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Improving CYGNSS-Based Soil Moisture Coverage

Through Autocorrelation and Machine

Learning-Aided Method
Yan Jia , Member, IEEE, Zhiyu Xiao, Shuanggen Jin , Senior Member, IEEE, Qingyun Yan , Member, IEEE,

Yan Jin , Wenmei Li , Member, IEEE, and Patrizia Savi , Senior Member, IEEE

Abstract—Global Navigation System Reflectometry (GNSS-R) is
a microwave remote sensing technology that enables Earth obser-
vation by receiving GNSS signals reflected from the Earth’s sur-
face. The Cyclone Global Navigation Satellite System (CYGNSS)
constellation is a satellite system that uses GNSS-R technology with
high temporal resolution and has been a popular data source in soil
moisture retrieval in recent years. However, the constant movement
of GNSS transmitters and GNSS-R satellites results in potentially
chaotic and random observations of the Earth’s surface, with many
unevenly distributed gaps in the observed data. In this paper, a
gap-filling method based on spatial autocorrelation is proposed to
interpolate the gaps within these observation datasets, with SM
being estimated post-interpolation. The sample set for the model
comprises points surrounding the interpolation target, with model-
ing conducted considering factors of spatial weighting to estimate
values at the interpolation target. Different autocorrelation-based
gap-filling methods using CYGNSS data can achieve good esti-
mation accuracy, and the data coverage after interpolation is on
average 1.8 times greater than before interpolation. The gap-filling
method using XGBoost achieves the best performance and offers
the highest accuracy in SM estimation, with an average correlation
coefficient of 0.8445, and an average RMSE of 0.0457 m3/m3.
The gap-filling approach can significantly enhance data coverage
and facilitate the filling of daily gaps in CYGNSS data with all
maintaining high SM estimation accuracy. The estimation of daily
missing values using CYGNSS data can fully exploit the embed-
ded surface features in the data’s fine resolution and can provide
high-resolution SM retrieval.
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I. INTRODUCTION

G
LOBAL navigation satellite system-reflectometry

(GNSS-R) is an emerging microwave remote sensing

technique that utilizes satellite navigation constellations to

monitor the Earth’s surface with GNSS reflected signals using

bistatic geometry [1], [2], [3]. The reflected signals, transmitted

by GNSS satellites, are subsequently scattered forward across

the Earth’s surface in the specular direction, carrying valuable

information about the scattering surface characteristics [4]. By

utilizing GNSS signals reflected from scattering surfaces, the

geophysical properties at the reflection points can be determined

through cross correlation with direct GNSS signals received, or

signal replicas [5], [6]. GNSS-R signals, which are typically in

the L-band, offer short revisit times and higher spatial resolution

with significant potential in remote sensing monitoring and

applications.

With the advancement of GNSS-R, the new satellite con-

stellation cyclone GNSS (CYGNSS) has received noteworthy

attention with providing long-term time series observational

data. The CYGNSS satellites, launched by NASA in December

2016, were initially aimed at observing tropical cyclones by

estimating the wind speed within the latitudes of 38°N and 38°S

[7]. The positions of the ground observation points observed by

the CYGNSS constellation are determined by the positions of the

GNSS signal receivers on each satellite, which are continuously

changing, as well as by the moving positions of the GNSS sig-

nal transmitters [8]. Consequently, the CYGNSS constellation

observes the Earth’s surface in a pseudorandom manner, and the

distribution of the observed ground points roughly follows the

trajectory of the CYGNSS satellites. Although the CYGNSS

constellation can provide daily surface observation data, there

are many blank gaps in the spatial distribution of these reflection

points.

The applications of CYGNSS have progressively expanded

from its initial use for measuring ocean winds [9], [10] to

building retrieval models for soil moisture (SM) [11], [12] and

analyzing the effects of influencing factors on reflectivity and

SM. Chew et al. [13] pointed out the strong correlation between
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https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-8282-8105
https://orcid.org/0000-0002-5108-4828
https://orcid.org/0000-0001-6693-957X
https://orcid.org/0000-0002-6978-163X
https://orcid.org/0000-0002-1108-0507
https://orcid.org/0000-0001-9585-310X
mailto:yan.jia@njupt.edu.cn
mailto:sgjin@shao.ac.cn


JIA et al.: IMPROVING CYGNSS-BASED SOIL MOISTURE COVERAGE THROUGH AUTOCORRELATION AND MACHINE LEARNING-AIDED METHOD 12555

CYGNSS reflectivity and soil moisture active passive (SMAP)

SM, and achieved accurate SM estimation. Both AL-Khaldi et al.

and Clarizia et al. [1], [14], [15] constructed SM estimation

models to fit the relationship between reflectivity, vegetation

opacity, surface roughness, and SM. Calabia et al. [16] used

CYGNSS data to indirectly estimate SM by calculating the Fres-

nel coefficients. Yang et al. [17] achieved the estimation of SM

by coupling reflectivity with SMAP brightness temperature data

based on a physical algorithm. Senyurek et al. [11], [12] used

multiple ML models to retrieve SM based on CYGNSS data, and

the RF model demonstrated good retrieval accuracy. Lei et al.

[18] used the RF model to simulate the nonlinear relationship

between CYGNSS surface reflectivity and a variety of surface

features to obtain SM. Nabi et al. [6] used a convolutional neural

network (CNN) model to predict SM using CYGNSS reflectivity

as well as other auxiliary data to further improve the accuracy

of SM retrieval. Most CYGNSS-based SM estimates use SMAP

data as a reference. To accommodate modeling needs, CYGNSS

data are often projected onto a grid larger than its resolution, at

either 36 or 9 km, followed by spatial or grid averaging within

the respective grid. However, many grid values are still missing

in specific regional CYGNSS-based SM estimation. The number

of grids with missing values increases when CYGNSS data are

used in research applications that require higher resolution.

In addition, CYGNSS observations have been discovered to

exhibit sensitivity to water bodies even in dense vegetation areas

like the Amazon region [19], prompting the use of CYGNSS

data in hydrologic studies such as detecting flood inundation

scenarios and identifying changes in water bodies. To maintain

spatial data continuity, observations have been aggregated over

longer intervals [20]. For monitoring changes in the water bodies

and detecting inundation, CYGNSS data are typically resampled

at a resolution of 0.03° and averaged over 14–21 days to extend

the data coverage. Notably, this average time interval is extended

up to 30 days or more in studies aiming for an extremely fine

spatial resolution of 0.01° or smaller [21], [22], [23], [24],

[25]. While these approach helps to fill spatial blank gaps of

data, it poses a challenge as aggregated observations that are

closely linked in space may be widely separated temporally.

In addition, aggregating observations over longer periods can

dilute the robustness of the findings and complicate the data

analysis.

Indeed, balancing the detailed spatial resolution of CYGNSS

data with the necessity for comprehensive coverage is a complex

task. In previous CYGNSS-based studies, the observations were

commonly resampled or aggregated to ensure adequate data

coverage. However, this process has led to the loss of important

fine-scale surface features and severely hindered the develop-

ment of applications that rely on the detailed parameter retrieval

possible with CYGNSS data. Therefore, it is essential to address

the gaps in CYGNSS data by integrating observations with high

spatial resolution.

This work aims to utilize the random nature of CYGNSS

reflection points and the concept of spatial autocorrelation. It

proposes the use of several observed data points around the

target point, as the main variables to establish an autocorre-

lation model. Both typical regression and ML methods are

Fig. 1. CYGNSS observations on July 1st, 2023.

adopted with considering spatial weighing factor. The con-

structed autocorrelation-based model is utilized to predict the

missing points in CYGNSS data, thereby filling the gaps in daily

CYGNSS observations. This approach leverages the concept

of spatial autocorrelation to estimate the target points robustly,

making full use of the random distribution of CYGNSS reflec-

tion points. It significantly improves the daily coverage of SM

estimation using CYGNSS data and minimizes the dependence

on auxiliary data from other sources. Section II describes the

adopted dataset and the data processing procedure; Section III

outlines the regression and ML algorithms, as well as the pro-

posed method for constructing the CYGNSS SM estimation

model based on spatial autocorrelation; Section IV presents and

analyzes the experimental results; and finally, the conclusions

are summarized in Section V.

II. DATASET AND DATA PROCESSING

A. CYGNSS Dataset

The CYGNSS constellation comprises eight microsatellites,

each of which can receive both direct signals from GPS satellites

and reflected signals off the Earth’s surface. In the CYGNSS mis-

sion, each satellite is equipped with a dual-channel radar capable

of receiving up to four signals simultaneously. This configura-

tion enables the collection of data from all eight satellites at a

single point in time, which facilitates observations at 32 different

points on the Earth’s surface to produce delay-Doppler Maps

and bistatic radar cross-section metadata [26]. The CYGNSS

constellation boasts high temporal resolution with short revisit

periods, approximately 7.2 h for the oceans and 1-2 days for land

[27]. Theoretically, the spatial resolution of the constellation

varies from 0.5 to 25 km for specular reflections in the Fresnel

region and diffuse reflections in the glitter region [28]. Since

2019, CYGNSS’s sampling interval has been reduced from 1

to 0.5 s, commonly achieving a minimum spatial resolution of

3.5 × 0.5 km [14].

In this study, we utilized the CYGNSS Level 1 Version

3.1 data product and calculated surface reflectivity using the

bistatic radar equation based on the metadata. Since the sampling

locations of CYGNSS data are not fixed, we projected the

surface reflectivity data onto a 9 km × 9 km EASE-Grid 2.0.

Fig. 1 depicts the distribution of daily CYGNSS observations.

Nearly one million CYGNSS data points were obtained and

filtered excluding those flagged by the SMAP quality indicator,

to enhance model accuracy and yield more precise results [29].
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Fig. 2. GPM daily precipitation on July 1st, 2023.

Fig. 3. Distribution of average SMAP SM from July 1st to 3rd, 2023.

Fig. 4. Study area in Jiangsu Province and Surrounding Regions, China.

The GNSS-R based SM retrieval method would rely on the

bistatic radar equation to obtain the ground reflectivity [29]. The

coherent component of the surface reflected signal received by

the bistatic radar can be described as follows:

P coh
RL =

(

λ

4π

)2
PtGtGr

(Rr +Rt)
2
ΓRL (θ) (1)

where λ is the wavelength, Pt is the peak power of the GNSS

transmitted signal, Gt is the gain of the transmit antenna, and

Gr is the gain of the receive antenna. Rr is the distance from

the specular reflection point to the GNSS-R receiver, Rt is the

distance from the specular reflection point to the GNSS trans-

mitter, and ΓRL(θ) is the reflectivity at the specular reflection

point.

For the incoherent component, it can be described as

P inc
RL =

λ
2PtGtGrRPL

(4π)3
σRL (2)

where σRL is the bistatic radar cross-sectional area in square

meters and RPL is the Fresnel coefficient.

When the surface is relatively flat and smooth, and the re-

flected signal received is predominantly coherent, it is consid-

ered that P coh
RL = P inc

RL , the ground reflectivity can then be

expressed through the following equation:

ΓRL (θ) =
σRL(Rr +Rt)

2

4πRt
2Rr

2
. (3)

B. GPM Precipitation Data

The global precipitation measurement (GPM) mission is

jointly managed by NASA and the Japan Aerospace Exploration

Agency. It aims to provide high-quality precipitation observa-

tions with both high spatial and temporal resolution on a global

scale, utilizing satellite technology. The GPM satellites are

equipped with advanced precipitation observation instruments,

including dual-frequency radars and microwave radiometers.

The data provided by GPM encompass various aspects of precip-

itation information, including precipitation rates, precipitation

patterns, and vertical precipitation profiles. Precipitation rate

data are typically measured in terms of hourly or daily amounts

(see Fig. 2). GPM satellites boast high resolution and precision,

with observations featuring a spatial resolution of approximately

0.1°. In this article, we utilize daily precipitation data from

the GPM Level 3 Version 6 (L3 V6) dataset, acquired from

the Data Center at NASA’s Goddard Space Flight Center. The

downloaded daily precipitation data were resampled onto the

EASE-Grid 2.0 at a resolution of 9 km, used by SMAP, and

employed as one of the auxiliary variables for SM retrieval.

C. SMAP Dataset

The SMAP is a satellite mission launched in January 2015

by NASA in collaboration with the United States Department of

Agriculture to globally observe SM with a temporal resolution

of three days [30]. SMAP employs an L-band microwave ra-

diometer to collect brightness temperature observations, which

are then converted into estimates of SM (see Fig. 3). The daily

data products provided by SMAP include gridded SM estimates

at 36 and 9 km scales on the EASE grid, as well as vegetation

opacity, surface roughness, and other auxiliary data [31]. For

this study, we have used the SMAP Level 3 Version 4 SM data

product (global daily 9 km EASE grid). It contains a 16-bit

binary string known as the SMAP retrieval quality flag, which is

an important quality control indicator data that can help to filter

the unreliable data.
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In this study, the SM values provided by SMAP serve as a

reference for both modeling and validating models, aiding in

the verification and assessment of SM estimates derived from

CYGNSS data, before and after interpolation. Furthermore, the

surface roughness and vegetation opacity data from SMAP were

used in modeling SM based on CYGNSS observations. The data

utilized span from July 1, 2023, to July 30, 2023. To clearly

demonstrate the effects of gap-filling, the study areas selected

should be of a moderate or small scale. Given the practical

need for SM applications in society, our research focused on

a provincial level, choosing Jiangsu Province as the primary

study area.

D. Study Area

Jiangsu Province is located in eastern China, spanning from

30° to 36°N latitude and 115° to 123°E longitude (see Fig. 4).

It boasts a superior geographical location and favorable con-

ditions for economic development, making it one of China’s

most important industrial production areas. With a total area of

102 600 square km, Jiangsu has a population of over 80 million.

The region’s cities are known for advanced manufacturing and

well-developed high-tech industries. Nanjing, the provincial

capital, is recognized as one of China’s ancient capitals and

is celebrated for its long history and rich cultural heritage. The

topography of Jiangsu, together with the surrounding areas, is

primarily characterized by coastal plains and the hilly regions

found in the south-central part of the province, creating a gen-

erally low-lying and rolling landscape. The northern coastal

belt of Jiangsu features the typical Yellow Sea-Huaihai Plain,

which is among China’s most crucial agricultural areas for grain

production. The Huai River flows through northern Jiangsu,

creating the middle and lower Huai River Plain, a low-lying area

prone to flooding. The flat terrain in these areas impacts surface

reflectivity only marginally. As a result, the signals received

are mainly composed of coherent components. Therefore, SM

retrieval results obtained from these flat regions are generally

more accurate, which is advantageous for verifying the precision

of gap-filling results.

III. THEORY AND METHODS

A. Gap-Filling Method Based on the Spatial Autocorrelation

Spatial correlation generally refers to the relationship between

entities or phenomena situated at distinct positions within the

space, which can encompass any type of connection within a

geographical context. Spatial autocorrelation [32], a term used

to describe the spatial relevance of geographical entities to their

own features, implies that there is a correlation among similar

variables at different spatial positions. If a variable’s value at

one location is associated with its values at adjacent locations,

spatial autocorrelation is said to exist. To a certain degree, spa-

tial autocorrelation is a specialized form of spatial correlation,

indicating the level of association among neighboring points in

spatial datasets.

The intensity of the GNSS signal reflected from the Earth’s

surface, as received by the CYGNSS constellation, exhibits a

Fig. 5. Spatial autocorrelation-based modeling gap-filling method
(9 km × 9 km EASE grid).

strong correlation with the surface SM. When the surface SM

and the surface condition remain constant within a confined

spatial area, the received signals ought to remain consistent.

Furthermore, physical surface parameters such as SM and tex-

ture exhibit significant spatial autocorrelation. In other words,

the signals received by CYGNSS are expected to display a high

degree of spatial autocorrelation, particularly within a confined

area or over a specified spatial extent, where the value at a

specific reflection point or grid cell should be consistent and

sustain a stable relationship with the values at the surrounding

grid cells. For grid cells with missing data, observed values from

nearby grid cells can, to some extent, represent the observational

results of that location. Accordingly, in this study, to estimate the

value for missing grid (Yj), the model uses the value from nearby

data grid and the values of a certain number of surrounding data

grids (Xj
m) as input variables. The model is represented as

Yj = f
(

X
j
1
, X

j
2
, . . . , Xj

m

)

. (4)

Here, j denotes the position of the modeling points around the

point to be measured, and m represents the count of neighboring

points used to characterize the spatial features of the modeling

point. The model of the neighboring modeling points is used to

predict and interpolate the points to be estimated, from which

the value of Yj can be obtained.

As shown in the illustration (see Fig. 5), to establish a training

set using existing data points, one would formulate a relationship

model between independent variables x and dependent variables

y. To ensure the reliability of the constructed dataset, the max-

imum distance for interpolation in the EASE Grid was set to 2

cells. Once this model is constructed, new independent variables

can be input to predict their corresponding dependent variables,

which are the values for the points that require interpolation. It

is important to note that for interpolating CYGNSS-based data,

we adopt a “spreading” method. This approach prioritizes inter-

polation for grid points that are closer to the established training

set, performing predictions and assigning values progressively

from nearer to more distant points. Predicted values are then

automatically integrated into the training set. This enhanced

training set is subsequently used to interpolate the next closest

grid points. By iterating this process, we can methodically fill

the entire area requiring interpolation.

From this, it can be seen that determining the locations of

the modeling points, the quantity of surrounding points, and

their assigned weights are crucial factors influencing the model’s
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Fig. 6. Flowchart illustrating the proposed process.

Fig. 7. XGBoost Algorithm.

accuracy. Building on the preceding discussion, this study pri-

marily accomplishes the following:

1) Comparing the accuracy of SM estimation before and after

interpolation.

2) Comparing daily SM coverage before and after interpola-

tion.

3) Using regression and ML aided methods to construct

autocorrelation models and compare their performances.

4) Analyzing factors that may impact the precision of gap-

filling, such as the quantity of samples.

Fig. 5 illustrates the principal algorithms and proposed mod-

eling processes.

As shown in Fig. 6, first, the surface reflectivity is calculated

using the bistatic radar equation based on CYGNSS observation

data. Values from neighboring points, chosen as modeling points

and considering spatial weight factors, are utilized as the training

set for the sample. A selected number of values from the vicinity

of the modeling points are included in this set. This study

incorporates four typical regression and machine learning algo-

rithms to aid modeling and training: Geographically weighted

regression (GWR), geographically and temporally weighted

regression (GTWR), previously observed behavior interpolation

(POBI), and the extreme gradient boosting (XGBoost) model.

B. GWR and GTWR Methods

The GWR and GTWR models are advancements of the con-

ventional ordinary least squares (OLS) model. Serving as a

global regression model, OLS often functions as a modeling

tool in geographical analysis, where the dependent variable

is modeled as a linear function of a set of (n) independent

variables, also known as predictor variables. The OLS model

can be represented as [33], [34]:

yi = β0 +
∑

k

βkxik + εi. (5)

In the OLS model, the estimated regression coefficients are

average values for the entire study area and the regression param-

eters cannot accurately reflect the true spatial characteristics. The

GWR is an extension of traditional regression models that allows

for local parameter estimation as opposed to direct estimation

of global parameters. When variables exhibit significant spatial

heterogeneity, the issue of spatial non-stationarity can be well

addressed by computing the local parameters of the regression

model, thereby optimizing the model’s fit. The GWR model can

be expressed as [35]

yi = β0 (ui, vi) +
∑

k

βk (ui, vi)xik + εi. (6)

In this model, yi is the dependent variable for the ith sample

point, (ui, vi) represents the spatial location of the ith sample

point, β0(ui, vi) is the constant term estimate at the ith point,

βk(ui, vi) is the estimated regression coefficient for the kth

independent variable at point i, xik is the independent variable at

the ith sample point, and εi is a random error term that follows a

normal distribution. The GWR formulation considers potential

spatial variation in the relationship between the independent and

dependent variables, where observational data near location i

may have a larger impact on the estimation of βk(ui, vi) as

opposed to data further away from i. In GWR, weights are

applied to observations near the location i; thus, the weight of

the observation’s changes with i. Observations closer to i are

given greater weight than those further away, as follows:

β̂ (ui, vi) =
(

XTW (ui, vi)X
)

−1

XTW (ui, vi) y (7)

where β̂ is the estimated value of β, and W (ui, vi) is an

n × n diagonal matrix whose diagonal elements represent the

geographical weight values for observational data point i.

While the GWR model addresses spatial heterogeneity in esti-

mating regression parameters, building local regression models

for parameters, it does not consider heterogeneity over time. In

2010, Huang et al. [36] introduced the temporal scale into the

GWR model, proposing the GTWR model. This model incorpo-

rates time factors in the calculation of weighting matrices and the

estimation of regression coefficients, which can mathematically

be expressed as

yi = β0 (ui, vi, ti) +
∑

k

βk (ui, vi, ti)xik + εi. (8)

Methods based on GWR have been applied to the downscaling

of SM and the study of spatial heterogeneity, yielding favorable
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results [37]. It was revealed that the SM exhibited spatial hetero-

geneity and distinct clustering features. The fitting performance

of the GWR model was found to significantly surpass that of the

ordinary OLS model, both in terms of goodness of fit and spatial

distribution.

C. POBI Method

To better reflect the spatiotemporal distribution characteristics

of CYGNSS observations, Chew [8] proposed an interpolation

method based on previous observations behavior (POBI). This

method integrates spatial interpolation with autoregressive time

series analysis, interpolating using previously recorded observa-

tions. The autoregressive principle assumes that the predictive

variable linearly depends on past values, using observations

from previous time steps to forecast future observations. In other

words, the future behavior of the output variable is calculated

by regressing its past observations.

The POBI method applies the autoregressive principle in

every aspect within the spatial domain, regressing previous

observations at the target location with proximal observations

from surrounding locations. Empirical regression parameters are

then used along with any available observations near the point of

interest to interpolate the estimated value at the target location.

The expression of the POBI method is as follows:

y =

∑n
i=1

wi (aixi + bi)
∑n

i=1
wi

(9)

wi = r2i (10)

where y represents the estimated value at the point of inter-

polation, xi denotes the ith available observation point near y,

ai and bi are regression coefficients for prior observations at

the location of xi relative to y, and wi indicates the square of

correlation coefficient (r2i ) between them.

In the interpolation process, since the POBI method relies

on prior data for the construction of local regression models,

there is a certain requirement for the length of prior data. In the

interpolation calculation using the POBI method, longer data

series yield more reliable regression relations in the modeling.

By iterating through proximal points around the point of inter-

est and forming pairs with each neighboring point, regression

calculations are performed for each pair to generate several

predicted values for the interpolation point. The correlation of

each pair to a certain extent reflects the reliability of the estimated

value, hence a weighted average method using the correlation

as weights is adopted to integrate these estimates, obtaining the

final interpolated value for the interpolation point.

D. XGBoost Method

Boosting is an ensemble learning technique that constructs a

strong model by combining multiple weak learners. The idea is

to combine several weak classifiers, with each one attempting

to correct the errors of its predecessor [38], [39], [40]. Extreme

Gradient Boosting, or XGBoost, is an ensemble method based on

gradient boosted trees and represents an optimized, distributed

gradient boosting technique. XGBoost improves upon tradi-

tional gradient descent algorithms, offering faster performance

enhancements than other ensemble algorithms that use gradient

boosting, and is recognized as an advanced estimator with ex-

tremely high performance in both classification and regression.

The XGBoost method is based on classification and regression

trees (CART), using them to build weak classifiers. After the

first CART is constructed, the number of trees is continuously

increased in subsequent iterations, gradually forming a strong

estimator composed of an ensemble of numerous tree models

(see Fig. 7). When constructing the first tree, a portion of the

samples from the dataset is randomly selected to serve as the

training samples for modeling. After modeling is complete, an

evaluation is performed on the training samples, and then the

samples with large prediction biases from the model are fed back

to the original dataset. In later iterations, samples with larger

prediction biases are given more weight, and the new models

are more inclined to deal with these difficult-to-predict samples.

The XGBoost method employs a specific objective function

to minimize loss, while introducing regularization terms to limit

model complexity, which prevents overfitting. Moreover, it uses

a greedy algorithm to control the growth of CART, constraining

the outcome of the trees. The greedy algorithm focuses on

achieving local optima to reach a global optimum, and when

all leaf nodes have achieved optimality, the entire tree reaches

the optimal performance of the model.

IV. RESULTS AND DISCUSSION

A. CYGNSS-Based SM Estimation Without Gap Filling

The CYGNSS observation data from July 1 to July 30,

2023 were selected for the study area to test the feasibil-

ity of interpolation. Surface reflectivity is calculated from the

CYGNSS observational data using the bistatic radar equa-

tion, which is then interpolated using the concept of spa-

tial autocorrelation combined with methods such as POBI,

GWR, GTWR, and XGBoost. The objective is to fill in the

missing surface reflectivity data in areas not covered by the

CYGNSS constellation. To quantitatively evaluate the inter-

polation results, SM estimates were obtained using a random

forest (RF) model and compared with the SM reference values

released by SMAP. In the CYGNSS-based SM estimation pro-

cedure, the inputs are preinterpolation/postinterpolation surface

reflectivity, vegetation opacity, surface roughness, and daily

GPM precipitation data, with the output being SM reference

values.

Due to the limitations of the SMAP constellation, its data

products do not provide full coverage, and their temporal reso-

lution is approximately 2 to 3 days. Therefore, this study adopts

the principle of nearest supplementation to process the data,

using the closest observation to the missing location from the

past three days (including the current day) for supplementation.

To achieve more intensive spatial coverage, each SMAP SM

datum is reprocessed by averaging over every three consecutive

days, hereby referred to as “3-day data.” The spatial distribution

of CYGNSS data at this scale remains very sparse and uneven.

To ensure a more uniform distribution of CYGNSS data within
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Fig. 8. Daily CYGNSS reflectivity observations before interpolation: (a) July
1st, (b) July 7th, (c) July 13th, (d) July 19th, and (e) July 25th.

Fig. 9. SM daily estimation before interpolation: (a) July 1st, (b) July 7th,
(c) July 13th, (d) July 19th, and (e) July 25th.

the study area and to minimize the impact of time, a 3-day time

window was used, which also agrees with the operations of

SMAP data.

Figs. 8 and 9 show the processed daily data of CYGNSS

surface reflectivity and the daily SM data obtained from retrieval,

respectively. To improve the readability of the charts, Figs. 8

and 9 display the results of the averaged CYGNSS surface

reflectivity and the estimated SM values from SMAP at six-day

intervals.

As shown in Fig. 10, the Pearson correlation coefficient R

fluctuates between 0.8721 and 0.9451, with a monthly average

of 0.9092. The RMSE varies from 0.0295 to 0.0434 m3/m3, with

a monthly average of 0.0368 m3/m3. The results presented by

the model indicate that estimating SM with this combination of

input variables is reliable. The same RF modeling approach will

also be used in the accuracy assessment of subsequent gap-filling

results.

Fig. 10. Accuracy assessment of daily SM estimations based on preinterpo-
lation data. (a) Change of correlation between retrieved SM and SMAP SM.
(b) Change of daily RMSE between retrieved SM and SMAP SM.

B. Evaluation of CYGNSS Gap-Filling Method

In this study, we assessed the effectiveness of XGBoost-aided

by comparing it with three other competing methods: POBI,

GWR, and GTWR, all of which have demonstrated promising

results in the SM gap-filling method.

The results of SM estimation, obtained after interpolating

CYGNSS reflectivity using different techniques, are presented

in Fig. 11 Panels (a) shows SM estimates of preinterpolation

data, (b) and (c) display the outcomes derived from GWR with

Gaussian and exponential kernels, respectively. Panels (d), (e),

and (f) illustrate the SM retrieval results obtained using POBI,

GTWR, and XGBoost methods, respectively. The blank areas in

the figure represent either bodies of water or regions where the

quality of SMAP data is deemed unreliable.

Tables I and II present the correlation coefficients and RMSE

between the SM estimates from daily observations before and

after interpolation and the SMAP SM reference, respectively.

Red values in the Tables I and II indicates the model that achieves

the best correlation coefficient for each day. All these methods

have achieved good results. Apart from the overall performance

decline of each method due to the influence of observations

at specific times, the correlation coefficients of the other re-

sults range between 0.8 and 0.9, which is consistent with the

observations. In addition, XGBoost exhibits better correlation

and smaller RMSE compared to several other methods most

of the time. All methods demonstrate considerable and stable
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Fig. 11. Comparing SM estimation results from CYGNSS data before
and after interpolation: (a) Preinterpolation, (b) GWR with Gaussian kernel.
(c) GWR with exponential kernel. (d) POBI. (e) GTWR. (f) XGBoost.

accuracy, indicating that the interpolated results are plausible

over extended time series as well.

Fig. 12 illustrates the differences in SM estimation using

reflectivity data before interpolation and after interpolation with

XGBoost, GWR, and GWRT methods, compared to the ref-

erence SM data from SMAP. All these methods yield high

correlations with the SMAP SM data, with correlation coef-

ficients above 0.9. Specifically, the correlation coefficient for

XGBoost is 0.9156, and the RMSE is 0.0336 m3/m3, which are

the closest to the accuracy of the preinterpolation monthly mean

SM estimation. In contrast, the POBI method yields the least

accurate results.

The SM estimates derived from reflectivity data interpolated

using the XGBoost method show a significant tendency to

overestimate in regions with lower SM levels, while under-

estimation is observed in areas with higher SM levels. This

pattern is consistent with estimates made using observations

before interpolation, indicating that the issue is inherent to the

estimation process rather than the gap-filling method and could

be addressed in future SM retrieval models.

TABLE I
COMPARISON OF DAILY CORRELATION COEFFICIENTS FOR SM ESTIMATES

BEFORE AND AFTER REFLECTIVITY INTERPOLATION

Fig. 13 displays the distribution of the correlation coefficient

(R) between SM estimates obtained using observational data

without interpolation over a month and SM estimates acquired

from data interpolated by different methods, in comparison

with SMAP SM reference values. The blank areas in the map

represent permanent bodies of water or regions with missing

reference values. Black boxes outline regions with relatively

minor variations in SM, where the correlation between the

estimation results and the SM reference is notably significant.

In other regions, however, the precision of SM estimation after

interpolation using the XGBoost method decreases to varying

extents. These results confirm the strong spatial autocorrelation

inherent in SM, indicating that gap-filling outcomes are more

accurate in regions with stronger autocorrelation.
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TABLE II
DAILY RMSE IN M

3/M3
FOR SM ESTIMATES BEFORE AND AFTER

REFLECTIVITY INTERPOLATION

Fig. 14 illustrates the deviation between the monthly average

retrieval results obtained after interpolation of all methods and

the monthly average SM from SMAP. The positive bias indicates

that the SMAP SM values are higher than the retrieval results. It

can be observed that, in most parts of the study area, the retrieved

SM from interpolated reflectivity tends to be underestimated

to varying degrees. However, a small portion of the coastal

area, where SM values are low, exhibits an overestimation.

This observation is consistent with the conclusions obtained

from Fig. 12. The bias in SM estimation results after reflectiv-

ity interpolation remains virtually unchanged compared to the

preinterpolation results in regions with flat terrain. In regions

characterized by low hilly terrain (central and southwestern

parts), the bias is slightly more pronounced than in the prein-

terpolation results. Overall, the biases are distributed between

Fig. 12. Scatterplot of monthly mean SM estimates from CYGNSS-based SM
with SMAP reference SM. (a) Preinterpolation. (b) GWR with Gaussian kernel.
(c) GWR with exponential kernel. (d) POBI. (e) GTWR. (f) XGBoost.

−0.05 and 0.05 m3/m3 in most areas and are close to 0 in the

left plain area. This suggests that the SM obtained by retrieval

after interpolation closely matches the SMAP reference values,

allowing for effective SM distribution following the proposed

interpolation strategy.

The coverage of data is significantly enhanced after inter-

polation, and Fig. 12 illustrates the improvement in daily data

coverage postinterpolation. As previously indicated in Figs. 8

and 9, the reflection points of the CYGNSS constellation are

distributed randomly due to its reflection characteristics. There-

fore, the daily observed data varies in regional coverage, leading

to fluctuations in the enhanced regional coverage provided by

the interpolated data. For instance, in July 2023, the regional

coverage of interpolated SM estimates is 1.8 times that of the

coverage before interpolation (see Fig. 15). This indicates that

employing the concept of autocorrelation in combination with

the proposed gap-filling methods such as POBI, GWR, and

XGBoost can significantly increase the daily data coverage.
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Fig. 13. Distribution of correlation coefficients for SM estimates from
CYGNSS observations versus SMAP SM before and after interpolation.
(a) Preinterpolation. (b) GWR with Gaussian kernel. (c) GWR with exponential
kernel. (d) POBI. (e) GTWR. (f) XGBoost.

C. Influencing Factors for Proposed Gap-Filling Method

When constructing models based on the concept of spa-

tial autocorrelation, a key issue is determining the number of

neighboring points to use for building the sample data for

modeling. To study the impact of the number of neighboring

point samples on the model and the final SM estimation results,

we modeled using the four to seven nearest observation points,

respectively. The accuracy results obtained from interpolation

and prediction were then compared with SMAP SM reference

values, as shown in Fig. 16.

In Fig. 16, “GWR Gaus” denotes the GWR method that

employs a Gaussian function as the kernel, whereas “GWR Exp”

refers to the GWR variant using an Exponential function for the

kernel. This figure demonstrates the accuracy of gap-filling re-

sults from prediction models that were constructed using varying

numbers of neighboring points for retrieving monthly average

SM estimates. It is observed that there is no significant change in

the accuracy of interpolation-based retrieval for methods such as

Fig. 14. SM estimation bias between CYGNSS observations and SMAP SM
before and after interpolation. (a) Preinterpolation. (b) GWR with Gaussian
kernel. (c) GWR with exponential kernel. (d) POBI. (e) GTWR. (f) XGBoost.

Fig. 15. Daily coverage with proposed gap-filling method (one month).
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Fig. 16. Comparison of monthly average accuracy in SM estimates from
observation interpolation using varied neighboring point counts.

Previously Observed Behavior Interpolation (POBI), GWR, and

GTWR as the count of neighboring points increases. However,

the precision of the XGBoost method appears to be somewhat

impacted, indicating that an excess of information may adversely

affect the model’s fitting process. Additionally, a higher number

of neighboring points correlates with increased computational

time required for interpolation. While the POBI method, which

is grounded in linear regression, remains largely unaffected by

this increase, more complex methods that necessitate model

fitting, like GWR, GTWR, and XGBoost, must account for

this computational consideration. With regard to the metrics of

correlation coefficient R or root mean square error (RMSE),

the XGBoost method consistently achieves the highest levels of

precision.

V. CONCLUSION

This paper integrates spatial autocorrelation with a variety of

statistical methods, including POBI, GWR, and GTWR, as well

as machine learning techniques like XGBoost, to interpolate

surface reflectivity in the study area with the objective of filling

gaps where CYGNSS observations are missing. The interpo-

lated surface reflectivity is used to estimate SM using an RF

model, which is compared with SM reference values released by

SMAP. The accuracy of the gap-filling results is evaluated using

the Pearson correlation coefficient (R) and RMSE. The results

show that the proposed XGBoost-aided SM estimation approach

maintain accuracy with filling of daily gaps in CYGNSS data.

Data sets constructed using a varying number of neighboring

points, ranging from 4 to 7 nearest observations around the target

point, were compared to assess the SM retrieval accuracy of the

various methods. The results indicate that gap-filling using the

XGBoost method closely matches the observed data in accuracy.

The article also analyzes the impact of observation data on daily

gap-filling results, reasons for anomalies, and fluctuations in

accuracy at specific time points due to interpolation. Since the

gap-filling process estimates missing values from surrounding

known points, it cannot detect the maximum and minimum

values in the missing areas. This limitation can lead to a

centralizing tendency in the interpolated data. In addition, due

to the distribution of observation data, there can be a decrease in

gap-filling accuracy, as noted on the 5th and 25th days, where

predicting local peaks overlaid by the overall prediction average

is challenging.

Prior to gap-filling, the mean correlation coefficient for SM

estimation in the study area was 0.9091, and the mean RMSE

was 0.0368 m3/m3. After gap-filling, the SM data exhibited an

average correlation coefficient R of 0.8445 and an RMSE of

0.0457 m3/m3. These results are satisfactory and indicate only a

slight decrease in estimation accuracy compared to the data be-

fore interpolation. Furthermore, the coverage of the interpolated

data increased by an average of 1.8 times. The method proposed

in this paper significantly improves data coverage while ensur-

ing data accuracy, thus addressing the issue of missing daily

CYGNSS observations in certain areas. The effective gap-filling

method enhances data quality, which is crucial for other applica-

tions, such as consistent and accurate environmental monitoring,

land cover analysis, and climate change research. The impact of

land cover types will be conducted in future works covering

large-scale and extensive areas.
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