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Travelling wave behaviour arising in nonlinear

diffusion problems posed in tubular domains

Alessandro Audrito* and Juan Luis Vázquez�

Abstract

For a fixed bounded domain D ⊂ RN we investigate the asymptotic behaviour for large times of
solutions to the p-Laplacian diffusion equation posed in a tubular domain

∂tu = ∆pu in D × R, t > 0

with p > 2, i.e., the slow diffusion case, and homogeneous Dirichlet boundary conditions on the
tube boundary. Passing to suitable re-scaled variables, we show the existence of a travelling wave
solution in logarithmic time that connects the level u = 0 and the unique nonnegative steady state
associated to the re-scaled problem posed in a lower dimension, i.e. in D ⊂ RN .

We then employ this special wave to show that a wide class of solutions converge to the universal
stationary profile in the middle of the tube and at the same time they spread in both axial tube
directions, miming the behaviour of the travelling wave (and its reflection) for large times.

The first main feature of our analysis is that wave fronts are constructed through a (nonstandard)
combination of diffusion and absorbing boundary conditions, which gives rise to a sort of Fisher-KPP
long-time behaviour. The second one is that the nonlinear diffusion term plays a crucial role in our
analysis. Actually, in the linear diffusion framework p = 2 solutions behave quite differently.

1 Introduction

We study the long-time behaviour of nonnegative solutions u(x, t) to the initial value problem with
p-Laplacian diffusion 

∂tu = ∆pu in Ω× 0,∞)

u = 0 in ∂Ω× (0,∞)

u(x, 0) = u0(x) in Ω,

(1.1)

posed in a tubular domain Ω ⊂ RN+1 of the form

Ω = D × R, (1.2)

where D ⊂ RN is a bounded domain with smooth boundary. Here, ∆pu denotes the usual p-Laplace
operator, see motivations and details below, and we take p > 2 (slow diffusion case). We apply

*Dipartimento di Matematica “Giuseppe Luigi Lagrange” (DISMA), Politecnico di Torino, Italy.
�Departamento de Matemáticas, Universidad Autónoma de Madrid, Spain.
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homogeneous Dirichlet boundary conditions. Such type of conditions are important for the type of
results we obtain. The initial data are assumed to satisfy

u0 ≥ 0 in Ω, u0 ∈ Cc(Ω).

We will use the notation x = (y, z) with y ∈ R and z ∈ D for points x ∈ Ω.

Travelling waves in tubes. The main novelty of this paper lies in the peculiar form of the spatial
domain Ω, i.e., a tube. In the past years significant effort has been devoted to the study of evolution
equations (linear and not) posed in bounded domains or in the whole space and the problem of describ-
ing the asymptotic behaviour of nonnegative solutions for large times is pretty well understood (see for
instance [1, 3, 31, 37, 42, 43]). What we will describe below is in sharp contrast with what happens
for solutions to (1.1) when Ω ⊂ RN is bounded and/or when Ω = RN . In the first case, nonnegative
solutions converge to the unique nonnegative solution in separate variables form (cf. with [37, Theorem
2.1]) while, in the second, they converge to a uniquely defined nonnegative solution in self-similar form
(cf. with [31, Theorem 2]).

The present setting is less studied and it shows interesting differences both from the physical (com-
bustion theory, fluid dynamics and so on [12, 30, 33]) and the mathematical viewpoint: we will show
that nonnegative solutions to (1.1) behave as a travelling wave (TW for short) for large times, when
computed at the correct re-scaled variables (cf. with Theorem 3.1). In particular, the new time scale is
logarithmic. Let us point out that our investigation was motivated by the study of tubular propagation
for the Porous Medium Equation done by Vázquez in [43, 44]. We prove that the p-Laplacian setting
also produces the logarithmic-time TW behaviour in tubes.

We recall that wave fronts are very common phenomena in reaction-diffusion equations and systems
(see for instance the books [28, 36, 45], the classical papers [2, 25, 26, 32], while [13, 14, 22] for the
nonlinear diffusion framework). In previous works [4, 5, 6], the authors have studied the existence/non-
existence of travelling fronts for reaction-diffusion equations with doubly nonlinear diffusion (slow and
fast diffusion) and the asymptotic behaviour of more general solutions. Doubly nonlinear diffusion
models include both porous medium and p-Laplacian models. Such results motivated us to investigate
the existence/non-existence of TWs for similar nonlinear equations in different contexts.

In the present problem setting, the asymptotic behaviour for large times is in fact a sort of combination
of two modes: a first mode has the separate variables form, and the second is a TW propagation. All
solutions to (1.1) (with nonnegative and compactly supported initial data) approach the special solution
in separate variables form (corresponding to the domain D ⊂ RN ) on each compact sets of Ω, while
they show a travelling wave behaviour at both ends of the tube. The reason the TWs appear also
in the study of a purely diffusive initial-value problem like (1.1) is due to the shape of the domain.
When Ω ⊂ RN+1 is a tube, the solutions spread along the longitudinal variable and the combination
of the original diffusion with the reaction term (appearing in the re-scaled problem due to the change
of variables), plus the loss of mass through the absorbing boundary ∂Ω gives rise to a travelling wave
behaviour.

The p-Laplacian. We recall that the standard p-Laplacian operator is defined by the formula

∆pu := ∇ · (|∇u|p−2∇u),
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for smooth functions u. Here ∇ and ∇· denote the gradient and divergence operators (respectively)
w.r.t. to the variable x = (z, y) ∈ D × R. In some cases, we will use the symbols ∇z, ∇z· for the
gradient and the divergence w.r.t. z ∈ D. The p-Laplacian has been widely studied as a standard
model for elliptic and parabolic equations with degenerate-singular diffusion, and appears in a wide
number of physical applications (see for instance [12, 16, 18, 30, 31, 33, 34, 40, 41] and huge number of
references therein). In the present work we will take p > 2, corresponding to the degenerate diffusion
range (cf. with [41, Chapter 11]). The range p < 2 (singular diffusion) presents substantial differences
and will not be studied here. We limit ourselves to present some general considerations at the end of
the paper.

Free boundaries. We finally recall that when p > 2 solutions u = u(x, t) to (1.1) (with compactly
supported initial data) exhibit a free boundary, i.e. the nonnegativity set of u is a compact set of Ω for
any t > 0. One of the main problems is thus to understand how it moves and which is its geometry, at
least for large times. As a consequence of our main theorem, we will prove that the free boundary of
general solutions for large times is made of two finite sets described by two functions y = s±(z, t) that
move towards both ends of the tube with logarithmic law:

s±(z, t) ∼ ±c∗ ln t, uniformly in z ∈ D, for t ∼ +∞,

where c∗ = c∗(p,D) > 0 is the speed of a critical travelling wave solution to problem (3.2) (cf. Lemma
5.1). As claimed above, we thus obtain a nonstandard wave propagation behaviour, which strongly
differs from both the case Ω ⊂ RN and Ω = RN .

Structure of the paper. The paper is divided in sections as follows. The first three are introductory
sections. In this section we have informally presented our work, motivating its interest and relating it
with the existing literature. In Section 2 we recall some known results concerning problem (1.1) posed
in bounded domains and two a priori estimates. In Section 3 we introduce an equivalent transformed
problem and we state our main result.

In Section 4 we show two preliminary results concerning the asymptotic behaviour of solutions on
compact sets of Ω and the existence of a family of wave solutions to

∂τv = ∆pv +
v

p− 2
in Ω× (0,∞), (1.3)

having zero Neumann derivative on the boundary ∂Ω. Both of them play a fundamental role in the
construction of a special travelling wave solution to problem (1.1) and in the proof of Theorem 3.1.

Section 5 is the principal part of the work. We prove the existence (and we give information about
the uniqueness) of a wave solution to (3.2) connecting the solution Φ = Φ(z) to (2.3) at y = −∞ to the
level 0 at y = +∞. This special solution will be employed as comparison tool in the proof of Theorem
3.1.

In Section 6 we present the proof of our main result. It is based on suitable comparison techniques
with the wave solution constructed in Section 5.

Finally, in Section 7 we present some open problems and future directions. The linear case p = 2 is
also briefly discussed. Open directions are mentioned.
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2 Preliminaries

We recall needed facts on the behaviour of solutions in bounded domains as a basic preliminary of what
follows. We introduce weak solutions, and we prove basic a priori estimates.

Some properties on bounded domains. As we have said above, we recall now a crucial result
concerning the long time behaviour of solutions to (1.1) in the case in which the spatial domain is a
bounded subset of RN . So, let D ⊂ RN be a bounded domain with smooth boundary and consider the
problem 

∂tu = ∆pu in D × (0,∞)

u = 0 in ∂D × (0,∞)

u(x, 0) = u0(x) in D,

(2.1)

where 0 ≤ u0 ∈ L1(D) is a nontrivial initial datum. In [37], Stan and Vázquez proved the following
remarkable asymptotic behaviour theorem that we report here adapting it to our notations (note that
they worked in the quite more general context of the “doubly nonlinear diffusion”). For Porous Medium
diffusion we quote the work of Aronson and Peletier [3].

Theorem 2.1 ([37, Theorem 2.1]) Let u = u(z, t) be a nonnegative weak solution to problem (2.1).
Then

lim
t→∞

t
1

p−2 ∥u(·, t)− U(·, t)∥L∞(D) = 0,

where U = U(z, t) is the unique solution to{
∂tU = ∆pU in D × (0,∞)

U = 0 in ∂D × (0,∞),
(2.2)

in separate variables form

U(z, t) = t
− 1

p−2 Φ(z),

where Φ = Φ(z) is the unique nonnegative and nontrivial weak solution to the stationary problem{
−(p− 2)∆pΦ = Φ in D

Φ = 0 in ∂D.
(2.3)

The proof of the above theorem is based on a clever change of variables, together with some mono-
tonicity results and a priori estimates (we will employ some of these methods later).

Weak solutions and two fundamental a priori estimates. This paragraph is devoted to the
introduction of the basic concepts and ideas of paper. We report below the definition of weak solutions
to problem (1.1). Weak solutions exist and are unique (see for instance [19]). Note that thanks to well-
known regularity results ([16, 17, 18, 40]), we can assume that solutions to (1.1) are C1,α(Ω× [s,∞))
for all s > 0 and some α ∈ (0, 1), and furthermore, the equation is satisfied for a.e. (x, t) ∈ Ω× (0,∞).

Definition 2.2 A nonnegative weak solution to problem (1.1) is a nonnegative function u = u(x, t)
satisfying the following properties:
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� u ∈ C([0,∞) : L1
loc(Ω)) and u(t) → u0 in L1(Ω) as t→ 0.

� u ∈ L1
loc(0,∞ :W 1,p

0,loc(Ω)).

� The identity ∫ ∞

0

∫
Ω

{
|∇u|p−2∇u · ∇η − u∂tη

}
dxdt = 0

holds for every η ∈ C∞
c (Ω× (0,∞)).

The work relies on the validity of two important a priori estimates. The first one, is the so called
“universal estimate”:

0 ≤ u(x, t) ≤ C t
− 1

p−2 in Ω× (0,∞), (2.4)

where C = C(N, p) > 0, while the second is the well-known Bénilan-Crandall type estimate

∂tu ≥ − u

(p− 2)t
in Ω× (0,∞), (2.5)

satisfied by nonnegative weak solutions u = u(x, t) to (1.1) in the sense of distributions. Note that
(2.5) implies that the function t→ t1/(p−2)u(x, t) is nondecreasing. Let us shortly review their proofs.

To prove (2.4) we proceed in two steps. First of all, we compare the solution u = u(x, t) to (1.1) with
the solution ũ = ũ(x, t) to the Cauchy problem posed in the entire space{

∂tũ = ∆pũ in RN+1 × (0,∞)

ũ(x, 0) = ũ0(x) in RN+1,

where ũ0 = u0 in Ω, while ũ0 = 0 in RN+1 \ Ω. Since Ω ⊂ RN+1, it turns out

0 ≤ u(x, t) ≤ ũ(x, t) ≤ C∥ũ0∥
pα

N+1

L1(RN+1)
t−α, α =

N + 1

(N + 1)(p− 2) + p
,

for some constant C = C(N, p). Note that the second inequality of the above chain is justified by the
comparison principle for “domain variations” (cf. with Proposition 6.9 of [42] for the Porous Medium
setting), while the third one, by the “smoothing effect” estimate (cf. with Theorem 11.3 of [41]). In
particular, it follows that u(·, t) is bounded for all t > 0. In the second step, we improve the above
estimate by comparing the solution u = u(x, t) (1.1) with the solution û = û(z, t) to problem (2.1)
(starting at ε): 

∂tû = ∆pû in D × (ε,∞)

û = 0 in ∂D × (ε,∞)

û(z, ε) = ûε in D,

where ûε ≡ ∥u(·, ε)∥L∞(Ω), for some ε > 0 fixed (note that we are crucially exploiting the fact the
u = u(x, t) is bounded for any t > 0). Consequently, since û = û(z, y, t) can be seen as a solution to (1.1)
which is constant w.r.t. y ∈ R and u(z, y, ε) ≤ ûε, it follows by comparison u(z, y, t+ ε) ≤ û(z, y, t+ ε)
for all t ≥ 0. Consequently, taking t = 0 and using the arbitrariness of ε > 0, we get

u(x, t) ≤ û(x, t) ≤ Φ(z)t
− 1

p−2 ≤ Ct
− 1

p−2 , in Ω× (0,∞),
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where the function Φ = Φ(z) in the second inequality is defined in Theorem 2.1 (cf. with [37] and
Chapter 5 of [42] for the Porous Medium setting). This concludes the proof of (2.4).

For what concerns (2.5), we give a nice proof based on scaling, valid for a smooth solution u = u(x, t)
to problem (1.1) (the proof for weak solutions can be done with a suitable approximation technique).
Let us consider the family of functions

uλ(x, t) = λu(x, λp−2t),

for any value of the parameter λ ≥ 1. It is easily seen that uλ = uλ(x, t) is still a solution to problem
(1.1) with uλ(x, 0) = λu(x, 0) ≥ u(x, 0), since λ ≥ 1. We thus obtain by comparison u(x, t) ≤ uλ(x, t)
in Ω× (0,∞), for all λ ≥ 1. Hence,

0 ≤ ∂uλ
∂λ

∣∣∣
λ=1

= u+ t(p− 2)∂tu in Ω× (0,∞),

from which we immediately deduce (2.5).

3 Transformed problem and main results

New Problem. We now introduce one of the main ideas of the work. It is based on the change of
variables (that we refer as scaling of re-normalization)

v(x, τ) = t
1

p−2u(x, t), τ = ln t, (3.1)

which transforms problem (1.1) into the reaction-diffusion problem with homogeneous Dirichlet bound-
ary conditions {

∂τv = ∆pv +
v

p−2 in Ω× R
v = 0 in ∂Ω× R,

(3.2)

in the sense that v ∈ Lp
loc(R :W 1,p

0,loc(Ω)) and, furthermore, the identity∫ ∞

−∞

∫
Ω

{
|∇v|p−2∇v · ∇η − v

(
η

p− 2
+ ∂τη

)}
dxdτ = 0,

holds for every η ∈ C∞
c (Ω×R). It thus follows that the equations in (1.1) and (3.2) (together with the

homogeneous Dirichlet boundary conditions) are completely equivalent and linked by relation (3.1).
Nevertheless, we have to stress that the function v = v(x, τ) is an eternal solution (i.e. defined for any
time τ ∈ R), making impossible a precise formulation of the initial condition. This inconvenient can
be easily overcome by noting that we can modify transformation (3.1) to

v(x, τ) = (t+ 1)
1

p−2u(x, t), τ = ln(t+ 1), (3.3)

to have τ ∈ [0,∞) and v(x, 0) = u0(x) (i.e. v ∈ C([0,∞) : L1
loc(Ω)) and v(τ) → u0 in L1(Ω) as τ → 0).

Since we are only concerned with the asymptotic behaviour for t→ +∞ (i.e. τ → +∞), we have chosen
to work with the transformation in (3.1) which has the advantage to keep the notations as simpler as
possible.
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As a first important byproduct, it turns out that both universal and Bénilan-Crandall estimates (2.4)
and (2.5) are transformed into

0 ≤ v ≤ C in Ω× R, (3.4)

where C = C(N, p) > 0 is a new constant, and

∂τv ≥ 0 in Ω× R, (3.5)

respectively. This new way of looking at (2.4) and (2.5) is crucial in the asymptotic behaviour analysis.
Indeed, from (3.4) and (3.5) we immediately deduce the existence of a bounded point-wise limit Φ =
Φ(x):

v(·, τ) → Φ(·) in Ω as τ → +∞.

The above convergence is the first step in our long time behaviour analysis and completely motivates
the re-normalization (3.1). We will thus prevalently work with the transformed solution v = v(x, τ)
and then recover the information on u = u(x, t) through (3.1)-(3.3).

Main result. We have reported above some known facts and ideas which are fundamental ingredients
of this work. We now state our main theorem which describes in a precise and quantified way the
long time behaviour of solutions u = u(z, y, t) to problem (1.1). For clarity we state it for solutions
v = v(z, y, τ) to problem (3.2), obtaining the information on u = u(z, y, t) through the change of
variables (3.1).

Theorem 3.1 There exists a unique number c∗ = c∗(p,D) > 0 such that problem (3.2) admits a
continuous nonnegative weak solution with wave form

v(z, y, τ) = φ(z, y − c∗τ),

which is unique (in the sense of Lemma 5.5) up to shifts along the longitudinal variable, non-increasing
w.r.t. y ∈ R and satisfies

lim
ξ→−∞

φ(z, ξ) = Φ(z), lim
ξ→+∞

φ(z, ξ) = 0, z ∈ D, (3.6)

where Φ = Φ(z) is the unique nonnegative weak solution to problem (2.3) (cfr. with Theorem 2.1).

Furthermore, if in addition D is a star-shaped domain, any solution v = v(z, y, τ) to (3.2) with
nontrivial and nonnegative compactly supported initial datum v0 satisfies the following assertions:

(i) For all 0 < c < c∗,
lim sup
τ→+∞

sup
z∈D, |y|≤cτ

|v(z, y, τ)− Φ(z)| = 0.

(ii) For all c > c∗, there exists a time τc > 1 such that

v(z, y, τ) = 0 in {z ∈ D} × {|y| ≥ cτ}, for all τ ≥ τc.

Finally, there exists a waiting time T > 0 (depending only on the data and D) such that for all τ > T ,
the free boundary of v = v(z, y, τ) is made by two disjoint sets

S±
v (τ) := {(z, S±

v (z, τ)) : z ∈ D},

7



where
S+
v (z, τ) := inf{y > 0 : v(z, y, τ) = 0}, S−

v (z, τ) := sup{y < 0 : v(z, y, τ) = 0}

are locally smooth functions for any z ∈ D, τ > T and

lim
τ→+∞

S+
v (z, τ)

τ
= − lim

τ→+∞

S−
v (z, τ)

τ
= c∗.

Let us remark that the second part of Theorem 3.1 is proved under the technical assumption that D
is star-shaped. We wonder whether that restriction can be eliminated.

Next, we make some comments on the result. First of all, we notice that, passing to the initial variables,
we have proven the existence of a special solution to (1.1) which is a re-scaled and re-normalized TW:

u(z, y, t) = t
− 1

p−2φ(z, y − c∗ ln t),

and φ = φ(z, ξ) satisfies (3.6). Similar, part (i) and (ii) can be reformulated as

lim sup
t→+∞

t
1

p−2 sup
z∈D, |y|≤c ln t

|u(z, y, t)− U(z, t)| = 0,

for any fixed 0 < c < c∗, where U = U(z, t) is the unique nonnegative solution to (2.2) in separate
variables form (cf. with Theorem 2.1), and

u(z, y, t) = 0 in {z ∈ D} × {|y| ≥ c ln t}, for all t ≥ tc,

for any fixed c > c∗ and some tc > 0 large enough (depending on c). Some simulations of such behaviour
are displayed in Figure 1 below.

Figure 1: Three stages of the formation of the double travelling wave behaviour. The exponent is
p = 4, the space dimension is 1 + 1, the initial data were taken to be nearly constant in two disjoint
circles and zero outside, and time is logarithmic (simulation software: COMSOL).
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We have thus stated in a precise way, what was anticipated in the introduction. First, the solution
in separate variables form U = U(z, t) (cf. with Theorem 2.1) is stable and is the uniform limit for
large times of solutions u = u(z, y, t) to (1.1) if we restrict ourselves to compact sets of Ω. Quoting
Vázquez [44]: “the intermediate asymptotic behaviour of our problem in a tube forgets the longitudinal
variable and decays in first approximation like the transversal problem in one dimension less”. On the
other hand, there is a propagation phenomenon. Part (i) explains that the convergence to the special
solution U = U(z, t) takes place not only on compact sets of Ω, but also in all subsets of the type

D × {|y| ≤ c ln t}

for large times, where c is arbitrarily fixed between 0 and c∗. Part (ii) assures that the front of the
solution (and its free boundary) cannot move faster than c ln t when t is large and c > c∗ is fixed. As
a consequence of part (i) and (ii) we obtain the description of the wave behaviour of solutions to (1.1)
for large times.

As we have anticipated in the introduction, we can give an interesting interpretation to Theorem 3.1,
based on a comparison with some results on reaction-diffusion equations we have recently obtained. In
a recent paper [5] (see also [4]) we constructed a family of TWs v(x, τ) = φ(n·x−cτ) to the Fisher-KPP
equation

∂τv +∆pv = f(v) in RN × (0,∞), (3.7)

where p > 2, c > 0, n is a unit vector and f is modeled on the logistic reaction term f(v) = v(1− v),
and we employ them to study the long-time behaviour of solutions with initial data 0 ≤ v0 ≤ 1,
with compact support. We showed the existence of a minimal speed of propagation c∗ > 0 (and a
corresponding TW with free boundary) such that any general solution satisfies

lim sup
τ→+∞

sup
|x|≤cτ

|v(x, τ)− 1| = 0,

for any fixed 0 < c < c∗, while

v(x, τ) = 0 in {|x| ≥ cτ}, for all τ ≥ τc,

for any c > c∗ and some τc > 0 (cf. with [5, Theorem 2.6] ). This means that general solutions to (3.7)
(with compactly supported initial data 0 ≤ v0 ≤ 1) spread through the space with constant speed of
propagation c∗ > 0 for large times, converging to the (stable) steady state v = 1. Something similar
happens in the present framework, where general solutions v = v(z, y, τ) to (3.2) converge to the unique
nonnegative weak solution Φ = Φ(z) to problem (2.3) with rate c∗ = c∗(p,D) > 0. The main fact here
is that the wave behaviour is generated in a different way: in the reaction-diffusion equations framework
it is the byproduct of the combination of diffusion and reaction, while in this setting it comes from the
interaction between diffusion, reaction and absorbing boundary. Indeed, we notice that the reaction
term v in the r.h.s. of (3.2) is nothing more than the linear part of f(v) = v(1− v) and the role played
by the term −v2 in the Fisher-KPP setting is now played by the homogeneous Dirichlet conditions at
the lateral boundary. Let us finally stress that the existence of this TW solution is due to the presence
of slow nonlinear diffusion. Actually, the paper shows that in this setting the influence of the Dirichlet
boundary conditions is much stronger than in the case of linear diffusion (an interesting case which is
briefly discussed in Section 7).
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4 Two preliminary results

As explained above, we begin our investigation with two preliminary results. The first one is a PDE
lemma concerning the asymptotic behaviour of solutions to (1.1) on compact sets of Ω, while the second
focuses on the description of a class of wave solutions to (1.3) with Neumann boundary conditions.

I. Convergence in compact sets of Ω. The following lemma states that the long-time behaviour of
nonnegative weak solutions to problem (1.1) is independent of the y variable, if we restrict our analysis
to compact sets of Ω = D×R. Nonnegative weak solutions converge to the special solution in separate
variables form of the Cauchy-Dirichlet problem posed in the bounded domain D ⊂ RN .

Lemma 4.1 Let u = u(z, y, t) be a nonnegative weak solution to problem (1.1) with nontrivial and
nonnegative initial data u0 ∈ L1(Ω). Then

lim
t→∞

t
1

p−2 ∥u(z, y, t)− U(z, t)∥L∞(K) = 0,

for any compact set K ⊂ Ω = D × R, where U = U(z, t) is the unique solution to (2.2) in self-similar
form

U(z, t) = t
− 1

p−2 Φ(z),

where Φ = Φ(z) is the unique nonnegative weak solution to the stationary problem (2.3) (cf. with
Theorem 2.1).

Proof. Let us fix a compact set K ⊂ Ω. Following the proof of the Porous Medium case (see Theorem
3.2 of [43]), we proceed in several steps.

Step 1: Comparison from below. We compare the solution u = u(x, t) to problem (1.1) with a sequence
of functions uj = uj(x, t) being weak solutions to

∂tuj = ∆puj in Ωj × (0,∞)

uj = 0 in ∂Ωj × (0,∞)

uj(x, 0) = u0,j(x) in Ωj ,

where u0,j = u0 in Ωj and zero outside, whilst

Ωj := D × (−j, j) = {(z, y) : z ∈ D, |y| < j},

for any integer j ≥ 1. By comparison it follows that uj = uj(x, t) is a nondecreasing sequence in j with

uj(x, t) ≤ u(x, t) in Ωj × (0,∞),

for all j ≥ 1 and, furthermore, by Theorem 2.1 it follows

lim
t→∞

∥t
1

p−2uj(·, t)− Φj(·)∥L∞(Ωj) = 0,

for any fixed j ≥ 1, where Φj = Φj(x) is the unique nonnegative weak solution to the stationary
problem (2.3): {

−(p− 2)∆pΦj = Φj in Ωj

Φj = 0 in ∂Ωj ,
(4.1)
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i.e., Φj ∈W 1,p
0 (Ωj) and the identity

(p− 2)

∫
Ωj

|∇Φj |p−2∇Φj · ∇ϕdx =

∫
Ωj

Φjϕdx (4.2)

holds for every ϕ ∈ C∞
c (Ωj). We notice that the above convergence is both uniform and monotone, and

each Φj ∈ C1,α(Ωj) from standard regularity theory (cf. for instance with [15, 38, 39]).

Step 2: Re-scaled orbit and convergence. Now, through the change of variables (3.1), we consider the
re-normalized version of the solution v = v(x, τ), which, in view of (2.4) and (2.5), satisfies (cf. with
the introduction)

v(·, τ) → Φ(·) in Ω, (4.3)

with point-wise monotone convergence as τ → +∞. The nondecreasing monotonicity implies that the
limit Φ = Φ(x) is not trivial and, secondly, that the convergence (4.3) takes place in all Lp(Ω), for
1 ≤ p < ∞ (it is sufficient to apply Beppo Levi monotone convergence theorem). Finally, note that
from Step 1 and the proof of (2.4), we get also

Φj(x) ≤ Φ(x) ≤ Φ(z) in Ωj , (4.4)

for all j ≥ 1.

Step 3: Identification of the limit. Since the sequence uj = uj(x, t) (introduced in Step 1 ) is monotone
nondecreasing in j by construction and t1/(p−2)uj(x, t) is nondecreasing in t by (2.5), we have that the
sequence Φj = Φj(x) is monotone nondecreasing in j and, in view of (4.4), it follows

Φj → Φ in Ω

as j → +∞ with point-wise convergence, for some limit function Φ = Φ(x) satisfying

Φ(x) ≤ Φ(x) ≤ Φ(z) in Ω. (4.5)

The monotonicity of j → Φj implies that the above convergence holds in Lp(Ω), 1 ≤ p <∞, and thus
for any ϕ ∈ C∞

c (Ω), ∫
Ωj

Φjϕdx→
∫
Ω
Φϕdx, as j → +∞.

Furthermore, {Φj}j∈N is uniformly bounded in L∞(Ω) (this easily follows from (4.4)) and so, from
[15][Theorem 1, Theorem 2], the sequence {Φj}j∈N is uniformly bounded in C1,α(Ω′) where Ω′ is a any
fixed compactly embedded subset of Ω. Consequently, by the Ascoli-Arzelà theorem, we conclude that,
up to passing to a suitable subsequence, ∇Φj → ∇Φ uniformly in Ω′ as j → +∞. Hence, for any
ϕ ∈ C∞

c (Ω) ∫
Ωj

|∇Φj |p−2∇Φj · ∇ϕdx→
∫
Ω
|∇Φ|p−2∇Φ · ∇ϕdx, as j → +∞,

which shows that Φ = Φ(x) is a weak solution to problem (2.3), i.e., it satisfies (4.2) for any ϕ ∈ C∞
c (Ω).

We are left to show that Φ = Φ(x) does not depend on y ∈ R. If we do so, the thesis follows by using
the uniqueness of Φ = Φ(z), inequality (4.5), and the fact that the set K ⊂ Ω is bounded (note that
here we strongly use the regularity w.r.t. x ∈ RN+1 of the sequence Φj = Φj(x)). So, for any a > 0,
let us consider the sequence Φa

j = Φa
j (x) of the unique nonnegative weak solutions to the stationary

problem (2.3): {
−(p− 2)∆pΦ

a
j = Φa

j in Ωa
j

Φa
j = 0 in ∂Ωa

j ,

11



where, we have defined:
Ωa
j = D × (−j + a, j + a),

for any integer j ≥ 1, and the sequence Φj+a = Φj+a(x) of the unique nonnegative weak solutions to
the same problem posed in

Ωj+a = D × (−j − a, j + a),

for any integer j ≥ 1. Note that by uniqueness it immediately follows Φa
j (z, y) = Φj(z, y−a) and, since

(−j + a, j + a) ⊂ (−j − a, j + a) we have Ωa
j ⊂ Ωj+a, so that

Φa
j ≤ Φj+a in Ωa

j ,

by comparison. Consequently, passing to the limit as j → +∞ in the above inequality, we obtain

Φ(z, y − a) ≤ Φ(z, y) in Ω,

for any a > 0. Finally, repeating this procedure for a < 0, we get that above relation is indeed an
equality and we conclude the proof by the arbitrariness of a > 0. □

II. A special class of wave profiles. We now prove a second preliminary result. As we have done
above, we pass to the transformed solutions (3.1) and, more precisely, we consider wave solutions to
(1.3) which are independent of the variable z ∈ D, i.e. solutions in the form

v(z, y, τ) = ϕ(ξ), ξ = y − cτ,

where c > 0 is the wave speed. We notice that this kind of travelling waves satisfy problem (5.2)
replacing the homogeneous Dirichlet conditions with the Neumann ones: ∂νϕ = 0 in ∂Ω.

In this case, their analysis can be taken back to an ODEs problem in a nonstandard phase-plane.
Indeed, plugging the above ansatz into (3.2), we are led to the study of the degenerate second-order
ODE:

cϕ′ + (|ϕ′|p−2ϕ′)′ +
ϕ

p− 2
= 0, ξ ∈ R, (4.6)

with the convention ϕ′ = dϕ/dξ.

Lemma 4.2 For any c > 0, there exists a unique solution ϕc = ϕc(ξ) to (4.6) such that

ϕc(ξ) = 0 for all ξ ≥ ξ0,

for some ξ0 ∈ R (depending on c > 0). Uniqueness is understood up to horizontal shifts. Moreover, the
function

c→Mc := max
ξ∈R

ϕc(ξ)

is well-defined in (0,+∞), monotone nondecreasing, with Mc → +∞ as c→ +∞.
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Proof. Assuming ϕ ≥ 0 and following [14] and [4, 5], we introduce the new variables

X = ϕ and Z = −
(
p− 1

p− 2
ϕ

p−2
p−1

)′
= −X− 1

p−1X ′,

which stand for the density and the derivative of the pressure profile (cf. [23]). We thus obtain the
first-order ODE system

−dX
dξ

= X
1

p−1Z, −(p− 1)X
p−2
p−1 |Z|p−2 dZ

dξ
= cZ − |Z|p − X

p−2
p−1

p− 2
, (4.7)

which, after re-parametrization dξ = −(p− 1)X
p−2
p−1 |Z|p−2ds, takes the nonsingular form

dX

ds
= (p− 1)X|Z|p−2Z,

dZ

ds
= cZ − |Z|p − X

p−2
p−1

p− 2
.

Of course, the two systems are equivalent outside their critical points O(0, 0) and Rc(0, c
1/(p−1)). The

equation of the trajectories is

dZ

dX
=

(p− 2)(cZ − |Z|p)−X
p−2
p−1

(p− 1)(p− 2)X|Z|p−2Z
:= H(X,Z; c), (4.8)

obtained by eliminating the time variable. As first observation, we note that H(X,Z; c) > 0 if X > 0
and Z < 0, for any c ≥ 0. This fact, combined with the uniqueness of solutions at regular points, implies
that any trajectory Z = Z(X) defined for X > 0 satisfies Z(X) ∼ −∞ for X ∼ 0+. Consequently,
from (4.8), it must be

(p− 1)
dZ

dX
∼ −Z

X
for X ∼ 0+ i.e. Z(X) ∼ −X− 1

p−1 for X ∼ 0+. (4.9)

Now, moving to the subset of the phase plane where X,Z > 0, it is not hard to see that the null
isoclines are composed by a unique branch (belonging to the first quadrant), linking the points O, Rc,
and recalling a horizontal parabola with vertex in

(Xc, Zc) =

(
[(p− 1)(p− 2)]

p−1
p−2

(
c

p

) p
p−2

, (p− 1)

(
c

p

) p
p−1

)
. (4.10)

The shape of the null-isoclines and the study of the sign of (4.8) show that for any c > 0 there are two
classes of special trajectories:

(i) There is exactly one trajectory Tc = Tc(X) coming from the saddle-type point Rc(0, c
1/(p−1)) which

is monotone decreasing when Z > 0 and intersect the axis Z = 0 in a point X := Mc > 0 (cfr. with
[4, 5]). It satisfies the Darcy’s law in its free boundary point ξ0 ∈ R:

ϕ(ξ0)
− 1

p−1ϕ′(ξ0) = −c
1

p−1 i.e. ϕ
p−2
p−1 (ξ) ∼ p− 2

p− 1
c

1
p−1 (ξ0 − ξ), for ξ ∼ ξ0.

This fact can be easily verified by noting that Tc(X) ∼ c
1

p−1 for X ∼ 0+, so that the first equation in
(4.7) satisfies −X ′ ∼ (cX)1/(p−1) for X ∼ 0+. This kind of wave profiles are known in literature as

13



fast or finite orbits, and they satisfies ϕ(ξ) = 0 for any ξ ≥ ξ0. Note that the value Mc > 0 is nothing
more than the maximum value assumed by ϕ = ϕ(ξ) in the all R (this easily follows from the fact that
dZ/dX > 0 for X > 0 and Z < 0) and, furthermore, the following bound holds (cfr. with (4.10)):

Mc ≥ Xc := [(p− 1)(p− 2)]
p−1
p−2

(
c

p

) p
p−2

for all c > 0. (4.11)

Consequently, Mc → +∞ as c→ +∞. Finally, note that plugging (4.9) into the first equation in (4.7),
we obtain ϕ′ ∼ 1 for X ∼ 0, Z ∼ −∞, which proves that the profile ϕ = ϕ(ξ) changes sign in finite
time.

Figure 2: A qualitative representation of the trajectories in the (X,Z)-phase plane.

(ii) There are infinitely many trajectories Z = Z(X) from the (unstable) node type point O(0, 0)
above the null-isocline branch, given by the curve Z̃(X) = 1/[c(p− 2)]X(p−2)/(p−1) for X ∼ 0+. Their
asymptotic behaviour near the point O(0, 0) has not an immediate analytic expression, but, as the fast
one have a unique maximum point and change sign in finite time. We do not insist on these orbits
since they will not be important in the following.

Monotonicity of Tc = Tc(X) w.r.t. c > 0. We are left to show that the function c→Mc is monotone
nondecreasing. We will prove that if Tc = Tc(X) denotes the fast orbit from Rc, then

if 0 < c1 < c2 then Tc1(X) < Tc2(X) for any 0 ≤ X < Mc1 ,

from which our statement follows. First of all, we note that

∂H

∂c
(X,Z; c) =

1

(p− 1)X|Z|p−2
> 0, for all X,Z > 0, c > 0, (4.12)

which implies H(X,Z; c1) < H(X,Z; c2) for any c1 < c2. Now, assume by contradiction that Tc1 and
Tc2 touch in a point (X0, Tc1(X0) = Tc2(X0)), with 0 < X0 < Mc1 . Up to take a smaller contact point,
we can assume Tc2 > Tc1 for any 0 ≤ X < X0. Consequently, for h > 0 small enough, it must be

Tc2(X0)− Tc2(X0 − h)

h
≤ Tc1(X0)− Tc1(X0 − h)

h

and taking the limit as h → 0, we get dTc2(X0)/dX ≤ dTc1(X0)/dX, which is in contradiction with
(4.12). This ends the proof of the lemma. □
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Remark. We notice that we could have looked for wave solutions with the form

v(z, y, τ) = ϕ(ξ), ξ = y + cτ,

where c > 0 and moving towards the left. The equation of the profile is

−cϕ′ + (|ϕ′|p−2ϕ′)′ +
ϕ

p− 2
= 0, ξ ∈ R,

and differs from (4.6) just for the minus sign in front of cϕ′. The change of variables

X = ϕ and Z =

(
p− 1

p− 2
ϕ

p−2
p−1

)′
,

and the re-parametrization dξ = (p− 1)X
p−2
p−1 |Z|p−2ds leads us to the same equation of the trajectories

(4.8). Consequently, the statement of Lemma 4.2 holds for this different kind of waves, but this time
the profiles satisfy ϕc(ξ) = 0 for all ξ ≤ ξ0 and moves towards the left.

5 Existence, uniqueness and regularity of a special wave solution

In our long-time behaviour analysis of solutions to the transformed problem (3.2), we will employ
barriers built-up by using suitable wave solutions. More precisely, we will need solutions to problem
(3.2) in the form

v(z, y, τ) = φ(z, y − cτ) (z, y) ∈ Ω, τ > 0, (5.1)

which travel along the tube Ω with constant speed of propagation c > 0. This means that the wave
profile must satisfy the stationary Dirichlet problem{

∆pφ+ c ∂ξφ+ φ
p−2 = 0 in Ω

φ = 0 in ∂Ω,
(5.2)

where ξ = y − cτ is the moving coordinate. One of the main goals of this paper is to prove that such
travelling wave profiles exist for some speed c > 0 and, at same time, connect the special solution
Φ = Φ(z) to (2.3) (at ξ = −∞) to the level v = 0 (at ξ = +∞), namely

lim
ξ→−∞

φ(z, ξ) = Φ(z), lim
ξ→+∞

φ(z, ξ) = 0, z ∈ D, (5.3)

which are nothing more than (3.6). We first prove the existence of such solutions together with some
of their qualitative properties and then we discuss the problem of uniqueness, which turns out to be a
less difficult problem.

Existence and regularity. This first part is devoted to prove the existence of a wave solution to
problem (5.2)-(5.3). Furthermore, we show some regularity properties of its profile and the finiteness
of its free boundary. In more precise words, we prove the following lemma.

Lemma 5.1 There exists a speed c∗ > 0 for which problem (5.2)-(5.3) has a weak solution φ = φ(z, ξ)
which is continuous and monotone non-increasing w.r.t. the longitudinal variable ξ.
Furthermore, φ = φ(z, ξ) has a free boundary which is a bounded, connected and locally smooth subset
of Ω with Hausdorff codimension one (in RN+1), which can be locally parametrized by a locally smooth
function.
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Proof. We notice that, once the existence of a TW with free boundary is proven, its properties and
the ones of its free boundary will follow by the well-known regularity theory for parabolic p-Laplacian
equations. Now, we fix c > 0 and we construct our special solution through the following approximation
procedure.

Step 1: Approximating sequence. To approximate solutions to problem (5.2)-(5.3), we write v =
v(z, y, τ) w.r.t. the moving coordinate system, i.e., we consider the change of variable

v(z, y, τ) = w(z, ξ, τ), ξ = y − cτ,

so that the equation in (3.2) is transformed into

∂τw = ∆pw + c∂ξw +
w

p− 2
in Ω× (0,∞).

More precisely, we consider a sequence of weak solutions wj = wj(z, y, τ) to the problems
∂τwj = ∆pwj + c∂ξwj +

wj

p−2 in Ωj × (0,∞)

wj = bj in ∂Ωj × (0,∞)

wj(·, ·, 0) = 0 in Ωj ,

(5.4)

where Ωj = D × (−j, j),

bj :=

{
Φ in D × {y = −j}
0 in ∂Ωj \ (D × {y = −j}).

and Φ = Φ(z) is the unique nonnegative weak solution to the stationary problem (2.3). Solutions
to problem (5.2)-(5.3) will be obtained as double limit τ → +∞ and j → +∞ of the approximating
sequence wj = wj(z, y, τ).

As a first observation, note that the combined use of the maximum principle and the positivity of the
stationary super-solution Φ = Φ(z), immediately implies that

0 < wj(z, ξ, τ) ≤ Φ(z), in Ωj × (0,∞),

for any j ∈ N. We notice that from the above inequality we deduce that solutions to (5.4) exist for
any time τ > 0. Moreover, they are monotone non-increasing w.r.t. to the longitudinal variable and
non-decreasing w.r.t. time variations:

∂ξwj ≤ 0 in Ωj × (0,∞), ∂τwj ≥ 0 in Ωj × (0,∞).

Both inequalities can be proved through comparison techniques. To show the first one, for any h > 0,
we introduce the translated wh

j (z, ξ, τ) := wj(z, ξ + h, τ), and we note that it satisfies the problem
∂τw

h
j = ∆pw

h
j + c∂ξw

h
j +

wh
j

p−2 in Ωh
j × (0,∞)

wh
j ≤ wj in ∂Ωh

j × (0,∞)

wh
j (·, ·, 0) = 0 in Ωh

j ,

where Ωh
j := D × (−j, j − h). The inequality on the boundary holds since wh

j (z, j − h, τ) = 0 and

wh
j (z, ξ, τ) ≤ Φ(z) for any z ∈ D. Consequently, we get wh

j ≤ wj in Ωh
j × (0,∞) which gives the desired
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inequality thanks to the arbitrariness of h > 0. For what concerns the second one, it is enough to note
that, since wj ≥ 0, then translation ws

j (z, ξ, τ) := wj(z, ξ, τ + s) (s > 0) is a super-solution to problem
(5.4) and so, using the arbitrariness of s > 0 we conclude the proof of the above claim.

Step 2: Limit as τ → +∞. The time-monotonicity and uniform upper-bound 0 ≤ wj = wj(z, ξ, τ) ≤
Φ(z) imply that for any j ∈ N:

wj(·, ·, τ) → φj(·, ·) in Ωj ,

as τ → +∞ point-wise, for some nontrivial and nonnegative limit function φj = φj(z, ξ), satisfying
also

0 ≤ φj(z, ξ) ≤ Φ(z), ∂ξφj ≤ 0 in Ωj ,

for any j ∈ N. Since the above convergence is monotone non-decreasing in τ > 0, it must be
∂τwj(z, ξ, τ) → 0 point-wise in Ωj as τ → +∞ (this easily follows by showing that ∂τwj(z, ξ, τ) is
bounded for any (z, ξ) ∈ Ωj as τ → +∞). Consequently, using again the regularity theory for p-
Laplacian equations [15][Theorem 1, Theorem 2], we get that the limit φj = φj(z, ξ) is a (bounded and
C1,α(Ωj)) weak solution to {

∆pφj + c∂ξφj +
φj

p−2 = 0 in Ωj

φj = bj in ∂Ωj ,
(5.5)

it is strictly positive, and φj < Φ in Ωj thanks to the strong maximum principle. Actually, we can
show it is the unique weak solution to (5.5) through the sliding method as follows. Assume there is
another solution ψj = ψj(z, ξ) and take h > 0 large enough such that

ψj(z, ξ) ≤ φj(z, ξ − h) in D × (−j + h, j).

The validity of the above inequality comes from the regularity of our solutions and their values at the
boundary of D × (−j + h, j) (once h > 0 is suitably chosen). Now, sliding back to the left, we pick
h > 0 defined as

h := min {h ≥ 0 : ψj(z, ξ) ≤ φj(z, ξ − h), (z, ξ) ∈ D × (−j + h, j)} > 0.

Now, since both φj and ψj are strictly positive in Ωj we obtain that ψj(z, ξ) ≤ φj(z, ξ − h) and touch
at a point belonging to D × (−j + h, j), which is in contradiction with the strong maximum principle.

Step 3: Monotonicity and continuity w.r.t. c > 0. Since ∂ξφ ≤ 0, an easy comparison procedure shows
that if φj,c = φj,c(z, ξ) denotes the unique solution to (5.5), then the function c → φj,c is monotone
non-increasing, in the sense that if c1 ≤ c2, then φj,c1 ≥ φj,c2 in Ωj . Hence, for any j ∈ N and c0 > 0,
we know that the point-wise limit

φ̃j := lim
c→c0

φj,c in Ωj

exists (it follows by the monotonicity above and the bound on φj,c). Moreover, using the regularity
of φj,c and its limit, we get that φ̃j = φ̃j(z, ξ) is a weak-solution to (5.5) with c = c0 and so, by
uniqueness, it must be φ̃j = φj,c0 , i.e. the function c→ φj,c is continuous (for any j ∈ N).
Step 4: Passage to the limit as j → +∞. The next step is to pass to the limit as j → +∞ in our

approximating sequence. The main problem here is to show that φj ̸→ 0 or φj ̸→ Φ uniformly as
j → +∞. These facts will be proved by properly choosing c = cj for large j ∈ N.
CLAIM: For any j ∈ N large, there is a speed cj∗ > 0 such that

φj,cj∗(0, 0) =
1

2
Φ(0). (5.6)
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Furthermore, there are two constants 0 < c < c such that c < cj∗ < c, for any j ∈ N large enough.

To prove the claim we proceed in some steps as follows.

(i) First of all, we note that if c = 0, we have φj,0(z, ξ) → Φ(z) uniformly on compact sets of Ω. This
follows by comparing φj,0 = φj,0(z, ξ) with the sequence of solutions Φj = Φj(z, ξ) to problem (4.1)
(cfr. with the proof of Lemma 4.1) and recalling that φj,0(z, ξ) ≤ Φ(z) for any j ∈ N by construction.
Therefore, there is j1 ∈ N large enough such that φj,0(0, 0) > Φ(0)/2 for any j ≥ j1, and so, by the
continuity of the map c→ φj,c, we get

φj,c(0, 0) >
1

2
Φ(0) for any 0 < c < c0,

for some suitable c0 (depending on j ∈ N). Secondly, we show that there exist j2 ∈ N and c0 > 0, such
that

φj,c(0, 0) <
1

2
Φ(0) for any c > c0, j ≥ j2. (5.7)

This is crucial. Note indeed that once it is proved, (5.6) follows by the monotonicity and the continuity
of the function c→ φj,c, once we take j ≥ max{j1, j2}. The proof of (5.7) is not trivial and we devote
to it a separate step.

(ii) The idea is to compare solutions wj,c = wj,c(z, ξ, τ) to (5.4) with the dynamic version of fast TWs
ϕc = ϕc(ξ) found in Lemma 4.2. We recall that each ϕc has a maximum Mc → +∞ as c → +∞ and
bounded support to its right.

Now, let us fix c0 > 0 such that ϕc0(0) =Mc0 ≥ Φ(z) for any z ∈ D, and take c > c0 (this is possible
since Φ = Φ(z) is bounded in D). Furthermore, if ϕc0 = ϕc0(s) denotes the fast TW with speed of
propagation c0 > 0 (and s := y − c0τ), we set c0 := c− c0 > 0 and we define

ψl(z, ξ, τ) := ϕc0(ξ + c0τ − l), where ξ = y − cτ,

and l ∈ [−j, j]). Note that (up to a shift) we can assume ϕc0(0) =Mc0 and, since c0 > 0, the profile of
ψl = ψl(z, ξ, τ) travels towards the left. We want to employ it as super-solution to wj,c = wj,c(z, ξ, τ).
To do so, we introduce the following comparison domain:

Qj,l := {(z, ξ, τ) ∈ Ωj × (0,∞) : ξ + c0τ ≥ l, 0 ≤ τ < τj,l} , where τj,l :=
l + j

c0
.

The choice of the sub-domain Qj,l allows us to compare wj,c and ψ
l on the boundary. Indeed, we have

wj,c(z, ξ, τ) ≤ Φ(z) ≤ ϕc0(0) ≡ ψl(z, ξ, τ) in {(z, ξ, τ) ∈ Qj,l : ξ + c0τ = l, 0 ≤ τ ≤ τj,l},

up to take c0 > 0 larger (this is possible since Mc → +∞ as c → +∞). In the other part of the
boundary, the comparison is trivial since wj,c ≡ 0, while ψl ≥ 0. Similar for the comparison at the
initial time τ = 0. We thus have wj,c(z, ξ, τ) ≤ ψl(z, ξ, τ) in Qj,l and, in particular,

wj,c(z, ξ, τj,l) ≤ ψl(z, ξ, τj,l) = ϕc0(ξ + j) in Ωj .

Consequently, since l ∈ [−j, j] is arbitrary we can take τj,l ∈ [0, 2j/c0], and so

wj,c(z, ξ, τ) ≤ ψl(z, ξ, τ) = ϕc0(ξ + j) in Ωj × [0, 2j/c0],

which implies
wj,c(0, 0, τ) ≤ ϕc0(j) for any 0 ≤ τ ≤ 2j/c0, j ∈ N.
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Consequently, there is j2 > 0 large enough (depending on c0 > 0) such that ϕc0(j) = 0 for any
R ∋ j ≥ j2 and so

wj,c(0, 0, τ) = 0 for any 0 ≤ τ ≤ 2j/c0, j ≥ j2.

This complete the proof of (5.7) since wj,c(0, 0, τ) → φj,c(0, 0) as τ → +∞ (taking eventually j2 ∈ N
larger).

Step 5: Construction of the TW. Now, let j ∈ N be large and 0 < c < cj := c∗j < c such that (5.6)
holds. Up to passing to a subsequence, we can assume

cj → c∗ as j → +∞, with c ≤ c∗ ≤ c.

Moreover, up to passing to another subsequence, we have (using the usual regularity estimates)

φj,cj → φ in C1,α(Ω′),

for any compact set Ω′ ⊂ Ω and for some continuous function φ = φ(z, ξ) satisfying problem (5.2) with
c = c∗ in the weak sense, together with the properties

0 ≤ φ(z, ξ) ≤ Φ(z) and ∂ξφ(z, ξ) ≤ 0 in Ω.

Note that thanks to (5.6) we can assume both φ ̸= 0 and φ ̸= Φ. Finally, note that φ(z, ξ) → Φ(z) as
ξ → −∞ for any z ∈ D. Indeed, the point-wise limit

Φ(z) := lim
ξ→−∞

φ(z, ξ),

exists by monotonicity (w.r.t. ξ ∈ R) with 0 < Φ ≤ Φ and satisfies problem (2.3). So, it must be
Φ = Φ by uniqueness (of Φ = Φ(z)) and the proof of the first limit of (5.3) is completed. At the same
time, it must be

lim
ξ→+∞

φ(z, ξ) = 0, for all z ∈ D.

If not, the limit function turns out to be Φ = Φ(z) by the argument above. However, this is in
contradiction with the fact that φ ̸= Φ and φ(·, ξ) → Φ(·) as ξ → −∞.

Step 6: Bounds for the TW’s free boundary. If φ = φ(z, ξ) denotes the TW just constructed, we
define its free boundary by

S := {(z, S(z)) : z ∈ D} where S(z) := inf{ξ ∈ R : φ(z, ξ) = 0}, z ∈ D. (5.8)

Note that the above definition is well-posed thanks to the monotonicity w.r.t. ξ ∈ R and, a priori,
the set S could be unbounded. The main goal of this fifth step is to show that this situation cannot
happen. More precisely, we show that the wave’s support is bounded to the right while the free
boundary function ξ = S(z) is bounded both below (left) and above (right). Recall that from the step
above, we know that φ has speed of propagation c∗ > 0 and φ(z, ξ) → 0 as ξ → +∞, uniformly in
z ∈ D (this easily follows by construction). Moreover, up to a shift (w.r.t to the variable ξ), we can
assume φ(0, 0) = Φ(0)/2.

The idea is to proceed similar to Step 4 comparing the approximating sequence wj,cj = wj,cj (z, ξ, τ)
with the fast TWs constructed in the ODEs analysis. We have cj → c∗ as j → +∞ and we define

ψl(z, ξ, τ) := ϕc∗(ξ − l),
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where ϕc∗ is the fast TW with speed c∗ > 0, and l > 0 is chosen so that

max
z∈D

φ(z, l) ≤ ϕcj (0),

for any j ∈ N large enough (note that this is possible since cj → c∗ and thanks the continuity of the
map c→ ϕc). Now, we consider a new comparison domain

Ql := {(z, ξ, τ) ∈ Ω× (0,∞) : ξ > l},

and we note that by the monotonicity properties proved in the above steps, we have

wj,cj (z, l, τ) ≤ φj,cj (z, l) ≤ φ(z, l) ≤ ϕc∗(0), for any z ∈ D, τ > 0,

and j ∈ N large enough, where we recall that cj := c∗j . Furthermore, since as always wj,cj = 0 in
∂Ω× (0,∞), it follows

wj,cj (z, ξ, τ) ≤ ϕc∗(ξ − l) in Ql,

and so, passing to the limit as τ → +∞ and then as j → +∞, we easily get

φ(z, ξ) ≤ ϕc∗(ξ − l) in Ql,

and since ϕc∗(·) has bounded support to the right, φ(·) as bounded support to the right, too.

We are left to show that the free boundary ξ = S(z) is bounded below (left). Assume by contradiction
that there is z0 ∈ D such that S(z0) = −∞. Consequently, from the fact that ∂ξφ ≤ 0, it must be
φ(z0, ξ) = 0 for any ξ ∈ R. However, using the fact that φj(z0, ξ) → φ(z0, ξ) for any ξ ∈ R and
φj(z0,−j) = Φ(z0) > 0, we obtain the desired contradiction taking j ∈ N large enough.

Finally, the properties of the free boundary follow by the standard regularity theory of solutions to
equations with p-Laplacian diffusion. □

Important remarks. We complete this subsection with some crucial remarks. First of all, in what
follows, we will need to employ a strengthened version of the limit Φ(z) = limξ→−∞ φ(z, ξ) proved in
Step 5 of the above proof. Indeed, we have that φ(·, ξ) converges in relative error to Φ(·), i.e.

lim
ξ→−∞

φ(·, ξ)
Φ(·)

= 1 uniformly in D. (5.9)

Since both Φ = Φ(z) and φ = φ(z, ξ) are positive for any z ∈ D and ξ ∼ −∞, the above limit is easily
obtained if we restrict the convergence to any compact subset of D. To verify the validity of (5.9)
near the boundary ∂D, we use a barrier argument based on the validity of the Hopf lemma for elliptic
p-Laplacian type equations. The main fact (cfr. for instance with [35, 37]) is that both Φ = Φ(z) and
φ = φ(z, ξ) behave like

Φ(z) ≍ dist(z, ∂D), φ(z, ξ) ≍ dist(z, ∂D), for z ∼ ∂D ,

as a consequence of Hopf principle. Consequently, Φ = Φ(z) and φ = φ(z, ξ) are comparable near the
boundary of Ω and the bound φ(z, ξ) ≥ (1− ε)Φ(z) holds for each z ∈ D and ξ ≪ 0 negative enough.

Finally, we point out that the above proof gives the existence of another TW ψ = ψ(z, ξ) satisfying
problem (5.2) with symmetric conditions at the ends of the tube

lim
ξ→−∞

ψ(z, ξ) = 0, lim
ξ→+∞

ψ(z, ξ) = Φ(z), z ∈ D. (5.10)

To see this it is enough to repeat the proof above by changing longitudinal variable ξ → −ξ. Of course,
this time, ψ = ψ(z, ξ) is monotone non-decreasing w.r.t. to ξ.
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5.1 Uniqueness

Lemma 5.2 Let D1 ⊂ D2 be two domains and φ1 = φ1(z, ξ) and φ2(z, ξ) be two proper TW solutions
with speeds c1∗ and c2∗. If φ1 is a finite TW, then c1∗ ≤ c2∗.

Remark. A TW profile φ = φ(z, ξ) is said to be proper, if it is a continuous weak solution to (5.2)-
(5.3), it is monotone non-increasing w.r.t. the longitudinal variable ξ, and satisfies 0 ≤ φ < Φ in
Ω.

Proof. Let us define Ωi := Di × (0,∞) and vi(z, y, τ) := φi(z, y − ci∗τ) in Ωi × (0,∞), for i = 1, 2.
Coming back to the real time variable and so, to solutions to (1.1), we consider

ui(z, y, t) := t
− 1

p−2φi(z, y − ci∗ ln t), (5.11)

for i = 1, 2, and we introduce the functions u1h(z, y, t) = u1(z, y + h, t) and uθ2(z, y, t) = u2(z, y, t− θ)
for any 0 < θ < 1 fixed and suitable h > 0.

We want to compare u1h and uθ2 in Ω1 × (1,∞). At the initial time τ = 0, i.e. t = 1, we have

(1− θ)
− 1

p−2φ2(z, y − c2∗ ln(1− θ)) ≥ φ1(z, y + h), (5.12)

for some h > 0 large enough. Indeed, we recall that φ2(z,−∞) = Φ2(z) > Φ1(z) ≥ φ1(z, y + h) for
any (z, y) ∈ Ω1 (cfr. with the end of the statement of Theorem 2.1 and the proof of Theorem 5.1).
Consequently, taking h > 0 large enough and using the monotonicity of φi = φi(z, ξ) w.r.t. ξ ∈ R,
together with the fact that φ1 = 0 for ξ large enough, we see that the above inequality is satisfied
for any 0 < θ < 1. The comparison at the boundary is trivial. Hence by comparison we deduce
uθ2(z, y, t) ≥ u1h(z, y, t) in Ω1 × (1,∞), which means

(t− θ)
− 1

p−2φ2(z, y − c2∗ ln(t− θ)) ≥ t
− 1

p−2φ1(z, y + h− c1∗ ln t)

and, taking the limit as t → +∞ in the above inequality, we thus deduce that c1∗ cannot exceed c2∗.
However, note that this procedure does not imply c1∗ < c2∗, which, by the way, is not true (even if
D1 ⊂ D2 with strict inequality), due to the fact that TWs are given up to a shift along the ξ direction.
□

Lemma 5.3 Let D ⊂ RN be a bounded domain and D1 ⊂ D2 ⊂ . . . ⊂ D a sequence of subsets such
that

D =
⋃
j∈N

Dj .

Then there exists a sequence φj = φj(z, ξ) of solutions to problem (5.2)-(5.3) posed in Ωj = Dj × R
which converge to a solution φ = φ(z, ξ) to problem (5.2)-(5.3) posed in Ω = D × R as j → +∞, with
speed of propagation c∗. It depends only on p and D and it is the minimal speed w.r.t. all finite TW
solutions to problem (5.2)-(5.3).
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Proof. Following the ideas of the proof of Theorem 5.1 (cfr. with Step 4 ), we normalize the sequence
φj = φj(z, ξ) (of solutions to problem (5.2)-(5.3) posed in Ωj = Dj ×R) by setting φj(0, 0) = ΦDj (0)/2
for any j ∈ N (here ΦDj = ΦDj (z) denotes the unique nonnegative weak solution to (2.3) posed in Dj).

So, if cj∗ is the sequence of speeds corresponding to φj , it is nondecreasing by Lemma 5.2, and bounded
by Step 4 of 5.1. We thus deduce the existence of a speed c∗ > 0 such that cj∗ → c∗ as j → +∞, to
which corresponds a TW φ = φ(z, ξ) in Ω. From Lemma 5.2, we get that c∗ is minimal. Indeed, if D′

1 ⊂
D′

2 ⊂ . . . ⊂ D is another sequence of subsets approximating D and φ′
j = φ′

j(z, ξ) is the corresponding
approximating sequence with speeds c′j∗, we can build a new sequence of sets E1 ⊂ E2 ⊂ . . . ⊂ D with
Ej ∈ {Dj}j∈N ∪ {D′

j}j∈N and apply Lemma 5.2 to {Ej}j∈N, obtaining that c∗ does not depend on the
approximating sequence. This conclude the proof of the lemma. □

Corollary 5.4 Let D ⊂ RN be a bounded domain and D1 ⊃ D2 ⊃ . . . ⊃ D a sequence of subsets such
that

D =
⋂
j∈N

Dj .

Then there exists a sequence φj = φj(z, ξ) of solutions to problem (5.2)-(5.3) posed in Ωj = Dj × R
which converge to a solution φ = φ(z, ξ) to problem (5.2)-(5.3) posed in Ω = D × R as j → +∞, with
speed of propagation c∗. It depends only on p and D and it is the maximal speed w.r.t. all finite TW
solutions to problem (5.2)-(5.3).

Proof. The proof is similar to the above one.

Lemma 5.5 The speed of any finite TW solution to problem (5.2)-(5.3) is unique. Furthermore, for
any couple of finite TWs φ1 = φ1(z, ξ) and φ2 = φ2(z, ξ), there exist l1, l2 ∈ R such that

φ1(z, ξ + l2) ≤ φ2(z, ξ) ≤ φ1(z, ξ + l1), for any (z, ξ) ∈ Ω. (5.13)

Proof. We follow the proof of Lemma 5.2 in the case in which both φ1(·) and φ2(·) are finite. So,
we consider again the functions ui = ui(z, y, t) defined in (5.11) and their perturbations u1h(z, y, t) =
u1(z, y + h, t) and uθ2(z, y, t) = u2(z, y, t− θ) for 0 < θ < 1 and suitable h > 0. To show c1∗ ≤ c2∗, it is
enough to establish the validity of inequality (5.12).

W.r.t. the previous case, we now have D1 = D2 = D, and thus, even if the comparison at the boundary
is trivial, the comparison at y = −∞ is not. To do it, we crucially employ (5.9), which, in particular,
tells us that for any ε > 0, φ(z, ξ) ≥ (1 − ε)Φ(z) for any z ∈ D and ξ ≤ ξε (and any (finite) TW to
(5.2)-(5.3)). Consequently, we get

(1− θ)
− 1

p−2φ2(z, y − c2∗ ln(1− θ)) ≥ 1− ε

(1− θ)1/(p−2)
Φ(z) ≥ Φ(z) ≥ φ1(z, y + h),

for any ε ≤ 1− (1− θ)
1

p−2 and any y ≤ −yε for some yε > 0 large enough. Finally, taking h > 0 large
enough we see that (5.12) is satisfied and we conclude c1∗ ≤ c2∗ as before. Note that since both waves
are finite, we can change the role of φ1(·) and φ2(·) to obtain the reverse inequality and conclude the
proof (note that inequality (5.13) easily follows by comparison in the limit t → +∞, we the effect of
0 < θ < 1 becomes negligible). □
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6 Long time behaviour for general solutions to (1.1)

Let us consider a solution u = u(y, z, t) to (1.1) with nonnegative and nontrivial initial datum u0 ∈
Cc(Ω), and its re-normalized version v = v(y, z, τ) defined in (3.3), with v(x, 0) = u0(x) for all x ∈ Ω.

We begin with two preliminary lemmas: they are standard in the nonlinear diffusion theory (cfr. for
instance with [42]), but we briefly recall the proofs for completeness.

Lemma 6.1 Let u be a weak solution to (1.1). Then for any R > 0, there exists T > 0 such that

D × (−R,R) ⊂ {u(t) > 0}, t ≥ T.

Proof. Since u0 ∈ Cc(Ω), there is R large enough such that suppu0 ⊂ ΩR := D × (−R,R). Now, let
uR be a weak solution to 

∂tuR = ∆puR in ΩR × 0,∞)

uR = 0 in ∂ΩR × (0,∞)

uR(x, 0) = u0(x) in ΩR.

Since ΩR ⊂ Ω, it follows uR ≤ u in ΩR × (0,∞). On the other hand, from the well-known theory of
Porous Medium and p-Laplacian diffusion, we know that there is a finite T > 0 such that uR(t) > 0 in
ΩR, for all t ≥ T . The thesis follows since {uR(t) > 0} ⊂ {u(t) > 0}. □

Lemma 6.2 Let u be a weak solution to (1.1). Then there exists R > 0 such that for any fixed z ∈ D
and t > 0, the map

y → u(z, y, t),

is non-decreasing in (−∞,−R] and non-increasing in [R,∞).

Proof. We prove that y → u(z, y, t) is non-increasing in [R,∞) for some R > 0 large enough. The
other part follows in a similar way.

The proof uses the well-known Alexandrov’s reflection principle. It is used for instance in [42] as
follows: we pick R > 0 such that suppu0 ⊂ D × {y < R − 1} and consider section of our solution
domain by the hyperplane Π = {(y, z) ∈ RN+1 y = R}. We define

w(z, y, t) := u(z, 2R− y, t),

i.e. the even reflection of u w.r.t. the hyperplane Π. Clearly, w(z,R, t) = u(z,R, t) for all z ∈ D, t > 0
and w = u = 0 in ∂D × (−∞, R]× (0,∞). Furthermore,

u0(z, y) ≥ w(z, y, 0) = u(z, 2R− y, 0) = 0 in D × (−∞, R).

Consequently, since w solves the same equation of u, we obtain u ≥ w in D × (−∞, R] × (0,∞). In
particular, choosing y = R− ε, we obtain u(z,R− ε, t) ≥ u(z,R+ ε, t) and so, the thesis follows by the
arbitrariness of ε > 0 and R. □

The two lemmas above show that, after passing to the re-normalized problem (3.2), the solution
v = v(y, z, τ) has an expanding-in-time support that touches the fixed boundary od D for all |y| ≤ R
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and large T1. By the monotonicity lemma, after a waiting time T = T (Ω, p,N, u0) > 0, its free boundary
is composed by two disjoint sets

S±
v (τ) := {(z, S±(z, τ)) : z ∈ D}, τ > T ,

where

S+
v (z, τ) := inf{y > 0 : v(z, y, τ) = 0}, S−

v (z, τ) := sup{y < 0 : v(z, y, τ) = 0},

defined for any z ∈ D and τ > T , and the following property holds (Lemma 6.2):

v(z, y, τ) > 0 ⇔ S−
v (z, τ) < y < S+

v (z, τ), for any z ∈ D, τ > T.

We are ready to prove our main theorem.

Proof of Theorem 3.1. Let u0 ∈ Cc(Ω) be nonnegative and nontrivial, and v = v(z, y, τ) the
corresponding solution to (3.2). Up to translations, we can assume that D is star-shaped with pole at
the origin O ∈ RN . The proof of the theorem is based on suitable comparison techniques which employ
the TW solution to (5.2)-(5.3) in different ways.

Step 1: Proof of part (i). Let us fix 0 < c < c∗. For any number 0 < ε < 1 we define Dε := δεD,

with δε := (1− ε)
− p−2

p > 1, which implies D ⊂ Dε. Out of clarity, we postpone the choice of 0 < ε < 1
which, for the moment, can be thought as a fixed parameter in (0, 1).

We want to compare the two nonnegative weak solutions to (2.3) posed in D and Dε, namely Φ = Φ(z)
and Φε = Φε(z), respectively. To do that, we define

Φ(z) := AεΦε(δεz), z ∈ D.

Now, straightforward computations show that Φ = Φ(z) is a sub-solution to problem (2.3) posed
in D (note that the comparison at the boundary ∂D is trivial since Φε = 0 in ∂Dε) if and only if
0 ≤ Aε ≤ 1− ε. Consequently, the elliptic comparison principle gives us

Φ(z) ≥ AεΦε(δεz), z ∈ D.

Thus, taking Aε = 1− ε, we write

1− ε =
1− aε
1− bε

,

for some aε, bε ∈ (0, 1) with aε, bε ∼ 0 for ε ∼ 0 (for instance aε = ε(3− ε)/2 and bε = ε/2), so that we
get the first fundamental inequality

(1− bε) Φ(z) ≥ (1− aε)Φε(δεz), z ∈ D. (6.1)

Note that from the definition of aε and bε, it automatically follows ε < aε < 1 and 0 < bε < aε. We
recall that, from Lemma 4.1, there is τε > 0 which gives us the second main inequality:

v(z, y, τ + τε) ≥ (1− bε) Φ(z), z ∈ D, 0 ≤ y ≤ 1, τ ≥ 0. (6.2)

Now, let us consider the function

v(z, y, τ) := (1− aε)φε(δεz, δεy − cετ + l), z ∈ D, y, τ ≥ 0, l ≥ 0,
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where φε = φε(z, ξ) is the wave solution to (5.2)-(5.3) posed in Ωε := Dε × (0,∞) and its speed is
defined by

cε := c∗

(
1− aε
1− ε

)p−2

.

Note that cε < c∗ since ε < aε, and cε → c∗ as ε→ 0 (this follows from Corollary 5.4). The last formula
allows us to choose 0 < ε < 1. Since aε → 0 as ε→ 0, we can fix ε small enough such that c < cε < c∗.

Now, the main fact is that v = v(z, y, τ) is a sub-solution to problem (3.2). Indeed, writing c∗ = cε∗−oε,
where cε∗ > c∗ is the speed of the unique wave solution φε to (5.2)-(5.3) posed in Ωε (the fact that
cε∗ > c∗ follows by Lemma 5.2), we have

∂τv = −c∗
(1− aε)

p−1

(1− ε)p−2
∂ξφε = −cε∗

(1− aε)
p−1

(1− ε)p−2
∂ξφε + oε

(1− aε)
p−1

(1− ε)p−2
∂ξφε

≤ −cε∗
(1− aε)

p−1

(1− ε)p−2
∂ξφε =

(1− aε)
p−1

(1− ε)p−2
∆pφε +

(1− aε)
p−1

(1− ε)p−2

φε

p− 2

= ∆pv +

(
1− aε
1− ε

)p−2 v

p− 2

≤ ∆pv +
v

p− 2
, z ∈ D, y, τ ≥ 0,

where we used the nonnegativity of φε = φε(z, ξ), the fact that ∂ξφε ≤ 0, and the scaling of the
p-Laplacian, together with our choice of the parameter ε < aε < 1. On the other hand, we have by
construction

(1− aε)Φε(δεz) ≥ v(z, y, τ), z ∈ D, y, τ ≥ 0, l ≥ 0, (6.3)

which is our third fundamental inequality. Consequently, thanks to fact that φε = φε(z, ξ) has bounded
support to the right, we can combine inequalities (6.1), (6.2), and (6.3), and properly choose l = lε ≥ 0
such that

v(z, y, τε) ≥ v(z, y, 0), z ∈ D, y ≥ 0.

Moreover, from the same inequalities we easily get v(z, 0, τ + τε) ≥ v(z, 0, τ) for any z ∈ D, τ ≥ 0 and,
from the fact that

v(z, y, τ + τε) = 0 = v(z, y, τ), z ∈ ∂D, y, τ ≥ 0,

we deduce by comparison

v(z, y, τ + τε) ≥ (1− aε)φε(δεz, δεy − cετ + lε), z ∈ D, y, τ ≥ 0.

Since aε ∼ 0 for ε ∼ 0, the thesis follows by taking the limit as τ → +∞ and recalling that 0 < c <
cε < c∗, together with limξ→−∞ φε(z, ξ) = Φε(z) ≥ Φ(z) for any z ∈ D.

Step 2: Proof of part (ii). In this case we can easily get a bound from above which uses the finite wave
v(z, y, τ) = φ(z, y−c∗τ−l). Indeed, thanks to the universal estimate (2.4), we can assume u0(·) smaller,
for instance u0(z, y) ≤ Φ(z)/2. This allows us to choose l ≥ 0 so that v(z, y, 0) = φ(z, y − l) ≥ u0(z, y)
for any (z, y) ∈ Ω, and so v(z, y, τ) = φ(z, y − c∗τ − l) ≥ v(z, y, τ) for any (z, y) ∈ Ω and τ > 0 (note
that the comparison at the boundary ∂Ω is trivial). Thus we get the assertion (ii), since each point of
the free boundary of φ = φ(z, ξ) moves with speed c∗ > 0.

We conclude the proof by pointing out that in both part (i) and (ii), we have focused on points belonging
to the half-line y ≥ 0. The same methods apply to the set y ≤ 0 by reflection y → −y. □
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7 Comments and open problems

We end the paper with some comments and open problems.

The linear case p = 2. Let us briefly discuss the simpler linear framework, since it presents inter-
esting differences from the nonlinear one p > 2 treated here. In the linear case we should look for
re-scaled or re-normalized TWs to the problem{

∂tu = ∆u in Ω× 0,∞)

u = 0 in ∂Ω× (0,∞),
(7.1)

where as before Ω = D×R. However, as already observed in [44], we are left without a precise scale of
re-normalization, due to the lack of a “universal estimate” like (2.4), so that it is not clear if a re-scaled
version of (3.2) is available or not. We find two interesting particular cases.

• A natural ansatz is
u(z, y, t) = e−λ1tΦ(z)w(y, t),

where λ1 > 0 is the first eigenvalue of the Dirichlet Laplacian on D, Φ = Φ(z) the corresponding
eigenfunction and w = w(y, t) satisfies the one-dimensional Heat Equation posed in the whole line

∂tw = ∂yyw in R× (0,∞).

Travelling wave solutions to such equation exist and have the form

w(y, t) = Aec(ct−y) +B,

where A,B ∈ R are two free parameters and c ≥ 0 is the wave speed (note that each speed is admissible).
We thus obtain

u(z, y, t) = e−λ1tΦ(z)
[
Aec(ct−y) +B

]
,

which is stationary for c2 = λ1 and B = 0, but u is always unbounded in the y variable. Thus, TW
solutions for the “tubular Heat Equation” exist, but come from an infinity of the l.h.s end of the tube
which is not admissible in our problem setting.

• Another possibility, that is closer to our work for p > 2, is taking

w(y, t) =
1√
4πt

e−
y2

4t ,

which gives the re-scaled solution

v(z, y, t) := eλ1tu(z, y, t) =
Φ(z)√
4πt

e−
y2

4t .

This solution decays as O(t−1/2) and does not have a long time behaviour of TW type, but a self-similar
one instead. Eliminating the t1/2 factor, the level sets move with law y ∼

√
t, which is in sharp contrast

with the logarithmic one, y ∼ c∗ ln t, of the p-Laplacian and Porous Medium slow diffusion ones. As
mentioned in the introduction, this interesting difference is due to the fact that in the slow diffusion
setting the homogeneous Dirichlet conditions play a stronger role in the loss of mass through the lateral
boundary.

26



One-sided propagation. Through all the paper we have focused on solutions u = u(z, y, t) with
nonnegative initial data u0 ∈ Cc(Ω). Here we show that for a class of initial data which are positive on
the left and compactly supported on the right a stronger bound on the corresponding solution holds
and the asymptotic behaviour is much different. As always, we state our result for solutions to the
more natural problem (3.2), whose proof follows from an easy comparison.

Theorem 7.1 (One-sided propagation) Let v0 = v0(z, y) be a nonnegative and continuous function
satisfying

φ(z, y + l1) ≤ v0(z, y) ≤ φ(z, y + l2),

for some l1, l2 ∈ R, where φ = φ(z, ξ) is the TW found in Theorem 3.1. Then the solution v = v(z, y, τ)
to (3.2) with initial data v0 satisfies

φ(z, y − c∗τ + l1) ≤ v(z, y, τ) ≤ φ(z, y − c∗τ + l2),

where c∗ > 0 is the critical speed corresponding to φ = φ(z, ξ).

The fast diffusion range. Problem (1.1) can be posed in the fast diffusion range 1 < p < 2, i.e.,
in the singular diffusion framework. It is well-known (cfr. for instance with [41]) that in this range
the behaviour of solutions strongly differs from the case p > 2. One of the main facts is that solutions
spread through the space with infinite speed of propagation and, consequently, they do not have a free
boundary. In a recent work [6], we studied the Fisher-KPP problem with p-Laplacian diffusion in the
“good range” of fast diffusion 2N/(N +1) < p < 2 and we proved that there are not TW solutions, but
general solutions propagate exponentially fast for large times, while if 1 < p < 2N/(N + 1) solutions
vanish in finite time (whether the initial datum is nonnegative and compactly supported). When
Ω = D × R is a tube, things seem to work in a quite different way and solutions may extinguish in
finite time for any 1 < p < 2. This peculiar feature comes from the fact that problem (2.1) admits
solutions with extinction in finite time: u(·, t) → 0 uniformly as t→ T , for some finite time T > 0 (cfr.
with [8, 10] for the fast Porous Medium framework and [9] for the fast p-Laplacian one) that could be
employed as super-solutions to (1.1), obtaining that also solutions defined in tubes extinguish in finite
time. Clearly, in this case the study of propagation of solutions has a very different nature.

Sharp asymptotics. Theorem 3.1 shows that solutions to problem (3.2) propagate along the tube
with constant speed of propagation c∗ = c∗(p,D) > 0 for large times. However, it does not contain any
precise information on the limit (if it exists) of general solutions apart from the level set information.
In other words, given a solution v = v(z, y, τ) to (3.2) with nonnegative initial data v0 = v0(z, y),
it is not clear if there is a limit profile v∞ = v∞(z, y, τ) such that v → v∞ as τ → +∞, where the
convergence is intended in some suitable sense.

A reasonable guess is that the limit exists and v∞(z, y, τ) = φ(z, y− c∗τ + l), where φ = φ(z, ξ) is the
wave solution corresponding to c∗ and l ∈ R is a suitable shift depending on the data. This problem
is much studied in the context of reaction-diffusion equations and the existence of a limit and its
properties strongly depend on the initial data (cfr. for instance with [11, 25, 29] for the linear diffusion
framework). In the nonlinear setting much less has been done (we quote the work [21] for the Fisher-
KPP setting and Porous Medium diffusion and [27] for the bistable counterpart). The p-Laplacian
case is completely open. Furthermore, we stress that the problem posed in tubular domains could be
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of particular interest since it intrinsically possesses features of both 1-dimensional and N -dimensional
problems. As showed in [21], the asymptotic behaviour of solutions to the Fisher-KPP problem with
Porous Medium diffusion strongly depends on the dimension of the space on which such solutions are
defined. When the problem is posed in tubes it is thus not clear what to expect, and the study of the
existence of a limit seems to be an interesting open problem.

The problem of a free boundary sliding on a wall. A number of degenerate diffusion equations
exhibit the property of Finite Propagation whereby solutions with initial data localized in a region may
expand the support in time, but only to a finite distance of the original support for every finite time.
This happens in the present situation, since the nonnegative solutions of the p-Laplacian equation in
the tube Ω = D × R, with p > 2 and, say, bounded and compactly supported initial data, evolve
in time so that the support spreads to eventually reach every point of the domain. Moreover, the
support reaches the lateral boundary ∂Ω = ∂D × R in finite time, and then spreads along the tube.
This situation reminds of a main problem in fluid mechanics which concerns the way fluids slide along
confining walls.

Since we have constructed a special solution (of the logarithmic-time travelling wave type), and this
solution exhibits a finite free boundary, the problem is then to determine the geometry and regularity
of this free boundary and, more precisely, the way it makes contact with the lateral boundary ∂Ω.
Numerical and formal calculations show that in the case of zero Dirichlet boundary conditions such a
contact must be tangential, thus eliminating the existence of a contact angle. We need to rigorously
prove that conjecture and to understand the typical behaviour at the contact points. This is a difficult
open problem.

The mentioned problem of the flow front sliding along a wall is equally posed for other equations and
systems. A main example is the Porous Medium Equation, ut = ∆um with m > 1, where the same
open problem was posed in [43]. It has not been solved.
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