
14 October 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A stochastic averaging mathematical framework for design and optimization of nonlinear energy harvesters with several
electrical DOFs / Song, Kailing; Bonnin, Michele; Traversa, Fabio; Bonani, Fabrizio. - In: COMMUNICATIONS IN
NONLINEAR SCIENCE & NUMERICAL SIMULATION. - ISSN 1007-5704. - ELETTRONICO. - 139:(2024).
[10.1016/j.cnsns.2024.108306]

Original

A stochastic averaging mathematical framework for design and optimization of nonlinear energy
harvesters with several electrical DOFs

Publisher:

Published
DOI:10.1016/j.cnsns.2024.108306

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992301 since: 2024-09-08T06:32:59Z

Elsevier



Commun Nonlinear Sci Numer Simulat 139 (2024) 108306

A
1
(

R

A
o
D
K
a

b

c

A

K
E
M
E
N
M
S
S
S
F
I

1

e
e
e
a
s

e

h
R

Contents lists available at ScienceDirect

Communications in Nonlinear Science and Numerical
Simulation

journal homepage: www.elsevier.com/locate/cnsns

esearch paper

stochastic averaging mathematical framework for design and
ptimization of nonlinear energy harvesters with several electrical
OFs
ailing Song a,b, Michele Bonnin b,∗, Fabio L. Traversa c, Fabrizio Bonani b

IUSS, University School for Advanced Studies, Pavia, 27100, Italy
Department of Electronics and Telecommunications, Politecnico di Torino, Torino, 10129, Italy
Memcomputing Inc., San Diego, 92121, CA, United States

R T I C L E I N F O

eywords:
nergy harvesting
echanical vibrations

lectro-mechanical systems
onlinear dynamical systems
odel order reduction

tochastic processes
tochastic differential equations
tochastic averaging
okker–Planck equation
mpedance matching

A B S T R A C T

Energy harvesters for mechanical vibrations are electro-mechanical systems designed to capture
ambient dispersed kinetic energy, and to convert it into usable electrical power. The random
nature of mechanical vibrations, combined with the intrinsic non-linearity of the harvester,
implies that long, time domain Monte-Carlo simulations are required to assess the device
performance, making the analysis burdensome when a large parameter space must be explored.
Therefore a simplified, albeit approximate, semi-analytical analysis technique is of paramount
importance. In this work we present a methodology for the analysis and design of nonlinear
piezoelectric energy harvesters for random mechanical vibrations. The methodology is based
on the combined application of model order reduction, to project the dynamics onto a lower
dimensional space, and of stochastic averaging, to calculate the stationary probability density
function of the reduced variables. The probability distribution is used to calculate expectations
of the most relevant quantities, like output voltage, harvested power and power efficiency. Based
on our previous works, we consider an energy harvester with a matching network, interposed
between the harvester and the load, that reduces the impedance mismatch between the two
stages. The methodology is applied to the optimization of the matching network, allowing to
maximize the global harvested power and the conversion efficiency. We show that the proposed
methodology gives accurate predictions of the harvester’s performance, and that it can be used
to significantly simplify the analysis, design and optimization of the device.

. Introduction

The importance of energy harvesting for the implementation of sustainable, smart applications that require energy-efficient
lectronic devices and sensors, e.g. the Internet of Things (IoT), can hardly be overestimated [1,2]. In most cases, IoT elements
xchange information by exploiting wireless technologies, an operational paradigm that of course requires the availability of an
lectrical energy source. Dedicated design and the relatively small distance between elements granted by the large number of nodes
llow for reduction of the required power to levels low enough to make energy extraction from ambient dispersed sources a viable
olution [3,4].

Depending on the intended application, different energy sources can be used, including parasitic mechanical vibrations,
lectromagnetic dispersed energy, thermal gradients, and even human motion [5–7]. Ambient vibrations are especially promising
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Fig. 1. Two-port network representation of a energy harvester for mechanical vibrations.

or their ubiquity, significant power density, and the wide range of transduction principles available for energy conversion [8,9]. In
articular, Si-based mechanical structures covered by a piezoelectric material providing energy transduction, are one of the most
tudied examples of energy harvesters, due to their compatibility with well-established semiconductor technologies [10].

Despite significant research efforts, the harvested power provided to the electrical load remains confined to the micro-to-milli-
att range, thus requiring further optimization efforts to boost the performance [11–13]. A key limiting factor is the frequency
ismatch between environmental vibrations, the mechanical structure of the harvester, and the electrical domain. As a rule of

humb, the resonance frequency of a mechanical structure is inversely proportional to its geometrical dimensions. The typical size
f mechanical resonators (in the range from millimeters to centimeters) implies that they exhibit optimal performance at hundreds,
r thousands of Hertz, while electrical circuits typically exhibit a resonance frequency at kilo Hertz or above. In contrast, ambient
ibrations have considerable energy density over frequencies within 100 Hertz [14–17].

A possible solution to increase the harvested power is to use nonlinear resonators instead of linear ones. Nonlinear systems serve
ual purposes: they offer larger bandwidth (at the cost of less peak power), and they may exhibit multi-stability, enhancing the
esponse of the system by increasing oscillation amplitude [18–26]. Recently, new solutions inspired by circuit theory have been
roposed. The first solution consists of connecting an inductor in parallel to the load, to compensate for the negative reactance of
he piezoelectric transducer [27–29]. The more sophisticated solution is to interpose a more complex matching network between
he transducer and the load [30,31]. Semi-active control techniques have also been developed and tested [32–34].

As the number of structures and components in the harvester increases, the corresponding mathematical model grows in
omplexity, making analysis, design, and optimization more challenging. The problem is exacerbated by the nonlinear nature of
he system, and by the stochastic nature of mechanical vibrations. To cope with the problem, in this paper we present a novel
ethodology for the effective analysis and optimization of nonlinear piezoelectric energy harvesters subject to stochastic external

orces. We combine a model order reduction technique, to reduce the model complexity to a single variable description (the
echanical energy in the device), with stochastic averaging, to allow for the computation of the stationary probability density

unction of the reduced model. The probability density function is then used to estimate the expected quantities in the harvester,
ncluding the power delivered to the electrical load for both a simple resistive element and for the matching network, enabling an
mproved electrical power transfer to the load.

The methodology permits a semi-analytical calculation of the harvested power and output voltage, making it relatively easy to
xploit a large parameter space for the matching network optimization. In contrast, standard approaches, based on Monte-Carlo
imulations, would require intensive computation and lengthy simulations, making the approach unfeasible, or at least unpractical,
or systems characterized by a larger number of parameters.

The paper structure is as follows: the model of the nonlinear harvester is described in Section 2. The novel methodology is
resented in Section 3, where the approximating theory is developed by combining the model order reduction approach with
tochastic averaging. Examples of applications are presented for both a resistive and the matched load in Section 4, validating
he proposed methodology against a Monte Carlo solution of the complete, nonlinear model. Finally, conclusions are drawn in
ection 5.

. Nonlinear system modeling

Energy harvesters for ambient mechanical vibrations are electro-mechanical (EM) systems, which can be represented as the
wo-port network shown in Fig. 1. Mechanical quantities like force and velocity are applied at the left port, whereas electrical
ariables like current and voltage are applied at the right port. In this representation, the passive sign convention is used for the
wo-port network. Finally, a two-terminal element is connected at the output terminals, representing a generic user device that
bsorbs electrical power or receives information from the EM network.

Irrespective of the working principle, the internal structure of an energy harvester for ambient vibrations always requires an
scillating element to capture the environmental kinetic energy. Different transduction principles are available for mechanical-to-
lectrical energy conversion, such as the piezoelectric effect, electromagnetic induction, or electrostatic (capacitive) conversion.
2

any different designs and ingenious solutions have been proposed for piezoelectric energy harvesters, aimed at increasing the
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Fig. 2. Schematic representation of a cantilever beam, piezoelectric energy harvester for ambient mechanical vibrations.

power performance and efficiency. Recent comprehensive reviews on the state-of-the-art of piezoelectric energy harvesting can be
found in [35,36].

We consider here a cantilever beam-based, piezoelectric energy harvester, whose schematic representation is shown in Fig. 2.
The oscillating structure is represented by the cantilever beam, which is fixed at one end to a vibrating structure. Vibrations of the
support induce oscillations of the beam, which are amplified by an inertial mass fixed at the cantilever free end, and finally are
converted into electrical power by a layer of piezoelectric material that covers the beam. The beam is assumed to have a rectangular
cross-section, so that oscillations are forced to occur along one dimension, and the oscillation amplitude is assumed to be so small
with respect to the beam length, that the arc-shaped displacement can be approximated by a straight line.

Assuming that the masses of the beam and piezoelectric layer are negligible with respect to the inertial mass (denoted as 𝑚),
we have the Lagrangian function (𝑧, 𝑧̇) = 𝑇 (𝑧̇) − 𝑈̂ (𝑧) = (1∕2)𝑚 𝑧̇2 − 𝑈̂ (𝑧), where 𝑧, 𝑧̇ are the displacement and the velocity,
espectively. Consequently, 𝑇 (𝑧̇), 𝑈̂ (𝑧) are the kinetic and the potential energy functions. Introducing also the dissipation potential
(𝑧̇) = (1∕2)𝜀̂ 𝑧̇2, where 𝜀̂ is the friction coefficient, the Lagrange equation of motion for the mechanical system takes the form

𝑚𝑧̈ + 𝜀̂𝑧̇ + 𝑈̂ ′(𝑧) = 𝑓𝑒𝑥𝑡(𝑡) − 𝑓𝑒𝑙(𝐳𝑒) (1)

here 𝑓𝑒𝑥𝑡(𝑡) is an external force representing mechanical vibrations, and 𝑓𝑒𝑙(𝐳𝑒) is a mechanical force due to the action of the
lectrical variables 𝐳𝑒. For the sake of simplicity, we shall assume that the resultant force has the same order of magnitude as the
nternal friction and that 𝑓𝑒𝑙(𝐳𝑒) is linear and of the form 𝑓𝑒𝑙(𝐳𝑒) = 𝜀̂ 𝐛̂𝑇𝑚 𝐳𝑒, where 𝐛̂𝑚 = [𝑏𝑚1,… , 𝑏𝑚𝑛]𝑇 is a vector of electro-mechanical
oupling constants, and 𝑇 denotes transposition.

The electrical domain is described by a linear circuit, composed of the interconnection of linear two-terminal (or multi-terminal)
lements. Consequently, the state equations are a linear system of ordinary differential equations (ODEs), which can be derived
sing Kirchhoff voltage and current laws, and the characteristic relationships of the electrical elements [37], thereby obtaining the
DEs system:

𝐳̇𝑒 = 𝐀̂𝑒𝐳𝑒 + 𝐁̂𝑒 𝐳𝑚 (2)

here 𝐳𝑒 ∶ R ↦ R𝑛 is the vector of electrical state variables (currents through inductors and voltages across capacitors), 𝐀̂𝑒 ∈ R𝑛,𝑛

nd 𝐁̂𝑒 ∈ R𝑛,2 are real valued matrices, and 𝐳𝑚 = [𝑧, 𝑧̇]𝑇 is the vector of mechanical variables.
Finally, we consider the modeling of vibrations. Being the byproduct of the ambient conditions influencing the harvester,

uch vibrations are the superposition of several distinct, and most often independent, sources of different nature and various
ime dependencies. Examples of vibration sources are household appliance, industrial machinery, human motion, vehicles such
s automobiles, trains and airplanes and structures such as buildings and bridges. Vibrations frequency may range from few Hz
human motion), to some hundreds of Hz (for domestic and industrial machinery), up to some kHz (acoustic waves). As the number
f sources grows large, the central limit theorem suggests that vibrations become Gaussian distributed, and in case the corresponding
nergy is distributed over a sufficiently wide frequency spectrum, random vibrations can ultimately be well approximated as white
aussian noise [18,26,28,38].

Under the above assumptions, (1) and (2) can be rewritten as a system of stochastic differential equations (SDEs):

𝑑𝑍1 = 𝑍2 𝑑𝑡 (3a)

𝑑𝑍2 =
(

− 1
𝑚
𝑈̂ ′(𝑍1) −

𝜀̂
𝑚
𝑍2 +

𝜀̂
𝑚
𝐛̂𝑇𝑚𝐙𝑒

)

𝑑𝑡 +

√

𝜀̂
𝑚

𝑑𝑊𝑡 (3b)

𝑑𝐙𝑒 =
(

𝐀̂𝑒𝐙𝑒 + 𝐁̂𝑒𝐙𝑚

)

𝑑𝑡 (3c)

where 𝑍1 = 𝑧 is the displacement and 𝑍2 = 𝑧̇ is the velocity. Hereinafter we adopt the standard notation used in probability: A
capital letter denotes a random variable, while a lowercase letter denotes its possible value. In Eq. (3), 𝑊𝑡 is a scalar Wiener process,
also known as Brownian motion, it is the integral of a white Gaussian process and it is characterized by a zero expectation (E[𝑊 ] = 0,
3

𝑡
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Fig. 3. Schematic flowchart of the proposed methodology for the analysis and design of an energy harvesting system for random mechanical vibrations.

where E[⋅] represents the statistical average) and covariance cov(𝑊𝑡,𝑊𝑠) = E[𝑊𝑡 𝑊𝑠] = min(𝑡, 𝑠). In other words, 𝑊𝑡 ∼  (0, 𝑡) where
symbol ∼ means ‘‘distributed as’’, and  (0, 𝑡) denotes the centered normal distribution.

The SDEs (3) can be interpreted following two main rules: Stratonovich or Itô [39]. Because the noise in (3) is unmodulated (or
additive), the two interpretations lead to the same results, although the calculus rules used in the derivation are different. In the
following, we shall use Itô interpretation for all SDEs.

3. Model reduction and stochastic averaging

In this section, we present the methodology for the analysis of energy harvesting systems, which main steps are summarized
in Fig. 3. The derivation of the dimensionless SDEs is based on a systematic procedure, that is described in details in [26,40].
Examples of transformation to dimensionless equations are given in Section 4, in Eqs. (25)–(28) and (37)–(39). The subsequent
steps are based on the application of a model order reduction technique, followed by stochastic averaging. The applicability of both
techniques requires some technical conditions to hold, in particular a small electro-mechanical coupling between the electrical and
the mechanical domains, and a weak mechanical damping. Both conditions are usually well met in energy harvesting applications.

The nonlinear SDE system (3) can be cast in the form

𝑑𝐙𝑡 =
(

𝐀̂𝐙𝑡 + 𝐧̂(𝐙𝑡)
)

𝑑𝑡 + 𝐁̂ 𝑑𝑊𝑡 (4)

where 𝐙𝑡 = [𝑍1, 𝑍2,𝐙𝑇
𝑒 ]

𝑇 is the state vector, 𝐀̂𝐙𝑡 and 𝐧̂(𝐙𝑡) are the linear and the nonlinear parts of the drift vector, respectively,
and 𝐁̂ is the (constant) diffusion vector. In order to simplify the treatment, we transform (3) in a scaled, dimensionless equivalent
SDE system. Consider a linear change of variables 𝐱 = 𝐏𝐳, where 𝐏 is a regular matrix, and a linear time change 𝜏 = 𝜔 𝑡, with 𝜔 > 0.
Let 𝐀 = (1∕𝜔)𝐏𝐀̂𝐏−1, 𝐧(𝐱) = (1∕𝜔)𝐏𝐧̂(𝐏−1𝐱) and 𝐁 = (1∕

√

𝜔)𝐏𝐁̂. Then the solution of the SDE system

𝑑𝐗𝜏 =
(

𝐀𝐗𝜏 + 𝐧(𝐗𝜏 )
)

𝑑𝜏 + 𝐁 𝑑𝑊𝜏 (5)

converges in probability to 𝐏𝐙𝑡.
Convergence in probability, or weak convergence, implies that the two stochastic processes have the same probability distri-

bution, and therefore the same statistical properties. Thus, introducing a proper diagonal matrix 𝐏 whose entries are normalizing
4
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a

factors, and a normalizing frequency 𝜔, the following SDE system equivalent to (3) is obtained, for the dimensionless process1 𝐗𝑡:

𝑑𝑋1 =𝑋2 𝑑𝑡 (6a)

𝑑𝑋2 =
(

−𝑈 ′(𝑋1) − 𝜀𝑋2 + 𝜀𝐛𝑇𝑚𝐗𝑒
)

𝑑𝑡 +
√

𝜀𝐵𝑚 𝑑𝑊𝑡 (6b)

𝑑𝐗𝑒 =
(

𝐀𝑒𝐗𝑒 + 𝐛1𝑋1 + 𝐛2𝑋2
)

𝑑𝑡 (6c)

Here 𝐗𝑡 = [𝑋1, 𝑋2,𝐗𝑇
𝑒 ]

𝑇 is the vector of the dimensionless state variables (mechanical and electrical), 𝜀 is a dimensionless parameter,
𝐛1 ∈ R𝑛 and 𝐛2 ∈ R𝑛 are the columns of a dimensionless matrix 𝐁𝑒 ∈ R𝑛,2.

3.1. Model order reduction

The concept of model order reduction refers to a set of methods aimed at simplifying a complex mathematical model, for example
reducing the number of state variables, while preserving the model’s essential characteristic [41]. In this work, we apply a method
similar to that used in [40,42], to reduce the number of variables in (6) by exploiting the time scale separation between mechanical
and electrical variables, so that the latter can be eliminated.

Consider the dimensionless mechanical energy: 𝐸 = (1∕2)𝑋2
2 + 𝑈 (𝑋1). Application of Itô formula gives

𝑑𝐸 = 𝜀

(

𝐵2
𝑚
2

−𝑋2
2 + 𝐛𝑇𝑚𝐗𝑒

)

𝑑𝑡 +
√

𝜀𝐵𝑚𝑋2 𝑑𝑊𝑡 (7)

As a consequence, for 𝜀 ≪ 1, the mechanical energy is a slow, or nearly constant, variable (see [40] for details). Following [42], we
ssume 𝑋1(𝑡) = 𝐴(𝐸) sin(𝛺(𝐸)𝑡), where 𝐴(𝐸) and 𝛺(𝐸) are an unknown amplitude and angular frequency, respectively. Because the

energy is nearly constant, (6a) implies 𝑋2(𝑡) ≃ 𝛺(𝐸)𝐴(𝐸) cos(𝛺(𝐸)𝑡).
At this point, we look for a solution to (6c) in the form

𝐗𝑒 = 𝐦1(𝐸)𝑋1 +𝐦2(𝐸)𝑋2 (8)

where, considering that 𝐸 is nearly constant, 𝐦1(𝐸), and 𝐦2(𝐸) are unknown, constant vectors.
Since the differential equation for the electrical domain (6c) is linear, vectors 𝐦1(𝐸) and 𝐦2(𝐸) can be computed analytically.

Lemma 1. Under the above assumptions on 𝑋1(𝑡) and 𝑋2(𝑡), vectors 𝐦1(𝐸) and 𝐦2(𝐸) are given by

𝐦1(𝐸) = −𝐀𝑒
(

𝐀2
𝑒 +𝛺2(𝐸)1

)−1 (𝐀𝑒𝐛2 + 𝐛1) + 𝐛2 (9a)

𝐦2(𝐸) = −
(

𝐀2
𝑒 +𝛺2(𝐸)1

)−1 (𝐀𝑒𝐛2 + 𝐛1) (9b)

where 1 ∈ R𝑛,𝑛 is the 𝑛 × 𝑛 identity matrix.

Proof. The assumed value of 𝑋1(𝑡) and 𝑋2(𝑡) imply, in the frequency domain, the following phasor representations

𝑋1 → 𝐴(𝐸) (10a)

𝑋2 → 𝑗𝛺(𝐸)𝐴(𝐸) (10b)

𝐗𝑒 →
(

𝐦1(𝐸) + 𝑗𝛺(𝐸)𝐦2(𝐸)
)

𝐴(𝐸) (10c)
𝑑𝐗𝑒
𝑑𝑡

→
(

𝑗𝛺(𝐸)𝐦1(𝐸) −𝛺2(𝐸)𝐦2(𝐸)
)

𝐴(𝐸) (10d)

Substituting into Eq. (6c), and equating the real and imaginary parts, the thesis follows. □

Lemma 2. For every stable circuit, matrix
(

𝐀2
𝑒 +𝛺2(𝐸)1

)

is invertible.

Proof. Let 𝜆𝑖, be an eigenvalue of 𝐀𝑒 and let 𝐯𝑖 be the corresponding eigenvector. Then:

𝐀2
𝑒 𝐯𝑖 = 𝐀𝑒(𝐀𝑒𝐯𝑖) = 𝜆𝑖𝐀𝑒 𝐯𝑖 = 𝜆2𝑖 𝐯𝑖

𝛺21𝐯𝑖 = 𝛺2𝐯𝑖

that is, 𝐯𝑖 is an eigenvector of (𝐀2
𝑒 + 𝛺2(𝐸)1) associated to the eigenvalue 𝜆2𝑖 + 𝛺2(𝐸). For a stable linear circuit Re

{

𝜆𝑖
}

< 0, for
all 𝑖 = 1,… , 𝑛. If 𝜆𝑖 ∈ R, then 𝜆2𝑖 + 𝛺2(𝐸) is real and positive, for all 𝑖 = 1,… , 𝑛. Conversely, if 𝜆𝑖 ∈ C, then Im

{

𝜆2𝑖 +𝛺2(𝐸)
}

=
2Re

{

𝜆𝑖
}

Im
{

𝜆𝑖
}

≠ 0. Thus zero is not an eigenvalue of (𝐀2
𝑒 +𝛺2(𝐸)1) and the matrix is invertible. □

The reduced order model is obtained substituting (8) into (6b)

𝑑𝑋1 = 𝑋2 𝑑𝑡 (11a)

𝑑𝑋2 =
(

−𝑈 ′(𝑋1) + 𝜀𝐛𝑇𝑚 𝐦1(𝐸)𝑋1 + 𝜀(𝐛𝑇𝑚 𝐦2(𝐸) − 1)𝑋2
)

𝑑𝑡 +
√

𝜀𝐵𝑚 𝑑𝑊𝑡 (11b)

1 For the sake of simplicity, we have used the same symbol 𝑡 also for the normalized time.
5
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3.2. Stochastic averaging

The second step in the derivation of a reduced model amounts in rewriting the SDE system in terms of new variables: the
imensionless mechanical energy and a mechanical angle, and then removing the latter through stochastic averaging.

For 𝜀 = 0, system (11) describes a Hamiltonian system, having 𝐸 = (1∕2)𝑋2
2 +𝑈 (𝑋1) as a first integral. Hamiltonian systems can

e rewritten in terms of the energy and an angle coordinates, such that the state equations take the form [43]:

𝑑𝐸
𝑑𝑡

= 0 (12a)
𝑑𝜃
𝑑𝑡

= 𝛺(𝐸) (12b)

here 𝜃 is the angle function and 𝛺(𝐸) is the angular frequency.
For small values of 𝜀, the implicit function theorem guarantees that the coordinate transformation (𝑋1, 𝑋2) → (𝐸, 𝜃) is locally

nvertible. This implies that, within the limits of small values for 𝜀, we can derive the SDE system for the energy and angle variables.

heorem 1 (Energy-angle SDEs). Consider the SDE system (11) and assume that an explicit expression for the angle variable as a function
f the original coordinates is available in the form 𝜃 = 𝜃(𝑋1, 𝑋2), then the energy and the angle are solutions of the SDE system

𝑑𝐸 =𝜀𝑎𝐸 (𝐸, 𝜃)𝑑𝑡 +
√

𝜀𝐵𝐸 (𝐸, 𝜃)𝑑𝑊𝑡 (13a)

𝑑𝜃 =
(

𝛺(𝐸) + 𝜀𝑎𝜃(𝐸, 𝜃)
)

𝑑𝑡 +
√

𝜀𝐵𝜃(𝐸, 𝜃)𝑑𝑊𝑡 (13b)

where (explicit dependence on 𝐸 and 𝜃 is dropped in 𝑋1(𝐸, 𝜃), 𝑋2(𝐸, 𝜃), for simplicity of notation)

𝑎𝐸 (𝐸, 𝜃) = 1
2
𝐵2
𝑚 +𝑋2 𝑓 (𝑋1, 𝑋2) (14a)

𝐵𝐸 (𝐸, 𝜃) = 𝐵𝑚 𝑋2 (14b)

𝛺(𝐸) = 𝜕𝜃
𝜕𝑋1

𝑋2 −
𝜕𝜃
𝜕𝑋2

𝑈 ′(𝑋1) (14c)

𝑎𝜃(𝐸, 𝜃) = 𝜕𝜃
𝜕𝑋2

𝑓 (𝑋1, 𝑋2) +
1
2
𝜕2𝜃
𝜕𝑋2

2

𝐵2
𝑚 (14d)

𝐵𝜃(𝐸, 𝜃) = 𝜕𝜃
𝜕𝑋2

𝐵𝑚 (14e)

eing

𝑓 (𝑋1, 𝑋2) = 𝐛𝑇𝑚 𝐦1(𝐸)𝑋1 + (𝐛𝑇𝑚 𝐦2(𝐸) − 1)𝑋2 (14f)

Proof. The proof is a straightforward application of Itô formula, using the definition of the dimensionless energy and angle variables,
and observing that, for the unperturbed system, (12b) implies (14c). □

After deriving the governing equations in the energy-angle representation (13), we aim at eliminating the angle variable.
According to Khasminskii’s stochastic averaging theorem [44], the slow varying process 𝐸 converges in probability as 𝜀 → 0 to
a one dimensional Markov process, in a time interval [0, 𝑇 ] with 𝑇 = (1∕𝜀). The Itô SDE for the one dimensional Markov process is
btained by averaging the original SDE (13a) with respect to the fast variable, while the slow one is kept constant [44,45], thereby
btaining

𝑑𝐸 ≃ 𝜀𝑎𝐸 (𝐸)𝑑𝑡 +
√

𝜀𝐵𝐸 (𝐸)𝑑𝑊𝑡 (15)

where the averaged coefficients are

𝑎𝐸 (𝐸) = lim
𝑇→+∞

1
𝑇 ∫

𝑇

0
𝑎𝐸 (𝐸, 𝜃(𝑡)) 𝑑𝑡 (16a)

𝐵𝐸 (𝐸) =

√

lim
𝑇→+∞

1
𝑇 ∫

𝑇

0
𝐵2
𝐸 (𝐸, 𝜃(𝑡)) 𝑑𝑡 (16b)

nd 𝜃(𝑡) is the solution of the fast equation, calculated while keeping the slow variable 𝐸 constant. For 𝜀 → 0, the fast equation
dmits the solution 𝜃 = 𝛺(𝐸)𝑡 + 𝜃0, where 𝜃0 is an arbitrary initial condition, and the averaged coefficients become

𝑎𝐸 (𝐸) = 1
2𝜋 ∫

2𝜋

0
𝑎𝐸 (𝐸, 𝜃) 𝑑𝜃 (17a)

𝐵𝐸 (𝐸) =

√

1 2𝜋
𝐵2
𝐸 (𝐸, 𝜃) 𝑑𝜃 (17b)
6

2𝜋 ∫0
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Fig. 4. Two-port network representation of a energy harvester for mechanical vibrations connected to a simple resistive load.

3.3. Stationary probability density function

Because the SDE (15) is single variable, the stationary probability density function (PDF) for the dimensionless energy 𝑝𝑠𝑡(𝐸) can
be easily found solving the associated Fokker–Planck equation (FPE)

− 𝜕
𝜕𝐸

(

𝑎𝐸 (𝐸)𝑝𝑠𝑡(𝐸)
)

+ 1
2

𝜕2

𝜕𝐸2

(

𝐵
2
𝐸 (𝐸)𝑝𝑠𝑡(𝐸)

)

= 0 (18)

Imposing null boundary conditions

lim
𝐸→+∞

𝑝𝑠𝑡(𝐸) = lim
𝐸→+∞

𝜕𝑝𝑠𝑡(𝐸)
𝜕𝐸

= 0 (19)

and by separation of variables, the following solution is found:

𝑝𝑠𝑡(𝐸) = 

𝐵
2
𝐸 (𝐸)

exp
⎛

⎜

⎜

⎝

2∫
𝑎𝐸 (𝐸)

𝐵
2
𝐸 (𝐸)

𝑑𝐸
⎞

⎟

⎟

⎠

(20)

where  is a constant whose value is determined imposing the normalization condition ∫ +∞
0 𝑝𝑠𝑡(𝐸)𝑑𝐸 = 1.

For the angle variable, at the lowest order in 𝜀, (13b) implies that the angle stationary PDF is found solving the FPE

−𝛺(𝐸)
𝜕𝑝̂𝑠𝑡(𝜃)
𝜕𝜃

= 0 (21)

with periodic boundary condition. Imposing normalization yields 𝑝̂𝑠𝑡(𝜃) = (2𝜋)−1.
Since, after averaging and at the lowest order in 𝜀, the energy and the angle are independent, the full stationary density function

eads

𝑃𝑠𝑡(𝐸, 𝜃) = 𝑝̂𝑠𝑡(𝜃) 𝑝𝑠𝑡(𝐸) = 1
2𝜋

𝑝𝑠𝑡(𝐸) (22)

Taking into account that the Jacobian of the coordinate change (𝑋1, 𝑋2) → (𝐸, 𝜃) is regular, the transformation can be inverted
o find the explicit expressions for 𝑋1(𝐸, 𝜃), and 𝑋2(𝐸, 𝜃). From (8) we have

𝐗𝑒(𝐸, 𝜃) = 𝐦1(𝐸)𝑋1(𝐸, 𝜃) +𝐦2(𝐸)𝑋2(𝐸, 𝜃)

Therefore, the expectation of any arbitrary function 𝐹 (𝐗𝑒(𝐸, 𝜃)) can be evaluated as

𝐸[𝐹 (𝐗𝑒(𝐸, 𝜃))] = 1
2𝜋 ∫

2𝜋

0 ∫

+∞

0
𝐹 (𝐗𝑒(𝐸, 𝜃)) 𝑝𝑠𝑡(𝐸) 𝑑𝐸 𝑑𝜃 (23)

4. Piezoelectric harvester design

In this section, we apply the methodology developed above (Section 3), to the optimization of the cantilever beam, piezoelectric
energy harvester described in Section 2. The cantilever beam is assumed to have a Duffing type nonlinearity, describing a stiffening
effect of the beam, with elastic potential energy 𝑈 (𝑍1) = (1∕2)𝑘1 𝑍2

1 + (1∕4)𝑘3 𝑍4
1 , where 𝑘1 and 𝑘3 are constant parameters. The

governing equations for the transducer are derived from the characterization of piezoelectric materials [46–48], obtaining

𝑏𝑚(𝐙𝑒) = −𝛼𝑉 (24a)

𝐶𝑝𝑧
𝑑𝑉
𝑑𝑡

= 𝛼𝑍2 + 𝐼 (24b)

here 𝐙𝑒 = [𝑉 , 𝐼]𝑇 is the vector of the electrical variables (the transducer’s output voltage and current), 𝛼 is the electro-mechanical
oupling constant (in N/V or As/m), and 𝐶𝑝𝑧 is the transducer’s capacitance.

The final goal of an energy harvesting system is to supply power to a load, or possibly to recharge the load’s internal battery.
s a benchmark, first we consider the simple resistive load shown in Fig. 4. This is the most common setup considered in energy
7

arvesting applications [13,17–19,42].
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4.1. Resistive load

An electrical load is any two-terminal element that absorbs energy from the circuit. In energy harvesting applications, it is
ommon to model the electrical load as a simple linear resistor, to keep the model mathematically tractable. However, in real
pplications, the electrical domain may include more complex two-terminal or two-port elements, possibly nonlinear, such as diode
ridge rectifiers, exploited to transform the transducer output into a direct current.

From Ohm’s law (passive sign convention), we have 𝐼 = −𝐺𝑉 , where 𝐺 = 𝑅−1 is the load conductance. The SDE system (3)
ecomes

𝑑𝑍1 =𝑍2 𝑑𝑡 (25a)

𝑑𝑍2 =
(

− 1
𝑚

𝑈̂ ′(𝑍1) −
𝜀̂
𝑚
𝑍2 −

𝜀̂𝛼
𝑚

𝑉
)

𝑑𝑡 +

√

𝜀̂
𝑚

𝑑𝑊𝑡 (25b)

𝑑𝑉 = 1
𝐶𝑝𝑧

(

𝛼𝑍2 − 𝐺𝑉
)

𝑑𝑡 (25c)

The dimensionless SDE system (6) is obtained from (25), using the normalizing diagonal matrix 𝐏 = diag[𝐿−1
0 , 𝑇0𝐿−1

0 , 𝐶𝑝𝑧𝑄−1
0 ], where

𝐿0, 𝑄0 and 𝑇0 are the normalizing length, charge and time, chosen as (values of 𝐿0 and 𝑄0 are in magnitude):

𝐿0 =
1

√

𝑘1
, 𝑄0 =

𝐶𝑝𝑧

𝛼
√

𝑚
, 𝑇0 =

√

𝑚
𝑘1

(26)

The dimensionless SDE system reads

𝑑𝑋1 =𝑋2 𝑑𝑡 (27a)

𝑑𝑋2 =
(

−𝑋1 − 𝜅𝑋3
1 − 𝜀𝑋2 − 𝜀𝑋3

)

𝑑𝑡 +
√

𝜀 𝑑𝑊𝑡 (27b)

𝑑𝑋3 =
(

𝛽𝑋2 − 𝛿𝑋3
)

𝑑𝑡 (27c)

where 𝐗𝑡 = [𝑋1, 𝑋2, 𝑋3]𝑇 is the state vector whose components are the dimensionless displacement, velocity and output voltage,
and the parameters are:

𝜅 =
𝑘3
√

𝑘1
, 𝜀 = 𝜀̂

√

𝑘1 𝑚
,

𝛽 = 𝛼2

𝐶𝑝𝑧

√

𝑚
𝑘1

, 𝛿 = 𝐺
𝐶𝑝𝑧

√

𝑚
𝑘1

(28)

For 𝜀 → 0 the solution of the SDEs (27a), (27b), approaches that of the underlying Hamiltonian system, which takes the form [29]:

𝑋1(𝐸, 𝜃) =
(

4𝐸2

1 + 4𝜅𝐸

)1∕4
sd(𝜃, 𝑘) (29a)

𝑋2(𝐸, 𝜃) =
√

2𝐸 cd(𝜃, 𝑘) nd(𝜃, 𝑘) (29b)

here 𝐸 = 𝑋2
2 (0)∕2+𝑈 (𝑋1(0)) is the value of the energy (determined by the initial conditions), sd(𝜃, 𝑘), cd(𝜃, 𝑘) and nd(𝜃, 𝑘) are the

acobi elliptic functions, and

𝑘2 = 1
2

(

1 − 1
√

1 + 4𝜅𝐸

)

(30)

is the elliptic modulus [49]. The angle is 𝜃(𝑡) = 𝛺(𝐸) 𝑡, with angular frequency

𝛺(𝐸) = (1 + 4𝜅𝐸)1∕4 (31)

A straightforward application of Lemma 1 yields

𝑚1(𝐸) =
𝛽 𝛺2(𝐸)

𝛿2 +𝛺2(𝐸)
(32a)

𝑚2(𝐸) =
𝛿 𝛽

𝛿2 +𝛺2(𝐸)
(32b)

Substituting (8) into (27) results into the reduced order model

𝑑𝑋1 =𝑋2 𝑑𝑡 (33a)

𝑑𝑋2 =
(

−(1 + 𝜀𝑚1)𝑋1 − 𝜅𝑋3
1 − 𝜀(1 + 𝑚2)𝑋2

)

𝑑𝑡 +
√

𝜀 𝑑𝑊𝑡 (33b)

We stress again that, as the energy is nearly constant, 𝑚1 and 𝑚2 are constant as well. Therefore, the explicit dependence of the
8

coefficient on 𝐸 is omitted for clarity of notation.
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Fig. 5. Stationary probability density function for the dimensionless energy of the SDEs system (27). Parameters values are: 𝜅 = 1, 𝛽 = 0.5, 𝛿 = 50, and 𝜀 = 0.25.

The coefficients of the averaged energy equation take the form

𝑎𝐸 (𝐸) = 1
2𝜋 ∫

2𝜋

0

(

1
2
− (1 + 𝑚2)𝑋2

2 (𝐸, 𝜃) − 𝑚1𝑋1(𝐸, 𝜃)𝑋2(𝐸, 𝜃)
)

𝑑𝜃 (34a)

𝐵𝐸 (𝐸) =

(

1
2𝜋 ∫

2𝜋

0
𝑋2

2 (𝐸, 𝜃)𝑑𝜃

)
1
2

(34b)

Using the results in Appendix, the following expressions for the averaged coefficients are found

𝑎𝐸 (𝐸) =1
2
−

1 + 𝑚2(𝐸)
2 𝑘2 (𝑘)

𝐸
(

𝐼2 − 𝑘′2𝐼4
)

(35a)

𝐵𝐸 (𝐸) =
(

𝐸
2 𝑘2 (𝑘)

(

𝐼2 − 𝑘′2𝐼4
)

)
1
2

(35b)

where (𝑘) is the complete elliptic integral of the first kind and 𝑘′ is the complementary modulus. The coefficients 𝑎𝐸 (𝐸) and 𝐵𝐸 (𝐸)
are finally used to calculate the stationary marginal PDF for the energy, according to (20).

The stationary marginal PDF for the energy calculated above, is compared against numerical result in Fig. 5, demonstrating the
accuracy of the approximations used in the derivation. The numerical marginal PDF is calculated through Monte-Carlo simulations,
integrating numerically the SDE system (27), using the stochastic Runge–Kutta of strong order 1 method [38,50]. The time
integration length was 𝛥𝑇 = 104 (dimensionless time), resulting in a normalized time integration step (𝛿𝑡 ≃ 37 × 10−6). Results were
obtained averaging over 20 simulations carried out for different realizations of the Wiener process, removing the initial transient
interval 𝛥𝜏 from the data for each simulation. Because the realizations of the Wiener processes are independent, the resulting data
is equivalent to a longer (20(𝛥𝑇 − 𝛥𝜏)) time simulation. The probability to find the system in each energy interval (𝐸,𝐸 + 𝑑𝐸), is
defined as the number of samples in that interval, divided by the total number of samples.

As a figure of merit for the harvester’s performance, we use the dimensionless root mean square output voltage 𝑋3,(𝑟𝑚𝑠) =
√

E[𝑋2
3 ].

According to (8), the expectation 𝐸[𝑋2
3 ] is given by

E[𝑋2
3 ] =

1
2𝜋 ∫

2𝜋

0 ∫

+∞

0

(

𝑚1(𝐸)𝑋1(𝐸, 𝜃) + 𝑚2𝑋2(𝐸, 𝜃)
)2

𝑝𝑠𝑡(𝐸) 𝑑𝐸𝑑𝜃 (36)

The integration with respect to the angle is discussed in Appendix, whereas the integration with respect to the energy is carried
out numerically. Fig. 6 shows the dimensionless root mean square output voltage 𝑋3,(𝑟𝑚𝑠) versus parameter 𝛿. Blue squares are
expectations determined from numerical simulations, while the red line is the theoretical prediction obtained with the proposed
method. Again, agreement is excellent, thus validating the proposed approach.

4.2. Matched load

Inspired by our recent works [26,30,31], as a second example we consider the piezoelectric energy harvester with a matched
electrical load shown in Fig. 7. The reactive behavior of the piezoelectric transducer implies that part of the injected energy is
stored, and later reflected to the source, by the transducer. Such a reactive power cannot be converted into useful average power,
thus significantly reducing the harvested power and the power efficiency. The role of the matching network is to reduce this reactive
energy, often interpreted as a mismatch between the electrical and the mechanical parts of the harvester. Obviously, perfect matching
is possible only at a specific frequency. Nonetheless, a proper design of the matching network allows to achieve a partial matching
over a relatively wide frequency interval, thus increasing significantly the output voltage and the harvested power delivered to the
load.
9
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Fig. 6. Dimensionless root mean square output voltage 𝑋3,(𝑟𝑚𝑠) versus parameter 𝛿, for the energy harvester with resistive load. Other parameters values are:
𝜅 = 1, 𝛽 = 0.5, and 𝜀 = 0.25.

Fig. 7. Two-port network representation of a energy harvester for mechanical vibrations, with a low-pass L-matching network interposed between the harvester
and the resistive load.

Taking into account the harvester nonlinearity prevents an analytical determination of the optimal reactance values of the
electrical components in the matching network. Their optimal value with respect to a prescribed metric can be found numerically,
but the calculation requires lengthy simulations, an approach that becomes unfeasible if a large parameter space must be explored.
By contrast, applying the method proposed in this work, most of the calculations can be carried out analytically, with only the PDF
and the output voltage requiring numerical integration steps, a task that can be performed in few seconds.

Considering the circuit shown in Fig. 7, application of Kirchhoff laws gives the governing equations

𝑑𝑍1 = 𝑍2 𝑑𝑡 (37a)

𝑑𝑍2 =
(

− 1
𝑚

𝑈̂ ′(𝑍1) −
𝜀̂
𝑚
𝑍2 −

𝜀̂𝛼
𝑚

𝑉
)

𝑑𝑡 +

√

𝜀̂
𝑚

𝑑𝑊𝑡 (37b)

𝑑𝑉 = 1
𝐶𝑝𝑧

(𝛼𝑍2 − 𝐼)𝑑𝑡 (37c)

𝑑𝐼 = 1
𝐿𝑆

(𝑉 − 𝑉𝑜)𝑑𝑡 (37d)

𝑑𝑉𝑜 =
1
𝐶𝑃

(𝐼 − 𝐺𝑉𝑜)𝑑𝑡 (37e)

where 𝑉𝑜 is the output voltage, and 𝐿𝑆 and 𝐶𝑃 are the inductance and capacitance parameters of the matching network that should
be optimized.

Introducing the diagonal matrix

𝐏 = diag[𝐿−1
0 , 𝑇0𝐿

−1
0 , 𝐶𝑝𝑧𝑄

−1
0 , 𝑇0𝑄

−1
0 , 𝐶𝑝𝑧𝑄

−1
0 ]

where 𝐿0, 𝑄0 and 𝑇0 are defined in (25), the following normalized SDE system is obtained

𝑑𝑋1 =𝑋2 𝑑𝑡 (38a)

𝑑𝑋2 =
(

−𝑋1 − 𝜅𝑋3
1 − 𝜀𝑋2 − 𝜀𝑋3

)

𝑑𝑡 +
√

𝜀 𝑑𝑊𝑡 (38b)

𝑑𝑋3 =
(

𝛽𝑋2 −𝑋4
)

𝑑𝑡 (38c)

𝑑𝑋4 =𝜇
(

𝑋3 −𝑋5
)

𝑑𝑡 (38d)

𝑑𝑋5 =
(

𝜈𝑋4 − 𝛿𝑋5
)

𝑑𝑡 (38e)
10
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Fig. 8. Stationary probability density function for the dimensionless energy of the SDEs system (38). Parameters values are: 𝜅 = 1, 𝛽 = 0.5, 𝛿 = 50, 𝜇 = 𝜈 = 10,
and 𝜀 = 0.25.

where 𝐗𝑡 = [𝑋1,… , 𝑋5]𝑇 is the state vector which components are the (dimensionless) displacement, velocity, voltage across the
transducer, output current and output voltage, respectively. The values of coefficients 𝜅, 𝜀 and 𝛽 follow (28), and

𝜇 = 𝑚
𝐶𝑝𝑧 𝐿𝑆 𝑘1

, 𝜈 =
𝐶𝑝𝑧

𝐶𝑃
, 𝛿 = 𝐺

𝐶𝑃

√

𝑚
𝑘1

(39)

Defining the complex quantities

𝑆 =𝛽
1 + 𝑗𝛺

𝑗𝛺 + 𝛿
𝜇𝜈

𝑗𝛺 −𝛺2 𝑗𝛺 + 𝛿
𝜇𝜈

+
𝑗𝛺 + 𝛿

𝜈

(40a)

𝑇 =𝛽
(

𝑗𝛺 −𝛺2 𝑗𝛺 + 𝛿
𝜇𝜈

+
𝑗𝛺 + 𝛿

𝜈

)−1

(40b)

and using Lemma 1, we find

𝑚1,1 = −𝛺 Im {𝑆} (41a)

𝑚2,1 = Re {𝑆} (41b)

𝑚1,3 = −𝛺 Im {𝑇 } (41c)

𝑚2,3 = Re {𝑇 } (41d)

where 𝑚𝑖,𝑗 (𝐸) denotes the 𝑗th component of vector 𝐦𝑖.
The reduced order model and the coefficients of the averaged equations are identical to (33) and (35), respectively, with 𝑚1 and

𝑚2 replaced by 𝑚1,1 and 𝑚2,1. Fig. 8 shows a comparison between the stationary marginal PDF computed from numerical simulations
and the theoretical prediction.

For the rms output voltage, we calculate the expectation E[𝑋2
5 ], thereby obtaining:

E[𝑋2
5 ] =

1
2𝜋 ∫

2𝜋

0 ∫

+∞

0

(

𝑚1,3(𝐸)𝑋1(𝐸, 𝜃) + 𝑚2,3𝑋2(𝐸, 𝜃)
)2

𝑝𝑠𝑡(𝐸) 𝑑𝐸𝑑𝜃 (42)

As in the previous example, integration with respect to the angle is described in Appendix, while integration with respect to energy
is calculated numerically.

Fig. 9 shows the dimensionless root mean square output voltage 𝑋5,(𝑟𝑚𝑠) versus the parameter 𝛿, for two different set of values
of the parameters 𝜇, 𝜈, that are associated to the capacitance and inductance of the electrical elements in the matching network.
Blue and black squares are numerical results obtained from Monte-Carlo simulations, while red lines correspond to the proposed
approach. Blue squares and solid red line are results for 𝜇 = 𝜈 = 10, while black squares and dashed red line are for 𝜇 = 𝜈 = 100.

Finally, Fig. 10 shows 𝑋5,(𝑟𝑚𝑠) =
√

E[𝑋2
5 ] versus parameters 𝜇 and 𝜈. The relationship between 𝜇, 𝜈, and 𝐿𝑆 , 𝐶𝑃 is defined in

(39). Calculating the dimensionless output voltage for different values of 𝜇 and 𝜈, it is possible to determine the parameters’ values
that maximize the output voltage, thus optimizing the matching network. In particular, we have calculated the output voltages for
𝜇 ∈ (0, 5], and 𝜈 ∈ [1, 50]. We found that the output voltage has a maximum of 𝑋5,(𝑟𝑚𝑠) = 0.2657 at 𝜇𝑜𝑝𝑡 = 1.05, 𝜈𝑜𝑝𝑡 = 50. It is
worth noticing that the output voltage is strictly increasing for increasing values of 𝜇, with a saturating effect. As a last remark,
we observe that exploiting the matching network increases the maximum output voltage by a factor of about 8, with respect to the
energy harvester with a simple, unmatched resistive load.
11
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Fig. 9. Dimensionless root mean square output voltage 𝑋5,(𝑟𝑚𝑠), versus parameter 𝛿, for the energy harvester with matched load. Blue squares: Monte-Carlo
simulations for 𝜇 = 𝜈 = 10. Black squares: Monte-Carlo simulations for 𝜇 = 𝜈 = 100. Red lines are theoretical predictions. Other parameters values are: 𝜅 = 1,
𝛽 = 0.5, and 𝜀 = 0.25.

Fig. 10. Dimensionless output voltage root mean square 𝑋5,(𝑟𝑚𝑠) versus parameters 𝜇 and 𝜈, for the energy harvester with matched load. Other parameters values
are: 𝜅 = 1, 𝛽 = 0.5, 𝛿 = 10, and 𝜀 = 0.25.

5. Conclusions

This paper presented a methodology for the analysis, design, and optimization of electro-mechanical systems for energy
harvesting applications. The method is based on model order reduction and stochastic averaging, and it is suitable for application
to nonlinear energy harvesters for ambient mechanical vibrations modeled as white Gaussian noise.

The procedure permits the reduction of the system of nonlinear stochastic differential equations describing the harvester, to
a single stochastic equation for the mechanical energy. The simplified system was then solved, obtaining the relevant expected
quantities like average harvested power and the root mean square output voltage. In particular, the simplified model made the
calculation of expected quantities relatively easy, allowing for the exploration of a large parameter space. In contrast, traditional
approaches would require lengthy, time-consuming Monte Carlo simulations.

As an example, the method was applied to the analysis of a nonlinear, piezoelectric energy harvester with two different load
setups: a simple resistive load, and a matched load. The method was validated against Monte Carlo simulations, providing a
numerical solution of the original, nonlinear stochastic model. The method shows good accuracy, and it proves effective in reducing
computational complexity providing a simple and efficient tool for the design of the matching network.

Finally, the energy harvester with a matched load was shown to offer a significant boost in terms of root mean square output
voltage with respect to a simple, non-matched load.
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ppendix. Integrals of powers of the Jacobi elliptic functions

The calculation of the averaged coefficients (34) and of the root mean square output voltages (36), (42) require to evaluate the
ntegrals

1
2𝜋 ∫

2𝜋

0
𝑋2

1 (𝐸, 𝜃) 𝑑𝜃 = 2𝐸
√

1 + 4𝜅𝐸 ∫

4(𝑘)

0
sd2(𝑢) 𝑑𝑢 (A.1)

1
2𝜋 ∫

2𝜋

0
𝑋1(𝐸, 𝜃)𝑋2(𝐸, 𝜃) 𝑑𝜃 = 2𝐸

(1 + 4𝜅𝐸)1∕4 ∫

4(𝑘)

0
sd(𝑢) cd(𝑢)nd(𝑢) 𝑑𝑢 (A.2)

1
2𝜋 ∫

2𝜋

0
𝑋2

2 (𝐸, 𝜃) 𝑑𝜃 = 2𝐸 ∫

4(𝑘)

0
cd2(𝑢)nd2(𝑢) (A.3)

Integrals (A.1) and (A.3) can be evaluated using the relationships between the squares of the Jacobi elliptic functions:

𝑘2sd2(𝑢) =nd2(𝑢) − 1 (A.4)

𝑘2cd2(𝑢) =1 − 𝑘′2nd2(𝑢) (A.5)

where 𝑘′2 = 1−𝑘2 is the complementary modulus. Substituting into (A.1) and (A.3), integrals of the following kind must be evaluated
for even 𝑛

𝐼𝑛 = ∫

4(𝑘)

0
nd𝑛(𝑢) 𝑑𝑢 (A.6)

Lemma 3. Integral (A.6) admits the following recursive solution:

𝐼2 =
4(𝑘)
𝑘′2

(A.7)

𝐼4 =
8(2 − 𝑘′2)(𝑘) − 4(1 − 𝑘2)(𝑘)

3𝑘′4
(A.8)

𝐼𝑛 =
1

(1 − 𝑛)𝑘′2
(

(2 − 𝑛)(𝑘′2 + 1)𝐼𝑛−2 + (𝑛 − 3)𝐼𝑛−4
)

, 𝑛 = 6, 8,… (A.9)

where (𝑘) and (𝑘) are the complete elliptic integrals of the first and second kind, respectively [49].

Proof. For 𝑛 = 2, 4, integral (A.6) is solved using the Fourier series for nd2(𝑢), and nd4(𝑢) [51]:

nd2(𝑢) =
(𝑘)

𝑘′2 (𝑘)
+ 𝜋2

𝑘′2 2(𝑘)

+∞
∑

𝑛=1
(−1)𝑛𝑛 csch(2𝑛𝑊0) cos

(

𝑛𝜋𝑢
(𝑘)

)

(A.10)

nd4(𝑢) =
2(2 − 𝑘2)(𝑘) − (1 − 𝑘2)(𝑘)

3𝑘′4(𝑘)
+ 𝜋2

6𝑘′4 (𝑘)

+∞
∑

𝑛=1
(−1)𝑛 𝑛

(

(

𝑛𝜋
(𝑘)

)2
+ 4(2 − 𝑘2)

)

csch(2𝑛𝑊0) cos
(

𝑛𝜋𝑢
(𝑘)

)

(A.11)

where

𝑊0 =
𝜋(𝑘′)
2(𝑘)

(A.12)

For larger, even values of 𝑛, we proceed as follows: we consider first the differential relationships of Jacobi elliptic functions, enabling
o obtain

𝑑
𝑑𝑢

[

nd𝑚(𝑢) sd(𝑢) cd(𝑢)
]

= −(𝑚 + 2)𝑘
′2

𝑘2
nd𝑚+3(𝑢) + (𝑚 + 1)𝑘

′2 + 1
𝑘2

nd𝑚+1(𝑢) − 𝑚 1
𝑘2

nd𝑚−1(𝑢) (A.13)
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For 𝑚 = 𝑛 − 3
𝑑
𝑑𝑢

[

nd𝑛−3(𝑢) sd(𝑢) cd(𝑢)
]

= (1 − 𝑛)𝑘
′2

𝑘2
nd𝑛(𝑢) + (𝑛 − 2)𝑘

′2 + 1
𝑘2

nd𝑛−2(𝑢) − (𝑛 − 3) 1
𝑘2

nd𝑛−4(𝑢) (A.14)

After integration, taking into account that the integral on the left hand side is null, and rearranging the terms we obtain (A.9). □

We obtain

1
2𝜋 ∫

2𝜋

0
𝑋2

2 (𝐸, 𝜃) 𝑑𝜃 = 𝐸
2 𝑘2 (𝑘)

(

𝐼2 − 𝑘′2𝐼4
)

(A.15)

1
2𝜋 ∫

2𝜋

0
𝑋2

1 (𝐸, 𝜃) 𝑑𝜃 = 1
4 𝑘2 (𝑘)

2𝐸
√

1 + 4𝜅𝐸

(

𝐼2 − 4(𝑘)
)

(A.16)

Finally, integral (A.2) is null because of the periodicity of Jacobi elliptic functions.
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