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1 | INTRODUCTION

Let (M, J, g) be a Hermitian manifold of complex dimension n with fundamental form w = g(J-, -). A connection V on TM
is said to be Hermitian if Vg = 0 and VJ = 0. In [29], Gauduchon had introduced an affine line of Hermitian connections,
known as Gauduchon or canonical connections, which can be written as

gV, 2) = g(ViCY, 2) + L @)X, ¥, 2) + I (d @)X, Y, I 2),

where d°w = —Jdw. We adopt the convention Jdw(X,Y,Z) := dw(JX,JY,JZ). When the manifold (M,J, g) is Kdhler,
namely, d°w is zero, the line of connections collapses to a single point, which is the Levi-Civita connection VL€ whereas,
when (M, J, g) is non-Kihler, the line is non-trivial and the connections V have nonvanishing torsion. For particular val-
ues of t € R, we recover connections that play a relevant role in the complex (non-K&hler) geometry. For t = 1, the Chern
connection V! = VD [15], characterized by (VEM)*! = 4, and for t = —1 the Bismut (or Strominger) connection V=! = VB
[9, 40], characterized as the only Hermitian connection with totally skew-symmetric torsion. Although V¢, VB, VCh are
mutually different connections, any one of them completely determines the other two, for example, the Bismut connection
can be defined in terms of the Levi-Civita one as

1
B _ LC
g(VyY,Z2)=g(VyY,Z) - Edcw(X, Y,Z),
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and its torsion 3-form c, also called the Bismut torsion, is

e(X,Y,2) = g(TB(X,Y),Z) = dw(JX,JY,JZ) = —d‘w(X, Y, Z).

If the torsion 3-form c is closed, that is, dd“w = 0 or, equivalently, 3w = 0, the metric g is said strong Kédhler with torsion
(SKT in short) or pluriclosed.

SKT metrics also appear naturally in the setting of generalized Kdhler geometry: according to [30], a generalized Kihler
structure on a 2n-dimensional manifold M is a pair of commuting generalized complex structures (J;, J>) such that G =
—J1.J> is a positive definite metric on TM @ T*M. It turns out that the generalized Kihler condition can be equivalently
described in the language of the Hermitian geometry as a bi-Hermitian structure (J,,J_,g) on M such that the Bismut
torsions c, of (J,,, g) satisfy c, = —c_ and dc, = 0 (see [30] for further details). In [35], Hitchin has proved that whenever
[J4,J_] # 0, the tensor o = [J,,J_]g ™! defines a holomorphic Poisson structure. Generalized Kihler structures (g, J, ) are
said non-splitif [J,J_] # 0 and split otherwise: in the latter case, the tensor Q = J,J_ is an involution of TM and induces
the splitting TM = T, M @ T_M in terms of its +1-eigenbundles.

As one may easily observe, if (M, J, g) is Kéhler, then (M, +J, g) is generalized Kdhler: generalized Kdhler structures
which arise in such a way are said trivial. As a consequence, much study has been devoted to the explicit construction of
non-trivial generalized Kdhler manifolds, for example, [1, 4, 5, 11, 12, 16, 20, 21, 25, 31]. In contrast with the case of compact
nilmanifolds, which cannot admit invariant generalized Kéhler structures unless they are tori [14], several families of
(non-K#hler) compact generalized Kéhler manifolds are compact solvmanifolds [20, 21, 25], namely, compact quotients
of a connected and simply connected solvable Lie group by a lattice.

By [33], a compact solvmanifold admits a Kdhler structure if and only if it is a finite quotient of a complex torus which
has the structure of a complex torus bundle over a complex torus. No general restrictions are known to the existence of
generalized Kéhler structures on compact solvmanifolds: up to now the only known examples have abelian nilradical,
even though it is still an open question whether this is true in general.

Since the underlying metric of a generalized Kihler structure is in particular SKT, a more general problem regards the
existence of SKT structures on solvmanifolds I'\G. When the complex structure is invariant, that is, it descends from a
left-invariant complex structure on G, exploiting the symmetrization process [8] the problem reduces to investigate the
existence of SKT inner products at the level of the Lie algebra g = Lie(G). Although it is a simplified setting, the solvable
case seems to be harder than the nilpotent case, even in low dimensions. The existence of an SKT structure on a nilpotent
Lie algebra imposes severe restrictions: Arroyo and Nicolini proved in [7] that the existence of an SKT metric on a nilpotent
Lie algebra implies that the nilpotency step is at most 2, as conjectured in [18]. Furthermore, SKT nilpotent Lie algebras
of dimensions 6 and 8 have been fully classified in [18, 24], respectively.

SKT structures on (non-nilpotent) solvable Lie algebras have been instead studied in several papers [6, 20-22, 27, 37],
however, a full classification has been obtained only in dimension 4 in [37]. In dimension 6, the second author and Paradiso
have classified the SKT almost nilpotent Lie algebras in [20-22] and Freibert and Swann have classified in [27, 28] the SKT
two-step solvable Lie algebras. Furthermore, the Hermitian geometry of solvable Lie algebras with an abelian ideal of
codimension 2 has been recently investigated in [13, 32].

Another special class of Hermitian structures on complex manifolds is provided by the balanced structures, namely,
Hermitian structures (J,g) whose fundamental form w is co-closed or, equivalently, satisfying dw"~! = 0. It has been
conjectured in [26], that a compact complex manifold cannot admit both SKT and balanced metrics, unless it admits
Kéhler metrics as well. In the locally homogeneous setting, the conjecture holds true for nilmanifolds [26], almost abelian
solvmanifolds [23], six-dimensional almost nilpotent solvmanifolds [22] and on solvable Lie algebras with an abelian ideal
of codimension 2 [13, 28, 32]. Non-compact counterexamples of this conjecture have been instead constructed in [28].

In this work, we mainly focus on Hermitian structures on solvable Lie algebras g with (not necessarily abelian) nilradical
b of codimension 2. Since § has even dimension, if (g,J, (-, -)) is Hermitian, we may distinguish the two cases J§ =}
and J§ # b, which will be treated separately. Section 2 is devoted to study the first case, that is, Hermitian Lie algebras
(g,J, (+,-)) with codimension 2 J-invariant nilradical §. In Theorem 2.1 we prove that the Hermitian structure (J, -, -)) is
always Chern Ricci flat, extending a result given in [32] in the case of [) being abelian, and we give necessary conditions for
(J,{-,-)) to be SKT. In particular, we observe that the SKT condition imposes restrictions on the structure of §j, namely, it
has to be 2-step nilpotent. As a consequence (see Corollary 2.3), we study the SKT condition when [ is abelian. Although
in [32] Hermitian structures on Lie algebras with a J-invariant abelian ideal of codimension 2 are investigated, we are able
to prove that when the ideal coincides with the nilradical of the Lie algebra, the SKT condition has a more specialized
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characterization. Furthermore, we prove that if g admits a generalized Kéhler structure (J ., (-, -)) satisfying J. ) = B, then
(J4, (-, -)) must be Kéhler.

In Section 3, we investigate Hermitian Lie algebras (g, J, (-, -)) with codimension 2 nilradical §j such that J§ # §), with a
special focus on the existence of generalized Kéhler structures (J, 1, (-, -)) such that J§ = § and If) # §). We also construct
the first example of generalized Kihler Lie algebra with non-abelian nilradical: however, the example is not unimodular.
In Section 4, we provide a full classification of unimodular six-dimensional solvable Lie algebras with codimension 2
nilradical that admits a SKT structure. Section 5 is devoted to the construction of new examples of SKT solvable Lie
algebras. In particular, we provide a general process to extend SKT nilpotent Lie algebras of dimension 2n to SKT solvable
Lie algebras of dimension 2n + 2k. We apply this construction to the six-dimensional SKT nilpotent Lie algebras classified
in [24] (see also [41]), to obtain new families of SKT solvable Lie algebras in dimension 8. Finally, in the last section, we
exhibit some results on the existence of generalized Kéhler structures on solvmanifolds with codimension 2 nilradical and
we construct new examples of compact SKT and generalized Kéhler solvmanifolds.

2 | CASEJp=}

Let g be a 2n-dimensional solvable Lie algebra with a codimension 2 nilradical ), endowed with an almost Hermi-
tian structure (7, (-, -)) such that J§ = §. We can decompose g as the orthogonal sum § @ b+, where each summand is
J-invariant and dim¢ §* = 1.

Let U be a unit vector of fj-. We have that the Lie bracket of g is given by

[U,Y] = AY, [JU,Y] = BY, [Y,W] = u(Y,W), [U,JU]| =V, VY,W €W,

where A .= adyl|y, B := adjy|y are derivations of  and u is the Lie bracket [-,-]; on §. Note that V' € b, since gl is
contained in ) and ady |y = [ady, ad;y].

Furthermore, since the restrictions of J and (-, -) to §* are completely determined by choosing the orthonormal basis
{U,JU} of (9%, (-, *)p), we have that the almost Hermitian Lie algebra (g, J, (-, -)) is uniquely determined by the algebraic
data (U,JU, A,B,V, &, Jy, (-, -)y)-

Remark 2.1. Note that the data (U,JU, A, B,V, 1) determine a Lie algebra if and only if A, B are derivations of §, [A, B] =
ady |y and u is a Lie bracket on §.

Theorem 2.1. Let (g,J, (-, -)) be an almost Hermitian solvable Lie algebra with a J-invariant codimension 2 nilradical Y) and
let {U,JU} be an orthonormal basis of (§*, (-, Yg1)- Then

(i) The complex structure J is integrable, if and only if Jy is a complex structure on § and A := ady|y and B := adjyly
satisfy the following condition:

[J5, Alg + [Jg, B] = 0.
(ii) IfJ is integrable, then the Hermitian Lie algebra (g,J, (-, -)) is Chern Ricci flat.
(iit) IfJ is integrable, g is unimodular and [U,JU]| = 0, then (J, (-, -)) is balanced if and only if (Jy, (-, )y) is balanced.

(iv) IfJ is integrable and the Hermitian Lie algebra (g,J, (-, -)) is SKT, then the nilradical ¥) is at most two-step nilpotent and
the restrictions Ay, By of A and B to the center 3(Y) of b must satisfy the following conditions:

A0 Byw) € 90(6(0)). (A0 T3] = [Byw). Ty)] = 0-
Proof. Using that the Nijenhuis tensor N of J satisfies the condition N(J-,J-) = —N(-, -), one can see that it is enough to

check the vanishing of N(U, Y) and N(Y, Z) forevery Y, Z € §. By adirect computation, we have that N(Y,Z) = N Ty (Y,2)
and

N(U,Y) = [U,Y] +Jo(JU, Y] + [X,JyY]) = [JU,J4 Y] = (A + JyAJy +JgB — BIp)Y,
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from which (i) follows. To prove (ii), following [42] (see also [21, Formula 5.8]), we use that the Ricci form of the Chern
connection p" is given by dn“", where

Ch(Y) = %(tr(adyoJ) —tradyy), VY € g.
IfY € §, theny“M(Y) = ngh(Y) = 0, since } is nilpotent (a proof can be found in [36, Proposition 2.1]). Furthermore, since

nCh(U) = %(tr(adUo]) — tradyy) = = (tr(AoJy) — trB)

N N =

PChU) = %(tr(adwo]) + trady) = = (tr(BoJy) + trA),

we obtain

nCh = %(tr(Ath) —trB)u + %(tr(BoJf,) +trd)Ju,

where {u, Ju} is the dual basis of {U, JU}. Then, (ii) follows by differentiating ", since du = d(Ju) = 0.
To prove (iii), we observe that the orthogonal splitting g = § @ §*, implies that the fundamental form w of (J, (-, -)) can

be written as w = wy + u A Ju. Its (n — 1) power is then given by 'l = cog_l + (n — 1w 2 Au AJu. We first observe

that for any a € /\kh*,

da=uAA"a+JuAB'a—uAJuAya+dya, (@)

where
k
C*y = —[y(Crrey )+ + 75, C)] Wy € \ B, C € gl(B),

and dy, stands for the exterior differential of the nilpotent Lie algebra (h, ).
Exploiting that du = dJu = 0 and that V = [U,JU] = 0, we get

do"1 = dwg_l +(n—1Ddy" 2 AuAJu.

We claim that da)g_1 = 0. Assume by contradiction that dcag_1 =u /\A*cog_1 +Ju /\B*a)g_1 # 0, hence, at least one

between A*w” ! and B*w" ! is non-zero. If the first holds, then one may consider d(w” ™' AJu) = u A A*w!" "' AJu # 0.
Moreover, this provides a contradiction: since g is unimodular, any 2n — 1 form on g is closed. The other case proceeds in
the same way by considering d(a)g_1 A u). Therefore, dw™™ = (n — 1)dyw™ % A u A Ju is zero if and only if dya" 2 = 0.

The first part of (iv) follows from [7]. Indeed, if the Hermitian Lie algebra (g,J, (-, -)) is SKT, then (}, Jy, (-, -)5) is SKT
(see [7, Proposition 3.1]). In particular, (§,Jg, (-, ) is at most two-step nilpotent [7, Theorem 4.8]. Since, (), (-, '>h’J p) is
SKT and at most two-step nilpotent we have the orthogonal decomposition § = 3(§) @ 3(§)*, where 3() is the center of
§. Observe that each summand in the decomposition ) = 3(§) @ 3(§)* is Jy-invariant by [18, Proposition 3.5].

Hence, Jy is determined by J,) and J, .. Furthermore, since A, B € Der(}), then they must preserve the center.
Indeed, if Z € 3(}), then

0=AuZ,Y)) = w(AZ,Y) + u(Z, AY) = u(AZ,Y), VY €},

from which follows that AZ € 3(§), and analogously for B. With respect to the decomposition ) = 3(§) @ 3(§)* we have
that

Ao <A5<m *A > and B = <Bs(f)) *B >
0 Aype 0 By

In particular, 3(h) is a J-invariant ideal of g and the integrability condition involving A,B and Jy reads A,y +
Ta A3 50) + I50)B30) — Byl sp) = 0 on 5(h).

85U80|7 SUOWIWIOD A0 3|edldde aup Aq peusenob ae ssppie YO ‘8sn Jo se|ni oy AriqiT8uljuO 8|1 UO (SUOpUoD-puUe-sLLelLI0D A3 | 1M ATl 1 jeul|UO//:SANY) SUOTIPUOD pue swie | 81 8sS *[20z/0T/8T] uo AriqiTauliuo &M ‘1a 1pms 116eqa AisieAlun Aq 67£007202 BUeW/Z00T 0T/10p/u0o A8 | Areiq1pul|uo//Sdny wo.j papeojumod ‘0 ‘9T9222ST



BRIENZA and FINO MATHEMATISCHE 5
NACHRICHTEN

Let ¢ be the Bismut torsion 3-form of (J, (-, -)). Then, for any Z € 3(}) using the formula for the dc in [17] (see also [7,
Formula 3]) we get

de(JZ,Z,U,JU) = |AJZ|I” + |BIZII* + |AZ* + | BZ|I? )

—(AJAJZ,Z) — (JAJAZ,Z) — (BIBJZ,Z) — (JBJBZ,Z).
By (i), this is equivalent to

de(Z,Z,X,JX) = |AJZ|* + |BJZ|* + | AZ|I* + |IBZ|I?

+ ((2(A% + B> + AJyB — BIyA) — Jy[A,B] — [A,BlJy) Z, Z).

Moreover, since [A, B] = ady |y, and Z is in the center of §), [A4, B]Z = 0. Analogously, since 3(})) is Jy invariant, also
[A,B]JyZ = 0. Hence,

de(Z,Z,X,JX) = |AJZ|* + |BJZ|* + | AZ|I> + |IBZ|I?

+ ((2(A% + B> + AJ4B — BI4A))Z, Z).
Hence, the SKT condition yields
IATZ||*> + |BJZ|I> + [IAZ|I> + IBZ||* + ((2(A? + B*> + AIyB — BJyA))Z,Z) = 0 (3)

forany Z € 3(b). Let{e, ..., 5.} be any orthonormal basis of 3(h). Without loss of generality, we may assume thatJe,;_; =
e,j for each j = 1,...,r. Using Equation (3), we get that 2?:1 de(Jej,ej, X,JX) is equal to

2r
Z |ATe;|I> + IBJe;||* + l|Ae;lI> + |IBe;||* + ((2(A% + B* + AJyB — BJyA))e;, e;)
j=1

— 2 2 2 2
_2<”‘43(f))” + 1Bl +tl‘(As(b))+tr(B5(h))+tr(A5(h)Ja(h)Bz>(h)_Bs(f))Js(ﬁ)As(h)))'

Furthermore, since [A; (), By = [A, Bl ) = 0, then tr(A; )7 35)B;) — Byl s5)A55) = 0-
Hence, the SKT condition implies that

||A5(f))”2 + ||Bé([])||2 + tr(A2 )+ tr(B2

3(5) 30 =0 )

: 2 2 2 2
We claim [|A;)||* + tr(Aé(h)) > 0and ||B,y)llI* + tr(Bé(m) > 0. Indeed,

2r 2r
2 2 = .12 p .12 o) = .12 . )2
1Al +tr(A5(m) =2 E l_=1|a”| + E i<j(|al]| +la;l?) + E l_<j2(aU aj)=2 E i=1|a”| + E i<j(aU +aj)"

The same argument holds for B, ). More specifically, Equation (4) implies that if (g, J, (-, -)) is SKT, then A, and By,
are skew-symmetric matrices with respect to any orthonormal basis of (§), Jy, (-, -)y). In fact, the choice of the orthonormal
basis does not affect the previous computations. This proves that A,y and B,y are in 8o(}).

With respect to {ey, ..., €,,} we may write A,y and B,y using 2 X 2 block matrices A;; and B;; as follows:

Al’l .es Al,r Bl’l es Bl’r

A=+ "~ i Byp=[i - i
Ay e A, B,y .. B.,
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where, fori =1, ...,r,

A = < 0 a2i—1,2i> B = < 0 b2i—1,2i>
H =012 0 o —byi_1i 0 ’

and, fori < j,
Qi—1,2j—1 A2i-1,2j ¢ b2i—1,2j—1 b2i—1,2j "
A= . Aji=-(CA), Bj= » Bj;i=—(B)).
A2i2j—1 A2i2j byinj—1 byi )

Moreover, since we choose {ey, ..., e} satisfying Je,;_; = e,; foreach j = 1,...,r, with respect to such a basis the complex
structure J,y) can be represented by the diagonal block matrix diag(Ay, ..., A,) with

0 -1
r=(7 %)
If one imposes the integrability condition A,y + J;05)A;m)50) + J300)B;) — Byl ;5 = 0 then the following linear
conditions hold:

®)

{azi—l,Zj—l = (yipj + bainj1 + byi12j

byinj = @ri—12j + Qsi2j—1 + bai_12j1-

We compute the components dc(e,j_1,Je,j_1,X,JX), using Equation (2). With a straightforward computation, one gets

j-1
de(eyj_r,Jezj—1,X,JX) = — 2Zk:1(b2k,2j—1 + bok_12j) + (@o—12j + Aok 2j-1)?

(6)
r—1
- 2Zk=j+1(b2j,2k—1 + byj1210)? + (@j-12k + A2j k1)

Repeating the same argument for each j = 1, ..., r, the vanishing of Equation (6) leads to the identities by; 5j_; = —by;_15;
and a,; 5j_1 = —ay;_1,j- Moreover, plugging these identities in Equation (5) we get

Qinj = A2i—12j-1

b2i,2j = b2i—1,2j—1-
Hence, we have that for any i < j, the matrices A;; and B;; are of the kind

A = Ai-1,2j-1 Ari—1,2j B = b2i—1,2j—1 b2i—1,2j
v © T -b b ’
—i-12j A2i-1.2j-1 —D2i-1,2§ 2i—1,2j—1

and it is straightforward to observe that [A, ), J,)] = [B;), /5] = 0. O

Remark 2.2. If the Hermitian Lie algebra (g,J, (-, -)) is Kéhler, then J is abelian. Exploiting Equation (1), since the fun-
damental form w splits as the sum wy + u AJu, we get that if (J, (-, -)) is Kéhler, then 0 = dw = u A A*wf, +Ju A B*CU[) —
uAJu A ywy + dha)f], which implies that dhcoh = 0. Moreover, since [ is nilpotent, then it must be abelian.

Corollary 2.2. Let g be a unimodular solvable Lie algebra with codimension 2 nilradical Y). Assume that g is endowed with a
complex structure J such that J¥) = Y. If g admits a J-Hermitian SKT metric (-, -); and a J-Hermitian balanced metric (-, -),
such that [§¢2, h¢92] = 0, then g admits also a Kihler metric.

Proof. Since g is unimodular and [I)L“)z Jptenz] = o, by Theorem 2.1 statement (iii) we have that (§,J) admits a balanced
metric. Furthermore, by the proof of statement (iv) in Theorem 2.1, (§,J) admits also an SKT metric, and so J it is abelian
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by [26]. Since g contains an abelian ideal of codimension 2 which is J-invariant, then (g,J) admits also a Kéhler metric by

[13, 32]. [

As a corollary of Theorem 2.1, we focus now on the case of §) being abelian. Observe that in this case Jy is trivially inte-
grable, so the integrability of J simply reduces to the condition A + JyAJy + JyB — BJy = 0. In [32], Hermitian structures
on Lie algebras with a J-invariant abelian ideal of codimension 2 are investigated. The next corollary shows that when the
ideal coincides with the nilradical of the Lie algebra, the SKT condition has a more specialized characterization.

Corollary 2.3. Let (g,J,(-,-)) be an almost Hermitian solvable Lie algebra with a J-invariant codimension 2 abelian nil-
radical Y and let {U,JU} be an orthonormal basis of (§*, (-, Yg1)- Then, (J,(-,-)) is SKT if and only if one of the following

condition holds

() A :=adyly,B :=adjyly € 80(h) and [A,Jy] = [B,Jy] = 0;
(ii) there exists an orthonormal basis {ey, ... , €5,_5} of (B, (-, - )y) with respect to which

J[] = diag(Al, ,An_l), A = diag(Al, ’An—l): B = diag(Bl, ’B}’l—l)’

_ 0 -1 _ 0 a; o 0 bi
Ai—<1 O)’ Al_(—ai 0> and B’_<—bi 0), @)

where

with a, bi eR.
Moreover, if the Hermitian structure (J, (-, -)) is SKT, then

(iii) (J,{-,-)) is Kdhler if and only if [+, §1] = 0;
(v) if 3(g) N § = {0}, then g admits also a Kdhler metric.

Proof. One direction of (i) follows by Theorem 2.1. Indeed, if (J, (-, -)) is SKT and } is abelian, then A, B € 3o(}) and
[A,Jy] = [B,Jgy] = 0. Let us prove the converse. We have already observed that w = wy + u A Ju. Then,

dw =uAA*wy +Ju AB oy —u AJu A tywy,

with V = [U,JU], A*wy(Y,W) = —((JyA + AJy)Y, W)y, and B*wy(Y, W) = —((JyB + B'J;)Y, W), for any Y,Z € §.
Since [A,Jy] = [B,Jy] = 0 and A, B € 30(})

JyA + ATy = (A+ ANy = 0, JyB + By = (B + B')Jy = 0,
from which follows that dw = —u A Ju A tywy. The Bismut torsion 3-form c is hence given by
c=Jdw =—uANJuAJ(ywy) =uAJu A ywy,
and it is clearly closed as dh)* C h* @ x ® h* ® Jx.
To prove (ii) we use that by (i) the SKT condition is equivalent to [A,Jy] = [B,Jy] = 0and A, B € $o(}). Hence, since
is abelian, A, B, Jy are three skew-symmetric endomorphisms which commute pairwise. As a consequence, there exists an
orthonormal basis {e, ..., €5,,_»} of (9, (-, '>|h) such that A, B, Jy can be put simultaneously in their diagonal normal forms

.If) = diag(Al, ’A}’l—l)’ A = diag(Al, ’Al’l—l)’ B = diag(Bl, ’Bﬂ—l)’

where A;, A; and B; are given as in Equation (7).
(iii) follows from the fact that, if (J, (-, -)) is SKT then dw = —u AJu A tywy,.
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To prove (iv) we exploit the condition 3(g) N § = {0} to prove that B — AJy is invertible. Indeed, since (J, (-, ), J) is SKT,
by (ii) we may always find an orthonormal basis {1, ..., €5,_>} of (§, (-, '>|h) such that A, B, Jy are in their diagonal normal
forms. Then,

B — AJy = diag(Cy, ..., C,_y),  with ci=<gf _abl>
1 1

In particular det(B — AJy) = [] det(C;) = H(a + b2) # 0. In fact, if det(B — AJy) = 0, then there must exists an index i
such that a_ + b2 = 0. Moreover, this would imply that a; = b; = 0, thatis, e,;_;,e,; € 3(¢) N ) = {0}, a contradiction.

Since B — AJ y is invertible, there exists a vector Y’ € § such that (B — AJy)Y = V. We consider the new J-Hermitian
metric (-,-) = (-, g + u? +Ju'?, whereu' andJu' are the dualsof U" = U + Y andJU’ = JU +JY.Then, A" = adyy =
A,B’ = adj,y = B, implying that the Hermitian structure (J, (-, ) )is again SKT (observe that (-, -) p = =(, '>|f))' Moreover,
since [U”,JU’] = 0, the Hermitian structure (J, (-, -)') is Kéhler by (iii). N

Remark 2.3. Note that by Theorem 2.1 the Hermitian Lie algebra (g,J, (-, -)) is always Chern Ricci-flat, but in general,
when J is abelian, it is not Chern flat (for further details see [32, Proposition 4]).

Regarding the existence of generalized Kéhler structures we can prove the following:
Theorem 2.4. Let g be a solvable Lie algebra with nilradical ¥ of codimension 2. The following are equivalent:

(i) g admits a generalized Kdhler structure (J, (-, -)) such that J . f) = b;
(ii) ¢ admits a Kdhler structure (J,(-,-)) such thatJ . § = .

Proof (ii) = (i). It suffices to take J_ = —J .

(i) = (ii). Let us fix an orthonormal basis {U, U’} of h* with dual basis {u, u’}. Without loss of generality, we may assume
such that U’ = J,U and J_U = eU’, for ¢ € {~1,+1}. Let A = adyly, B = ady/|yand V = [U, U’].

Since the Bismut torsions 3-forms c, of the Hermitian structures (J,, (-, -)) satisfy ¢, = —c_, then there exist a, 8 €
/\2I)* and y € §* such that

co=xaAruxfAu tyAunu +cy,

where ¢y, are the torsion 3-forms of the Hermitian structures (Jih’ (- '>h) on b, respectively. Since ¢, = —c_, we clearly
have ¢y, = —cy_.
Using Equation (1) and the SKT condition dc, = 0, we get

dey = (dya — A*cyy) Au+(dy B — Bcy u/
+(—=B*a+ A*B + dyy — tycyy) AuAu' + dyey, = 0.

It follows that dycy, = 0, that is, (§,J
forces J to be abelian by [14].
Forany W € §

oy ¢, '>f)) is a generalized Kidhler Lie algebra. Moreover, since }j is nilpotent, this

(W, U, U") = —([J,W,JLULU") = (U U T UL W) = (U, U T, WL U) = <V, W)

and, analogously, c_(W,U,U’) = —X(V,W) = —(V, W). Since c, = —c_, we must have V = 0, that is, [§*, §] = 0.
Moreover, this implies that the SKT structure (J,, (-, -)) on g is Kdhler by Theorem 2.3. O

Remark 2.4. One can show that if a solvable Lie algebra g with nilradical § of even-codimension admits a generalized
Kihler structure (J., (-, -)) such that J. § = b, then } is abelian. The proof proceeds in the same way as before, using a
generalization of Equation (1).
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3 | CASEJh #}

Let g be a 2n-dimensional solvable Lie algebra with nilradical § of codimension 2 endowed with an almost Hermitian
structure (J, (-, -)) such that JY # §. As a consequence, g = ) + J§. Setting §; := § nJY, we have the orthogonal decom-
position g = §; @ (§;)*, where each summand is J-invariant. Since ¥ has codimension 2, dim(§;) = 2n — 4. Observe that
when 2n = 4, the decomposition above is trivial. Moreover, since SKT structures on four-dimensional solvable Lie algebras
have been fully descripted in [37], we may restrict to consider 2n > 4. Now, we focus on the four-dimensional J-invariant
space ()" = £ @ b+, where f is the orthogonal complement of §); in §. Let {e,,_;, e, } be any orthonormal basis of .
Then,

Jeop—1 =J3se0n + hopz, Jeyy = —Jz4erp-1 + hop3
where J3, € R and h,,,_,, h,,_s is a pair of non-zero orthogonal vectors of ¥ such thatJ?e,,_; = —e,,_; and J2e,, = —e,,.
Py Pon— . . L
Hence, {e5,,_3 := ||h2n 3” oy i = ||h2n 2” ,€5_1,€,} is an orthonormal basis of the J-invariant subspace (§;)*.
2n—3 2n—2

With respect to the decomposition g = §; @ (§;)*, the almost complex structure J splits as

J 0
J = < by >’
0 Jgt

EZU = -Id,,_, and J(Zb o= —Id,. With respect to the orthonormal basis
J

{€31—3, €212 €an—1, €2} Of (§;)*, the restricted almost complex structure J(y,L is represented by the skew-symmetric
matrix

and J?>=-Id is equivalent to J

0 Jp 0 Jy
7 -2 0 I3 0
G0 —h 0 T

—Ju 0 —J3u O

where the entries J;; satisty the conditions

2 2 _ 2 2 _ 2 2 _ 2 2

JLo+J, =1, J,+Jn =1, I +J5 =1, J,+J;, =1, ®
—J14l34 +J12023 =0, —J1415 +J23J34 = 0.

Observe that J 4 # 0and J,3 # 0, as JY) # §. Exploiting the conditions (8), one obtains two different but equivalent almost
complex structures on (§;)* corresponding to either J;, = —J34 and J,, = —J,3 0rJ1, = J34 and J,, = J,3. We will consider
only the first case, as they are equivalent up to a change of basis of (§;)*.

Remark 3.1. To summarize, we may always endow (§;)* with an orthonormal basis {e,,,_3, €5,_3, €201, €2} Such that
{esn_3,€n_>} and {e,,_1, e,,} are unitary basis of £ and h*, respectively, and the restricted almost complex structure J 6L
can be written with respect to such a basis as

0 Jp 0 Jy

7 |72 0 —Juu O
o)+ = 0 Jl4 0 _le ’

—Jiu 0 Jp 0

9

s 72 2
with J7, +J7, =1and Jy4 # 0.
We restrict now to the case of §) being abelian, where we can investigate the existence of generalized Kéhler structures.

Proposition 3.1. Let (g,J,(-,-)) be a Hermitian solvable Lie algebra with codimension 2 abelian nilradical ¥y such that
JYh # Y. Then, §; := hnJYisanideal of g.
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Moreover, if {5,_3, €3n—2> €2n—1 €2} is an orthonormal basis of (§;)* as in Remark 3.1, we further have that
[Af)J’Jf)J] = [va’]f)f] =0,
where Ay, By, Jy, denote the restriction of A := ad,, |y,B = ad,, |y andJ to Y, respectively.

Proof. Let{ey,_3,€sn_3,€2n_1, €20} be an orthonormal basis of (§;)* as in Remark 3.1. To prove that §; is an ideal, since §
is abelian and ¢! C ¥, we only need to check that for any X € Y, [X, e,,], [X, e2,_1] € JH. By the integrability of J

N;(X,ex,-5) =J[X,Jey, 5] — [JX, Jeyy 5]
=J[X,J12€2n—3 + J1a€2n—1] — [UX, 12823 + J14€241]

=J1uU[X, er1] = X, e2,1]) = —J14(JAX — AJX) = 0.

Hence, [X, e,,_1] = J[-JX, e5,_1] € JB. Analogously, [X, e,,] = J[-JX, e,,] € Jh. Furthermore, we also get [Ay,,Jy, ] =
[By,»J5,1 = 0. O

Proposition 3.2. Let g be a solvable Lie algebra with abelian nilradical ¥ of codimension 2. Assume that g is endowed with
an SKT structure (J, (-, -)) such that J§ = Y. If there exists another complex structure I compatible with (-, -) and such that
Iy # Y, then (J, (-, -)) is Kdhler.

In particular, g does not admit any non-Kdhler generalized Kdhler structure (I,J,{-,-)) such that I # ) andJh = .

Proof. Let{e,,_3,€,—2,€n_1, €} be an orthonormal basis of (;)* = (§ N I§)* as in Remark 3.1).

If we consider any orthonormal basis {ey, ... , €5,_4} of b, then B = {eq, ..., €2,_4, €2,_3, €2,_»} is an orthonormal basis of
§. Furthermore, ¥; is an ideal of g by Proposition 3.1.

Since (J, (-, -)) is SKT and } is abelian, we have that A = ad,, ||y, B = ad,,, |y are in 8o(}) by Corollary 2.3. Hence, with
respect to B

Ay, | 0 By, | 0

A= 0 0 C1o . B = 0 0 d12 , where AhI’BhI S §0(f][)
—C12 0 —d12 0

Regarding the Nijenhuis tensor N; as a (0,3)-tensor with the aid of the inner product (-,-), namely N;(X,Y,Z) =
(N;(X,Y),Z), we get

Ni(ern—2,€n-3:€n-1) = —L14C12, Ni(€rp—2,€34-3,€2,) = —I14d5.

By the integrability of I and by the fact that I;4 # 0 (see Remark 3.1), we have ¢;, = dj, = 0.
Hence, if one computes

[e2n—1! eZn] = _(1[13211—1’ eZn] + I[e2n—1s IeZn]) + [192)1—1! IeZn] = I%g [e2n—1’ eZn]s
one gets 0 = (1 —I7))[ex,-1,€2,] = I, [€21-1, €3], that is, [HF, §] = 0. The result follows by Corollary 2.3. O

Remark 3.2. We have seen in the previous section that if g is a solvable Lie algebra with codimension 2 nilradical § that
admits a generalized Kdhler structure (I, (-, -)) such that I § = §, then } is abelian. It is in general not true when I, j #
b. Indeed, let us consider the Lie algebra 8 = (f; @ R3) X R? = (e?* +e!7, %e”, %e”, —e*8, %ess —e%, %eﬁs +e%7,0,0),
where {ey, ..., e¢} is a basis of h; @ R3, {e,, eg} is a basis of R? and by e’/ we denote e’ A e/. By the structure equations, we
have that the nilradical § is spanned by {e;, ..., e} and it is easy to observe that j = §; @ R>. Let us define the bi-Hermitian
structure (I, (-,-)) with I, h # b as

8 .
- = - - - 2
I.ey=e; I,e; =e;3 I.es =+eq, I =¢e3, ()= E i=1(el) .
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The corresponding fundamental forms w, = e Ae” +e* A e’ + e’ Aeb + e* A ed satisfy

diw, =+e* Ae’ Aeb,

and e* A e° A €9 is a closed 3-form, that s, (I +»{+,-)) is a generalized K#hler structure. Moreover, we observe that since the
Lie algebra is not unimodular, the corresponding connected and simply connected Lie group does not admit lattices.

4 | CLASSIFICATION IN DIMENSION 6

In this section, we provide a classification of six-dimensional unimodular solvable Lie algebras with nilradical of
codimension 2 that admit an SKT structure.

Theorem 4.1. A unimodular six-dimensional solvable Lie algebra g with codimension 2 nilradical ) admits a SKT structure
W, {-,-)) if and only if g is isomorphic to one of the following Lie algebras:

T30 X T30 = (=2, f15,=f*, £%,0,0),
-2,0
95.35 @ R = (2f15’ _f25 _ f36, _f35 + f26,0, 0’ 0)’

hence, in particular, §) must be abelian. An explicit example of SKT structure is given respectively by

6
Jfi="f2 Ifs=fao Jfs=fe ()=

i=1

6
Ifi="Ffs Jf2=fs Jfs=fe ()= Q20

i=1

Proof. We discuss separately the cases J§) = f and J§ # §.

Assume that g is endowed with an SKT structure (J, (-, -)) such that J) = §. By Theorem 2.1, } is a four-dimensional
nilpotent SKT Lie algebra, so we have that either § = R* or ) = §); @ R. If }j is abelian, then one can easily prove that
3(g) N § = 0 (otherwise we get a contradiction with the fact that ) has codimension 2) and so by the proof of statement
(iv) in Corollary 2.3, we get that § = [g, g]. The classification follows by [27, 28] and the Lie algebra g has to be isomorphic
to 730 X T3-

Now we deal to the case §) = h; @ R, proving that this case cannot occur. Assume by contradiction that g admits an
SKT structure (J, (-, -)) such that Jf) = §, then

g=h@®h =3H @) Sh-.
Let e; be a generator of ! = [}, h] C 3(§) which, up to rescaling, we may assume to be unitary. Then, an orthonormal
basis of g is provided by B = {e},e, = Jey,e3,e4 = Jes, es,e5 = Jes}, where {e;, e,} is a basis of 3(f), {e;,e,} is a basis of
3(§)* and {es, e} is a basis of §*.
The Lie algebra g is completely determined by the data
les,X] = AX, [es,X]=BX, VX €lles,es] =me;, [es,e] =V,

where7 € R\ {0}, A = ad,_|y, B = ad,|y are derivations of }) satisfying [A, B] = ady |. We have already observed in the
first section that we may decompose A and B as

A:<A5(h) *4 > and B=<Bz,<n> *B >
0 Aype 0 Bygy

with Ay, By € 80(3(h)) being such that [A; ), J;4)] = [By),J;55)] = 0 by Theorem 2.1.
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Moreover, since A and B are derivations of §, Ah' C h' and By C ', and so A, = B, () = 0. In particular, this forces

tr(Aé(h)J_) = tr(Bé(b)J.) =0.
Let

az3 Q3 bys  bsy )
A, gL = and B, = .
o <a43 —a3s> 0 <b43 —bs;

Exploiting that A,y = B,y = 0, the integrability condition [Jy, AJy + [J4, B] = 0 and the relation [A, B] = ady |y yield

[Jh’Aé(h)l]]h + []b’Bé(h)J‘] =0 & 2(133 = b34 + b43, 2b33 = —(a34 + a43),

[A;5)L, Bypyt] =0 <= 2a33(b34 + baz) — 2bs3(azs + a43) = 0.

Itis immediate to observe that the two conditions together imply that A, )1 and B,y are skew. If any of a4 or b3y is zero,

then the corresponding matrix would be nilpotent, which is a contradiction with the hypothesis that § has codimension

2. Hence, we must have a3y, b3, # 0. Moreover, if we consider the subspace generated by {ey, ..., €4, €5 — ?%}, thenitisa
34

nilpotent ideal which strictly contains §, providing the contradiction.

Now, we consider the case of J§ # §. In this case, the four-dimensional nilradical is isomorphic to one of R*, §; @ R
and b, = (—24,—34,0,0). Moreover, the only six-dimensional solvable Lie algebra with nilradical ¥, is g4 3 = (0,0,46 —
13 —2.25,56 — 24,15, —16 + 26) (see [38]), which is not unimodular.

Hence, as in the previous case, we may restrict to consider either § = §; @ R or ) = R*. We start by considering the
first case, which is more involved.

First, we prove that if g admits a complex structure J such that J§ # §, then dim(J(3(§)) n §) = 1. Since the center 3(})
has dimension 2, it suffices to check that if dim(J(3(§)) N §) = 0,2 we get a contradiction.

We start by considering dim(J(3(§)) N §) = 0. Let Z; be a generator of §! = [§, ], and let Z, be such that 3(§) =
spanp{Zi,Z,). Since g = § + JY), we may fix a basis {Z,, Z,,X,JX,JZ;,JZ,} of g, with X € §j; = hn J}.

Observe that since ad;z, |y, ad;z, |y are derivations of b, they preserve both h! and 3(§). Exploiting this fact, the
integrability of J and the inclusion g' C ¥, we get the following structure equations:

(X, IX] =02y, [2,,JZ\] = anZy, [21,0Z,] = a1nZy, [2,,0Z1] = a12Z,
[Z5,0Z5] = b12Zy + by Zs, [X,JZ1] = a33X + agsJX, [X,JZ,] = b33 X + bysJX,
UX,JZ1] = —agsX + as3JX, [JX,JZ,] = —by3X + b33JX, [JZ1,JZ,] = 0.
Computing
adjz [X,JX] = [ad;z X,JX]| + [X,ad;z JX]
and
adyz [X,JX] = [ad;z, X,JX] + [X, ad;z,JX]
we further have a;; = 2a3; and a;, = 2bs;.
In particular, by the unimodularity condition, this leads to a;; = as3 = 0 and b,, = —4bs;.

Moreover, [ad;z,,ad;z, ] = ad|;z, jz,; = 0if and only of b33 = 0.
To sum up, the Lie algebra g is determined by the data

00 0 0 0 —b;y 0 0
00 0 0 0 0 0 0

adjz, |y = 00 0 asl adjz, |y = o o 0 byl [X,JX]=nZ, #0.
0 0 —ay3 0 0 0 —b43 0

Observe that we must have ay3 # 0. As ay3 # 0, we may consider the subspace generated by {Z1,Z,,X,JX,JZ, — baa g Z1},
43
that is a nilpotent ideal which strictly contains §. The contradiction follows.
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Let us now consider the case of dim(J(3())) N §)) = 2. In this case §; = 3(h), so we may fix a basis {Z,JZ} of 3(f), with Z
being a generator off)l. Since g = §j + JY), we may complete Z,JZ to a basis {Z,JZ,X,Y,JX,JY} of g, where {Z,JZ, X, Y}
is a basis of ). Analogously to the previous case, we obtain the following structure equations:

[X,Y]=nz, [Z2,0X]=anZ, [Z,JY]|=b1Z, [JZ,JX]=a;,JZ,

[JZ,0Y) = b JZ, [X,JX]| = a13Z + a3 JZ + a33X + a,3Y,

[X,JY] = b13Z + bysJZ + a3y X + anY, [Y,JX]| = auZ + auJZ + auX + ayny,

[Y,JY] = bysZ + boyJZ + b3y X + byyY, [JX,JY] = + (ary — b23))Z + (b3 — au)JZ.
Exploiting

Cl.d]X[X, Y] = [Cl.djxX, Y] + [X, CldJXY] and adjy[X, Y] = [Cld]yX, Y] + [X, adJYY]

we further have a;; = a3 + a4y and by = az4 + byy. This identities combined with the unimodularity of glead to a;; = 0,

(33 = —Qy4, b1; = 0,and aszy = —byy.
We hence get that
0 0 —a;; —ay 0 0 —b;z —byu
0 0 —ay —ay 0 0 —by —by
d = N d = )
adyxly 0 0 —azx; —azy adyyly 0 0 —azy —by
0 0 —ay as; 0 0 az; axy

[X,Y]=nZ, [JX,JY] = (1 + (axs — b23))Z + (b13 — a14)J Z € 3(B) = 3(g).

Since [JX,JY] € 3(h) = 3(g), as before [ad,x, ad;y | = ad|;x jy] = 0. With the relations coming from this identity, if one
compute the spectrum of ad;x one obtains that ad;x has only the eigenvalue 0, so it is nilpotent. Hence, the subspace
generated by {Z,JZ,X,Y,JX} is a nilpotent ideal which strictly contains §, giving a contradiction.

Hence, we may restrict to consider the case of dim(J(3(h)) N §) = 1 and we prove that if dim(J(3(§)) N Hh) = 1, then g
cannot admit any SKT structure (J, (-, -)) such that J§ # §.

Let Z,,Z, be abasis of 3(§) such thatJZ; € handJZ, ¢ §. Since g = § + J), there always exists a vector X € } such that
{21,J2,,2,,X,JZ,,JX}is a basis of g. We proceed as before. Indeed, using that ad;,, ad;x preserve 3(b), the integrability
of J, and the inclusion g' C §, we get

VZ, X =mZy + m25, [Z1,02,] = a2y, [Z,,JX] =bnZ) —n22,,
[JZ1,0Z,) = a\JZy, [JZ,,0X] = (n + bi)IZy, [2,,0Z,] = a13Z, + a332,,
[Z,,JX] = bi3Z1 + a34Z,, [X,JZ,] = aiyZy + arJZy + azZ,,

[X,JX] = b14Z1 + b24]Zl + b34Zz + b44X, [JZz,JX] = a24Z1 + (b13 - a14)121.

By the unimodularity of g, as3 = —2a;; and 2by; + 1, + az4 + byy = 0. Observe thatif a;; = O then ad;, isastrictly upper
triangular matrix, and hence, nilpotent. Hence, a;; # 0, and, exploiting ad;,, [JZ,,X] = [adJZZJZbX 1+ [JZ,, adjz, X ],
we getn, =0.

Analogously, if one computes ad;x[JZ;, X ]| = [ad;xJZ,,X]| + [JZ;, ad;xX], then one obtains by, = —7,. Plugging this
identity in the unimodularity condition 2b,; + 7 + as4 + byy = 0 this also gives 2b;; + a3, = 0.

To sum up

—a;;1 0 —ai3 —ayy —by; 0 —biz —biy
0 —anp 0 —ay 0 —(pn+byy) 0 —by
ad = , ad = ,
ez |h 0 0 2(111 2b11 TX |[) 0 0 2b11 —b34
o o0 o0 0 0 0 0o

[JZ,,JX] = az4Z;1 + (b3 — a14)J Z;.
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Consider any J-hermitian inner product {-,-) and denote by c¢ the Bismut torsion 3-form of (J,{(-,-),J). Then,
dc(Z,,JZ1,X,JZ,) = —2a;1m1||Z;|*> # 0. Indeed, this can be zero only if 7; = 0. Moreover in this case ) = R*, giving
a contradiction.

Hence, we have proved that if g is endowed with an SKT structure (J, (-, -)) such that J§ # b, then § must be abelian.
We restrict to consider § = R*.

Let us assume that g admits an SKT structure (J, (-, -)) such that J§ # §, with § = R*. We fix an orthonormal basis
B ={e;,...,eq} of g such that {e;, e,} is an orthonormal basis of §; such that Je; = e, and {es, ..., s} is an orthonormal
basis of (§;)* as in Remark 3.1, namely, with respect to 3 the complex structure J can be written as

01 0 0 0 0
-1 0 0 0 0 0
g0 0 0 o0y
0 0 —J, 0 —Jy, O
0 0 0 Ju O —Jpy
0 0 —Ji, 0 J, O

By Proposition 3.1, ; isanideal of gand [Ay, , J] = [By,,J] = 0, where Ay , By, denote the restrictionsof A := ad, |y, B :=
ad,, |y to b;. By the integrability of J, we have that

bll b12
_b12 bll

’ B=
0 0

9’
dip -

dyy —cy

J12 J1o
[es,ec] = Vi, — =—=(c;» — dyp)es — =—=(con — d>y)ey,
55 €6 by T 7, 12 T dules = 7o — o)y
with 2a;7 + ¢17 + ¢, = 0 and 2bq; + dj; — ¢57 = 0 by the unimodularity of g. In the following, we will denote by
€1 €2 dy —Cy

Since by the Jacobi identity [A, B] = 0, then also [C,D] = 0.
By the SKT condition, we get

dc(ey, e;,e3,¢5) =2J14(=by1¢ + ay1dy) =0,
dc(ey, ey, e3,e5) =2J14(b11¢y + a11¢51) = 0,
dc(ey, e;,e4,5) = — 2J14(by1¢12 + ay1611) =0

dc(ey, ez, e4,5) =2J14(b11c11 —appdy;) =0

Since Jy4 # 0, the coefficients of A and B must obey to
bii¢y1 —ajidy =0, byjcy +agcy =0, byjcin +agcp =0, byep —aqdy =0. (10)

We distinguish two cases depending on whether a;; is zero or not. We will do in details the first case. In fact, the second
one is analogous.
Let a;; = 0. The conditions (10) become

bi1¢31 =0, byicyy =0, byci; =0, byjeyg =0,

and furthermore ¢;; = —c,, in order to have tr(A) = 0.
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We claim that b;; # 0. Indeed, assume by contradiction that b;; = 0. Then Equations (10) are satisfied and d,; = ¢,; by
the unimodularity condition. Using [C, D] = 0, one can show that C and D are nilpotent matrices and so we must have
ai,, b1y # 0. Indeed, if for instance a;, = 0, then the subspace generated by {ey, e,, 3, €4, €5} would be a nilpotent ideal
which strictly contains §j, which is a contradiction with the maximality of the nilradical.

If a;,, by, # 0, then we may consider eg =e5 — %% with

0| =
adely =\ 515 )

where E = C — a”D Moreover, since C, D are nilpotent and [C,D] = 0, so is E and, hence, also ad ’|h Therefore, if

we consider the 1dea1 {e1, e, e3,e4, €}, then again this is a nilpotent ideal which strictly contains the nilradical, proving
the claim.
Since by; # 0, by Equation (10) we must have that

0 ap biy by,
o | © b, b *
—ap —D12 11
A= B= ,
0 : —2b;; 0
0 0
0 dy 0

J1o J1o
,e] =Vy —2—b —=d, ey,
es, €] by T €3+ T 2164

with a;, # 0 (otherwise A would be nilpotent). In order to kill the components of V along e; and e,, we take e :=es +
%e} In such a way [el, eq] € h; and {e, s} define a new complement of § inside g. Observe that since ) is abelian,
Al = adeglh =A

Let e; and e‘" be eigenvectors of B associated with the eigenvalues —2b;; and O, respectively. Since the eigenspaces
V_s,, and V, are one-dimensional and [A, B] =0, We must have that e’ and e’ are also eigenvectors of A with eigenvalue

0. Hence, with respect the new basis {e;, e,, e e e6} the Lie algebra gis determlned by the data
0 a b b
(;2 0 ;1 b12 0
_a —
A = 12 . B= 12 bn . [ele] €8

0 o
0 0
0 0 0 0

Finally, let X € §j; be such that A’X = —[el, es] (observe that it is possible since ImA’ = §;). The basis {ei, ...,eg,eg =

e; + X}issuchthatB := adeg |y = B’ and [eg, eg] = 0. The isomorphism between g and 9;?50 @ R is immediate. O
Remark 4.1. The Lie algebra gs_é’so first appears in [10].

Remark 4.2. The connected and simply connected solvable Lie groups corresponding to 734 X 73, and gs_é’so DR
admit lattices. The former case is trivial. For the latter, an explicit construction of a lattice is done in the next
section (Theorem 6.5).

Corollary 4.2. A unimodular six-dimensional solvable Lie algebra with codimension 2 nilradical §) admits a generalized
Kahler structure (J ., (-, -)) if and only if g is isomorphic to one of the following Lie algebras:

T30 X T30 = (=2, f15, -, f3,0,0),

8.8 @R = (2f1%,—f25 — f36, 35 4 £26,0,0,0).

85U80|7 SUOWIWIOD A0 3|edldde aup Aq peusenob ae ssppie YO ‘8sn Jo se|ni oy AriqiT8uljuO 8|1 UO (SUOpUoD-puUe-sLLelLI0D A3 | 1M ATl 1 jeul|UO//:SANY) SUOTIPUOD pue swie | 81 8sS *[20z/0T/8T] uo AriqiTauliuo &M ‘1a 1pms 116eqa AisieAlun Aq 67£007202 BUeW/Z00T 0T/10p/u0o A8 | Areiq1pul|uo//Sdny wo.j papeojumod ‘0 ‘9T9222ST



16 &A:ggglhéﬁ'%%ﬁHE BRIENZA and FINO
[NACHRICHTEN |

An explicit example of the generalized Kdhler structure is given respectively by

6
Tefv =20 Jofs = £fs Jofs = £f6 (o) = Y (F)

i=1

6
Jof1=Fs Jofa=£f3 Jefa = fo () = D
i=1

5 | CONSTRUCTION OF NEW SKT AND GENERALIZED KAHLER LIE ALGEBRAS

This section is devoted to construct new examples of SKT and generalized K&hler solvable Lie algebras. In particular,
we exhibit examples of SKT solvable Lie algebras (g,J, (-, -)) with J§ = § and J§ # § in Examples 5.1 and 5.3, and in
Examples 5.4 and 5.5, respectively.

Example 5.1. By Theorem 4.1, we have that the only six-dimensional SKT Lie algebra (g, J, (-, -)) such thatJh = his 73 X
730. Moreovetr, as 73y X 73 has trivial center, there exists a (possibly different) J-Hermitian structure which is Kihler, by
Corollary 2.3 (iv).

In higher dimension, this is no longer true. Indeed, let us consider the eight-dimensional solvable Lie algebra gg , with
b # 0, defined by the structure equations

le1,e7] = bey, ey, e7] = —bey, [es,eg] = bey, [es,eg] = —bes, [e;,e5] =es + e,

endowed with the complex structure J, given by
Jel = €, Je3 = €y, Jes = €, Je7 = eg.

In particular, § = spang(ey, ..., €¢) and Jh = §. Let us consider the inner product (-, -) with respect to which the basis
{e1, ..., eg}isorthonormal. Set A := ad, |y and B := ad,,|y. By Corollary 2.3, the Hermitian structure J, (-, -)) is SKT and
it is (non-flat) Chern Ricci flat by Theorem 2.1.

We show that (gg,J ) does not admit any Kdhler structure. Let {Z;, ..., Z,} be a unitary basis of (gg )19 with dual basis
{¢',...,9*}. Then

Q+1i) 4,4
——(P44

4 _
> , dep” =0.

ib 1 b 2
do' = ——(p™ + ¢), dp? = =S (9™ — 9™, do’ =

Let us write the generic fundamental form w = %ijl F ﬁgojj + % ijl(F ﬂ;qojk —F_ﬂgqokj ), with F;; € R,. Since
dw(Zs,Z4,Z,) = %F;,g, we have that dw # 0.

Theorem 5.2. Let (h,Jy, (-, -)h) be an SKT nilpotent Lie algebra and let (a,J,, (-, -),) an abelian Hermitian Lie algebra of
dimension 2k. Consider a Lie algebras homomorphism

6 : a - Der(h)

such that6(a) C 8p(h) N 80(h), namely 6(U)" = —6(U) andJy8(U) + 6(U)'Jy = 0, VU € a. Then, (¢ = hXga,J, (-, -)), with

_ _(Jy O .
(-,-)—(,)f,+(,)aandJ_<0 Ja>,lsSKT.
Proof. Let{U,,J, Uy, ..., Uy,J Ui} be an orthonormal basis of the abelian Hermitian Lie algebra (a, J, (-, -)4,J) With dual

basis {u;,J Uy, ... , Uy, Jouy ;. Observe thatsince g' C §, du; = d(J,u;) = 0. To lighten the notation, let us define A; : = 6(w;)
and Bi = 9(]aui).
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First, we prove that J is integrable. Exploiting that N(J-,J-) = —N(-, -), one can see that it is enough to check the
vanishing of N(U;,Y), forany Y € handi = 1,..., k. We compute

NU;,Y) = [U, Y]+ Jy(V U, Y] + [U, Jp YD) — [T Uy, Jy Y] @y
= (4; +Jf)Al~Jf) +JI)B1' _BiJh)Y = [Jf),A]J[] + [J[),B]Y.
As A;, B; € 3p(h) N 30(Yh), we get that 0 = JyA; +A1?J[, = JyA; — AiJy = [Jy, A;] and, analogously, 0 = [Jy, B;]. Hence,

Equation (11) vanishes, and J is integrable.
Since } is a J-invariant ideal of g of even codimension, we may extend the formula (1) in this case. Indeed, exploiting

that a is abelian, for any a € /\k b*
k
da = Zui ANAfa+Ju; ABfa + dya, (12)

i=1

where dy stands for the differential of .
Let us consider the fundamental form w of (J, (-, -)). Then, by construction,

k

w = wy+ Zui A u;.
i=1

Using Equation (12), we get that dw = dwy = 25;1
30(f)),soVY,Z €}

u; A Afwy +Ju; A B wy + dywy. Now, we know that A;, B; € $p(h) N
Arwy(Y,Z) = —wy(A;Y, 2) — wy(Y, AiZ) = —(JyAY, Z) — (JyY, A Z)
= —(UgA; + AlJyY,Z) = 0,
and, analogously, B;wy = 0. In particular, we get dw = dywy. Let ¢ = Jdw = ¢y be the Bismut torsion. Again by Equa-

tion (12), dc = dcy = Zle u; A Afcy +J,u; A B cp, as dycy vanishes since (Jy, (-, -) p) is SKT. To conclude, we have to prove

that A;“ch = B;‘ch = 0. We prove the statement for the former, since the latter is analogous. Let Y, Z, W € §. Then

Afey(Y,Z, W) = —cy(A)Y, Z, W) — (Y, AZ, W) — ¢y (Y, Z, A[W)
+ ([J[)Y,J[)AiZ],W> + <[J[)AiZ,J[)W],Y> + <[JhW,JhY],AiZ>
+([JgY, J4Z), AW) + ([JyZ, Ty AW ], Y) + ([Jy AW, JyY], Z).
Exploiting that [A;,Jy] = 0 and A} = —A;, one gets
Afeg(Y,Z, W) = (=AJyY, JyZ], W) + ([AyY, Ty Z], W) + ([T Y, AiJyZ], W)
+ (—AGZ, TgW 1Y) + ([AJ4Z, TgW 1Y) + ([TgZ, ATy W], Y)
which vanishes since A; is a derivation of . |

Example 5.3. Six-dimensional (non-abelian) nilpotent Lie algebras admitting an SKT structure are classified in [24] (see
also [41, Theorem 3.3]). Let | be a six-dimensional nilpotent Lie algebra defined by the structure equations

de! = de? = de® = de* =0, de® = pe'® — pe?* +28e**, deb = pe?® + pel* — 2¢'2 — 2ye34, (13)
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with p € {0,1}, &,y € R and p? — 2y = 0. An SKT structure is given by

6

Tper = ey, Jpes = eq, Jyes = eg, {0y = Z(ei)z. (14)
i=1

Four different non-isomorphic Lie algebras are distinguished

oy 0 JB=02=(0,0,00,12,34) for§ 0,
pEn =B = (0,0,0,0,0,12) for & = 0,

hx)h, =(0,0,0,0,12,34) for46% > 3, (15)
= 1h =5, =(0,0,0,0,12,14 + 23) for 45% = 3,
h=hs =(0,0,0,0,13 + 42,14 + 23) for 452 < 3.

1
P—LV—E

By [24, Theorem 3.2] these are the only possible six-dimensional nilpotent Lie algebras admitting an SKT structure, up
to isomorphism.

We want to exploit Theorem 5.2 to extend the Lie algebras described above to eight-dimensional solvable SKT Lie alge-
bras. Let | be a six-dimensional nilpotent Lie algebra with structure Equations (13) endowed with the SKT structure (14).
Consider the abelian Lie algebra R? endowed with the standard Hermitian structure and let {U, U’} be a unitary basis of
R? satisfying U’ = JU with dual basis {u, u’}. We define the Lie algebra homomorphism 6 : R?> — Der(}) as

0O a|O0O 0|0 O

-a 0|0 0|0 O

0 0|0 —a|0 O
o(U) =

0 Oja 0 0

0 00 0 0

0 0]0 0 0

and 6(U’) = 0, with respect to the fixed basis {ej, ... , e} of ). One can prove that 8(R?) C Der(}) by direct computation.

Since 6(U) (and trivially 6(U")) is in 8p(§) N 80(}) with respect to the diagonal metric (-, -)f] = Zle(ei)z, Theorem 5.2
applies. Hence, the Lie algebra (g = §) Xy R?,J, {-,-)) with (-, ) = Ziﬁ:l(e")2 +u?+u?andJ = : 0 —1 |isSKT.
In particular, the following families of eight-dimensional decomposable Lie algebras: Pl
890 = (af?,—afV,—af¥,af",26f*,-2£12,0,0), with§ #0,
82 = (af?,—afV,—af¥,af*,0,-2f'2,0,0),
gg,é = (af?,—afV, —af,af¥, {13 — 24 4 253, 253 4 f14 212 _ £340,0), with 452 > 3, (16)

Q’Z — (af27, —af17, —af37,af47,f13 _ f24 + \/§f34,f23 + f14 _ 2f12 _ f34,0, 0)’

ggﬁ — (af27, —af17, —af37,af47,f13 _ f24 + 25f34, f23 + f14 _ 2f12 _ f34,0, O), with 452 <3

are extensions via the homomorphism 6 of the nilpotent Lie algebras listed in Equation (15) and admit an SKT structure.
More precisely, 6?’5, Qg’a are extensions of fj, and 87, 87, Qg’a are extensions of Bg, b4, s, respectively. Observe that the
Lie algebras above are nilpotent for a = 0 and almost nilpotent otherwise. Examples such that the nilpotent Lie algebra

b coincides with the nilradical of the extension can be constructed in the same way as above by setting p =y =0 in
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Equation (13) and
0O a|0 0|0 O 0 0 0(0 O
—a 0|0 0|0 O 00 0|0 O
0O 0|0 0|0 O 0 0 b{0 O
6(U) = , 0(U") =
0O 0|0 0|0 O 0 0O|-b 0|0 O
0O 0|0 0|0 O 0 0 0(0 O
0O 0|0 0|0 O 0 0 0(0 O

with a, b # 0. Therefore, the following families of eight-dimensional indecomposable solvable Lie algebras
abs _ 2 1 38 48 34 12
8.7 =(af*,—af',bf*,—bf*®,25f>*, -2f12,0,0), a,b,6#0,

890 = (af¥,—afV,bf*®, —bf*,0,-2f12,0,0), a,b#0,

have nilradical §, and by, respectively, and admit an SKT structure (J, (-, -)), given by

8
(oY= D Tfr = f2 Ifs = fa Ifs = for Tf7 = fs.

i=1

such thatJY = §. We can prove now that (§Z’b’5, J)and (§;”b,l ) do not admit any balanced metric. The proof proceeds in the

same way for both Lie algebras. Assume that there exists a balanced J-Hermitian metric (-, -),. Since (), J) admits an SKT
metric, then its center 3(}) is J-invariant, and so we have the decomposition of the Lie algebra as 3502 @ 3() @ hoe
with respect to (:,-),. We fix an unitary basis {ey, ..., es} for the metric (-, -),, such that {e,, ..., e,} is a unitary basis of
3(G)L02 satisfying Je,;_; = ey, {es, e} is a unitary basis of 3(h) satistying Jes = e and {e;, eg} is a unitary basis of ptoe
satisfying Je; = eg. Since (J, (-, -),) is balanced, we have that the Lee form 6, defined as

~

8
800) = (Yl TellTX), = 5 Y lenJe, IX), + (ley ], IX),,
i=1 i=1

is identically zero. Observe that since } is two-step nilpotent, Z?zl[ei,J e;] C 3(9). Let X be any vector of 3(6)102. Then,
0(X) = ([e7,e3],JX), = 0, implying that [e;, eg] € 3(§). In terms of the previous basis {f1, ..., fg}, we maywritee; = 1f; +
ufs+Y,withY € b, and eg = Je; = Afg — uf; + JY. Exploiting that [ f;, fg] = 0, we get

le7,es] = [f7, Y + uY 1+ [fs, WY —AY] +[Y,JY] € (S(ady, ly) ® S(ady,ly) ® 3(H)) N 3(h).

Hence, the components of [e;, eg] along F(ady, |) and F(ad,|y) must vanish. Moreover, a straightforward computation
shows that this forces 1 = u = 0, giving a contradiction.

Example 5.4. Now, we give an example of an eight-dimensional solvable Lie algebra with codimension 2 nilradical ) = kg,
endowed with an SKT structure (J, (-, -)) such that J§ # §.
Consider the eight-dimensional solvable Lie algebra 83 defined by the structure equations

del = e23, de? = ¢?7, de3 = —e37, de* = 57 + %8,
de® = —e*7 + %8, de® = —2e%8, de” =de® =0,
with nilradical {ey, ..., s} = g. We define the Hermitian structure ({-, -),J) as
8

(") = Z(ei)z, Jey =e,, Je; = e;, Jey = es, Jeg = eq.
i1
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Then, J§ # § and the associated fundamental form is
w=ere’+e3ne’ +et Ae’ +ef Aed.

Since the Bismut torsion ¢ = Jdw = —e'?3 — 2¢*° is closed, the Hermitian structure (J, (-, -)) is SKT. In Theorem 2.1, we
have proved that when the nilradical §j is J-invariant, the Hermitian structure is Chern Ricci flat. It is no longer true
when the nilradical is not J-invariant, in fact, if one compute the Chern connection of the Lie algebra above, then nCh =
e3 +e® + 7 and p" = —e37 — 28 £ 0.

Let {p! :=e! +ie?,¢? :=e> +ie’,¢> :=e* +ie’,p* := e + ieb}. An easy computation shows that dp? = %gozz. We
use @2 to prove that (85,J) does not admit any balanced metric. Assume by contradiction that there exists a balanced
metric with associated fundamental form o. Then ¢? A o # 0. The differential d(¢* A 0°) = %qoﬁ A @3 is non-zero, and
so we have a (non-zero) 2n — 1 form on a unimodular Lie algebra which is not closed. The contradiction follows.

Example 5.5. Consider the solvable Lie algebra gi”c - b.c ¢/ € R\ {0}, defined for n > 3 by the structure equations

-

del = —e! A 21
de? = %ez A el 4 pe3 A e — ced A e,
de® = —be? Ae? 1 4 %e3 Ae2 1 4 ce? A e,
{4 de? = et pe2n detl = _¢fe2l A2 forl=2,...,n—2,
de2n—2 — 0,
deZn—l — 0,
de?" = 0.

\

Observe that for n = 3, gg ot = ggi’so @ R. If we denote by {ey, ..., e,,} the dual basis, the codimension 2-abelian nilrad-

ical ) is spanned by fey, ..., 5,5}, and g7, , = (R?"~3 )¢ R?) x R, where R?"~3, R? and R are spanned by {e; ..., 2,3},

{esn-1, €2} and e,,,_,, respectively. Let us define the bi-Hermitian structure (I 4 () as

2n
— — — — — — E )2
Iiel = €y—1» Iiez = *ej, Iiezl = €141 forl = 2,...,n—2, Iiezn_z = €, <', ) = izl(el) .

Itis straightforward to note that I, §) # Y. The corresponding fundamental formsw, = e! Ae?™ ! +e? Ae3 + e 2 A e +
2n—1 . . . .
122 e?l A e?+! satisfy dSw, = + e' Ae? A€, and by the structure equations e! A e? A € is a closed 3-form, that is,

(I, (-, -)) is a generalized Kihler structure of split-type, that is, I, commute. If n > 5, then glz)"C » admits also a non-split
generalized Kihler structure. Let the bi-Hermitian structure (I, (-, -)) be defined as

2n .
— 2
()= (@),
Iiey = ey, 116y = +e;, Iiey = e,
Ieg=—ey, I ey =eyy1 forl=4,...,n-2, 1,6, ,=ey,
I_el = €y-1» 1_62 = —e3, I_e4 = —ey, 1_65 = —€q,

I_ezl = €141 forl = 4,....,n—2, I_ezn_z = €.

Since I, I_e, = —I,e; = —es, and I_I, e, = I_es = e4, the commutator [I,1_] # 0.
Let w, be the fundamental forms associated with (I, (:, -)), which are respectively

2n—1
wy=ene? el ned et Ae’ —ef ne’ + eI A + 21—4 el A g2t

_ N -1
and w_=el Ae? L re2ped —et Ae’+e Aed + e 2 a4 2114 e?l A e?*1. Then, as before, dw, = + el Ae? A

e3, d(e' Ae* Ae®) =0, implying that (I, (-, -)) is a generalized Kéhler structure of the non-split type.
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6 | RESULTS ON COMPACT SOLVMANIFOLDS

Using the symmetrization process [8, 19, 41], one can prove that if M = T'\G is a compact solvmanifold endowed with a
pair of invariant complex structures J.,, then M admits a generalized Kihler structure (J,,, g), if and only if the Lie algebra
g of G admits a generalized Kéhler inner product (J,, (-, -)). Hence, we may prove the following results:

Theorem 6.1. Let M = I'\G be a 2n-dimensional solvmanifold and let J be invariant complex structures on M. Assume
that the nilradical ) of the Lie algebra g of G has codimension 2.

() IfJ b =Y, then (M,J,) admits a generalized Kihler metric if and only if (M, J ) admits a Kdhler metric.
(ii) Assume that Yy is abelian and the complex structures J, satisfy J. ) # hand J_§ = h. If (M,J,) admits a generalized
Kdhler metric, then (M, J_) admits also a Kahler metric.

Proof. To prove (i), we observe that the implication from right to left is obvious. Let us prove the other implication. By
the symmetrization process, M = I'\G admits a generalized Kihler structure (J,, g) if and only if g admits a generalized
Kihler structure (J., (-, -)). Then, the result follows by applying Theorem 2.4.

To prove (ii), again by the symmetrization process, there must exists a left invariant generalized K#hler struc-
ture (J.,(-,-)) on the Lie algebra g with J, satisfying J.§ # § and J_§ = §. Then, the statement follows by applying
Proposition 3.2. O

Corollary 6.2. Let M = I'\G be a 2n-dimensional solvmanifold and let I, be left invariant complex structures on M. Assume
that the nilradical § of the Lie algebra g of G is abelian and of codimension 2. If (M, 1..) admits a generalized Kdhler metric,

thenI. h #h.
Now, we exhibit new examples of SKT and generalized Kidhler compact solvmanifolds.
Example 6.3. Let gg be the eight-dimensional solvable Lie algebra constructed in Example 5.1. We prove that for b = 27,

the simply connected Lie group with Lie algebra gé” admits a compact quotient. Let Gé” be the corresponding connected
and simply connected Lie group with group operation * given by

a; X a; cos(2ra;) —sin(2wa;) 0 0 0 00 O X,
a, X, a, sin(2ra;) cos(2ma;) 0 0 0 00 O X,
as X3 as 0 0 cos(2rag) —sin(mag) 0 0 0 O X3
ag | [xa| _ | + 0 0 sin(2rag) cos(2rag) O O O O Xl
as X5 as 0 0 0 0 1 0 0 —a;| |xs
ag Xe ag 0 0 0 0 01 0 =—ay] |xs
ay X7 ay 0 0 0 0 0 01 O X7
ag Xg ag 0 0 0 0 0 0 0 1 Xg

If we consider T’ = {(a;, ..., ag) € Gé” | a; € Z} = 73, then it is straightforward to note that T'is a discrete subgroup of Gé”
of maximal rank. The corresponding solvmanifold (I'\G2”,J) admits an SKT (non-flat) Chern Ricci flat metric. Note that
(F\Gé”, J) does not admit any balanced metric. Indeed, if (F\Gé”, J) admits a balanced metric, then by the symmetrization
process, (gé”, J) admits a balanced metric, moreover since the Lie algebra has an abelian ideal of codimension 2, gé” would
also admit a K&hler metric [13], giving a contradiction.

Example 6.4. Let 3 be any of the Lie algebras listed in Equation (16) (Example 5.3). For a = 0, 27, the corresponding
connected and simply connected Lie groups admit compact quotients.
For a = 0, the statement is trivial. Indeed, in this case & is isomorphic to § @ R?. Moreover, since } is isomorphic to either
H,, b4, hs, hs depending on the values of p, y, 5, we always have that f) admits a basis with rational structure constants.
Fora = 27, since 8 = (§ X4 R(X)) & R, we may restrict to prove that g = ) X4 R(X) admits compact quotients for a =
27. In particular, b is the nilradical of f) X4 R(X). Let G = H X, R be the corresponding connected and simply connected
almost nilpotent Lie group.
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By [10], if there exists 0 # t; € R and a rational basis {Y7, ..., Y¢} of §j such that the coordinate matrix of d,u(t;) =
exp(t;A) in such a basis is integer, then G admits a lattice I of the splitting type, that is, [ = 'y X I'y. Let t; = 1, then
d.u(1) = exp(A) = Idg. Hence, d.u(1) is the identity of § and its coordinate matrix is integer for any chosen basis of §.
In particular, this is true for any rational basis {Y7, ..., Ys} of §), which exists by previous observations. Therefore, the
connected and simply connected solvable Lie group G X R = H X C corresponding to 8 admits a lattice of the splitting
type I’ = (Ty X Tr) X Z =Ty X ¢, where ' = T X Z.

We also claim that the solvmanifold T"\H X C does not admit any balanced metric. Indeed, one can easily prove that
the complex structure J on I\ H X C is of splitting type (see [3] for further details). The only non-trivial check is that the
Dolbeault cohomology of (T \H, Jy) is the left invariant one. However, this follows by [39, Corollary 3.10].

Now, assume by contradiction that (I"\H X C,J) admits a balanced metric. Then by [3, Proposition 2.1], (§, J;) admits
a balanced metric, and so (f)’Jh) admits both an SKT and a balanced metric. By [26], § would be abelian, giving
a contradiction.

For the Lie algebras constructed in Example 5.5, we have the following:

Theorem 6.5. Let Gz" , be the connected and simply connected Lie group corresponding to the Lie algebra gZ”  constructed

in Example 5.5. GZ" admlts a lattice T for some values of b,c,c’ € R\ {0} and, denoted by M the correspondmg compact
solvmanifold, M admlts generalized Kdhler structure of split type for n > 3 and of non-split type for n > 5. Furthermore, we
have that b;(M) = 3. In particular, M does not admit any Kdihler metric.

Proof. The Lie group Gb et

will denote by & = (a1, ..., @z,,_5) and (ay,_1, @yy,) the coordinates on R?*~2 and R?, respectively. The multiplication  is
defined as

underlying the Lie algebra g;" , is the semi-direct product R**~> x4 R”. In the following, we

a X o+ P(az—1,a2,) - X
Qop—1 | * | Xon—1| = Q-1 + Xop—1
QAo Xon Aop + Xon
where ¢ is the diagonal block matrix
e%n-1 . X1
_Bp-1 X
¢ 2 R(cay, —bay,—y) - (°
X3
$(azp—1,a2,) - X = ' Xy
R(C,aZn) : < 2 )
X2l+1
Xon—2

with
[ cos(@) sin(6)
k) = <—sin(6) cos(e)>'

Consider the 3 X 3 square matrix

e%n-1 0 0 1 b
A(ay,_1,b) = _Gn-1 =exp|ay,_1- - -
2n—1 0 e R(=bay, 1) P|azn-1 5

By [2] there exist tO,E € R\ {0} such that A := A(tO,E) is similar to an integer matrix A € SL(3, Z) via an invertible
matrix P = (p; j), that is, there exists an invertible matrix P such that AP = PA. It is then easy to observe that for each

n € Z, A" = PA"P~!, where by a straightforward computation A" = A(ton,E).
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Ifweseth = b,c = Zt—ﬂ andc’ = %, we claim that the discrete set T := PZ3 x (Z2)"73 x Z X t,Z* is alattice of G2", .
0 0 —,—
to 2ty

We first observe that for such values of b, ¢, ¢’

X1
A | x,
X3
¢(ton, tom) - x = : X
R(Z . m> . ( 21 )
2 X21+1
Xon—2
Then, fixed ‘(Pz,wy, ..., Wy_3,q, ton, tom) and '(Pz',wy, ..., w! ,.q',ten’,tym’) €T
Pz Pz’ - P(z — A=) . /)
T
w; w; wy — R(; - (m—m")w;
: : - :
Ws | *|w! o =|w,_3— R(E -(m—-mHw, _,
q q , qg-4¢
ton fon to(n —n')
tom tom’ to(m —m')

which isin I"as A" and R (% . r) are the integer matrix for each r € Z.

The action induced by T on G*"

T2r 7
"t 2t

is generated by

Y1(X15 X2, e s Xon—2> Xop—15 X21) = (X1 + P115 X3 + P21, X3 + D315 X4y v X2p—15 X20);

Y2(X1, X25 e s Xon—2> Xop—15 X21) = (X1 + P12, X3 + P22, X3 + D325 X4 +ev s X2p—15 X20)

Y3(X1, X5 e s Xon—2s Xop—15 X21) = (X1 + P13, X3 + P23, X3 + P33, X4 v X2p—15 X20),

V1(X1 X0 e s X2 Xon—1sX20) = (X1, X2, X35 e s X+ 1, eee, Xop1, Xop)s L =4, ..,200— 2

Yan—1(X15 X2, vy Xop—25 Xon—1, X2n) = (A - (X1, X2, X3), X4 +vr » X2p—25 X2n—1 + Lo» X21)

Yon(X1, X2, ey Xon—2s Xon—1, X2n) = (X1, X2, X35 s X211, =X2j 5w s X2p—2, X2n—1, X2 + Lo)-
N———e

entries 2j and 2j +1
for each j=2,.,n-2

It is immediate to see that the action is free and properly discontinuous, which implies that I is a lattice of G2 We

T2t mw*
"o 210
compute now the commutators [y,,y,] of T, for each pairr, s € {1, ..., 2n}. The only non-trivial commutators are

Ay Ny A1 . - -
[72n—1’7/i] =" . y22 : Y33 Y 1a i=1,..,3 [y2n9)/21] = yzll : 7/2[},_1’ l=2,..,n-2,

Wansval = var - vy, 1= 2, ,m =2,

where (A;;) is the integer matrix described previously. Then, since T" is two-step solvable, it follows that [T, T'] is a torsion-
free abelian subgroup of I of rank 2n — 3. Therefore, by

rank(T") = rank(T'/[T, T']) + rank([T, T']),

I'/[T,T] = Z3 and, accordingly, b; (M) = 3. O
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Remark 6.1. Observe that since the group I'\G2",_ _ is not completely solvable, we cannot apply Hattori’s Theorem [34]

Yo 20

to compute the De Rham cohomology of M.
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