however
only in a small geographical area (≈ 1.56 km2) and not on
a city-wide scale.

Relationship with prior works. Our work is related to
both retrieval and classification methods; we leverage in-
tuitions from previous state-of-the-art (SOTA) in both fields
and build a new technique specifically suited to tackle the
city-wide localization task.

With respect to CosPlace [3] (retrieval-based SOTA),
we use the same concept of Groups i.e. a set of geoclass
partitionings. In CosPlace, only a subset of groups is used,
as the target is learning to extract features meaningful for
localization. Instead, in this work we aim at learning a dis-
tribution that covers geographically the entire city, so we
train on all the Groups. Moreover, in CosPlace the learnt
classifiers (one for each group) are discarded at inference
time, and predictions are obtained via similarity search in a
database, thus incurring in costly memory and time require-
ments. Contrarily, we keep all the classifiers and we exploit
their “collective wisdom” to quickly obtain predictions.

Regarding classification-based methods, there is not
a clear SOTA: the most popular works PlaNet [50] and
CPlaNet [38] train on private datasets, thus resulting in un-
fair comparisons to other methods, and they have no pub-
lic implementation. Comparisons in previous literature are
further hindered by the fact that methods rely on different
backbones. Therefore, ours is the first fair comparison of
existing classification methods in a fine-grained and city-
scale setting. In terms of similarities with our method,
CPlaNet also uses the idea of merging predictions from
multiple classifiers: the authors create 5 discrete partitions
of the earth, and perform inference on the intersection of
the classes in these partitions, with a combinatorial scheme.
These partitions are overlapping and each one contains ge-
ographically adjacent classes. On the contrary, we show
that in the geographically dense city-wide setting (as op-
posed to the sparse planet scale one) a discrete partitioning
of adjacent classes seriously impedes the learning capabil-
ities of a classifier and our partition is designed to prevent
this phenomenon. In Sec. 3.1 we further detail this reason-
ing, and experimental results in Sec. 4 confirm this claim.
Another key difference is that CPlanet’s classes are irreg-

Figure 3: Qualitative examples of predictions for each
method. The green star shows the ground truth of each test
image, while the red circles represent the first 10 predic-
tions. Brighter red indicates multiple predictions close to
each other.

ularly shaped, formed as intersection of overlapping parti-
tions and logits are assigned using a combinatorial scheme.
As a result, inference is costlier. Instead, our method uses a
simple partitioning scheme that makes it faster, while also
largely outperforming competitors.

Finally, we experimentally demonstrate in Sec. 4.2.1 that
our approach can be combined with retrieval methods into
a single pipeline with faster inference time and better accu-
racy. This is possible thanks to D&C’s accuracy which al-
lows to use it as a distractor-filter for the retrieval, whereas
the existing classification-based approaches are too impre-
cise and combining them with retrieval worsens results.

3. Method

We consider the VPR task in a large urban environment
(i.e. a city covering > 100km2) and we deem a place cor-
rectly recognized if its predicted location is within 25m
from the ground truth (as commonly done in literature
[1, 49, 28, 13, 5, 15, 47, 4, 52]). Furthermore, we as-
sume to have a training set of geo-tagged urban images
T = {(Ii, easti, northi)}, where Ii is an image and the
pair (easti, northi) : UTMe ×UTMn represents its UTM
coordinates (which are an approximation of GPS coordi-
nates of a local geographical area over a flat surface). The
training set T is created by sampling densely over the city



(i.e. roughly one image per meter of road), because we want
to achieve precise localization.

With this setting, our goal is to learn from T a classi-
fier to perform the VPR task. In pursuit of this objective,
we rely on two key ingredients. Firstly, we partition T in
disjoint sets of cells (i.e. classes) so that there is no visual
overlap among distinct classes included in the same split.
Secondly, we use an ensemble of classifiers, one for each
split of T . In particular, we propose a novel type of clas-
sifier, called Additive Angular Margin Classifier (AAMC),
which inherits the discriminative power of the Additive An-
gular Margin Loss [46]. We thoroughly explain our parti-
tioning method in Sec. 3.1 and the AAMC in Sec. 3.2.

3.1. Partitioning method

Splitting the training set T in classes is non-trivial given
that the label space (GPS or UTM coordinates) is contin-
uous. Moreover, in light of the high, uniform density that
we deal with, learning over a discretized geographical par-
titioning with a vanilla classification framework is an ill-
posed problem. The reason for this is that images at the
boundaries of neighboring cells can have very similar ap-
pearance, and consequently similar embeddings, while per-
taining to different classes. This results in noisy gradients
and overall it hinders a model’s learning ability. To ad-
dress this issue, we adopt a partitioning method that pro-
duces multiple disjoint splits of the training set, preventing
any classes in the same split from sharing a boundary. In
practice, this avoids perceptual aliasing between different
classes in the same split.

The core idea of our partitioning method is to build dif-
ferent splits made of non-adjacent geographic cells, and
learn a classifier on each split (see Fig. 2). This way each
cell (akin to a class) is assigned to a exactly one classifier,
while its neighboring cells are assigned to separate classi-
fiers.

The scheme that we adopt to split the dataset into cells is
straightforward and it is inspired by CosPlace [3]: we divide
the map into equal-sized square cells, that are defined by a
single hyper-parameter M , representing the length of the
side of the square. Each cell corresponds to a class. Since
the geo-localization task requires to output a set of coordi-
nates, we define a simple function Class2UTM that maps
each class to a set of coordinates (the center of its corre-
sponding cell), which will be used as prediction. Formally,
a class Cei,nj

∈ S is defined as :

Cei,nj =

{
(east, north) :

⌊east
M

⌋
= ei,

⌊
north
M

⌋
= nj

}
(1)

and the function Class2UTM is

Class2UTM :S → UTMe × UTMn,

Cei,nj 7→
(
(ei + 0.5) ·M, (nj + 0.5) ·M

) (2)

Finally, we partition the set of cells into separate Groups:
we therefore set a separate hyperparameter N and define
each Group as

Guv =
{
Ceinj

: (ei mod N = u) ∧ (nj mod N = v)
}
(3)

The parameter N defines the minimum distance (in num-
ber of cells) between two nearby classes within the same
split. Moreover the value of N determines the number of
groups |G| that are created from the dataset, with |G| = N2.
In Sec. 4.3 we empirically find the best values for the hy-
perparameters to be M = 20 meters and N = 2. Note that,
unlike the partitioning used by CosPlace [3], we do not need
the training images to be labeled with a heading angle. This
makes our solution more widely applicable.

3.2. Additive Angular Margin Classifier (AAMC)

Using the Groups formulation we effectively obtain a set
of |G| independent partitions of the cells, so we can use a
Mixture-of-Experts approach and assign a separate classi-
fier to each partition (see Fig. 2). Recently, several stud-
ies [10, 46, 3] have found that using large-margin losses
when training siamese architectures for retrieval leads to
more discriminative embeddings and a better structured la-
tent space [32, 48]. However, these approaches have only
ever been used to train a feature extractor; thus the learnt
prototypes were never applied to perform classification at
test time. Motivated by the fact that we want to enjoy the
benefits that these losses provide, we propose a novel classi-
fier that allows to exploit the highly informative prototypes
learnt during training.

To this end, we build upon the Additive Angular Mar-
gin Loss (ArcFace) [10], which has been used in prior large
scale retrieval works [46, 40, 3]. The ArcFace allows to
learn highly discriminative embeddings by maximizing the
inter-class angular distance, measured via the cosine sim-
ilarity between a matrix of learnable class prototypes and
the normalized embeddings. Formally, the ArcFace loss is
defined as

Larc =
1

N

∑
i

−log
es cos(θyi+m)

es cos(θyi+m) +
∑

i̸=j e
s cos θj

(4)

subject to
cos θj = WT

j xi

W =
W ∗

||W ∗||
, x =

x∗

||x∗||
(5)

where xi is the i-th embedding corresponding to the
ground-truth class of yi and Wj is the prototype vector of
the j-th class.

Previous works [46, 40, 3] only use the ArcFace (or sim-
ilar angular margin losses) to learn to extract embeddings



that can be used in a retrieval pipeline, discarding the proto-
types. Instead, we argue that these prototypes learn a mean-
ingful mapping from the embeddings to each class and can
therefore be exploited directly to classify. To the best of our
knowledge, this is the first work that uses the prototypes
learnt with the ArcFace at inference time.

We call this approach Additive Angular Margin Clas-
sifier (AAMC). Namely, the generic k-th classifier (i.e.
the classifier assigned to the k-th Group) is characterized
by a matrix Wk ∈ RSk×d of d-dimensional class pro-
totypes, where Sk is the number of classes in group k
and d is the dimensionality of the backbone’s embeddings.
At inference time, given the embedding of a test image
x ∈ Rd, we extract a set of |G| normalized predictions
{pk = softmax(WT

k x) ∈ RSk}|G|
k=1.

Among them, we choose the one with maximum confi-
dence across all classifiers

D&C : RS1 × . . .× RS|G| →UTMe × UTMn,

{pk}|G|
k=1 7→ Class2UTM(argmax

k∈1..|G|
argmax
c∈Sk

pk(c))
(6)

where pk(c) denotes the c-th element of the vector pk. In
summary, each classifier provides the logits distribution on
the classes pertaining to its group. To obtain the final pre-
diction on the entire geographical support for a given image,
we choose the single prediction with the highest confidence
across all AAMC classifiers.

The intuition behind our mixture-of-AAMC approach is
that while the class containing a given test image only be-
longs to a single classifier, the other classifiers are likely to
predict nearby classes, given that classes close to each other
share similar visual features. In Fig. 7 we further detail this
behavior, studying the agreement and the correlation among
prototypes in different AAMC classifiers.

4. Experiments
4.1. Experimental Setting

Implementation details. The split of the dataset in classes
is performed using M = 20, meaning that each class is
a square cell of 20 meters per side. The classes are then
grouped together using N = 2, which leads to the creation
of 4 groups and 4 classifiers within our model. This creates
over 113k classes for the SF-XL training set; Fig. 4 gives
a visual representation of the outcome. Further analysis on
the number of classes generated over the various datasets
can be found in the Supplementary.

The classifiers are trained independently one per epoch.
We train for 1M iterations with batch size 64. Given the to-
tal of 4 classifiers, each ons is therefore trained once every 4
epochs using Adam [26] as optimizer with learning rate of
1e−4. Following [27], we use an EfficientNet as backbone.

Figure 4: Maps showing multiple partition methods over
the training data of SF-XL.

For fairness, we compute results using the same batch size,
data augmentation, backbone and training set for all clas-
sification methods. Note that this is in contrast with previ-
ous works [50, 38, 33, 27, 19] that use different backbones
(and different training dataset) for all methods (see Sec. 2),
which makes it difficult to discern if the reported perfor-
mance improvements was given by the method, a stronger
backbone or better training data. For D&C, the backbone is
followed by an average pooling and a whitening layer [36],
which provides the input for the classifiers.

To assess the quality of different techniques on the task
of city-wide visual place recognition, we run our exper-
iments on the large-scale dataset of San Francisco eXtra
Large [3], which consists of a training set of 41.2M images
that densely maps the whole urban area of San Francisco
(>100 km2). The dataset provides two test sets, namely test
set v1 and test set v2, both of which are collections of pho-
tos taken with smartphones. To this date, this is the only
dataset well representative of a fine-grained and city-wide
VPR application, that is our target setting. Nevertheless, in
Sec. 4.4 we also discuss the use of Divide&Classify with
much smaller urban datasets, covering less than 3 km2, to
discuss its limited effectiveness for small scale problems.

Metrics. Visual place recognition methods are assessed us-
ing different metrics, depending on the type of method. Tra-
ditionally, retrieval methods for fine-grained VPR are eval-
uated using the recall@N (R@N) with a threshold of 25
meters [1, 28, 25, 13, 3, 4] for correct matches, whereas
classification methods for planet-scale localization use the
Great Circle Distance (GCD) [17], which measures accu-
racy within a given threshold distance. In order to properly
compare retrieval and classification methods, we introduce
a new metric called Localization Radius@N (LR@N) that



summarizes both: Given the top-N predictions for a cer-
tain localization algorithm, it evaluates the percentage of
queries which are correctly localized within 25 meters of
the ground truth, in at least one of the top-N predictions.

Although the LR@N is equivalent to the R@N @25m
used in retrieval, its definition makes it compatible with a
classification pipeline. In fact, the LR@1 is also equivalent
to GCD@25m.

Baselines overview. We split baselines in three categories:
1) Previous classification methods, designed for world-

wide geolocalization, that can be readily repurposed for
city-wide geolocalization. Among these, we use PlaNet
[50], Hierarchical Geolocation Estimation (HGE) [33],
CPlaNet [38] and MvMF [19]. Note that, unlike Di-
vide&Classify, all these methods rely on the S2 Sphere li-
brary, and use hyperparameters for class partitions that have
been tuned on global-scale classification: for fair compari-
son between methods, we performed a thorough grid search
of such hyperparameters on SF-XL, which we used to com-
pute the results in Tab. 1. The final splits for each method
are reported in Fig. 4. To compute results with classifica-
tion methods (some of which do not have open source im-
plementations), we reproduced their results on world-wide
datasets, and then we used the code to train on the city-scale
setting. We will release the code also for the implementa-
tions of such methods like PlaNet, CPlaNet, and MvMF. We
provide further analysis on the optimal hyperparameters for
each partitioning method in the Supplementary.

2) Retrieval methods for visual place recognition, using
deep neural networks to produce descriptors which are then
matched to the query’s. For our experiments we use the
ever-green NetVLAD [1], CRN [25], SARE [28], SFRS
[13] and CosPlace [3].

3) Retrieval methods combined with Approximate Near-
est Neighbor (ANN), in a pipeline that uses the best retrieval
method, namely CosPlace, with the ANNs that have shown
best results, namely Hierarchical Navigable Small Worlds
(HNSW) [29] and Inverted File Index with Product Quan-
tization [39, 22]. We chose the two optimal configurations,
one designed for speed or LR@1. Extensive experiments
with other ANN methods, as well as different hyperparam-
eters, are shown in the Supplementary.

4.2. Main Results

Comparison with previous works. We report quantitative
comparisons between D&C and existing baselines in Tab. 1.
The results show some clear trends, which can be summa-
rized in a few points:

• Previous classification methods, being designed for
the uneven distribution of world-wide datasets, fail to
achieve competitive results on SF-XL. Qualitative re-
sults are reported in Fig. 3.

Method Infer. LR@1
time test v1 test v2

Classification
PlaNet [38] 12 ms 24.5 53.1
HGE [33] 15 ms 27.0 56.4
CPlaNet [38] 17 ms 27.4 64.1
MvMF [19] 12 ms 22.6 52.2
D&C(ours) 12 ms 61.0 79.1

Retrieval
NetVLAD [1] 12117 ms 40.0 71.1
CRN [25] 12117 ms 45.8 76.4
SARE [28] 12117 ms 45.5 78.8
SFRS [13] 12117 ms 51.2 83.1
GeM [36] 1514 ms 21.7 43.1
CosPlace [3] 1514 ms 64.7 83.4

Retrieval + Approximate Nearest Neighbor
CosPlace [3] + HNSW [29] 4 ms 52.5 77.8
CosPlace [3] + IVFPQ [22] * 8 ms 55.1 82.6
CosPlace [3] + IVFPQ [22] * 141 ms 63.7 83.3

Mixed pipeline
D&C(ours) + CosPlace [3] 30.8 ms 71.4 87.6

Table 1: Comparison of results for a large number of
methods using different approaches. All inference times
measures are averaged over 1000 queries, on a system with
a RTX 3090 GPU and i9-10940X CPU. The FAISS li-
brary [21] is used for all nearest neighbor implementations.
Mixed pipeline is the best configuration from Tab. 2, which
performs retrieval on the top-100 classes obtained through
D&C. *We show two versions of the Inverted File Index
with Product Quantization, one tuned for speed and one for
recall.

• D&C, being specifically designed for learning in a
dense urban setting is able to outperform previous clas-
sification methods on city-wide geolocalization, and it
is almost competitive with the retrieval-based state of
the art, (LR@1 of 3.7 points lower on the test v1).

• Approximate Nearest Neighbor (ANN) search al-
gorithms provide different implementations, some of
which are able to speed up retrieval methods by 10x
with a slight drop in LR@1, and others speeding up re-
trieval by almost 400x at the price of a 12 points drop
in LR@1 on the test v1.

• The Mixed Pipeline of SOTA classification (D&C)
and retrieval (CosPlace) methods reaches speed on pair
with classification methods, while providing a large
improvement over any other results. More details on
this mixed pipeline are presented in the next section.

4.2.1 Classification + retrieval

In this section we analyze how classification methods can be
pipelined with retrieval ones into a single system, with the



Classification Method & Time

Retrieval
Method Top-N kNN

Time (ms)

D&C HGE CPlanet
(12 ms) (15 ms) (17 ms)
LR@1 LR@1 LR@1

NetVLAD

All 12117 40.0 40.0 40.0
1000 42 50.6 42.8 38.7
100 4 56.7 41.1 37.4
10 0.6 62.6 35.6 34.6
1 0.06 56.1 24.8 26.3

CosPlace

All 1514 65.9 65.9 65.9
1000 8 70.3 62.0 57.5
100 1 71.4 52.7 51.0
10 0.1 70.2 40.9 42.4
1 0.03 57.0 25.0 26.7

Table 2: Results of classification + retrieval pipelines on
SF-XL test v1. The Top-N column represents the num-
ber of cells within which we compute retrieval. The rows
with Top-N: All are equivalent to using retrieval only, while
the other rows employ the classification filter, reducing the
search space by orders of magnitude. For retrieval, we use
a VGG16 backbone. NetVLAD’s dimensionality is 4096-D
PCA (extraction time 2.1 ms), while CosPlace has 512-D
(extraction time 5.1 ms).

aim of improving accuracy and speed of results. The idea
is to restrict the search space for the retrieval’s kNN search
only to the cells that have been predicted with higher confi-
dence by the classification model. For example, when using
only the first 10 classes (Top-10), images within the 10 cells
where the model predicts the location of the test image with
the highest confidence are then used for retrieval. Figure 5
visually exemplifies how the filtering on the Top-N classes
effectively removes distractors from the search space. To
provide a relevant analysis, we adopt different classifica-
tions models, namely HGE, CPlaNet and D&C, while for
retrieval we use models trained with NetVLAD [1] and Cos-
Place [3], which are respectively the most popular and the
most recent SOTA. We report the results in Tab. 2: we sep-
arately show the multiple components of the total inference
time using a two-stages pipeline, namely the classification,
the descriptors extraction and kNN. Regarding descriptors
extraction, we only consider the extraction of the test image
(query) descriptors, given that the ones from the database
can be extracted offline. In the table, when Top-N=All it
means that there is no filtering and the pipeline is the same
as the pure retrieval method.

The results clearly show the huge benefit of using a two-
stages classification + retrieval pipeline for large-scale vi-
sual geo-localization. We find that such a pipeline leads to
faster inference and better results w.r.t. a standard retrieval
system. The former is mostly due to the reduction in search
space, which reduces the number of database descriptors by
the kNN. The latter is due to the filtering of cells to which

Figure 5: Example of our mixed pipeline. Thanks to the
reduction in the search space obtained via the predictions of
D&C, the retrieval module correctly localizes the query

the classification model assigns a low probability of con-
taining the test image, therefore simplifying the retrieval
task by eliminating distractors.

Among the most notable results, using the Top-100 pre-
dictions from D&C, CosPlace achieves a new SOTA (+
6% LR@1), while being 500 times faster than the retrieval
only version. Similarly, the NetVLAD model can achieve a
speedup by 4 orders of magnitude and an increase in LR@1
by 20% when the retrieval is performed only on the Top-10
predicted classes. Figure 1 visually shows how D&C pro-
vides a much more scalable alternative to SOTA retrieval
methods, even when retrieval is sped up by the best approx-
imate nearest neighbor search.

4.3. Ablations

Ablation on class partitions. Figure 6 reports an ablation
study on the values of M and N . Considering that the num-
ber of classifiers is |G| = N2 (Sec. 3.1), each one trained
independently once every |G| epochs ( Sec. 4.1), we can see
that having a large number of classifiers leads to each one
of them being trained too seldom for it to reach good per-
formances; on the other hand when using N = 1 we incur
in the learnability issues discussed in Sec. 3.1, due to adja-
cency among different classes of the same group. Finally,
N = 2 stands out as the obvious best choice.

Regarding the value of M (defining the side of a cell), 20
m turns out to be the best choice. Values of 50 m and 100
m produce worse results. Understandably, this is because
their classes encapsulate a greater variability wrt their finer
counterparts, and thus are harder to learn.

Ablation on the loss. Once the dataset is split into groups
and classes, a natural choice of loss would be the Cross-
Entropy (CE) loss. This can be easily implemented by using
one linear layer for each group, training each classifier se-
quentially group by group. However we empirically found
(see Tab. 3) that the AAMC constantly outperforms a set of
linear classifiers trained with a cross-entropy loss. This is
thanks to the formulation of the loss as margin maximiza-



Figure 6: Ablation on the values of M and N . M deter-
mines cell size, N is the distance between cells in a group.

Classifier LR@N (at 25 m)
LR@1 LR@5 LR@10 LR@20

Cross-Entropy 48.2 62.6 68.0 72.0
AAMC 61.4 73.6 77.1 79.6

Table 3: Ablation AAMC vs Cross-Entropy classifier.
This table clearly presents the benefit of our AAMC clas-
sifiers, which largely outperform standard linear classifiers
trained with a cross-entropy loss.

Figure 7: Coordination of prototypes across groups. (a)
The left plot samples 500 neighboring prototypes (across
all 4 groups), and shows their inter- and intra-group cosine
similarity. It shows high correlation among inter-groups
neighboring prototypes. Prototypes within a single classi-
fier (intra-group) are well separated. (b) In the right plot we
study the standard deviation (STD) among the prediction of
each classifier. We can see that when the N2 = 4 predic-
tions are close to each other, the localization error is likely
to be low (< 25 meters), proving that the STD between
D&C’s predictions from each expert is a good confidence
measure, which is a very important value in real-world ap-
plications.

tion problem, that not only asks for classes separation (like
in the vanilla CE), but also pushes them further away up to a
margin. This results in a better-structured feature space, as
shown in the Supplementary where we analyze the t-SNE
of the learnt embeddings.

Behavior of multiple classifiers. Our method employs dis-
tinct AAMC classifiers, learned on disjoint sets, and merges
their prediction to obtain the final logits. Seeing that proto-
types of adjacent classes are learnt by different classifiers,

it raises the question of ”if and how they are related”. A
desirable property would be that prototypes become geo-
graphically correlated, on account of the fact that we want
the different classifiers predictions to be consistent with one
another. In Fig. 7 we study this aspect. In particular, the left-
most image samples 500 neighboring prototypes evenly dis-
tributed across groups, and plots the inter- and intra-group
similarity distributions. The evidence indicates that the de-
sired behavior is verified in practice. The explanation for
this self-emerging property is the same that motivates our
use of non-adjacent class partitioning: images from neigh-
boring cells share many visual features, which would con-
fuse a single classifier trying to discern among them. In-
stead, in our partition, prototypes assigned to neighboring
cells can easily fit their distribution, given that they are
learnt independently from one another in their respective
groups. At the same time, since these cells are similar, their
prototypes end up being similar as well; and in the end the
result is that prototypes are geographically correlated pro-
viding more robust predictions.

Furthermore, having several classifiers predicting on dis-
joint sets also raises the question of what is their behaviour
on samples that technically do not belong to any of their
classes. In Fig. 7 (right) we examine this aspect by study-
ing the distribution of the Standard Deviation (STD) of the
coordinates predicted by each classifier. Interestingly, the
histogram clearly shows that when our system is able to
precisely localize a sample (<25m), all the classifiers con-
centrate their probability mass around the same area. On
the contrary, on wrongly classified samples, the distribution
reflects the uncertainty of the prediction. This indicates that
classifier’s agreement represents a good proxy of prediction
reliability, which is an important feature in real-world ap-
plications.

4.4. Limitations

Divide&Classify is tailored for applications that aim at
localizing in relatively large areas (e.g. SF-XL covers a sur-
face of 170 km2) mapped with a dense training set. We
find that with smaller and less dense datasets like Pitts30k
[43] and Tokyo 24/7 [42] (both are smaller than 3 km2 and
their density is less than half w.r.t. SF-XL) retrieval methods
are able to achieve very high recalls (over 80% of recall@1
[13, 3], whereas classification methods fail to achieve ac-
ceptable results (LR@1 lower than 50%, regardless of the
method). This can be explained by the fact that for a given
query, a single positive matching image in the database is
enough for retrieval (the model matches the most similar
image to the query), whereas classification methods need
a larger number of ”positives”, i.e. an inadequate number
of images for any given class leads to poor performances.
Thorough empirical experiments confirming this limitation
of classification methods are shown in the Supplementary.



5. Conclusions

In this work we show the potential of framing the fine-
grained VPR task in urban environments as a classification
problem. We are the first to address this challenging sce-
nario, proving that it is possible to achieve fine grained lo-
calization while obtaining a reliable measure of confidence
in the predictions. We propose a novel inference pipeline
to leverage the collective knowledge of a set of learnt clas-
sifiers that outperforms all the existing classification-based
methods for localization. Finally, we show how our pro-
posed framework can be combined with retrieval methods
obtaining an ideal trade-off between inference cost and lo-
calization performance, paving the way for faster and more
accurate VPR systems.
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A. Experiments
In this Supplementary Material we report details that

could not fit in the main paper. In Appendix A.1 we pro-
vide further ablations to better understand how our proposed
method functions.

In Appendix B we provide a thorough discussion into
how we adapted the partitioning scheme of previous works,
that originally targeted planet-scale localization, for the pro-
posed task of city-wide localization.

A.1. Further Ablations

Embedding learnt with our AMCC vs Cross Entropy.
The first row in Fig. 8 reports the t-SNE of all embed-

dings in a 100m square, with a model trained either with
AAMC or a fully connected layer with cross-entropy loss;
each color codifies a different 20m cell. Even though some
structures are visible, there is an amount of overlap which
is understandable given that adjacent cells at such fine reso-
lution can present high appearance similarities. The second
row shows why in D&C each classifier is able to learn a
meaningful distribution: inside each group, thanks to the
non-adjacency of cells, classes are well defined. In partic-
ular, the two plots show how the AAMC yields a better-
structured embedding space thanks to the concept of large

Figure 9: Behaviour of LR@1 during training for each of
the methods. Note that MVMF [27] starts with a high LR
because it uses the weights of a trained PlaNet model.

margin.

Behaviour of LR during training with different meth-
ods. In Fig. 9 we analyze how the LR@1 changes after
each epoch for different methods (given the huge size of the
dataset we define an epoch as 2k iterations). We find that
most previous works, namely PlaNet [50], CPlaNet [38]
and Hierarchical Geolocation Estimation [33] present very
mild improvements on LR within the first few epochs w.r.t.
our D&C, which on the other hand grows very steeply right
from the beginning. MvMF initializes its mixture assign-
ment weights from a pretrained PlaNet model, and it termi-
nates the training after less than 100 epochs.

Behaviour of classification accuracy during training us-
ing different N . To better understand how the value of N
affects training stability, we built a plot using N = 2 and
N = 3 and showing the accuracy on the train set at the
end of each epoch. The plot (Fig. 10) shows that in the first
epochs of training the accuracy forms waves with a period
length of size |G| = N ×N , where |G| represents the num-
ber of groups and the number of classifiers. This is due to
the fact that each classifier is trained once every |G| epochs,
meaning that at the |G|th epoch the model will for the first
time reuse a classifier that has been previously trained, re-
sulting in a steep increase in accuracy every |G| epochs.

Qualitative results. In Figs. 12 and 13 we show some qual-
itative results of challenging queries and the retrieved Top-
3 candidates by some retrieval-only methods (namely Cos-
Place and NetVLAD) and by some classification-retrieval
pipelines (using respectively our D&C and CPlanet as clas-
sification modules).

Approximate Nearest Neighbor Search. In Fig. 11 we re-
port the results with the best combinations of methods / hy-
perparameters for our experiments with Approximate Near-
est Neighbor search algorithms. The plot shows only the
best performing configurations. Among other ANNs that
we tried are standard Product Quantization [22], Inverted



Figure 10: Evolution of classification accuracy during
training with different values of N. We can see that in the
first epochs of training, the accuracy on the train set presents
waves with period length of size |G|. Each color represents
a different classifier being trained at the given epoch for a
total of |G| colors.

File Indexes (these two methods can be combined in the
IVFPQ), and Inverted File MultiIndex [2]. We didn’t report
these results as they performed poorly w.r.t. their counter-
parts in the plot.
For Table 1 of the main paper we chose two configura-
tion from this pareto-optimal curve, one being optimized
for performances and one for speed. For performances,
we picked the configuration that grants at least 10x speed,
with the maximum performances, and this turned out to be
IVFPQ(128,50). For speed, we selected the methods that
provided a speedup of at least 100x. This resulted in choos-
ing IVFPQ(128,2) and HNSW(512).

A.2. Experiments on small datasets

In the main paper we discussed how classification meth-
ods are outperformed by retrieval approaches for small
datasets due to the lack of enough positives during training.
On the other hand, the inference time gap between both pro-
cedures loses relevance when dealing with smaller datasets.
In Tab. 4 it is presented a quantitative analysis on how the
proposed methods behave on datasets that are 1000x smaller
than SF-XL, covering geographical areas less than 3km2

and having half the density of SF-XL.

B. Baselines Implementation Details

Although previous works use different partitioning
methods of the dataset in classes, we carefully tuned the
partitioning hyperparameters to ensure fair comparisons
among different methods. While some methods split the
geographical area according to the density of the training
points [50, 33] others fix the dimension of the cells into a
predefined value and merge them until the number of geo-
graphical regions satisfies the desired condition [38].

The optimal number of classes generated with each
method is shown in Tab. 5, and in the next paragraphs we
detail how we empirically found such values for each parti-
tioning method.

Method
C-Pitts30k C-Tokyo 24/7

(30k images) (76k images)
LR@1 Inf. time LR@1 Inf. time

Classification
PlaNet [38] 31.5 12 ms 19.5 12 ms
HGE [33] 33.6 15 ms 22.0 15 ms
CPlaNet [38] 33.0 17 ms 21.5 17 ms
MvMF [19] 31.5 12 ms 19.9 12 ms
D&C (ours) 40.5 12 ms 33.7 12 ms

Retrieval (kNN time) (kNN time)
NetVLAD [1] 86.1 58 ms 62.2 130 ms
CRN [25] 86.3 58 ms 62.8 130 ms
SARE [28] 87.2 58 ms 74.8 130 ms
SFRS [13] 88.7 58 ms 78.5 130 ms
GeM [36] 77.9 16 ms 46.4 25 ms
CosPlace 88.5 16 ms 82.8 25 ms

Mixed pipeline
D&C(ours) + CosPlace 81.9 1 ms 74.9 3.5 ms

Table 4: Comparison of LR@1 of different methods for
Pitts30k and Tokyo24/7 using EfficientNet-B0 as backbone

Partitions of HGE, PlaNet and MVMF. The three meth-
ods of PlaNet [50], Hierarchical Geolocation Estimation
(HGE) [33] and MVMF [19] all use the same partitions,
with the only difference that HGE also uses two coarser
splits (medium and coarse) besides the regular partition
(fine) used by the other two. The partitions are built us-
ing Google S2 Sphere library, and take as input two param-
eters, namely τmin and τmax, which define the minimum
and maximum number of images within each cell. We em-
pirically search for the best values for the parameters on the
San Francisco eXtra Large (SF-XL) dataset, and we report
the results in Tab. 6.

We choose the partitions that lead to the best LR@1
using HGE, and, following their implementation, we use
the finer HGE partition also as training set for PlaNet and
MVMF. In practice, this leads to a value of τmin = 100 and
τmax = 2500, as shown in Tab. 7 (where we also report the
value of τ for other partitions. Note that we use proportions
between different partitions size according to [33].

We tuned cells density on SF-XL since it is the most
representative dataset for the studied setting. Remember-
ing that these partitioning schemes are based on keep-
ing cell density constant, to extend the comparison to
the other adopted datasets (C-Pitts30k, C-Tokyo24/7), we
scaled τmin and τmax according to the relative density of
the other datasets with respect to SF-XL. In our method,
instead, the partitioning only depends on the desired granu-
larity of localization, so we kept the same 20m cells across
all datasets.

Partitions of CPlaNet.
Regarding CPlaNet’s [38] partitions, we carefully fol-

lowed the authors’ implementation: we created five geo-
class sets for each of the experiments, where geoclass set1
and geoclass set2 evaluate the proximity distance using only
the geographical and visual properties of the images respec-



Partition method SF-XL C-Pitts30k C-Tokyo 24/7
PlaNet / MVMF 65k 486 1840
HGE 19k / 35k / 65k 158 / 272 / 486 508 / 961 / 1840
CPlaNet 54k 369 1236
Ours 114k 687 2492

Table 5: Number of classes in different datasets using
different partitioning methods.

HGE Num. Classes
coarse medium fine LR@1
65.3k 119k 200k 19.0
35.0k 65.3k 119.0k 21.2
18.5k 35.0k 65.3k 27.0
9.4k 18.5k 35.0k 25.3
3.8k 9.4k 18.5k 19.2
1.8k 3.8k 9.4k 10.6

Table 6: Results with different partitions using HGE on
SF-XL.

hyperparams fine HGE-medium HGE-coarse
τmin 100 100 100
τmax 2500 5000 10000

Table 7: Chosen hyperparameters for previous methods
partitioning. Note that Planet, HGE-fine and MvMF use the
same partitioning.

Cells per geoclass
# classes gcs 1 gcs 2 gcs 3 gcs 4 gcs 5 LR@1

58233 30k 30k 39k 36k 33k 27.6
54144 20k 20k 26k 24k 22k 27.7
47412 10k 10k 13k 12k 11k 25.7

Table 8: CPlaNet preliminary results on SF-XL.

tively, while the remaining geoclass sets were generated by
considering the distance as a stochastic linear combination
of these two modalities. We refer the reader to their paper
for more details about how each geoclass set is formed. In
their method, an additional hyperparameter is the number
of classes in each geoclass set (i.e. their partition algorithm
stopping condition). Finally, at inference time, the granu-
larity considered for prediction is given by the intersections
of the 5 geoclass sets. In Tab. 8 we report results using
different values for each and using the same parameters α
and β, which define the differences between the 5 geoclass
sets. The table also reports in the first column the number
of distinct cells obtained by the intersection of the different
partitions. Also in this case we choose from the table the
split which gave the best results for LR@1.

To export these hyperparameters to the other datasets, we
kept the same average size of the cells in each geoclass set.

Figure 11: Comparisons of best-performing Approxi-
mate Nearest Neighbor search algorithms. We show only
the pareto-optimal results, which are computed with an In-
verted File Index with Product Quantization (IVFPQ) [22]
and Hierarchical Navigable Small Worlds (HNSW) [29].
The parameters in parenthesis for IVFPQ indicate the num-
ber of subquantizers and the nprobe, i.e. the number of
Voronoi cells to be searched (out of 1000). The parameters
in parenthesis for HNSW indicates the number of connec-
tions each vertex has within the HNSW graph.



Figure 12: Qualitative results using different pipelines on
challenging queries.

Figure 13: Qualitative results using different pipelines on
challenging queries.


