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1 Introdution

Flow �elds in high speed regimes exhibit strong shok waves and sharp boundary

layers (BL). Their numerial predition is generally obtained with some of the

several upwind methods that have been proposed in the literature over the past

twenty years. Though shok waves are omputed with a satisfatory numerial

apturing, the desription of shear ows, suh as boundary layers, an su�er

of severe shortomings. These problems have widely experimented more than a

deade ago for ertain upwind methods and, more reently, for others. In the

following we disuss this matter and fous attention on the motivations for suh

numerial de�ienies.

2 A Signi�ant Problem and Some Numerial

Experiments

We onsider a simple but signi�ant problem: the high speed ow over a at plate

in the laminar regime. Downstrean of the front region of strong interation, just

behind the leading edge of the plate, the ow �eld struture is haraterized by

the visous region of the BL, losely to the wall. An outer oblique shok wave,

indued by the BL obstrution, propagates higher over the plate. Inside the BL,

the veloity presents, along the normal to the plate, severe variations, as well

as do the density or the temperature. On the ontrary, the pressure is very uni-

form, sine the streamlines run almost parallel eah other. The di�usive uxes

(typial of the N-S eqs.) play a dominant role inside the BL, by generating the

orret physial dissipation and di�usion. On the ontrary, the onvetive uxes

(typial of the Euler eqs.) should be almost inative and must avoid any spurious

injetion of numerial (therefore arti�ial) dissipation, even in the presene of

strong variations of the density and the veloity. However,we �nd that not all

the upwind methods give the orret estimate of the onvetive uxes and, de-

pending on the upwind method, the thikness of the BL an result anomalously

thiker beause of the additional numerial dissipation or the pressure distribu-

tion inside the BL an show questionable osillations.

In order to investigate the e�ets due to the di�erent upwind methods, we have

omputed the at plate ow �eld with a simple ode based on the time-dependent
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integration of the laws of onservation (laminar N-S), a �nite volumes disretiza-

tion on a properly strethed strutured grid and the plain �rst order sheme. The

di�usive uxes at the interfae between two adjaent volumes are evaluated with

a entered approximation and the onvetive uxes are estimated with several

upwind methods that appear in the literature; the �rst order sheme is adopted

to emphasize the features of eah upwind method.

We lassify in groups the upwind methods that we onsider in the following

numerial experiments: (a) ux-di�erene splitting methods (FDS), with the

approximate solvers shown in [15℄ (FDSROE) and [11℄ (FDSPAN, a mirror im-

age of the solver proposed in [10℄), (b) ux-vetor splitting methods (FVS) in

the version reported in [16℄ (FVSSW), [19℄ (FVSVL) and [12℄ (FVSEFM), ()

the method HLL (or HLLE) proposed in [5℄ and [3℄, (d) the AUSM methods

presented in [7℄ (AUSM-VEL), [8℄ (AUSM-M) and [9℄ (AUSM+), and (e) meth-

ods, FDS mimes, initially di�erent from the FDS ones, that tend to mimi them

through some implementations and are disussed in [1℄ (HUS, based on FVS),[3℄

(HLLEM, based on HLL), [17℄ (HLLC, also based on HLL), [20℄ [21℄ (AUSMD

and AUSMV).

We have performed numerial experiments with the above methods by pre-

ditiong the ow �eld of the at plate problem haraterized by the follow-

ing data: length of the plate L = 1:0m and upstream onditions M

1

= 5:0,

Re

1

L

= 62; 000m

�1

, T

1

= 72:2K, T

w

= 300K and Pr = 0:72. The results,

presented as pressure (p=p

1

) distribution on the normal to the plate, at the

distane x = 0; 89m from the leading edge, are ompared with a referene so-

lution obtained with a ode that is based on FDSPAN, aurate ENO sheme

and a muh �ner grid, and has been heked against test-ases reported in the

literature.

The FDS preditions by FDSROE and FDSPAN, almost oinident, appear su-

perimposed in Fig.1. The shok wave and the expansion fan are not so sharp as

they should be, due to the poor auray of the �rst order sheme and the rough

grid. Nonetheless, the overall predition is good. The shok loation and the

pressure value at the wall are orret: these are indiations that the numerial

dissipation has been kept low.

The results obtained with the FVS methods are di�erent. Those from FVSSW

and FVSVL are shown in Fig.2 and those from FVSEFM and HLL appear in

Fig.3. The sharpness of the aptured oblique shok is very good for FVSVL and

HLL, not so muh for FVSSW and FVSEFM, but the most important fat is

that its loation is too far from the wall and the pressure level there is de�nitely

overestimated. These results are due to a remarkable numerial dissipation in-

jeted in the BL.

The results given by the three version of AUSM are reported in Fig.4. The ver-

sions, AUSM-VEL and AUSM-M, almost oinident exept at the wall, give a

sharp apturing of the oblique shok, whereas AUSM+ shows a thiker aptur-

ing zone. The pressure level at the wall seems to have been well predited, a

sign that the numerial dissipation is minimal. However, a questionable result

is represented by the pressure osillation inside the BL, in the proximity of the
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wall. Suh an osillation shows up learly for AUSM-VEL, but also, though with

smaller amplitude, in AUSM-M and AUSM+, as it ould be seen in enlarged

sale of the absissa (Fig.5) or by inreasing the Reynolds number.

The results obtained with FDS mimes methods are very lose to the FDS ones.

We do not report any result from them, but we remark that these methods fully

reprodue the FDS features.

The remarkable disrepanies among the numerial preditions in a trivial uid-

dynami ase require a ritial interpretation of the algorithms that are ditated

by the di�erent upwind methods.

3 A Critial Analysis on Upwind Methods

We borrow here the odd-even deoupling problem suggested in [13℄ in the inves-

tigation of numerial instabilities typial of some upwind methods in ows with

strong shoks, and we extend that analysis to a more general ase and to the

many onsidered upwind methods.

The present analysis starts from the Euler eqs. (upwinding refers to the onve-

tive uxes) in the 2D (x; y) problem, written in the linearized form about the

uniform parallel ow haraterized by �

0

= 1:0, u

0

6= 0, v

0

= 0, p

0

= 1:0 (u and

v are the veloity omponents along x and y). For eah upwind method we de-

velop the algorithm within the frame of the above linearization and we estimate

the ux on any interfae between two adjaent volumes. The ow is assumed

uniform along x and variations an only our on the transversal diretion y.

Initial onditions are imposed with alternate perturbations along y: �

0

= 1� �̂

0

,

u

0

= u

0

� û

0

, v

0

= 0, p

0

= 1� p̂

0

, where the signs + and � hold alternatively in

the ells in the y diretion. Then, the �rst order sheme is onstruted and the

integration in time is arried out on the basis of the initial onditions (�

0

, u

0

,

v

0

, p

0

). Finally, it is possible to obtain simple reursive formulas that determine

the ow properties at any integration step K +1, starting at the step K. These

formulas are reported in Tab.1. The label MOC refers to the FDS approah as

originally proposed in [4℄ and founded on the method of harateristis. The for-

mulas provide the evolution in time of the perturbations of density (�̂), veloity

(û) and pressure (p̂).

In order to interpret the results shown in the Figs.1-4, we assume initial pertur-

bations of density and veloity (�̂

0

6= 0, û

0

6= 0) and uniform pressure (p̂

0

= 0),

a situation somewhat similar to a BL. The orret solution of the Euler eqs.

requires the preservation of the initial onditions. It is now interesting to see

how the di�erent upwind shemes reat in this problem.

The FDS methods (MOC, FDSROE, FDSPAN) give the orret answer: at any

K (and for K ! 1), we have �̂

1

= �̂

K

= �̂

0

and û

1

= û

K

= û

0

. Therefore,

we expet that, in the at plate problem, the FDS methods do not reat to

the density and veloity pro�les generated by the only di�usive terms of the

N-S equations and that the onvetive terms do not add any inorret dissipa-

tion. The reursive formulas for MOC, the approximate solvers FDSROE and
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FDSPAN and the FDS mime HLLC are oinident. Similar results are obtained

also for the other FDS mimes (HUS, AUSMD, AUSMV), sine the only slight

variation appears in the oeÆient of the pressure perturbation that remains

null in this analysis (p̂

1

= p̂

K

= p̂

0

= 0), but the struture of the formulas

remains the same.

On the ontrary, the reation of the FVS methods is very di�erent. Even if the

oeÆients in the formulas are not equal, the struture of the formulas results

the same for FVSSW, FVSVL and FVSEFM. The initial perturbations , �̂

0

and

û

0

derease ontinuously by denoting the generation of spurious numerial dis-

sipation. Also HLL presents the same inorret behavior, even if the oeÆient

are di�erent. It is now lear why the thikness of the BL is overestimated in

Figs. 2 and 3, as well as the wall pressure: the invisid uxes of FVS and HLL

methods, inside regions of �nite gradients of density and veloity, tend to atten

these gradients by injeting numerial dissipation.

The AUSM methods reat di�erently. If we look at AUSM-VEL, we reognize

that the veloity perturbation is preserved orretly, but the density pertur-

bation is ampli�ed and triggers a stable pressure perturbation initially absent:

�̂

1

= p̂

1

=



 � 1

�̂

0

. This very anomalous behavior is on�rmed, in omputa-

tions arried out for the at plate problem, by the generation of steady pressure

osillations in the BL that are indued by the density gradient, just as shown in

Figs. 4 and 5. The reursive formulas for AUSM-M and AUSM+ are idential

eah other and very simple: any initial perturbation is preserved. This is orret

for density and veloity. However, the pressure should hange through travel-

ling waves as for FDS, whereas the reursive formulas indiate that they will be

maintained. Therefore we shall be not surprised in deteting small but persistent

pressure osillations even with these two methods. We remind that the gener-

ation of more or less remarkable pressure osillations with these methods has

been already experimented in omputations of pratial interest and reported in

the literature [14℄ [18℄ [6℄.
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Table 1. Integration with the linearized form of the di�erent methods.

MOC �̂

K+1

= �̂

K

+ (�

2�



)p̂

K

FDSROE û

K+1

= û

K

FDSPAN p̂

K+1

= (1� 2�)p̂

K

HLLC

FVSSW �̂

K+1

= (1 �

�



)�̂

K

+ (�

�



)p̂

K

û

K+1

= (1�

2�



)û

K

p̂

K+1

= (�)�̂

K

(1� 3�)p̂

K

FVSVL �̂

K+1

= (1�

�

2

)�̂

K

+ (�

�

2

)p̂

K

û

K+1

= (1� 2�)û

K

p̂

K+1

= (�



 + 1

)�̂

K

(1� 3�



 + 1

)p̂

K

FVSEFM �̂

K+1

= (1�

p

2�

p

�

)�̂

K

+ (�

p

2�

p

�

)p̂

K

û

K+1

= (1� 2

p

2�

p

�

)û

K

p̂

K+1

= (

( + 1)�

p

2

p

�

)�̂

K

(1� 3

( + 1)�

p

2

p

�

)p̂

K

HUS �̂

K+1

= �̂

K

+ (�

�

2

 + 1



)p̂

K

û

K+1

= û

K

p̂

K+1

= (1� �

3 � 1

 + 1

)p̂

K

HLL �̂

K+1

= (1� 2�)�̂

K

û

K+1

= (1� 2�)û

K

p̂

K+1

= (1� 2�)p̂

K

AUSM-VEL �̂

K+1

= (1 +

�

2

)�̂

K

+ (�

�

2

)p̂

K

û

K+1

= û

K

p̂

K+1

= (

�

2

)�̂

K

(1�

�

2

)p̂

K

AUSM-M �̂

K+1

= �̂

K

AUSM+ û

K+1

= û

K

p̂

K+1

= p̂

K

AUSMD �̂

K+1

= �̂

K

+ (��)p̂

K

AUSMV û

K+1

= û

K

p̂

K+1

= (1� �)p̂

K
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Fig. 1. Pressure plot at x = 0:89 m; a)FDSPAN and FDSROE; b)FVSVL and FVSSW;

)FVSEFM and HLL; d)AUSM-VEL, AUSM-M and AUSM+; e)enlarged view of

AUSM-VEL, AUSM-M and AUSM+ behavior lose to the wall.


