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space in the above sense – an issue that is open even for 
finite Abelian groups. As a byproduct, on every LCA group 
containing a compact open subgroup we exhibit the complete 
family of optimizers for Lieb’s uncertainty inequality, and we 
also show previously unknown optimizers on a general LCA 
group.

© 2024 The Author. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

E-mail address: fabio.nicola@polito.it.
https://doi.org/10.1016/j.aim.2024.109786
0001-8708/© 2024 The Author. Published by Elsevier Inc. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).

https://doi.org/10.1016/j.aim.2024.109786
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2024.109786&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fabio.nicola@polito.it
https://doi.org/10.1016/j.aim.2024.109786
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 F. Nicola / Advances in Mathematics 451 (2024) 109786
1. Introduction

Let A be a locally compact Hausdorff Abelian (LCA, in short) group, and denote by 
Â its dual group. We will write 〈x, ξ〉, with x ∈ A and ξ ∈ Â, for the corresponding 
duality; hence |〈x, ξ〉| = 1. For x ∈ A, ξ ∈ Â we define the translation and modulation 
operators Tx and Mξ on L2(A), and the corresponding time-frequency shifts π(x, ξ) as

Txf(y) = f(y − x), Mξf(y) = 〈y, ξ〉f(y), π(x, ξ)f(y) = MξTxf(y), (1.1)

where y ∈ A.
A Gabor orthonormal basis on A is an orthonormal basis of L2(A) of the type

G(f,Γ) := {π(z)f : z ∈ Γ} (1.2)

where f ∈ L2(A) and Γ is a (possibly uncountable) subset of A × Â. The function f is 
called window. In other terms, a Gabor orthonormal basis is an orthonormal basis in an 
orbit of the Schrödinger representation of the Heisenberg group associated to A.

There is a considerable amount of work on the construction of Gabor orthonormal 
bases on R; see [2,7,12,22,41,42,47,46,53] and also [27] for far reaching generalizations on 
nilpotent Lie groups. In fact, already in 1929 J. von Neumann [59, footnote 10] considered 
the idea of using the functions π(z)f above, when A = R, f is a Gaussian function and 
z belongs to a suitable lattice of R2, to construct orthonormal bases of L2(R) (via the 
Gram-Schmidt orthogonalization procedure). The above mentioned papers focus mainly 
on windows that are characteristic functions of some compact subset, hence with a 
poor frequency localization. Indeed, the celebrated Balian-Low theorem states, roughly 
speaking, that there are no Gabor orthonormal bases on Rd generated by a window with 
a good time-frequency localization (see, e.g., the survey [4]), and similar obstructions 
also apply to LCA groups having no compact open subgroups [13,36]; see also [26] for 
the issue of the time-frequency localization of Riesz bases on Rd.

The situation is drastically different for LCA groups containing a compact, open 
subgroup. Indeed, if H ⊂ A is such a subgroup, the function f = |H|−1/2χH (where |H|
stands for the measure of H) generates an orthonormal basis as in (1.2) if Γ is any set 
of representatives of the cosets of H × H⊥ in A × Â (namely, Γ contains exactly one 
element of each coset) [23,28], and this window is, in a sense, maximally localized in the 
time-frequency space. To explain this latter point properly, we need some terminology.

For f, g ∈ L2(A), the short-time Fourier transform of f with window g is the complex-
valued function on A × Â given by

Vgf(x, ξ) = 〈f, π(x, ξ)g〉L2(A) (x, ξ) ∈ A× Â. (1.3)

It is known that, if ‖g‖L2(A) = 1, then Vg : L2(A) → L2(A × Â) is an isometry, 
so that the quantity |Vgf |2 can be regarded as a time-frequency energy density of f
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(see [23,24,44]). More generally, the time-frequency localization of a function f ∈ L2(A)
can be measured in terms of the Lp-norm of Vff – the so-called ambiguity function
– and corresponding versions of the uncertainty principle, such as Lieb’s uncertainty 
inequality, can be stated (see [23,43] and Section 7 below). We recall, in particular, the 
following elementary result (see [18,23,38], Theorem 2.2 below, and also [5,25] for other 
formulations of the uncertainty principle in terms of the short-time Fourier transform), 
which corresponds to a limiting case of an Lp-estimate as p → 0 (cf. Remark 7.3 below):

Let f ∈ L2(A) \ {0}. Then

|{z ∈ A× Â : Vff(z) �= 0}| ≥ 1. (1.4)

Here we used the notation |S| for the measure of a set S ⊂ A × Â, where the Haar 
measures on A and Â are chosen so that the Plancherel formula holds true. The inequality 
(1.4) can be regarded as a time-frequency version of a lower bound for the product of 
the measures of the supports of f and f̂ , first proved by Matolcsi and Szűcs in [48] (see 
also [6,11,57,58,61]) and usually referred to as the Donoho-Stark uncertainty principle.

The inequality (1.4) is sharp on every LCA group containing a compact, open 
subgroup H. Indeed, for the function f = |H|−1/2χH considered above, we have 
Vff = χH×H⊥ (cf. [23] and Proposition 4.4 below) and therefore f is maximally lo-
calized in the time-frequency space, in the sense that the inequality (1.4) is saturated 
(|H ×H⊥| = 1 by the Plancherel formula). This is a desirable property that guarantees 
that the “analysis operator” associated with the corresponding basis G(f, Γ) (cf. (1.2)), 
that is L2(A) 
 h �→ Vfh(z), with z ∈ Γ, is able to resolve the “blobs” of energy of h in 
the time-frequency space, with the highest possible resolution – at least in the measure 
theoretic sense.

This discussion raises the problem of identifying all the Gabor orthonormal bases 
generated by a function f maximally localized in the above sense, namely such that the 
set where Vff �= 0 has measure 1 (this implies that the same extremal property holds 
for every element of the basis). This issue is also motivated, on one hand, by the recent 
advances [13] on the Balian-Low theorem on general (second countable) LCA groups 
having no compact open subgroups and, on the other hand, by the recent, considerable 
interest in optimizers of uncertainty inequalities on Euclidean spaces and Riemannian 
manifolds [1,10,21,35,37,39,40,45,50–52,54]. In a sense, the results in this note can be 
regarded as complementary to the no-go results in [13].

The main problem therefore lies in the identification of all the functions f ∈ L2(A) for 
which equality occurs in (1.4), which is an open issue even for finite Abelian groups. This 
should not come as a surprise, in light of other extremal problems, e.g., for the Young 
and Hausdorff-Young inequalities, which are notoriously difficult even on LCA groups 
containing a compact, open subgroup (see [20, Theorem 3] and [30, Section 43]). Indeed, 
for the finite cyclic group ZN all the optimizers for the inequality (1.4) were obtained 
only recently, in [49]; see also [18] for a particular case.
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Our first result (Theorem 4.5) provides the complete answer to this problem and can 
be summarized as follows:

Equality occurs in (1.4) if and only if f = cTx0h, for some c ∈ C \ {0}, x0 ∈ A and 
some subcharacter of second degree h of A. In this case, ‖f‖−2

L2(A)Vff is a subcharacter 
of second degree of A × Â, and its support is a maximal compact open isotropic subgroup 
of A × Â.

A subcharacter of second degree of A is a continuous function h : A → C such that, 
for some compact open subgroup H ⊂ A, the restriction of h to H is a character of 
second degree of H in the sense of Weil [60] (see Section 2.3 below) and h(x) = 0 for 
x ∈ A \H. The term “isotropic” refers to the standard symplectic structure of A ×Â (see 
Section 3). Hence, maximal compact open isotropic subgroups of A ×Â are the minimum 
uncertainty phase-space cells – the so-called “quantum blobs” – and play the role of the 
symplectic images of the unit ball (or box) in Rd × Rd [9,15]. As a further motivation, 
notice the formal analogy with the extremal problem for the Hausdorff-Young inequality 
on a LCA group A, that is ‖f̂‖Lp′ (Â) ≤ ‖f‖Lp(A), 1 < p < 2, where the optimizers are 
the constant multiples of translates of subcharacters [30, Theorem 43.13].

The study of the cases of equality in (1.4) on ZN [49] relies on the explicit description 
of the subgroups of order N of ZN ×ZN and the equally explicit construction of “finite 
chirps”, which is available in that case (see [8,16]). In the present generality we have 
to follow a more conceptual pattern. To give a flavor of the argument let us briefly 
outline how the above mentioned subcharacter of second degree arises. By using the 
covariance property for the short-time Fourier transform we will show that, if the set 
G = {z ∈ A × Â : Vff(z) �= 0} has measure 1, then G is a maximal compact open 
isotropic subgroup of A × Â. The projection onto the first factor allows us to regard G
as an extension of a compact open subgroup H of A by H⊥ ⊂ Â. This induces, in a 
natural way, a continuous symmetric homomorphism H → Ĥ, to which we can associate 
the desired character h of second degree of H – here we use an extension theorem for 
characters of second degree from [31]. The analogous problem for the short-time Fourier 
transform Vgf is addressed in Theorem 5.2.

Let us now come back to the above problem of maximally localized Gabor orthonormal 
bases. We anticipate here the main result (Corollary 6.2), which provides the desired, 
full characterization.

Let f ∈ L2(A), ‖f‖L2(A) = 1 and G := {z ∈ A × Â : Vff(z) �= 0}. Let Γ ⊂ A × Â. 
Then G(f, Γ) (cf. (1.2)) is an orthonormal basis of L2(A) and |G| = 1 if and only if 
f = cTx0h for some c ∈ C, x0 ∈ A and some subcharacter h of second degree of A, and 
Γ is a set of representatives of the cosets of G in A × Â.

The subsets of A × Â defined by Vf (π(z)f) �= 0, with z ∈ Γ, are precisely the cosets 
of the maximal compact open isotropic subgroup G, and define therefore a tiling of 
A × Â. In fact, it turns out that for every tiling of this type there is a corresponding 
Gabor orthonormal basis (see Remark 6.3). However the main point of the above result 
is clearly represented by the necessary condition. We refer the reader to [32,62] and the 
references therein for other constructions of (not necessarily maximally localized) Gabor 
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orthonormal bases in the setting of finite Abelian groups and to [13] for general LCA 
groups.

In Section 7 we will show that, on any LCA group containing a compact open sub-
group, every extremal function for the uncertainty inequality (1.4) is also an extremal 
function for Lieb’s uncertainty inequality [23,43] and vice versa. This will also provide, as 
a byproduct, previously unknown optimizers for Lieb’s inequality on every LCA group, 
because such a group is topologically isomorphic to Rd × A0 for some integer d ≥ 0
and some LCA group A0 containing a compact open subgroup. It would certainly be 
interesting to identify all the optimizers for Lieb’s uncertainty inequality – as well as 
for related uncertainty inequalities – on a general LCA group, but that would lead us 
too far, so that we decided to postpone this issue to a future work. We also refer the 
reader to [21,40] and the references therein for recent advances on Lieb’s inequality on 
Euclidean spaces and Riemannian manifolds.

2. Notation and preliminary results

2.1. Notation

We use the notation introduced at the beginning of the introduction. Hence A denotes 
a locally compact Hausdorff Abelian (in short, LCA) group, and Â its dual group, namely 
the group of continuous homomorphisms ξ : A → T (the multiplicative group of complex 
numbers of modulus 1). When endowed with the topology of the uniform convergence 
on the compact subsets, Â becomes a LCA group ([29, Theorems 23.13 and 23.15]). 
We denote by 〈x, ξ〉 the value of ξ ∈ Â at x ∈ A. The pairing A × Â → T given 
by (x, ξ) → 〈x, ξ〉 is therefore well defined. We will write the group laws in A and Â
additively, hence 〈x + y, ξ〉 = 〈x, ξ〉〈y, ξ〉 and 〈x, ξ + η〉 = 〈x, ξ〉〈x, η〉.

For a subgroup H ⊂ A we denote by H⊥ = {ξ ∈ Â : 〈x, ξ〉 = 1 for all x ∈ H} the 
annihilator of H in A (cf. [29, Definition 23.23]). It is clearly a closed subgroup of Â. 
Also, if H ⊂ A is a subgroup, we denote by A/H the corresponding quotient group, 
whose elements are the cosets x + H = {x + y : y ∈ H}, x ∈ A, of H in A (these 
cosets define a partition, sometimes called “tiling”, of A). In the following, by “a set of 
representatives” of the cosets of H in A, we will mean a set that contains exactly one 
element of each coset.

If H ⊂ A is a subgroup, A/H is a discrete space if and only if H is open in A ([29, 
Theorem 5.21]). If H is closed, A/H has a natural structure of LCA group ([29, Theorems 
5.21 and 5.22]), ̂A/H  H⊥ ([29, Theorem 23.25]) and Â/H⊥  Ĥ [29, Theorem 24.11]
in the sense of topological isomorphisms.

The groups A, Â are equipped with Haar measures related so that the Plancherel 
formula holds true. The Haar measure on A × Â is given by the Radon product measure. 
The inner product in L2(A) is denoted by 〈·, ·〉L2(A). We denote by |S| the measure of a 
subset S (of A or Â, or A × Â), and by χS its characteristic function.
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We refer to (1.1) for the definition of the translation operators Tx, x ∈ A, the modula-
tion operators Mξ, ξ ∈ Â, and the phase-space shifts π(x, ξ) = MξTx. They are unitary 
operators on L2(A). The short-time Fourier transform Vgf , for f, g ∈ L2(A), was defined 
in (1.3); more explicitly

Vgf(x, ξ) = 〈f, π(x, ξ)g〉L2(A) (2.1)

=
∫
A

〈y, ξ〉f(y)g(y − x) dy x ∈ A, ξ ∈ Â.

2.2. Preliminaries from time-frequency analysis

We recall some basic results about time-frequency analysis on LCA groups. We refer 
the reader to [17,23] for details (see also [24] for the analogous results in Rd).

The following result generalizes a well known property of the short-time Fourier trans-
form in Rd [24].

Proposition 2.1. Let f, g ∈ L2(A). Then Vgf is a continuous function on A × Â, which 
vanishes at infinity.

Proof. Since the unitary representations A 
 x �→ Tx and Â 
 ξ �→ Mξ are strongly 
continuous on L2(A), Vgf is a continuous function on A × Â. Moreover, by the definition 
of Vgf in (2.1) we have |Vgf(x, ξ)| ≤ |f | ∗ |g̃|(x) and similarly, |Vgf(x, ξ)| ≤ |f̂ | ∗ |˜̂g|(ξ), 
with g̃(y) := g(−y). On the other hand, functions in L2 ∗L2 tend to zero at infinity. �

As a consequence, we also see that the set {z ∈ A × Â : Vgf(z) �= 0} is σ-compact.
We will need a few elementary formulas concerning time-frequency shifts and the 

short-time Fourier transform.
First, for x, y ∈ A, ξ, η ∈ Â we have the commutation relations

π(x, ξ)π(y, η) = 〈y, ξ〉〈x, η〉π(y, η)π(x, ξ). (2.2)

As a consequence, the following covariance-type properties hold true, for x, y ∈ A, ξ, η ∈
Â:

Vg(π(x, ξ)f)(y, η) = 〈x, ξ〉〈x, η〉Vgf(y − x, η − ξ) (2.3)

and

Vπ(x,ξ)g(π(x, ξ)f)(y, η) = 〈y, ξ〉〈x, η〉Vgf(y, η). (2.4)

An application of the Cauchy-Schwarz inequality gives at once the following pointwise 
estimate:



F. Nicola / Advances in Mathematics 451 (2024) 109786 7
|Vgf(x, ξ)| ≤ ‖f‖L2(A)‖g‖L2(A) x ∈ A, ξ ∈ Â. (2.5)

We finally recall the Parseval equality

‖Vgf‖L2(A×Â) = ‖f‖L2(A)‖g‖L2(A). (2.6)

The following uncertainty inequality was first proved in [38] in the case of finite Abelian 
groups; see also [18,23,49].

Theorem 2.2. Let f, g ∈ L2(A) \{0} and S = {z ∈ A ×Â : Vgf(z) �= 0}. We have |S| ≥ 1. 
If |S| = 1 then |Vgf | = cχS, with c = ‖f‖L2(A)‖g‖L2(A), and therefore S is compact and 
open.

Proof. We can suppose ‖f‖L2(A) = ‖g‖L2(A) = 1. By (2.6) and (2.5), we have

1 =
∫
S

|Vgf(x, ξ)|2dx dξ ≤
∫
S

dx dξ = |S|.

If equality occurs in the above inequality, then |Vgf(z)| = 1 for almost every z ∈ S, 
and therefore for every z ∈ S, since Vgf is continuous (Proposition 2.1), and S is open. 
Hence |Vgf | = χS , which implies that S is also closed. Moreover, since Vgf tends to zero 
at infinity, S is contained in a compact subset, and therefore is compact. �

We will also need the following uniqueness result for the ambiguity function Vff .

Proposition 2.3. Let f, g ∈ L2(A). Then Vff = Vgg on A × Â if and only if f = cg for 
some c ∈ C, |c| = 1.

Proof. For the sake of completeness we provide a proof similar (but not exactly equal) 
to that given in [24, Section 4.2] for A = Rd.

For every x ∈ A, we can regard Vff(x, ·) as the Fourier transform of the L1 function 
fTxf . Hence, if Vff = Vgg, by the Fourier uniqueness theorem, for every x ∈ A we have

f(y)f(y − x) = g(y)g(y − x)

for almost every y ∈ A. By the Fubini theorem (both sides vanish on the complement 
of a σ-compact set in A × A; cf. [19, page 44]), the above equality holds for almost 
every (x, y) ∈ A × A. Multiplying by f(y − x) and integrating with respect to x yields 
‖f‖2

L2(A)f = 〈f, g〉L2(A)g, which gives the desired conclusion.
The converse implication is obvious. �
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2.3. Characters of second degree

We recall from [60] (see also [55]) the notion of character of second degree.

Definition 2.4. Given a continuous symmetric homomorphism φ : A → Â (hence 
〈x, φ(y)〉 = 〈y, φ(x)〉 for x, y ∈ A) a character of second degree of A, associated to 
φ, is a continuous function f : A → T such that

f(x + y) = f(x)f(y)〈x, φ(y)〉 x, y ∈ A.

The following result provides the existence and uniqueness, up to multiplication by 
characters, of characters of second degree associated to a given homomorphism φ as 
above.

Theorem 2.5. Given a continuous symmetric homomorphism φ : A → Â there exists a 
character of second degree associated to φ. Two characters of second degree associated to 
the same φ differs by the multiplication by a character.

The uniqueness is an immediate consequence of the definition. The existence was first 
proved in [31, Lemma 6] (see also [55, page 37] for an easier proof due to M. Burger, and 
[3, Theorem 2.3] for generalizations). Explicit constructions are available in particular 
cases; for example, if multiplication by 2 is an automorphism of G then one can take 
f(x) = 〈x, φ(2−1x)〉 [60, page 146]. We refer the reader to [55, Section 7.7] for an explicit 
construction when G a finite dimensional vector space over a local field, [16] for ZN , and 
[34] for finite Abelian groups.

3. Some symplectic analysis on A × Â

In this section we prove some auxiliary results concerning subgroups of A × Â, in 
connection with the standard symplectic structure of A × Â, that is the bicharacter 
σ : (A × Â) × (A × Â) → T given by (cf. (2.2))

σ((x, ξ), (y, η)) = 〈y, ξ〉〈x, η〉 (x, ξ), (y, η) ∈ A× Â. (3.1)

The following description of the compact open subgroups of A × Â will be crucial in the 
following.

Proposition 3.1. Let H ⊂ A, K ⊂ Â be compact open subgroups, and let φ : H → Â/K

be a continuous homomorphism. Then the set

G = {(x, ξ) ∈ A× Â : x ∈ H, ξ ∈ φ(x)} (3.2)

is a compact open subgroup of A × Â, and |G| = |H||K|.
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Every compact open subgroup of A × Â arises in this way for a unique triple (H, K, φ)
as above.

Proof. It is easy to see that the set G in (3.2) is indeed a subgroup of A ×Â. Since H and 
K are compact and φ is continuous it follows from some general (not completely trivial) 
results from the theory of topological groups (cf. [29, Note 5.24]), that G is compact. 
However, since H and K are open, we can apply a more direct argument, that also has 
the advantage to give some more information, namely that G is in fact a finite union of 
pairwise disjoint compact open subsets of A × Â of product type. Precisely, since K is 
open, Â/K is discrete, and φ(H) ⊂ Â/K is compact, therefore finite. On the other hand 
we have

G = ∪B∈φ(H) φ
−1({B}) ×B.

The sets B ⊂ Â above are compact and open, because they are cosets of K in Â. 
The subsets φ−1({B}) ⊂ H are open and closed and therefore compact, because H is 
compact. This shows that G is compact and open.

For every x ∈ H, φ(x) is a coset of K in Â, and therefore has the same measure as 
K. Hence

|G| =
∫
H

∫
φ(x)

dξ dx = |H||K|.

Now, given any compact open subgroup G ⊂ A × Â, let π1 : G → A be the projection 
onto the first factor, and set H = π1(G) and K = G ∩ Â = Kerπ1 (where Â is regarded 
as a subgroup of A × Â). It is clear that K is a compact and open subgroup of Â and H
is a compact open subgroup of A, because the projection A × Â → A is an open map. 
Hence we have the short exact sequence

0 → K → G → H → 0.

The map G → H is open, and therefore the algebraic isomorphism β : G/K → H

is in fact a topological isomorphism ([29, Theorem 5.27]) (this also follows from the 
fact that β is a continuous bijection, G/K is compact and H is Hausdorff). Now set 
φ = π′

2 ◦ β−1, where π′
2 : G/K → Â/K is the natural epimorphism induced by the 

projection π2 : G → Â onto the quotient spaces. Then φ : H → Â/K is a continuous 
homomorphism, and clearly (3.2) holds for the triple (H, K, φ).

Finally, it is clear from (3.2) that the triple (H, K, φ) is uniquely determined by G. �
Remark 3.2. It is easy to see that G and H ×K in Proposition 3.1 are homeomorphic. 
Indeed, with the notation of the above proof, choosing a representative ξ out of any 
[ξ] ∈ φ(H) (φ(H) is a finite set), yields a continuous section α : φ(H) → Â and therefore 
a lifting φ̃ := α ◦ φ : H → Â of φ. We now extend φ̃ to A by setting φ̃(x) = 0 for 



10 F. Nicola / Advances in Mathematics 451 (2024) 109786
x ∈ A \ H. Since H is both open and closed, φ̃ : A → Â is continuous, and the map 
A × Â → A × Â given by (x, ξ) �→ (x, φ̃(x) + ξ) is a homeomorphism (although not a 
group homomorphism) which maps H ×K onto G.

We now single out a class of subgroups and provide a convenient characterization in 
the spirit of Proposition 3.1.

Definition 3.3. A subgroup G ⊂ A × Â is called isotropic if σ(z, w) = 1 (cf. (3.1)) for 
every z, w ∈ G.

Consider a triple (H, K, φ) as in Proposition 3.1 and assume, in addition, that K ⊂
H⊥. Then a natural epimorphism Â/K → Â/H⊥  Ĥ is induced. Hence, for x ∈ H, we 
can regard φ(x) ∈ Â/K as a character of H, whose value at y ∈ H will be denoted by 
〈y, φ(x)〉. In concrete terms,

〈y, φ(x)〉 := 〈y, ξ〉 for any ξ ∈ φ(x).

Definition 3.4. If K ⊂ H⊥, a continuous homomorphism φ : H → Â/K is called sym-
metric if

〈x, φ(y)〉 = 〈y, φ(x)〉 x, y ∈ H.

We recall, for future reference, that if H ⊂ A is a compact open subgroup, then H⊥

is a compact open subgroup of Â (see e.g., [23, Lemma 6.2.3 (b)]).

Proposition 3.5. Let G ⊂ A ×Â be a compact open subgroup of A ×Â and let (H, K, φ) be 
the corresponding triple (cf. Proposition 3.1). Then G is isotropic if and only if K ⊂ H⊥

and φ : H → Â/K is symmetric. Moreover |G| ≤ 1.

Proof. Let G be isotropic. Let x ∈ H, ξ ∈ φ(x) and η ∈ K, so that z = (x, ξ) ∈ G and 
w = (x, ξ + η) ∈ G. We have

1 = σ(z, w) = 〈x, ξ〉〈x, ξ + η〉 = 〈x, η〉,

and therefore K ⊂ H⊥. Now, if x, y ∈ H and ξ ∈ φ(x), η ∈ φ(y), so that z = (x, ξ) ∈ G

and w = (y, η) ∈ G, we have 1 = σ(z, w) = 〈y, ξ〉〈x, η〉, which means that φ is symmetric.
Vice versa, it is clear from the above computation that if K ⊂ H⊥ and φ is symmetric 

then G is isotropic.
Finally, by Proposition 3.1, |G| = |H||K| ≤ |H||H⊥| = 1, where the last equality 

follows from the Plancherel formula (see [56, Formula (4.4.6)]). �
We finally characterize the compact open isotropic subgroups of maximum measure.
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Proposition 3.6. Let G ⊂ A × Â be a compact open isotropic subgroup and let (H, K, φ)
be the corresponding triple (cf. Propositions 3.1 and 3.5). The following statements are 
equivalent:

(a) |G| = 1.
(b) K = H⊥.
(c) G is a maximal compact open isotropic subgroup, i.e., if G′ ⊂ A × Â is a compact 

open isotropic subgroup with G ⊂ G′ then G′ = G.

Proof. (a) ⇒ (b). We know from Proposition 3.5 that K ⊂ H⊥. If this inclusion were 
strict then |K| < |H⊥|, because |H⊥| < ∞ and |H⊥ \ K| > 0, being H⊥ \ K open. 
Hence, since 0 < |H| < ∞, by Proposition 3.1 |G| = |H||K| < |H||H⊥| = 1, which is a 
contradiction.

(b) ⇒ (c). Let G′ ⊂ A × Â be a compact open isotropic subgroup with G ⊂ G′. Let 
(H ′, K ′, φ′) be the corresponding triple, as in Propositions 3.1 and 3.5. Since G ⊂ G′ we 
have H ⊂ H ′ and K ⊂ K ′. On the other hand, by Proposition 3.5 and the assumption, 
we have H ′ ⊂ K ′ ⊥ ⊂ K⊥ = H. Hence H = H ′ and K = K ′. Since, for x ∈ H, φ(x) and 
φ′(x) are two cosets of K in Â and φ(x) ⊂ φ′(x) we have φ(x) = φ′(x) and therefore 
G′ = G.

(c) ⇒ (a). Suppose, by contradiction, that |G| = |H||K| < 1. Then the inclusion 
K ⊂ H⊥ is strict. Consider the subgroup G′ ⊂ A ×Â associated to the triple (H, H⊥, φ′), 
with φ′ = α ◦ φ : H → Â/H⊥, where α : Â/K → Â/H⊥ is the natural epimorphism. 
Since φ is symmetric, the same holds for φ′. Hence, by Proposition 3.5, G′ is a compact 
open isotropic subgroup of A × Â and G ⊂ G′ with strict inclusion, because G ∩ Â =
K ⊂ H⊥ = G′ ∩ Â strictly. This is a contradiction. �
Corollary 3.7. Every compact open isotropic subgroup of A ×Â is contained in a maximal 
compact open isotropic subgroup.

Proof. Let G ⊂ A × Â be a compact open isotropic subgroup and (H, K, φ) be its 
associated triple (Propositions 3.1 and 3.5), hence K ⊂ H⊥ and φ is symmetric. Then the 
compact open isotropic subgroup associated to the triple (H, H⊥, φ′), with φ′ : H → Ĥ

as in the proof of “(c) ⇒ (a)” in Proposition 3.6, is maximal by Proposition 3.6 and 
contains G. �
Remark 3.8. Notice that the result of the above corollary is no longer valid if we drop 
the adjective “isotropic”. For example, consider the p-adic field Qp. Its topological dual 
Q̂p can be identified with Qp. The balls Bj := {x ∈ Qp : |x|p ≤ pj}, j ∈ Z, are 
compact open subgroups of Qp. Hence the sets Bj ×Bj , are compact open subgroups of 
Qp × Q̂p. However, if K ⊂ Qp × Q̂p is a compact subset, then K ⊂ Bj ×Bj for some j, 
and K ⊂ Bj+1 ×Bj+1 strictly. We refer to [14] for a quick review of the p-adic number 
system from the perspective of time-frequency analysis.
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We conclude this section with a result which will be useful below.

Proposition 3.9. Let G ⊂ A × Â be a maximal compact open isotropic subgroup, hence 
|G| = 1 (cf. Proposition 3.6). Let (H, H⊥, φ) be the corresponding triple (cf. Proposi-
tions 3.1, 3.5 and 3.6). If f is a character of second degree of H associated to φ (cf. 
Definition 2.4), then the function G → T given by

(x, ξ) �→ f(x) (x, ξ) ∈ G

is a character of second degree of G associated to the continuous symmetric homomor-
phism φ′ : G → Ĝ given by

〈(x, ξ), φ′(y, η)〉 = 〈x, η〉 (x, ξ), (y, η) ∈ G. (3.3)

Proof. For (x, ξ), (y, η) ∈ G we have

f(x + y) = f(x) f(y) 〈x, φ(y)〉 = f(x) f(y) 〈x, η〉

because η ∈ φ(y) (where φ(y) ∈ Ĥ  Â/H⊥ is now regarded as a coset of H⊥ in Â). �
4. Optimizers for the ambiguity function

From (2.5) we see that, for f ∈ L2(A) and z ∈ A × Â,

|Vff(z)| ≤ Vff(0) = ‖f‖2
L2(A).

The following result provides some properties of the set where |Vff | attains its maximum 
value.

Proposition 4.1. Let f ∈ L2(A) \ {0}, and

G = {z ∈ A× Â : |Vff(z)| = Vff(0)}.

Then G is a compact isotropic subgroup of A × Â and the restriction of the function 
‖f‖−2

L2(A)Vff to G is a character of second degree associated to the continuous symmetric 

homomorphism φ′ : G → Ĝ given in (3.3).
Indeed, for (x, ξ) ∈ G, (y, η) ∈ A × Â we have

Vff(y + x, η + ξ) = ‖f‖−2
L2(A)Vff(x, ξ)Vff(y, η)〈x, η〉. (4.1)

In particular, |Vff | is constant on every coset of G in A × Â.
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Proof. Without loss of generality we can suppose ‖f‖L2(A) = 1, hence Vff(0) =
‖f‖2

L2(A) = 1.
Since Vff is a continuous function which vanishes at infinity (Proposition 2.1), G is 

compact.
For z ∈ G we have

|〈f, π(z)f〉L2(A)| = 1,

and therefore

π(z)f = c(z)f

for some c(z) ∈ C, |c(z)| = 1. As a consequence,

Vf (π(z)f)f(w) = c(z)Vff(w)

for w ∈ A × Â. Setting z = (x, ξ) and w = (y, η), by (2.3) we have

〈x, ξ〉〈x, η〉Vff(y − x, η − ξ) = c(x, ξ)Vff(y, η).

Setting y = 0, η = 0, we obtain

〈x, ξ〉Vff(−x,−ξ) = c(x, ξ),

which gives

Vff(y − x, η − ξ) = Vff(−x,−ξ)Vff(y, η)〈x, η〉 (4.2)

for (x, ξ) ∈ G, (y, η) ∈ A × Â.
On the other hand, it is clear from the very definition (2.1) of Vff , that |Vff(−w)| =

|Vff(w)| for w ∈ A × Â, and therefore if (x, ξ) ∈ G then (−x, −ξ) ∈ G as well.
Hence we obtain

Vff(y + x, η + ξ) = Vff(x, ξ)Vff(y, η)〈x, η〉 (4.3)

for (x, ξ) ∈ G, (y, η) ∈ A × Â, which proves (4.1).
By (4.3), if (x, ξ), (y, η) ∈ G then (x + y, ξ + η) ∈ G, hence G is a subgroup of A × Â

((0, 0) ∈ G, of course). Finally, exchanging the roles of (x, ξ) and (y, η) in (4.3) yields 
that G is isotropic. �
Remark 4.2. For A = Rd we recapture the well known radar correlation estimate [24, 
Lemma 4.2.1]: if f ∈ L2(Rd) \ {0} and z ∈ R2d, z �= 0, then |Vff(z)| < Vff(0).
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We now introduce the notion of subcharacter of second degree. This terminology – in 
fact non-standard – is inspired by the definition of subcharacter [30, Definition 43.3], 
that is a character of a compact open subgroup H ⊂ A, extended by 0 on A \H.

Definition 4.3. Let H ⊂ A be a compact open subgroup and let φ : H → Ĥ be a 
continuous symmetric homomorphism. A function h : A → C is called subcharacter of 
second degree associated to (H, φ) if its restriction h|H is a character of second degree 
of H associated to φ and h(x) = 0 for x ∈ A \H.

The following result provides the ambiguity function of a subcharacter of second 
degree.

Proposition 4.4. Let h : A → C be a subcharacter of second degree associated to (H, φ)
(cf. Definition 4.3); hence H ⊂ A is a compact open subgroup and φ : H → Ĥ is a 
continuous symmetric homomorphism. Then

Vhh(x, ξ) = |H|h(−x)χG(x, ξ) (x, ξ) ∈ A× Â, (4.4)

where G is the maximal compact open isotropic subgroup of A × Â corresponding to the 
triple (H, H⊥, φ) (cf. Propositions 3.1, 3.5 and 3.6).

Moreover the function |H|−1Vhh is a subcharacter of second degree of A ×Â associated 
to the pair (G, φ′), where φ′ : G → Ĝ is the continuous symmetric homomorphism in 
(3.3).

Proof. Since h|H is a character of second degree of H associated to φ, for x, y ∈ H we 
have

h(y − x) = h(y)h(−x)〈x, φ(y)〉. (4.5)

We now compute Vhh. Observe that, if x ∈ A \H, ξ ∈ Â,

Vhh(x, ξ) = 〈h,MξTxh〉L2(A) = 0,

because H ∩ (x + H) = ∅ in that case.
On the other hand, if x ∈ H, ξ ∈ Â, by (4.5),

Vhh(x, ξ) =
∫
H

〈y, ξ〉h(y)h(y − x) dx

= h(−x)
∫
H

〈y, ξ〉|h(y)|2〈y, φ(x)〉 dy

= h(−x)
∫
H

〈y, η − ξ〉 dy,
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where η is any element of the coset φ(x) ⊂ Â (recall φ : H → Ĥ  Â/H⊥). Now, in the 
last integral the measure dy can be regarded as a Haar measure of the compact open
subgroup H. Therefore, the integral does not vanish if and only if ξ and η induce the 
same character of H ([29, Lemma 23.19]), namely if η − ξ ∈ H⊥, that is ξ ∈ φ(x). This 
proves (4.4).

From (4.4) we see that

Vhh(x, ξ) = |H|h(−x) (x, ξ) ∈ G.

It is easy to see that the function h(−x), x ∈ H, is still a character of second degree 
of H associated to the same homomorphism φ. Hence, it follows from Proposition 3.9
that the function |H|−1Vhh(x, ξ), restricted to G (that is h(−x)) is a character of second 
degree associated to the homomorphism φ′ in (3.3). �

We can now state the main result of this section.

Theorem 4.5. Let f ∈ L2(A) and let G = {z ∈ A × Â : Vff(z) �= 0}. The following 
statements are equivalent:

(a) |G| = 1.
(b) G is a maximal compact open isotropic subgroup of A × Â.
(c) There exist c ∈ C \{0}, x0 ∈ A and a subcharacter h of second degree of A such that 

f = cTx0h.

If any of the above condition is satisfied, the function ‖f‖−2
L2(A)Vff is a subcharacter of 

second degree of A × Â associated to (G, φ′), where φ′ : G → Ĝ is given in (3.3).

Proof. We can assume, without loss of generality, that ‖f‖L2(A) = 1.
(a) ⇒ (b) By Theorem 2.2 we have |Vff | = χG, and G is a compact open subset of 

A × Â. By Proposition 4.1, G is an isotropic subgroup of A × Â. Since |G| = 1, it is 
maximal by Proposition 3.6.

(b) ⇒ (c) By Proposition 3.6 we have that |G| = 1 and therefore |Vff | = χG by 
Theorem 2.2. In fact, by Proposition 4.1, the restriction of Vff to G is a character of 
second degree of A × Â associated to the homomorphism φ′ : G → Ĝ in (3.3).

Let now (H, H⊥, φ) be the triple associated to G (cf. Propositions 3.1, 3.5 and 3.6), 
and let h be a subcharacter of second degree of A associated to (H, φ) (cf. Definition 4.3), 
which exists by Theorem 2.5. We know from Proposition 4.4 that the function |H|−1Vhh, 
restricted to G, is a character of second degree associated to the same homomorphism 
φ′ as above. Hence by Theorem 2.5 there exists a character g of G such that

Vff(x, ξ) = g(x, ξ)|H|−1Vhh(x, ξ) (x, ξ) ∈ G.
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The character g extends to a character of A × Â ([29, Corollary 24.12]) and therefore 
there exist y ∈ A, η ∈ Â such that

g(x, ξ) = 〈x, η〉〈y, ξ〉.

We deduce that

Vff(x, ξ) = |H|−1〈x, η〉〈y, ξ〉Vhh(x, ξ) (x, ξ) ∈ G.

In fact, this formula holds for every (x, ξ) ∈ A ×Â because both sides vanish on A ×Â\G, 
by (4.4) and the fact that |Vff | = χG. By comparison with (2.4) we deduce that

Vff = |H|−1Vπ(y,η)h(π(y, η)h).

By Proposition 2.3 we obtain

f = c|H|−1/2π(y, η)h

for some c ∈ C, |c| = 1.
Setting h′ := Mηh, we have f = c′|H|−1/2Tyh

′, |c′| = 1, and h′ is a subcharacter of 
second degree associated to (H, φ), which gives the desired conclusion.

(c) ⇒ (a) This is clear by Propositions 4.4 and 3.6.

The last part of the statement is also clear by Proposition 4.1. �
5. Optimizers for the short-time Fourier transform

In this section we identify the functions f, g ∈ L2(A) such that

|{z ∈ A× Â : Vgf(z) �= 0}| = 1.

The following result will reduce the problem to the case f = g, that we addressed in the 
previous section.

Proposition 5.1. Let f, g ∈ L2(A), with ‖f‖L2(A) = ‖g‖L2(A) = 1. Let S = {z ∈ A × Â :
|Vgf(z)| = 1} and G = {z ∈ A × Â : |Vgg(z)| = 1}. Let z0 ∈ S. Then f = cπ(z0)g for 
some c ∈ C, |c| = 1, and S = z0 + G.

Proof. Since |〈f, π(z0)g〉L2(A)| = |Vgf(z0)| = 1, we have f = cπ(z0)g for some c ∈ C, 
|c| = 1. Hence, if z ∈ A,

|Vgf(z)| = |〈π(z0)g, π(z)g〉L2(A)| = |Vgg(z − z0)|,

which implies S = z0 + G. �
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We therefore obtain the following characterization.

Theorem 5.2. Let f, g ∈ L2(A) and let S = {z ∈ A × Â : Vgf(z) �= 0}. The following 
statements are equivalent:

(a) |S| = 1.
(b) S is a coset in A × Â of a maximal compact open isotropic subgroup.
(c) There exist c1, c2 ∈ C \ {0}, z1, z2 ∈ A × Â and a subcharacter h of second degree of 

A such that f = c1π(z1)h and g = c2π(z2)h.

Proof. The result follows easily from Theorem 2.2, Proposition 5.1 and Theorem 4.5. �
6. Maximally localized Gabor orthonormal bases

We recall that a Gabor orthonormal basis of L2(A) is an orthonormal basis of the 
form G(f, Γ) (cf. (1.2)), where f ∈ L2(A) and Γ is a (possibly uncountable) subset of 
A × Â.

The following result characterizes the Gabor orthonormal bases with f maximally 
localized, in the sense that the subset

Gf := {z ∈ A× Â : Vff(z) �= 0}

has measure 1. Observe that, by (2.4), Gf = Gπ(w)f for every w ∈ A × Â, so that all the 
elements of the basis are then maximally localized.

Theorem 6.1. Let f ∈ L2(A), ‖f‖L2(A) = 1, with |Gf | = 1; hence Gf is a maximal 
compact open isotropic subgroup of A × Â (by Theorem 4.5). Let Γ ⊂ A × Â.

G(f, Γ) is an orthonormal basis of L2(A) if and only if Γ is a set of representatives of 
the cosets of Gf in A × Â.

Proof. We know from Theorem 4.5 that |Vff | = χGf
.

Let Γ be a set of representatives of the cosets of Gf in A × Â. Since

|〈π(z)f, π(w)f〉L2(A)| = |Vff(w − z)|,

we see that π(z)f and π(w)f are orthogonal if z, w ∈ Γ, z �= w, because Γ contains at 
most (in fact exactly) one element of each coset of Gf .

Let us verify that the set G(f, Γ) is also complete. We claim that

span
(
{π(z)f : z ∈ Γ}

)
= span

(
{π(z)f : z ∈ A× Â}

)
.

To see this, observe that if z ∈ A × Â there exists w ∈ Γ such that z − w ∈ Gf , hence 
|Vff(z − w)| = 1, which means that π(z)f = cπ(w)f for some c ∈ C, |c| = 1, which 
yields the claim.
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Now, the set {π(z)f : z ∈ A × Â} is clearly complete, because if g ∈ L2(A) and 
〈g, π(z)f〉L2(A) = Vfg(z) = 0 for every z ∈ A × Â then g = 0, since the short-time 
Fourier transform is injective (cf. (2.6)).

Conversely, suppose that G(f, Γ) is an orthonormal basis. If z, w ∈ Γ, z �= w, since 
π(z)f and π(w)f are orthogonal, we have Vff(z−w) = 0, namely z−w �∈ G, i.e., z and 
w belong to different cosets. Moreover, if Γ did not contain any element of some coset 
z0 + G, then the function π(z0)f would be orthogonal to all the functions π(z)f , with 
z ∈ Γ, which is impossible since G(f, Γ) is a complete set by assumption. �

Combining Theorems 4.5 and 6.1 we deduce the desired characterization of the max-
imally localized Gabor orthonormal basis.

Corollary 6.2. Let f ∈ L2(A), ‖f‖L2(A) = 1, and Γ ⊂ A × Â.
Then G(f, Γ) is an orthonormal basis of L2(A) and |Gf | = 1 if and only if f = cTx0h

for some c ∈ C \ {0}, x0 ∈ A and some subcharacter h of second degree of A, and Γ is 
a set of representatives of the cosets of Gf in A × Â.

Remark 6.3. Observe that, in Corollary 6.2, the sets {Vf (π(z)f) �= 0} = z + Gf , z ∈ Γ
(cf. (2.3)), define a tiling of A × Â and |z + Gf | = |Gf | = 1. Vice versa, if G ⊂ A × Â

is a maximal compact open isotropic subgroup (hence |G| = 1), (H, H⊥, φ) is the triple 
associated to G (cf. Proposition 3.6) and h is a subcharacter associated to (H, φ), the 
function f = |H|−1/2h generates a Gabor orthonormal basis corresponding to the tiling 
generated by G.

Example 6.4. Let N ≥ 1 be an integer and let ZN = Z/NZN be the cyclic group 
of order N , equipped with the counting measure. We coherently choose the counting 
measure multiplied by N−1 as the Haar measure on the dual group.

On ZN a subcharacter of second degree has the form h = Mξhb,p, where ξ ∈ ẐN , 
b ≥ 1 is a divisor of N , p ∈ {0, . . . , b − 1}, and,

hb,p(x) =
{

exp
(πipx2b(1+b)

N2

)
x ∈ aZN

0 x ∈ ZN \ aZN ,

where a = N/b (see [49, Remark 2.1] and [16, Section 3 (iii)]). We also have

Gh = {(ma, nb + mp) : m = 0, . . . , b− 1, n = 0, . . . , a− 1},

(see the proof of [49, Theorem 1.2]), which is indeed a subgroup of ZN×ẐN of cardinality 
N , hence of measure 1 (incidentally, all the subgroups of cardinality N have this form), 
and Corollary 6.2 applies.

Of course, on ZN there are Gabor orthonormal bases G(f, Γ) which are not maximally 
localized, e.g., we can take f = 2−1/2χ{0,1} and Γ = 2ZN × (N/2)ZN , assuming N ≥ 4
even. A straightforward computation shows that
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Gf = ({0, 1, N − 1} × ZN ) \ {(0, N/2)},

so that |Gf | = 3 − 1/N > 1.

We also obtain the following result for finite Abelian groups.

Corollary 6.5. Let A be a finite Abelian group and S ⊂ A × Â. The following statements 
are equivalent, for the family of operators {π(z) : z ∈ S}:

(a) There exists a common eigenfunction.
(b) The operators π(z), z ∈ S, commute.
(c) There is a Gabor orthonormal basis, which consists of common eigenfunctions, gen-

erated by a function f ∈ L2(A), with |Gf | = 1.

Proof. (a)⇒(b) If f ∈ L2(A) is a common eigenfunction, with ‖f‖L2(A) = 1, then 
|Vff(z)| = 1 for z ∈ S, because the eigenvalues of π(z) have modulus 1. Hence S ⊂
G′ := {z ∈ A × Â : |Vff(z)| = 1}, and G′ is an isotropic subgroup of A × Â by 
Proposition 4.1. Hence the operators π(z), with z ∈ S, commute by (2.2).

(b)⇒(c) Since the operators π(z), z ∈ S, commute, the subgroup generated by S is 
isotropic. It is moreover contained in some maximal isotropic subgroup G (whose exis-
tence is obvious, because A is finite; see also Corollary 3.7). Let (H, H⊥, φ) be the triple 
associated to G (cf. Propositions 3.1, 3.5 and 3.6) and let h be a subcharacter of second 
degree associated to the pair (H, φ) (cf. Definition 4.3), which exists by Theorem 2.5 (see 
also [34]). By Proposition 4.4, for the function f = |H|−1/2h we have ‖f‖L2(A) = 1 and 
|Vff | = χG, and by Theorem 6.1 f generates a Gabor orthonormal basis G(f, Γ), for a 
suitable subset Γ ⊂ A × Â. Since S ⊂ G, |〈f, π(z)f〉L2(A)| = |Vff(z)| = 1 for z ∈ S, so 
that f is a common eigenfunction of the operators π(z), z ∈ S, and therefore, by (2.2), 
every function π(w)f , with w ∈ A × Â, is a common eigenfunction too.

(c)⇒(a) This is obvious. �
We point out that extensive numerical experiments on eigenfunctions of time-

frequency shifts were done by H. Feichtinger (private communication), in connection 
with the work [33].

7. Lieb’s uncertainty inequality

The following result was first proved in [43] for the group A = R, and then extended 
to a general LCA group in [23], following essentially the same proof.

We recall that every locally compact Abelian group A is topologically isomorphic to 
Rd × A0, for some integer d ≥ 0 and some LCA group A0 containing a compact open 
subgroup, and the dimension d is an invariant [29, Theorem 24.30].
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Theorem 7.1 (Lieb’s uncertainty inequality). For f, g ∈ L2(A), we have

‖Vgf‖Lp(A×Â) ≤
(2
p

)d/p

‖f‖L2(A)‖g‖L2(A) 2 ≤ p < ∞ (7.1)

and

‖Vgf‖Lp(A×Â) ≥
(2
p

)d/p

‖f‖L2(A)‖g‖L2(A) 1 ≤ p ≤ 2. (7.2)

Using only (2.5) one easily obtains similar estimates – in fact weaker, if d > 1 – with 

the constant 
( 2
p

)d/p replaced by 1 (see Theorem 7.2 below), namely

‖Vgf‖Lp(A×Â) ≤ ‖f‖L2(A)‖g‖L2(A) 2 ≤ p < ∞ (7.3)

and

‖Vgf‖Lp(A×Â) ≥ ‖f‖L2(A)‖g‖L2(A) 0 < p ≤ 2, (7.4)

where now the case 0 < p < 1 is also included. These estimates are sharp if A contains 
a compact open subgroup (i.e., d = 0).

We are going to prove that the pairs of functions f, g for which equality is attained in 
(7.3) or (7.4) are precisely those for which the set where Vgf �= 0 has measure 1, which 
have been characterized in Theorem 5.2.

Theorem 7.2. Let A be any LCA group. Then (7.3) and (7.4) hold true.
Equality holds in (7.3) for some p ∈ (2, ∞) and f, g ∈ L2(A) \ {0} if and only if there 

exist c1, c2 ∈ C \ {0}, z1, z2 ∈ A × Â and a subcharacter h of second degree of A such 
that f = c1π(z1)h and g = c2π(z2)h. In that case, equality occurs in (7.3) for every 
p ∈ [2, ∞).

A similar uniqueness result holds true for the inequality (7.4), for 0 < p < 2.

Proof. We can suppose ‖f‖L2(A) = ‖g‖L2(A) = 1.
Let 2 ≤ p < ∞ and set S = {z ∈ A × Â : Vgf(z) �= 0}. Using (2.5) and (2.6) we see 

that ∫
S

|Vgf(x, ξ)|p dx dξ =
∫
S

|Vgf(x, ξ)|p−2|Vgf(x, ξ)|2 dx dξ

≤
∫
S

|Vgf(x, ξ)|2 dx dξ = 1,

which proves (7.3). If equality occurs in the above inequality and 2 < p < ∞ then 
|Vgf | = χS and |S| = 1, which implies the desired conclusion for the functions f and g
by Theorem 5.2.
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The result for the inequality (7.4), hence 0 < p ≤ 2, is analogous, using

1 =
∫
S

|Vgf(x, ξ)|2 dx dξ =
∫
S

|Vgf(x, ξ)|2−p|Vgf(x, ξ)|p dx dξ

≤
∫
S

|Vgf(x, ξ)|p dx dξ. �

Remark 7.3. If f, g ∈ L2(A), we have Vgf ∈ L∞(A × Â) by (2.5). Hence, by monotone 
convergence,

lim
p→0+

∫
A×Â

|Vgf(x, ξ)|p dxdξ = |{z ∈ A× Â : Vgf(z) �= 0}|.

As a consequence, raising to the power p both sides of (7.4) and taking the limit as 
p → 0+, we obtain that, if f and g are non-zero,

|{z ∈ A× Â : Vgf(z) �= 0}| ≥ 1,

that is the inequality in Theorem 2.2.

It is easy to check that, on a general LCA group A = Rd × A0, for f1, g1 ∈ L2(Rd)
and f2, g2 ∈ L2(A0), we have

Vg1⊗g2(f1 ⊗ f2) = Vg1f1 ⊗ Vg2f2.

As a consequence, for fixed p ∈ [1, ∞), if f1, g1 is a pair of optimizers for Lieb’s Lp-
inequality in Rd (Theorem 7.1) and similarly for f2, g2 on A0, then f1 ⊗ f2, g1 ⊗ g2 is 
a pair of optimizers for the Lieb’s Lp-inequality on A. We now show a family of such 
optimizers. To this end, we need some terminology, inspired by [43].

Definition 7.4. A function f on Rd is called a Gaussian if

f(x) = exp(−αx · x + iβx · x + γ · x + δ),

where α is a real symmetric positive definite d × d matrix, β is a real symmetric d × d

matrix, γ ∈ Cd and δ ∈ C. Two functions f, g are called a matched Gaussian pair if f
and g are both Gaussian with the same α’s and β’s but with possibly different γ’s and 
δ’s.

Similarly, a pair of functions f, g on a LCA group A is called a matched pair of 
subcharacters of second degree if f = c1π(z1)h and g = c2π(z2)h for some c1, c2 ∈ C\{0}, 
z1, z2 ∈ A × Â and some subcharacter h of second degree of A.
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It is easy to check that for a matched Gaussian pair f, g, equality occurs in (7.1) and 
(7.2) (A = Rd). For A = R it was proved in [43] that these are in fact the only pairs of 
non-zero optimizers if p �= 2.

The previous discussion therefore leads to the following result.

Proposition 7.5. Let f1, g1 be a matched Gaussian pair on Rd and let f2, g2 be a matched 
pair of subcharacters of second degree on A0. Then, for the functions f := f1 ⊗ f2 and 
g := g1 ⊗ g2 on A = Rd ×A0, equality occurs in (7.1) and (7.2) for every p ∈ [1, ∞).

The optimizers where f1 and g1 are time-frequency shifts of the Gaussian exp(−π|x|2), 
and f2 and g2 are time-frequency shifts of the characteristic function of some compact 
open subgroup of A, were already known from [23].

We postpone to a future work the problem of identifying all the optimizers on a general 
LCA group – as already observed, the case A = R was addressed in [43], whereas the 
case A = A0 is the content of Theorem 7.2 above.
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