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Lifshitz transitions and Weyl semimetals from a topological superconductor with supercurrent flow
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(Received 26 April 2024; accepted 18 June 2024; published 15 July 2024)

A current flowing through a superconductor induces a spatial modulation in its superconducting order
parameter, characterized by a wave vector Q related to the total momentum of a Cooper pair. Here we investigate
this phenomenon in a p-wave topological superconductor, described by a one-dimensional Kitaev model. We
demonstrate that, by treating Q as an extra synthetic dimension, the current-carrying nonequilibrium steady
state can be mapped into the ground state of a half-filled two-dimensional Weyl semimetal, whose Fermi surface
exhibits Lifshitz transitions when varying the model parameters. Specifically, the transition from type-I to type-II
Weyl phases corresponds to the emergence of a gapless p-wave superconductor, where Cooper pairs coexist with
unpaired electrons and holes. Such a transition is signaled by the appearance of a sharp cusp in the Q-dependence
of the supercurrent, at a critical value Q∗ that is robust to variations of the chemical potential μ. We determine the
maximal current that the system can sustain in the topological phase, and we discuss possible implementations.

DOI: 10.1103/PhysRevResearch.6.033060

I. INTRODUCTION

Weyl semimetals (WSMs) and topological superconduc-
tors (TSs) might lead to an actual breakthrough in quantum
science and technology. Indeed WSMs are quite promising
for applications in ultrafast electronics and photonics due to
their peculiar linear band spectrum and large carrier mobility
[1,2]. These materials are commonly divided into two fam-
ilies, dubbed type-I [3,4] and type-II [5–8], depending on
the tilting of the cone characterizing their electronic spec-
trum near special point nodes. In turn, these bulk nodes also
protect the existence of topological Fermi arc states on the
WSM surfaces [9–11], as confirmed by various angle-resolved
photoemission spectroscopy (ARPES) experiments [12–15].
While three-dimensional (3D) WSMs have been vastly stud-
ied, more recently a growing interest has been devoted to
two-dimensional WSMs [16–20], also in view of their pos-
sible realization with cold atoms [18].

Similarly, TSs are materials with a huge potential in ap-
plications, as they combine two remarkable properties. On
the one hand, they host edge modes, known as Majorana
quasiparticles (MQPs) [21–25], featuring peculiar nonlocal
correlations and unconventional braiding properties that could
be harnessed for topologically protected quantum compu-
tation. On the other hand, they exhibit a dissipationless
transport that is ideal to develop green nanoelectronics. Var-
ious implementations of 1D TSs, based, e.g., on proximized
spin-orbit nanowires [26,27], quantum spin Hall edge systems
contacted to ferromagnets [28,29], and ferromagnetic atom
chains [30–35], have been proposed and are supported by
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promising, although not yet conclusive, experimental confir-
mations [36–43].

In this work, we show that the phase modulation Q emerg-
ing in the order parameter of a superconductor in the presence
of a current flow [44] naturally provides an intriguing con-
nection between TSs and WSMs. Indeed, by treating Q as an
additional synthetic dimension, we show that the nonequilib-
rium stationary state of the 1D superconductor with a current
flow can be mapped onto the ground state of a 2D half-filled
fermionic model. As a consequence, the appearance of the
various phases of the 1D superconductor can be understood
as the result of a Lifshitz transition [45,46] in the Fermi
surface of the associated 2D model. In particular, a 1D p-wave
TS is mapped onto a 2D WSM [18,47–51]. By varying the
model parameters, the transition from type-I to type-II WSM
corresponds to the appearance of a gapless superconducting
phase in the TS, where Cooper pairs coexist with unpaired
electrons and holes. In turn, this also determines a change in
the range of Q-values where the gapped TS exists, which is
controlled by its chemical potential or superconducting order
parameter, depending on whether the associated WSM is in
the type-I or in the type-II phase. By exploiting the mapping,
we construct the low-energy expression of a Fermi “arc” in
the 2D WSM and of the Majorana edge mode in the corre-
sponding current-biased 1D superconductor. By contrast, a
1D s-wave superconductor corresponds to a 2D insulator or
to a 2D conventional semimetal, depending on the parameter
range. We show that such a difference between s-wave and p-
wave superconductors can be encoded in different topological
classes of closed circuits in the extended 2D Brillouin zone.

The effect of a superconducting phase modulation is typi-
cally neglected in most models of Josephson junctions (JJs),
with the argument that current conservation enables one to
evaluate the current in the normal weak link, whose properties
ultimately determine the critical current. This assumption has
also been made in models for JJs [52,53] or SQUIDs based
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FIG. 1. A topological p-wave superconductor carrying a super-
current flow. Its order parameter exhibits a phase modulation Q
related to the momentum of Cooper pairs.

on p-wave TSs [33,54,55]. However, because the phase mod-
ulation induced by the current modifies the bulk spectrum
of the superconductor, the parameter range determining the
topological phases of a TS is actually affected by the super-
current flow itself [56]. In particular, in the past two years
the topological effects of a superconducting phase modulation
have been investigated for the Kitaev model [57], focusing
on the regime where the magnitude �0 of superconducting
order parameter is larger than the bare bandwidth parameter w

[58,59]. Such a regime �0 > w, however, is hardly achievable
in realistic implementations, and an investigation in more
realistic regimes is lacking.

Our analysis overcomes this limitation. Indeed we inves-
tigate the effects of the superconducting phase modulation
Q on a p-wave 1D superconductor connected to reservoirs,
as sketched in Fig. 1. The system is modeled by a Kitaev
chain, characterized by a hopping strength w, a chemical
potential μ, and a magnitude �0 of the superconducting order
parameter. By analyzing arbitrary parameter values, we show
that, while in the regime �0 > w the system remains always
gapped and the role of Q is to merely modify the values of
μ separating the trivial from the topological phase, a richer
scenario emerges for the physically relevant range �0 < w. In

particular, for |μ| < 2
√

w2 − �2
0 the phase modulation Q can

lead the system to become a gapless p-wave superconductor.
By computing the current in the Kitaev model as a function of
the superconducting phase modulation Q, we show also that,
because of the p-wave nature of the superconducting order
parameter, the critical value Q∗ determining the onset of the
gapless phase is independent of the chemical potential and
only depends on the superconducting order parameter. In our
analysis, we determine an upper bound on current that can
be driven through the system before the topological Majorana
modes disappear.

The article is structured as follows. In Sec. II we describe
the model and its symmetries, whereas in Sec. III we de-
rive the general expression of the current-carrying state and
determine in which range of parameter values it is a con-
ventional gapped p-wave superconductor or a gapless p-wave
superconductor. Then, in Sec. IV we introduce the interpre-
tation of Q as a synthetic dimension, and we show how the
current-carrying state of a 1D p-wave superconductor can
be mapped onto the ground state of a 2D Weyl semimetal.
Finally, in Sec. V we derive the current as a function of the
phase modulation Q and of the model parameters, while in
Sec. VI we summarize our results, and we discuss possible
implementations and future perspectives.

II. MODEL AND SYMMETRIES

A. Model

We consider a one-dimensional p-wave superconductor
modeled as a Kitaev chain, whose Hamiltonian reads

H(Q) =
∑

j

{
w (c†

j c j+1 + c†
j+1c j ) − μ

(
c†

j c j − 1

2

)

+ �0(e−iQ(2 j+1)c†
j c

†
j+1 + eiQ(2 j+1)c j+1c j )

}
. (1)

Here c j (c†
j ) corresponds to the annihilation (creation) op-

erator at the lattice site j, μ is the chemical potential, and
w > 0 and �0 > 0 are the magnitudes of the hopping ampli-
tude and of the superconducting order parameter, respectively.
The wave vector Q (in units of the inverse lattice spacing),
characterizing the spatial modulation of the order parame-
ter, describes a net momentum −2Q of the Cooper pair and
accounts for the presence of a current flowing through the
system.

Since the phenomenon we aim to describe is a bulk effect,
we can safely adopt the thermodynamic limit. We assume
that the number Ns of lattice sites is large, Ns � 1, and
adopt periodic boundary conditions (PBCs) for the system.
Thus, the superconducting spatial modulation in Eq. (1),
which is quantized as Q = 2πn/Ns because of the PBCs, can
effectively be treated as a continuum variable. By introduc-
ing Fourier mode operators ck = N−1/2

s

∑
j e−ik jc j and the

Nambu spinors �k;Q = (c†
k−Q, c−k−Q)T , one can rewrite the

Hamiltonian (1) as

H(Q) = 1

2

∑
k∈BZ

�
†
k;QH (k; Q)�k;Q, (2)

where

H (k; Q) = h0(k; Q)σ0 + h(k; Q) · σ (3)

is the Bogoliubov–de Gennes (BdG) Hamiltonian matrix, σ0

is the 2 × 2 identity matrix, σ = (σ1, σ2, σ3) are the Pauli
matrices, and

h0(k; Q) = 2w sin Q sin k, (4)

h(k; Q) = (0, −Im{�(k)}, ξ (k; Q)) (5)

with

ξ (k; Q) = 2w cos Q cos k − μ, (6)

�(k) = 2�0i sin k. (7)

B. Symmetries

By construction of the BdG formalism, the Hamiltonian (3)
fulfills the particle-hole constraint

σ1H∗(k; Q)σ1 = −H (−k; Q). (8)

The application of the time-reversal transformation
T �k;QT † = �−k;−Q (antiunitary) and the spatial inversion
transformation I�k;QI† = iσ3�−k;−Q (unitary) on the
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Hamiltonian Eq. (2) leads to the following relations for
the BdG Hamiltonian (3):

H∗(k; Q) = H (−k; −Q), (9)

σ3H (k; Q)σ3 = H (−k; −Q) (10)

showing that the presence of the spatial modulation Q breaks
both such symmetries.

III. GAPPED AND GAPLESS p-WAVE
SUPERCONDUCTING PHASES

The normal modes of the quadratic Hamiltonian (2), and
therefore its ground state and excitations, are determined by
diagonalizing the related BdG Hamiltonian (3). To describe
the effects of the spatial modulation wave vector Q on the
superconducting state, two remarks are in order.

First, we note that Q enters the BdG Hamiltonian (3) in
a twofold manner. On the one hand, Q appears in the third
component ξ of the h-vector in Eq. (5). Such a term represents
a modification

ε(k) → ξ (k; Q) = ε(−k + Q) + ε(k + Q)

2
(11)

of the bare dispersion relation ε(k) = 2w cos k − μ of the
tight-binding model [first line of Eq. (1)], which results in the
reduction w → w cos Q of the hopping parameter encoded in
Eq. (6). On the other hand, Q introduces in the Hamiltonian
(3) the additional h0 term (4), which can be written as the
difference

h0(k; Q) = ε(−k + Q) − ε(k + Q)

2
(12)

between the bare energies of two electrons (k,−k) in the
Cooper pair frame −Q. Such a term is odd in Q and causes the
breaking of time-reversal and spatial inversion symmetries of
the model [see Eqs. (9) and (10)].

The second remark is that, since in Eq. (3) the first term
containing h0 is proportional to the identity σ0, the set of
eigenstates of Eq. (3) is determined by the second term h · σ

only. However, because the term h0σ0 affects the spectrum, it
also determines, for each k, which single-particle eigenstate
is energetically more favorable and must be occupied. As a
consequence, the actual many-particle state is modified by Q,
and so are its topological properties.

To describe in detail how this occurs, it is worth recalling
briefly the procedure determining the normal modes of the
Hamiltonian (2). By means of the Bogoliubov-Valatin unitary
transformation

UQ(k) =
(

uQ(k) −v∗
Q(k)

vQ(k) uQ(k)

)
, (13)

where

uQ(k) =
√

1

2

(
1 + ξ (k; Q)

h(k; Q)

)
, (14)

vQ(k) = − i sgn( sin (k))

√
1

2

(
1 − ξ (k; Q)

h(k; Q)

)
, (15)

the BdG Hamiltonian (3) can be brought to its diagonal form
U †

QHUQ = diag(E+, E−). The upper band E+ and the lower

band E− of the Kitaev model with superconducting modula-
tion are given by

E±(k; Q) = h0(k; Q) ± h(k; Q), (16)

where h(k; Q) = |h(k; Q)| =
√

ξ 2(k; Q) + |�(k)|2. The
above Eq. (8) implies that, for each Q-value, the two energy
bands (16) are mutually related through the relation

E−(k; Q) = −E+(−k; Q), (17)

whereas Eqs. (9) or (10) implies that

E±(k; Q) = E±(−k; −Q), (18)

showing that the presence of Q makes the two bands no longer
symmetric for k → −k. In Fig. 2, the two bands are shown as
a function of k, at fixed μ and �0 values, for three different
values of Q. Panel (a) describes the customary Q = 0 Kitaev
model: The two bands are symmetric in k, the upper (lower)
band is positive (negative) ∀k, and a finite direct gap exists
between the two bands. As one can see from panels (b) and
(c), a finite Q breaks the inversion symmetry [see Eq. (10)]
and, when sufficiently large, it can also lead the upper band
E+ to acquire negative values, or equivalently, the lower band
E− to become positive for the opposite values −k. When this
occurs, the gap closes indirectly.

While the physical consequences of this behavior will be
discussed in the next subsection, here we note that the Hamil-
tonian (2) is straightforwardly brought into its normal modes
as

H =
∑

k

E+(k; Q)

(
γ

†
k−Qγk−Q − 1

2

)
, (19)

where we have exploited Eq. (17) and we have intro-
duced Bogoliubov quasiparticles 	k;Q = (γk−Q, γ

†
−k−Q)T =

U †
Q(k)�k;Q, which fulfill {γ (†)

k , γ
(†)

k′ } = 0 and {γk, γ
†
k′ } = δk,k′

and are explicitly written as

γk−Q = uQ(k)ck−Q + v∗
Q(k)c†

−k−Q,

γ
†
−k−Q = − vQ(k)ck−Q + uQ(k)c†

−k−Q. (20)

As is well known, in view of the redundancy of the Nambu
spinor degrees of freedom, only one band is physically mean-
ingful. This is why H is expressed in Eq. (19) in terms of E+
only. However, since in the following we shall have to deal
both with states at E+(k; Q) and E+(−k; Q), it will be useful
to use the lower band E−(k; Q) as a notation for −E+(−k; Q),
in view of Eq. (17).

A. The supercurrent carrying state

Equation (19) expresses the Hamiltonian as a collection,
labeled by k, of single fermionic states with energy E+ that
can be either occupied or empty. For a given value Q of the
wave-vector modulation, E+ can in general take both positive
and negative values as a function of k [see Fig. 2(c)]. Thus,
one can partition the BZ in two regions, labeled S+ and S−
and defined as

k ∈ S+ iff E+(k; Q) > 0,

k ∈ S− iff E+(k; Q) < 0. (21)
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FIG. 2. The spectrum of the upper band E+ (blue dashed curve) and the lower band E− (red curve) for �0 = 0.6w, μ = 0. Panels
(a)–(c) refer to Q = 0, Q = 0.1π , and Q = π/3.

From Eq. (19) we deduce that, if k ∈ S+, it is en-
ergetically more convenient to leave the kth state of
the upper band empty, so that the ground state fulfills
〈G(Q)| γ †

k−Qγk−Q |G(Q)〉 = 0. In contrast, if k ∈ S−, the
lowest-energy state is realized by occupying the upper band,
so that the ground state fulfills 〈G(Q)| γ †

k−Qγk−Q |G(Q)〉 = 1.
The ground state |G(Q)〉 is therefore characterized by the
following conditions:

γk−Q|G(Q)〉 = 0 if k ∈ S+,

γ
†
k−Q|G(Q)〉 = 0 if k ∈ S−, (22)

and its energy is given by

E0(Q) = −1

2

∑
k

|E+(k; Q)| � 0, (23)

as follows from Eq. (19). The conditions (22) straightfor-
wardly imply that

|G(Q)〉 = N
∏
k∈S+

γk−Q

∏
k∈S−

γ
†
k−Q |R〉 , (24)

where N is a normalization constant and |R〉 is a reference
state to be determined. Equation (24) is the general expression

of the ground state of the Kitaev model in the presence of
superconducting modulation. Depending on the k-dependence
of the spectrum, one can identify two different parameter
regimes.

1. Gapped superconductor regime

The first regime is characterized by a finite energy gap sep-
aration between the two bands. This occurs when E+(k; Q) >

0, ∀k ∈ [−π, π [, or, equivalently, when E−(k; Q) < 0, ∀k ∈
[−π, π [. In this case, the S− sector in Eq. (21) is triv-
ially empty, and the S+ sector coincides with the entire
BZ. The ground state (24) can then be written as |G(Q)〉 =
N
∏

0<k<π γk−Qγ−k−Q |R〉, and the reference state |R〉 can eas-
ily be shown to coincide with the electron vacuum, |R〉 = |0〉,
so that |G(Q)〉 acquires the customary expression

|G(Q)〉 =
∏

0<k<π

(uQ(k) + v∗
Q(k)c†

−k−Qc†
k−Q) |0〉 , (25)

consisting of Cooper pairs in the bulk only. It can be shown
(see Appendix A) that this regime exists for the following
three parameter ranges:

(i) |μ| > 2w and ∀�0 > 0 and ∀Q,

(ii) |μ| < 2w and
√

w2 − μ2/4 < �0 and | cos Q| 
= |μ|/2w,

(iii) |μ| < 2w and w| sin Q| < �0 <
√

w2 − μ2/4.

(26)

The case �0 > w discussed in [58,59] is a subcase of the
second parameter range.

2. Gapless superconductor regime

This regime occurs when E+(k; Q) < 0 [or equivalently
E−(−k; Q) > 0] for some values of k, i.e., when the S− sector
in Eq. (21) is not empty. Recalling the expression (16), the
condition for such a gapless superconducting regime to occur
are determined by imposing that the condition |h0(k; Q)| >

h(k; Q) is fulfilled for some k’s. Some lengthy but straight-
forward algebra (see Appendix A) leads us to conclude that
such a situation occurs if and only if the following parameter

conditions are both fulfilled:√
�2

0 + μ2

4
< w,

�0 < w| sin Q|. (27)

Because now the S− sector is not empty, the γ † operators
appearing in the general Eq. (24) yield some different features
with respect to the conventional gapped superconductor, as
can be suitably recognized by reexpressing Eq. (24) in terms
of fermionic operators c†. To this purpose, we introduce one
further partitioning S+ = Sh ∪ Sp of the S+ sector defined in
Eq. (21), where the two subsectors Sh and Sp are identified
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by inspecting the sign of E+(−k) or, equivalently the sign of
E−(k), in view of Eq. (17). Explicitly, one can partition the
BZ as Sh ∪ Se ∪ Sp, where

k ∈ Sh iff E±(k; Q) > 0,

k ∈ Se iff E±(k; Q) < 0,

k ∈ Sp iff E+(k; Q) > 0 and E−(k; Q) < 0.

(28)

Note that Se is just another notation for S−. In this case, one
can show (see Appendix B) that |R〉 = ∏

k∈Sh
c†

k−Q |0〉 and that

|G(Q)〉 can be rewritten in terms of the c†
k operators as

|G(Q)〉 =
∏

0<k<π
k∈Sp

(uQ(k) + v∗
Q(k)c†

−k−Qc†
k−Q)

∏
k∈Se

c†
k−Q |0〉 .

(29)
As compared to the gapped superconductor (25), the gapless
superconducting state (29) contains not only Cooper pairs (Sp

sector), but also a pocket of unpaired electrons (Se sector),
and a pocket of unpaired holes (Sh sector). An illustrative
example is shown in Fig. 2(c), where the unpaired electron and
hole pockets are highlighted in cyan and pink, respectively. In
this regime the superconducting order parameter is no longer
interpreted as the gap. Yet, the energy (23) of the state (29) is
still lower than the state of a fully normal state (�0 → 0). In-
terestingly, the structure of Eq. (29) is similar to that found for
neutral superfluids with orbital angular momentum [60,61].
Here, however, the p-wave nature of the order parameter im-
plies significantly different features, as will be explained in
Sec. IV.

As a consequence of its mixed structure, |G(Q)〉 exhibits
normal and anomalous correlations depending on the k-
sectors. Explicitly, one can show (see Appendix B) that the
normal correlations read

〈c†
k−Qck′−Q〉 = δk,k′

⎧⎨
⎩

0 if k ∈ Sh,

1 if k ∈ Se,

|vQ(k)|2 if k ∈ Sp,

(30)

〈ck−Qc†
k′−Q〉 = δk,k′

⎧⎨
⎩

1 if k ∈ Sh,

0 if k ∈ Se,

u2
Q(k) if k ∈ Sp,

(31)

while the anomalous correlations are

〈c†
k−Qc†

−k′−Q〉 = δk,k′

⎧⎨
⎩

0 if k ∈ Sh,

0 if k ∈ Se,

−uQ(k)vQ(k) if k ∈ Sp.

(32)

The elementary excitations above the ground state |G(Q)〉
are given in Appendix C. Before concluding this section, a
remark is in order. In partitioning the BZ, we have not men-
tioned the case E+(k) = 0. This corresponds to a degeneracy
in the spectrum of the Hamiltonian (19). Thus, although one
ground state can still be written in the forms (25) or (29), it
is degenerate with a state |G′(Q)〉 where an additional single
fermion is present. In a closed system, these two ground states
have different fermion parity [62]. However, if the system is
contacted to reservoirs inducing a current flow, as is the case
of interest here, fermion leakage makes both states equally
probable. Thus, such a single fermion state merely represents
here a zero-measure support set in the BZ.

IV. EFFECTIVE 2D FERMION MODEL
AND LIFSHITZ TRANSITION

We want now to discuss how the presence of the supercon-
ducting phase modulation Q affects the topological aspects of
the Kitaev model.

When the system is in the gapped regime, although Q
changes quantitatively the spectrum with respect to the Q = 0
case [compare, e.g., Figs. 2(a) and 2(b)], it does not alter
the occupancy of bands because |h0(k; Q)| < h(k; Q) ∀k. The
ground state |G(Q)〉 consists of a completely empty upper
band E+ or, equivalently, a completely filled lower band E−.
Then, one can characterize |G(Q)〉 through the topological
index associated with the lower band. Notice that this case,
described in Ref. [59], follows exactly the same lines as
the customary Q = 0 case, and the role of Q is merely to
renormalize the hopping amplitude w → w cos Q appearing
in Eq. (6).

The situation is different in the gapless regime, where
E+(k; Q) < 0 for some k’s. For such k-states, the presence of
the h0-term in Eq. (16) alters the occupancy. In the ground
state |G(Q)〉 not all the lower band states are occupied, and
the approach adopted to topologically classify gapped phases
cannot be straightforwardly applied to gapless phases [63].

However, the presence of the superconducting order pa-
rameter modulation Q offers the opportunity to adopt a
different perspective. The idea is that Q can be regarded as the
wave vector of an extra synthetic dimension, in addition to k.
In this way, we can associate a 1D superconductor with super-
conducting phase modulation to a 2D fermionic model. The
Lifshitz transitions [45] occurring in the topology of the Fermi
surface F of the half-filled 2D model enable one to charac-
terize the ground-state phases of the 1D superconductor. In
particular, we shall show that the p-wave superconductor is
associated with a 2D WSM, which can be in the type-I or
type-II regime.

A. Effective 2D fermion model

We start by observing that, although the envisaged system
is one-dimensional, the Hamiltonian (1) is 2π -periodic in the
superconducting order-parameter modulation Q. As a conse-
quence, the Bogoliubov–de Gennes Hamiltonian Eq. (3) of
the Kitaev chain with the superconducting phase modulation
can also be interpreted as the first-quantized Hamiltonian of a
two-dimensional system with a sublattice or orbital degree of
freedom A/B,

H2D =
∑

k

( f †
kA, f †

kB)H (k)

(
fkA
fkB

)
, (33)

where k = (k, Q) is the wave vector lying on a torus. In
Appendix D, we provide the explicit expression of H2D in real
space. The spectrum of this fictitious 2D model is determined
by H (k) and is therefore the same as that of the Kitaev model
with a superconducting phase modulation. Two remarks are in
order.

First, the 2D model contains twice the degrees of freedom
of the Kitaev model. Indeed, while in Eq. (33) the spinors
correspond to two actual independent sublattice degrees of
freedom and both bands E+ and E− are physical, in the Kitaev
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model two such spectral bands are not independent in view of
the redundancy intrinsic in the Nambu spinors, so that only
one is actually physical.

The second remark is related to symmetries. In such a di-
mensional promotion, the role of symmetries is interchanged.
In particular, while for the Kitaev chain the relations (9) and
(10) encode broken time-reversal and inversion symmetries,
for the associated 2D model Eq. (33) they represent fulfilled
symmetries. Recalling that H (k) = h0(k)σ0 + h(k) · σ, these
symmetries imply

T symmetry →

⎧⎪⎪⎨
⎪⎪⎩

h0(k) = h0(−k),
h1(k) = h1(−k),
h2(k) = −h2(−k),
h3(k) = h3(−k)

(34)

and

I symmetry →

⎧⎪⎪⎨
⎪⎪⎩

h0(k) = h0(−k),
h1(k) = −h1(−k),
h2(k) = −h2(−k),
h3(k) = h3(−k),

(35)

respectively, and they yield the relation (18). In contrast, while
for the 1D Kitaev chain Eq. (8) is a built-in particle-hole
symmetry stemming from the BdG formalism, it represents
an anisotropy constraint for the 2D model, which implies

BdG constraint →

⎧⎪⎪⎨
⎪⎪⎩

h0(k, Q) = −h0(−k, Q),
h1(k, Q) = −h1(−k, Q),
h2(k, Q) = −h2(−k, Q),
h3(k, Q) = h3(−k, Q),

(36)

and is responsible for the mutual relation (17) between the two
bands.

B. Lifshitz transition

The Fermi surface F is defined in the 2D BZ as the
set of k = (k, Q) such that the eigenvalues fulfill E+(k) = 0
or E−(k) = 0. In particular, we shall inspect the possibility
that the Fermi surface contains nodes, where the two bands
E+ and E− touch, i.e., E+(kW ) = E−(kW ) = 0. In view of
Eq. (16), this equivalently corresponds to the set of four equa-
tions h j (kW ) = 0 ( j = 0, . . . , 3) for two unknown coordinates
of kW . From symmetry arguments based on Eqs. (34), (35),
and the constraint (36), one can deduce whether and how such
nodes occur. Indeed, the fact that both T and I symmetries
hold implies h1(k) ≡ 0, which eliminates one equation. Then,
from Eq. (36) and either (34) or (35) we see that h2 must be
odd in the k component, and even in the Q component of k.
This is the case for the Kitaev model, because of the p-wave
symmetry of the superconducting order parameter (7). This
means that the nodes can only occur at kW = 0 or kW = π ,
and that they exist as long as h3 = 2w cos Q cos k − μ [see
Eq. (5)] can vanish, which is the case only if |μ| < 2w. Then,
the nodes are Weyl nodes that are locally protected by T and
I symmetries. Their location

k0,±
W = (0,±QW ),

kπ,±
W = (π,±(π − QW )), (37)

where

QW (μ) = arccos(μ/2w) (38)

depends on the chemical potential μ and not on the value of
�0. The WSM nature (type-I versus type-II) is determined by
the behavior of the h0(k) term. In the vicinity of the Weyl node
kλ,±

W (with λ = 0, π ), the Hamiltonian H (k) in Eq. (3) is well
approximated by a low-energy Hamiltonian

Hλ,±(q2, q3) = αλ,±q2σ0 +
3∑

i, j=2

qiVλ,±
i j σ j, (39)

where q2 = k and q3 = Q − Qλ,±
W correspond to the devia-

tions in momentum from kλ,±
W , and

V0,±
22 = −2�0,

V0,±
33 = −α0,± = ∓

√
4w2 − μ2,

Vπ,±
22 = 2�0,

Vπ,±
33 = −απ,± = ±

√
4w2 − μ2. (40)

Each Weyl node carries a vortex, as can be seen by computing
the lower-band Berry phase over a contour enclosing the Weyl
node in the k momentum space,

ϕλ,± =
∮

dk · Aλ,± = π sgn(detVλ,±) = ±π, (41)

where Aλ,± is the Berry potential and Vλ,± is a diagonal matrix
with components given by (40) near the Weyl node kλ,±

W .
Going back to the full BdG Hamiltonian (3) and taking into

account the explicit expressions (4) and (5), we deduce that
for the Kitaev model, three scenarios can emerge in the Fermi
surface of the associated 2D model, depending on the Kitaev
model parameter ranges:

(i) Type-I WSM phase. In the parameter range

|μ| < 2w and
√

w2 − μ2/4 < �0, (42)

the Fermi surface consists of four isolated Weyl nodes kW ,
where the two bands E+ and E− touch, while E+ > 0 and
E− < 0 otherwise (k 
= kW ). In this regime, the h0-term in
the Hamiltonian modifies the spectrum but not the occupancy
of the bands, and the model (33) corresponds to a 2D type-I
WSM with a Fermi level at E = 0. The Weyl nodes are shown
as black bullets in Fig. 3(a), and the type-I band dispersion
relation is shown in Fig. 3(b).

We shall now argue that this Fermi surface of the 2D model
enables us to recover the topological classification of the Ki-
taev model and to determine the region of parameters where
MQPs appear, in the presence of the superconducting phase
modulation. Indeed, in this regime the lower band E− of the
Hamiltonian H is completely filled, while the upper band E+
is completely empty. Thus, for each cut of the band structure
at a fixed Q away from the Weyl nodes (Q 
= ±Q0,π,±

W ), one
obtains a gapped one-dimensional insulator, which can be
classified in the topological class D [64], since it only exhibits
particle-hole symmetry (8). The related topological invariant
is the Zak-Berry phase of the lower band,

ϕZB = −i
∫ π

−π

〈k,−|∂k|k,−〉 dk, (43)
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FIG. 3. The parameter range 2
√

w2 − �2
0 < |μ| < 2w. (a) The Fermi surface of the 2D fermionic model associated with the Kitaev chain,

with superconducting phase modulation Q treated as a synthetic dimension. The Fermi surface consists of four Weyl nodes, highlighted with
black bullets, located at positions given by Eq. (37). Here the plot is given for μ > 0. For μ < 0 the positions of QW and π − QW exchange.
The green and gray areas denote the gapped topological and trivial phases of the 1D Kitaev chain, respectively. The value of QW determining
the topological/trivial boundaries and the Q-coordinate of the Weyl nodes is given by Eq. (38) and depends only on the chemical potential μ

and not on �0. (b) Energy band in the vicinity of one of the Weyl nodes, showing that the associated 2D fermionic model is a type-I WSM.

which is quantized in integer multiples of π due to the
particle-hole symmetry or, equivalently, the index [65]

ν = (−1)ϕZB/π = sgn(h3(0)h3(π ))

= sgn(|μ| − 2w| cos Q|). (44)

Trivial phases (ν = +1) correspond to the condition |μ| >

2w| cos Q|, whereas topological phases (ν = −1) correspond
to |μ| < 2w| cos Q|, and, for the case μ > 0, they are depicted
as gray and green regions in Fig. 3, respectively. Thus, in
the regime (42) the range of Q-values where MQPs exist is
controlled by the chemical potential μ, and is independent of
the value of �0. The condition (42) includes the case �0 > w

studied in Ref. [59]. In the case �0 < w, Eq. (42) reduces to

2
√

w2 − �2
0 < |μ| < 2w, (45)

which, for the physically realistic regime �0 � w, represents
a very narrow range of chemical potential value for this regime
to exist.

(ii) Type-II WSM phase. Let us now focus on the regime

|μ| < 2
√

w2 − �2
0, (46)

which is physically most realistic, as the superconducting
order parameter is typically much smaller than the bandwidth
parameter w. The scenario of the Fermi surface is depicted in
Fig. 4(a). The Weyl nodes are still located in the positions kW

j,±
given by Eqs. (37). However, they are now type-II nodes, as
shown in Fig. 4(b), since the Fermi surface of the 2D model
exhibits pockets of unpaired electrons and holes, which cor-
respond to the regions where the magnitude of the h0(k)-term
overcomes the h(k)-term. Note that electron and hole pockets
are mutually mirrors of each other for k → −k, as a straight-
forward consequence of the relation (17) originating from the
particle-hole constraint Eq. (8) of the BdG formalism. The
three panels of Fig. 2 represent three cuts in the 2D BZ shown
in Fig. 4(a), at different values of Q, where one can see the
Lifshitz transition from the gapped phase in panels (a) and

(b) (empty Fermi surface) to the gapless phase in panel (c)
(appearance of electron and hole pockets), where the ground
state of the Kitaev model is given by Eq. (29).

The fermion and hole pockets, identified by E+(k) = 0 and
E−(k) = 0, respectively, cross at the Weyl nodes. As one can
see from Fig. 4(b), in the range Q∗ < |Q| < π − Q∗, where

Q∗(�0) = arcsin (�0/w), (47)

the ground state is gapless, and it exhibits Cooper pairs, un-
paired fermions, and holes. In contrast, in the range |Q| < Q∗
and π − Q∗ < |Q| < π , it is gapped and topological. Indeed
the spectrum plotted in Fig. 4(c) for a finite-size Kitaev chain
of Ns = 50 sites shows the existence of zero-energy MQPs in
such a Q range of values.

A striking difference emerges with respect to the regime (i)
described above. In that case, the range of Q-values, where the
gapped topological phase exists, is purely determined by the
chemical potential μ and is independent of the superconduct-
ing order parameter �0, provided the latter is large enough
to fulfill the energy range (42). This holds, in particular, for
any �0 > w. Indeed the topological phase—green region in
Fig. 3(a)—is determined by the μ-dependent location of the
Weyl nodes only. In contrast, for �0 < w, and in particular in
the regime (ii) specified by Eq. (46), the Q-boundaries for the
topological phases are determined by �0 through the critical
value (47), and they are independent of the chemical potential.
As shown in Fig. 4(a), the topological phase (green region)
is no longer determined by the location of the Weyl nodes,
but by the boundaries of the electron and hole pockets. The
comparison between the two regimes is clearly illustrated in
Fig. 4(d), where the phase diagram of the Kitaev model in
regime (ii) is shown as a function of μ and Q, while the dashed
lines represent the phase diagram for regime (i). At each fixed
value of μ, the topological region (green area) is smaller than
in regime (i) because the system enters the gapless phase
(violet color).
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FIG. 4. The parameter range |μ| < 2
√

w2 − �2
0. (a) The Fermi surface of the 2D fermionic model associated with the Kitaev chain with

superconducting phase modulation Q treated as a synthetic dimension. The Fermi surface consists of four Weyl nodes (black bullets), and of
electron and hole pockets. The green areas denote the gapped topological phases of the 1D Kitaev chain, while in the other the Kitaev model
exhibits a gapless superconducting state, where both Cooper pairs and unpaired fermions and holes are present. The value of Q∗ determining
the topological gapped/gapless boundaries only depends on �0 [see Eq. (47)]. Solid and dashed lines enclosing the electron and hole pockets
span the entire k-direction of the Brillouin zone, and belong to the homology class (1,0). (b) Energy band in the vicinity of one of the Weyl
nodes, showing that the associated 2D fermionic model is a type-II WSM. (c) Spectrum of the Kitaev chain of Ns = 50 sites for μ = w and
�0 = 0.3w. Zero-energy Majorana modes can be seen in the range |Q| < Q∗ and π − Q∗ < |Q| < π . (d) μ-Q phase diagram of the system
showing the gapped regions and the gapless regions, where solid and dashed black lines correspond to the band touching points, i.e., to the
location of type-I and type-II Weyl nodes QW (μ), respectively [see Eq. (38)].

(iii) No Fermi surface. When |μ| → 2w, the two Weyl
nodes k j,±

W of each jth pair merge. Then, in the regime

|μ| > 2w ∀�0 > 0 (48)

the Weyl node equation h3 = 0 cannot be fulfilled [see
Eqs. (5) and (6)], the Weyl nodes disappear, and the Fermi
surface is an empty set. This corresponds to the situation in
which E+(k) > 0 ∀k, and, in terms of a Q-cut, this describes
a topologically trivial phase.

C. Zero-energy modes

In open boundary conditions for the 2D model, both
regimes (i) and (ii) exhibit localized Fermi “arc” states,
which form effectively one-dimensional zero-energy bands,
parametrized by the crystal momentum Q along the infinite
direction. We will consider for clarity a single boundary at
x = 0.

Let us start from the type-I Weyl phase, in the parameter
regime (42). For 0 < μ < 2w, we find an arc connecting the
projections of the nodes k0,±

W and containing the point Q = 0

and an arc connecting the projections of the nodes kπ,±
W con-

taining Q = π ; see Fig. 3. Conversely, for −2w < μ < 0, the
projection of the nodes kπ,±

W is closer to the point Q = 0 than
the projection of the nodes k0,±

W : in this situation, there is an
arc connecting k0,±

W across the BZ and an arc connecting kπ,±
W

including the origin. In terms of the 1D model, the end points
signal the transition between the topological and the trivial
phase [66]. In Appendix E, we follow an established route
for constructing Fermi arcs in Weyl Hamiltonians [67–70].
Linearizing the Hamiltonian (33) in k, one finds localized
eigenstates in the form

ψQ(x, y) = χQ(x)
eiQy

√
2π

, (49)

where

χQ(x) = 1√
λQ

(
e−iζ (Q)/2

eiζ (Q)/2

)
e−x/λQ . (50)
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Here, ζ (Q) = arcsin (w sin Q/�0), while

λQ =
√

�2
0 − w2 sin2 Q

w|cos Q| − |μ|
2

(51)

represents the penetration depth. It is readily observed that this
quantity diverges at the arc ends.

In the type-II Weyl phase (46), we see from Fig. 4 the
emergence of electron/hole pockets in the bulk. We find that
the Fermi arcs are still described by (49), but now connect
the projections of the bulk electron and hole pockets onto the
surface BZ. In particular, the edge states have support between
the values ±Q∗ given in (47), including the origin Q = 0,
and outside the points ±(π − Q∗) (see Appendix E). In terms
of the 1D model, these points signal the transition between
the topological gapped phase and the gapless superconductor
phase; see Fig. 4. In contrast to the previous regime, the pen-
etration length (51) vanishes at the arc ends. A derivation and
a plot of (51) in the two regimes can be found in Appendix E.

The two components of the wave function (50) represent in
the 2D model the weights on the A and B sublattices or orbital
degrees of freedom. However, they are directly interpreted as
the electron (top) and hole (bottom) components in the 1D
superconductor model. Therefore, the wave function (50) de-
scribes the Majorana edge mode of the 1D TS associated with
the Fermi arc (49) for the Kitaev chain with a Q-modulation
of its superconducting order parameter. We recall that the 2D
fermionic system (33) exhibits twice the number of degrees
of freedom as the original Kitaev model, for which only a
half of the spectrum (say, the upper band) can be retained.
This is particularly evident in a slab geometry with a finite
size along the x-direction. In the 2D fermionic model, two
fermionic states appear around E = 0, and they can be seen
as symmetric and antisymmetric combinations of the Fermi
“arcs” localized at the two edges. However, in the 1D Kitaev
model, only one fermionic state is physical and it consists of
two Majorana quasiparticles localized at the system edges.

D. Comparison with the case of an s-wave superconductor

Also a conventional s-wave superconductor carrying a cur-
rent exhibits a modulation Q of the superconducting order
parameter, and it can enter a gapless phase. Here we want to
highlight the difference from the p-wave superconductor from
the point of view of the mapping to a 2D model.

In an s-wave superconductor, the order parameter
term in the presence of a spatial modulation is
�0
∑

k (c†
k−Q↑c†

−k−Q↓ + H.c.). By introducing a Nambu spinor

�k;Q = (ck−Q↑, c†
−k−Q↓, i ck−Q↓,−i c†

−k−Q↑), the BCS Hamil-

tonian appears to be the sum HBCS = (1/2)
∑

k �
†
k;Q(σ0 ⊗

HBCS)�k;Q of two decoupled sectors sharing the same BdG
Hamiltonian HBCS(k) = h0(k)σ0 + h′(k) · σ, where h0 is
again given by Eq. (4), while

h′(k; Q) = (�0, 0, ξ (k; Q)) (52)

with ξ (k; Q) still given by Eq. (6). Similarly to what was
described in Sec. IV A for the Kitaev model, one can apply
a mapping to a 2D (spinful) fermionic model, where spin is a
degeneracy degree of freedom for the two bands. The resulting

Fermi surface, shown in Fig. 5(a), exhibits two crucial differ-
ences with respect to the Kitaev case [see Fig. 4(a)]. First,
the BCS model does not exhibit any node, since the vector h′

in Eq. (52) can never vanish, as is clear from Eq. (52). As a
related consequence, gapped phases are always topologically
trivial, since the Bloch vector n̂ = h′/|h′| spans a trivial line
in the h1-h3 plane, as expected for the BCS model.

Similarly to the Kitaev case, the presence of the h0 term
stemming from the superconducting modulation Q leads to
the emergence of gapless superconducting phases, which
in this case exist when both the conditions Q′ < |Q| <

π − Q′ and Q′ < |k| < π − Q′ are fulfilled, where Q′ =
arcsin (�0/2

√
w2 − (μ/2)2). Note that these boundaries are

dependent on both �0 and μ, while in the Kitaev case they
are μ-independent. Importantly, the boundaries of the electron
and hole pockets in the BCS case are topologically different
from the ones of Fig. 4(a). Indeed, while in the Kitaev model
the solid and dashed boundaries run over the entire k-circle of
the BZ, in the BCS model they remain localized to the finite
portion specified above.

Such a topological difference in the Fermi surfaces of
s-wave and p-wave gapless superconductors can be character-
ized in terms of the homology group H1(T 2) of 1-cycles [71],
i.e., closed circuits on the 2D BZ torus T 2. A closed Fermi sur-
face circuit is identified by a mapping λ ∈ [−π, π ] → k(λ)
and can be classified according to two topological indices
(nk, nQ), defined as the winding numbers related to the two
orthogonal circuit directions along the torus,

nk = 1

2π

∫ π

−π

dk

dλ
dλ, (53)

nQ = 1

2π

∫ π

−π

dQ

dλ
dλ. (54)

Let us now compare the Fermi surface closed circuits of the
p-wave superconductor and s-wave superconductor. In the
former case, F consists of the four curves that in Fig. 4(a)
delimit the electron and hole pockets. In particular, the ones
highlighted as solid or dashed are given by

k(λ) = λ,

Q±(λ) = arccos

⎛
⎝μ

2
cos k ± sin k

√
1 − �2

0

w2
− μ2

4w2

⎞
⎠, (55)

respectively. Note that, at the crossing at the Weyl nodes, the
solid and the dashed lines are uniquely identified through the
continuity of the eigenvectors related to the vanishing eigen-
values E+ = E− = 0. As a consequence, the Fermi surface in
the Kitaev case winds around the k-direction and therefore
belongs to the (1,0) topological class. In contrast, for the s-
wave superconductor described by the BCS model, the Fermi
surface illustrated in Fig. 5(a) is always localized and belongs
to the (0,0) class, which is homotopically equivalent to a point.

Importantly, these different topological classes are closely
related to the presence or absence of nodes in the 2D Fermi
surface. Indeed in the Kitaev case the electron and hole pocket
must necessarily go through the Weyl nodes, located at k = 0
and k = ±π , because the p-wave superconducting order pa-
rameter is odd in k. In an s-wave superconductor, instead, the
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FIG. 5. The case of an s-wave superconductor. (a) Fermi surface for the 2D BCS model where the superconducting phase modulation Q
is treated as a synthetic dimension. The Fermi surfaces surrounding the electron (cyan) and hole (pink) pockets do not extend along the entire
Brillouin zone, instead remaining localized. The gray areas denote the gapped regions determined by the boundaries Q′ and π − Q′, while the
remaining regions show the coexistence of Cooper pairs and unpaired electrons and holes. These pockets never touch each other, differently
from what happens in the Kitaev model. As a consequence, solid and dashed lines enclosing the electron and hole pockets are localized over
a finite portion of the k-direction of the Brillouin zone, and belong to the homology class (0,0). (b) Upper (blue) and lower (red) bands of the
BCS model; in this case the associated 2D fermionic model corresponds to a conventional semimetal.

absence of nodes makes the Fermi surface consist of localized
curves.

Thus, in terms of the associated 2D model, a 1D s-wave
superconductor corresponds to either a 2D insulator or a 2D
conventional semimetal, depending on the parameter range
[see Fig. 5(b)]. In contrast, a 1D p-wave superconductor cor-
responds to a trivial 2D insulator or a 2D type-I/type-II WSM
[see Figs. 3(a) and 4(a)].

V. Q-DEPENDENCE OF THE CURRENT

We want now to analyze the behavior of the current carried
by the ground state |G(Q)〉. As is well known, the operator
describing the current flowing through the site j is given
by Ĵ j = −iwe (c†

j c j+1 − c†
j+1c j )/h̄, where −e = −|e| is the

electron charge. The spatial conservation of the expectation
values I (Q) = 〈G(Q)|Ĵ j |G(Q)〉 ∀ j follows from charge con-
servation, and one can show [72] that

I (Q) = e

h̄

1

Ns

∂E0(Q)

∂Q
. (56)

Furthermore, exploiting the expression (23) and taking the
thermodynamic limit Ns → ∞, one obtains the current as a
function of the superconducting modulation Q,

I (Q) = − w e

2π h̄

∫ π

−π

dk sin(k − Q)

×
(

η(k; Q) + ξ (k; Q)√
ξ 2(k; Q) + |�k|2

[1 − |η(k; Q)|]
)

,

(57)

where

η(k; Q) = 1
2 [sgnE+(k; Q) + sgnE−(k; Q)] (58)

is an odd function of k, called spectral asymmetry [60],
which identifies the three sectors (28) as well as the relative

magnitudes of h0 and h in Eqs. (4) and (5), namely

k ∈ Sh ↔ η = +1 ↔ h0 > h,

k ∈ Se ↔ η = −1 ↔ h0 < −h, (59)

k ∈ Sp ↔ η = 0 ↔ |h0| < h.

Figure 6 shows the current in units of we/2π h̄ as a function of
Q for different values of the chemical potential μ. The golden
curve illustrates the case in which the model parameters fulfill
the condition (45), corresponding to the type-I phase for the
WSM. The current is a smooth function of Q. In contrast,
the blue and red curves in Fig. 6 refer to cases in which the
condition (46) is fulfilled, corresponding to the type-II phase
for the associated WSM. As one can see, the current exhibits
sharp cusps at Q = ±Q∗ and Q = ±(π − Q∗) [see Eq. (47)],
which are the hallmark of the transition from the topological
gapped to the gapless superconducting phase, where unpaired
fermions and holes appear in the ground state (see Fig. 4).
The location of the cusp is independent of the value of the

FIG. 6. The current I (Q) is plotted as a function of Q for differ-
ent values of μ and �0 = 0.6w showing the cusp signature of the
Lifshitz transition. The vertical black dashed lines correspond to Q∗

and π − Q∗, where Q∗ is given by Eq. (47).
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FIG. 7. (a) The current is plotted as a function of Q for different
values of �0 at μ = 0. (b) Contour plot of the current as a function
of �0/w and Q, where the horizontal cuts (blue, red, gold, and green
dashed lines) correspond to the curves of panel (a), and the colors in
the contour (red and blue) represent the current values (in units of
we/2π h̄).

chemical potential. Note also that the cusps correspond to the
maximal current values, whereas the current always vanishes
at Q = ±π/2 for any value of μ and �0. From a mathematical
viewpoint, this stems from the fact that the current (57) is an
odd function of the deviation q = Q ∓ π/2. From a physi-
cal viewpoint, for Q = π/2 the renormalized hopping term
w cos Q vanishes, the bare band ε = 2w cos k cos Q − μ →
−μ becomes flat, and unpaired fermions cannot carry any
current, while the crystal momentum −2Q of the Cooper pairs
equals its opposite +2Q, implying also that the Cooper pair
current vanishes.

The qualitatively different behavior of I (Q) in the type-I
versus type-II parameter ranges (45) and (46) is further high-
lighted in Fig. 7, which displays the current (56) as a function
of Q, at μ = 0, for different values of the superconducting
order parameter �0/w. As one can see from panel (a), for
�0 > w the 1D Kitaev model is in the WSM type-I parameter
range and the current exhibits a smooth behavior as a function
of Q, whereas for �0 < w the Kitaev chain enters the WSM
type-II phase and the cusps clearly appear in the current.
Panel (b) shows a density plot of the current as a function of
(Q,�0), where the horizontal dashed lines represent the four
cuts shown in panel (a). For the special case μ = 0, it is also
possible to determine an analytical expression for the current
(see Appendix F for details), from which one can show that for
�0 � w the current exhibits a linear behavior as a function of
Q,

I (Q; μ = 0) ∼ 4we

2π h̄
Q, (60)

which represents the current carried by Cooper pairs with
momentum −2Q and charge −2e. Similarly, for �0 � w, the

FIG. 8. Effects of disorder: The current is shown as a function
of Q for parameters �0 = 0.6w, μ = 0, and system size Ns = 80 for
three different values of on-site disorder strength, r = 0 (clean case),
r = 0.5 (moderate disorder), and r = 1 (strong disorder).

maximal current I∗ reached at the cusp is

I∗(μ = 0) ∼ 4�0e

2π h̄
. (61)

For μ 
= 0, one obtains a maximal current lower than the one
at μ = 0, as can be seen from Fig. 6. Thus, Eq. (61) represents
the maximal current that the TS, characterized by a given �0,
can sustain in the topological phase, i.e., right at the transition
to the gapless phase.

Effects of disorder. We have also analyzed the effects of
disorder on the behavior of the current. Specifically, we have
considered a disordered on-site potential, which we have ac-
counted for by replacing the constant chemical potential in the
Hamiltonian (1) with μ → μ j = μ + w r ρ j , where r is the
disorder strength parameter and ρ j ∈ [−1, 1] is a uniformly
distributed random number. Figure 8 shows the Q-dependence
of the current for �0 = 0.6, μ = 0, for three values of disor-
der strength, r = 0 (clean case), r = 0.5 (moderate disorder),
and r = 1 (strong disorder). Each curve corresponds to an
average over a large number of disorder realizations. As far
as the disorder remains moderate, the cusp behavior of the
current at Q = Q∗ (vertical dashed line) remains robust, and
the only effect of disorder is to reduce a bit the magnitude
of the current. Only for strong disorder the curve becomes
smooth and the cusp disappears.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the effects of the spa-
tial modulation Q emerging in the superconducting order
parameter when a topological p-wave superconductor carries
a current flow. By modeling the system with a Kitaev chain,
we have analyzed the properties of the current-carrying state
for arbitrary values of the model parameters, including the
physically realistic regime �0 < w.

We have demonstrated that, by treating the Q-modulation
as the wave vector related to an extra synthetic dimension,
it is possible to establish a mapping between the stationary
nonequilibrium state of the 1D superconductor and the ground
state of a 2D WSM. The Lifshitz transitions emerging in the
Fermi surface of the 2D model as a function of the model
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parameters identify different phases of the topological super-
conductor crossed by a current. Exploiting such a mapping,
we have also constructed the expression (49) of the Fermi
“arc” in the 2D WSM and the Majorana quasiparticle (50) in
the corresponding current-biased 1D TS.

In particular, in the regime identified by Eq. (42), the 2D
WSM is in its type-I phase with four Weyl nodes, whose
location depends only on the chemical potential μ through the
value of QW [see Eq. (38)], and it determines the separation
between gapped topological and trivial phases of the Kitaev
chain. The Fermi “arcs” (49) correspond to the Majorana
quasiparticles (50) emerging in the topological phase (see
Fig. 4), and their penetration length (51) diverges at QW and
π − QW . Note that, for realistic values �0 � w, the regime
Eq. (45) of type-I WSM reduces to a small chemical poten-
tial range. In contrast, when the model parameters fulfill the
broader range Eq. (46), the 2D system is a type-II WSM. In
this case, electron and hole pockets correspond to the gapless
superconductor phases of the Kitaev chain, where Cooper
pairs coexist with unpaired electrons and holes (see Fig. 5).
In this case, the Q-range where the gapped topological phase
exists is no longer determined by the location of the Weyl
nodes. Instead, it depends on �0 only, through the value
of Q∗ given by Eq. (47). Notably, the penetration length of
the Majorana edge mode vanishes at such a transition value
between the topological gapped and the gapless phase of the
Kitaev model.

Furthermore, we have highlighted the difference with re-
spect to the s-wave superconductor, where the associated 2D
fermionic model can be either a trivial insulator or a conven-
tional semimetal (see Fig. 6). The difference between the 2D
Fermi surfaces corresponding to the p-wave and s-wave su-
perconductors is shown to correspond to two different classes
of the homology group of closed circuits along the 2D BZ.

Finally, by computing the current flowing through the Ki-
taev chain, we have shown in Figs. 6 and 7 that it exhibits a
sharp cusp at the critical value Q∗, corresponding to the tran-
sition between the gapped and the gapless phase illustrated
in Figs. 5(a) and 5(d). Importantly, the value of Q∗ given in
Eq. (47) is independent of the chemical potential variations
and is robust to disorder (see Fig. 8). Moreover, it determines
the maximal current I∗ [see Eq. (61)] that the p-wave topo-
logical superconductor can sustain in its topological phase
where Majorana quasiparticles exist. Before concluding, we
also would like to discuss some possible implementations
of the model investigated here, and to outline some future
perspectives of our results.

Implementations. One of the most explored implementa-
tions of 1D topological superconductors are nanowires with
strong spin-orbit coupling, such as InSb and InAs, proximized
by a thin conventional superconducting layer (e.g., Al or Nb)
and exposed to a longitudinal magnetic field. One of the signa-
tures that seems to be compatible with the existence of MQPs
is a pronounced zero-bias peak observed in the conductance
in electron tunneling experiments. However, the question of
whether such a peak is actually due to MQPs or to other non-
topological effects is still under debate. Here, from our result
Eq. (61), we can estimate the maximal current that the 1D p-
wave superconductor can sustain before entering the gapless
phase, where Majorana quasiparticles are absent. Using the

estimated values �0 ∼ 0.09–0.25 meV for the induced gap
in InSb nanowires [36,37,39] and �0 ∼ 0.05 meV for InAs
nanowires [38], one finds I∗ ∼ 8–40 nA. This range of values
is of the same order of magnitude as the typical current in
nanowire experiments [25,73,74].

Future perspectives. Our analysis has focused on the map-
ping between a 1D TS and a 2D WSM. However, the idea of
harnessing the phase modulation Q as a synthetic dimension
is actually quite general and can apply to higher-dimensional
cases. We thus can expect that a 2D TS with a current flowing
in a specific direction can be mapped to 3D WSM. Our results
thus pave the way to interpret the properties of WSMs as an
observation of lower-dimensional TSs with a current flow.
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APPENDIX A: PARAMETER RANGES OF GAPLESS
AND GAPPED PHASES OF THE KITAEV MODEL

Here we provide details to determine the range of param-
eters �0, μ, and Q characterizing the gapped and gapless
phases of the Kitaev model. Recalling that the spectrum
Eq. (16) is determined by the functions h0 and h [see Eqs. (4)
and (5) in the main text], we shall identify here the gapless
and gapped phases.

1. Gapless phase

The gapless phase of the Kitaev model is determined by
the condition

|h0(k; Q)| > h(k; Q) for some k and Q. (A1)

Introducing the quantity

�(k; Q) = 1

4

(
h2 − h2

0

)
= X 2

Q − μ

w
XQ cos k + μ2

4w2
−
(

1 − �2
0

w2

)
sin2 k,

(A2)

where XQ = cos Q, and recalling the expressions (4) and (5),
the inequality (A1) amounts to requiring

�(k; Q) < 0 for some k and Q. (A3)

At any given k the inequality Eq. (A3) is fulfilled only in the
range

X −
Q (k) � XQ � X +

Q (k) (A4)

provided that the two roots

X ±
Q (k) = μ

2w
cos k ± | sin k|

√
1 − �2

0

w2
− μ2

4w2
(A5)
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of the equality � = 0 are real. Thus, the requirement X ±
Q ∈ R

implies

�2
0 + μ2

4
< w2 ⇒ |μ|

2w
< 1,

�0

w
< 1, (A6)

which is the first Eq. (27) given in the main text. Then, we
observe that, by introducing the angle

θ = arcsin

⎛
⎜⎝ μ

2w√
1 − �2

0
w2

⎞
⎟⎠ ∈

[
−π

2
,+π

2

]
(A7)

and by denoting σk = sgn(sin k), the roots (A5) can be rewrit-
ten as

X ±
Q =

√
1 − �2

0

w2
sin (θ ± σkk). (A8)

This implies that |X ±
Q | �

√
1 − �2

0
w2 < 1, i.e., that the solutions

(A4) always belong to the physically acceptable range for the
variable XQ ∈ [−1; 1]. Thus, at any given k, the range of Q
values for which unpaired electrons and holes exist is given
by

−
√

1 − �2
0

w2
� X −

Q (k) � XQ � X +
Q (k) �

√
1 − �2

0

w2
. (A9)

Because in Eq. (A9) the extremal values ±
√

1 − �2
0/w

2 are

always reached by X ±
Q (k) for some value of k ∈ [−π, π ], the

actual range of Q for which unpaired electrons and holes are
present is precisely

−
√

1 − �2
0

w2
� cos Q �

√
1 − �2

0

w2
, (A10)

i.e., �0 < w| sin Q|. This is the second Eq. (27) given in the
main text. In turn, it also determines the onset value (47) for
the appearance of the electron and hole pockets.

2. Gapped phase

The Kitaev model is gapped if

|h0(k; Q)| < h(k; Q) ∀k ∈ [−π ; π [, (A11)

i.e., if

�(k; Q) > 0 ∀k ∈ [−π ; π [, (A12)

where �(k; Q) is given in Eq. (A2). One can now distin-
guish two ranges of chemical potential. For |μ| > 2w, it is
straightforward to realize from Eq. (A2) that the gapped phase
condition Eq. (A12) is fulfilled ∀ Q. This is the case (i) in
Eq. (26). When |μ| < 2w, Eq. (A12) is fulfilled in two sub-
cases. The first one is when � has no real roots for any k,
which occurs for the parameter range (ii) given in Eq. (26).
The second one occurs when � has two real roots, i.e., for
�2

0 + (μ/2w)2 < w2. In that case, for a given k, the inequality
�(k; Q) > 0 is fulfilled for −1 � XQ < X −

Q (k) and X +
Q (k) <

XQ � 1, where the roots are given by Eq. (A8). However,
Eq. (A12) requires that this holds for any k, which implies

that |XQ| >

√
1 − �2

0/w
2, i.e., | sin Q| < �0, from which one

obtains the case (iii) given in Eq. (26).

APPENDIX B: GROUND STATE

Here we show that the general expression (24) of the
current-carrying ground state implies the equivalent expres-
sion (29). Indeed, by rewriting Eq. (24) using the partitioning
(28), one can write the ground state as

|G〉 = N
∏
k∈Sp

γk−Q

∏
k∈Sh

γk−Q

∏
k∈Se

γ
†
k−Q |R〉 . (B1)

By changing the k → −k in the γ ’s of the Sh sector, one can
equivalently write

|G〉 = N
∏
k∈Sp

γk−Q

∏
k∈Se

γ−k−Qγ
†
k−Q |R〉

= N
∏

0<k<π
k∈S3

γ−k−Qγk−Q

∏
k∈S2

c−k−Qc†
k−Q |R〉 , (B2)

where we have used the relation γ−k−Qγ
†
k−Q = c−k−Qc†

k−Q
following from Eqs. (20). From Eq. (B2) we deduce
that the reference state is |R〉 = ∏

k∈Se
c†
−k−Q|0〉 = ∏

k∈Sh

c†
k−Q|0〉. Finally, by noticing that γ−k−Qγk−Q|0〉 = v∗

k (uk +
v∗

k c†
−k−Qc†

k−Q)|0〉, one obtains the normalized state Eq. (29).
Moreover, the general expression (24) of the ground state

also leads to Eqs. (31) and (32). Indeed the relations (22)
stemming from Eq. (24) imply the following: for k, k′ ∈ S+
and −k,−k′ ∈ S+ → k, k′ ∈ Sp,

〈γ †
k−Qγk′−Q〉 = 0,

〈γ †
k−Qγ

†
−k′−Q〉 = 0,

〈γ−k−Qγk′−Q〉 = 0,

〈γ−k−Qγ
†
−k′−Q〉 = δk,k′ (B3)

for k, k′ ∈ S+ and −k,−k′ ∈ S− → k ∈ Sh, −k ∈ Se,

〈γ †
k−Qγk′−Q〉 = 0,

〈γ †
k−Qγ

†
−k′−Q〉 = 0,

〈γ−k−Qγk′−Q〉 = 0,

〈γ−k−Qγ
†
−k′−Q〉 = 0 (B4)

for k, k′ ∈ S− and −k,−k′ ∈ S+ → k ∈ Se, −k ∈ Sh,

〈γ †
k−Qγk′−Q〉 = δk,k′ ,

〈γ †
k−Qγ

†
−k′−Q〉 = 0,

〈γ−k−Qγk′−Q〉 = 0,

〈γ−k−Qγ
†
−k′−Q〉 = δk,k′ . (B5)

By inverting the Bogoliubov quasiparticle relations (20), one
obtains

ck−Q = ukγk−Q − v∗
k γ

†
−k−Q,

c†
k−Q = ukγ

†
k−Q − vkγ−k−Q, (B6)

from which Eqs. (31) and (32) are straightforwardly deduced.
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APPENDIX C: ELEMENTARY EXCITATIONS

From Eq. (19) and from the properties (21) character-
izing the ground state, it is straightforward to realize that
the elementary excitations of the system are characterized
by an energy |E+(k; Q)| with respect to the ground-state
energy (23), and are given by γ

†
k−Q|G(Q)〉 for k ∈ S+, and

γk−Q|G(Q)〉 for k ∈ S−. Moreover, as we have seen above, the
BZ can be partitioned in three sectors BZ = Sh ∪ Se ∪ Sp, and

one can identify three types of elementary excitations

|ex1(k; Q)〉 = γ
†
k−Q|G〉 for k ∈ Sh, (C1)

|ex2(k; Q)〉 = γk−Q|G〉 for k ∈ Se, (C2)

|ex3(k; Q)〉 = γ
†
k−Q|G〉 for k ∈ Sp. (C3)

Using Eq. (20) we can see that the first type of excitation (k ∈
Sh) takes the form

|ex1(k; Q)〉 =
∏

k′ > 0
k′ ∈ Sp

(uk′ + v∗
k′ c†

−k′−Qc†
k′−Q)

⎛
⎜⎜⎜⎝
∏

k′ ∈ Se

k′ 
= −k

c†
k′−Q

⎞
⎟⎟⎟⎠ (vk − ukc†

−k−Qc†
k−Q) |0〉 , (C4)

where, as compared to the ground state (29), an empty fermionic state at k ∈ Sh and a filled fermionic state at −k ∈ Se are
replaced by a Cooper pair vQ(k) − uQ(k)c†

−k−Qc†
k−Q. Notably, such a Cooper pair is orthogonal to the Cooper pair characterizing

the ground state, i.e.,

〈0|(uk + vk c−k−Qck−Q)|(vk − ukc†
−k−Qc†

k−Q) |0〉 = 0. (C5)

For the Se sector, the excited state reads

|ex2(k; Q)〉 =
∏

k′ > 0
k′ ∈ Sp

(uk′ + v∗
k′ c†

−k′−Qc†
k′−Q)

⎛
⎜⎜⎜⎝
∏

k′ ∈ S f

k′ 
= −k

c†
k′−Q

⎞
⎟⎟⎟⎠(uQ(k) + v∗

Q(k)c†
−k−Qc†

k−Q) |0〉 , (C6)

where, as compared to the ground state (29), a single fermionic state at k ∈ Se and an empty fermionic state at −k ∈ Sh are
replaced by a Cooper pair uk + v∗

k c†
−k−Qc†

k−Q of the same type as the ones characterizing the ground state in the Sp sector.
Finally, for the Sp sector,

|ex3(k; Q)〉 =
∏

k′ > 0
k′ ∈ Sp

k′ 
= k

(uk′ + v∗
k′ c†

−k′−Qc†
k′−Q)

⎛
⎝∏

k′∈S2

c†
k′−Q

⎞
⎠c†

k−Q |0〉 , (C7)

where, as compared to the ground state (29), a Cooper pair in the Sp sector has been replaced by one single fermion.

APPENDIX D: LATTICE MODEL

In this Appendix, we provide additional details about the 2D lattice model described by the Hamiltonian (33). The
Hamiltonian H (k) contained therein can be written in the form

H (k) = 1

2

(
wei(Q−k) + we−i(Q−k) + μ −�0eik + �0e−ik

�0eik − �0e−ik −wei(Q−k) − we−i(Q−k) − μ

)
. (D1)

After Fourier transforming to real space, one obtains

H2D =
∑
m,n

{
�0

2
[ f †

A(n+1,m) fB(n,m) + f †
B(n,m) fA(n+1,m) − f †

A(n,m) fB(n+1,m) − f †
A(n+1,m) fB(n,m)] + w

2
[ f †

A(n,m+1) fA(n+1,m)

+ f †
A(n+1,m) fA(n,m+1) − f †

B(n+1,m+1) fB(n,m) − f †
B(n,m) fB(n+1,m+1)] + μ

2
[ f †

A(n,m) fA(n,m) − f †
B(n,m) fB(n,m)]

}
, (D2)

and the various terms are sketched in Fig. 9. The A and B spots represent two different orbitals in the same site or two different
sites in the same unit cell.

Although we are presently unaware of a material described by the above Hamiltonian, the recent proposals of realizations of
2D WSMs with ultracold atoms [18] suggest that its realization in the near future with synthetic materials, e.g., cold atomic or
photonic lattices, could be possible.
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FIG. 9. Sketch of the various hopping terms of the 2D Hamilto-
nian (D2) defined in the 2D lattice. Here A and B represent either two
orbitals in the same physical lattice site, or two sites in the same unit
cell.

APPENDIX E: FERMI ARCS

In this Appendix, we consider the 2D Weyl Hamiltonian in
Sec. IV with a boundary in the direction x, say, at x = 0, while
remaining infinite in the direction y. We look for the surface
states, and aim in particular at determining their support in
the surface Brillouin zone. To this end, we will focus on the
low-energy Hamiltonian expanding around the Weyl nodes.
In the type-I phase, in order to describe the “arc” joining the
projection of the Weyl nodes k(0,±)

W , one obtains

H0(k; Q) ≈ w sin Q kσ0 − �0k σ2 +
(
w cos Q − μ

2

)
σ3, (E1)

which contains the first term in the momentum k expansion
of (33) around k = 0. The same expansion is used in the
type-II phase, but the arc joins now the electron/hole pockets
enclosing the nodes. The most general boundary condition
ensuring the self-adjointness of (E1) can be derived by taking
two arbitrary spinors ψ and χ and imposing that 〈Hψ, χ〉 =
〈ψ, Hχ〉 in the chosen geometry [67]. In the absence of the
phase modulation Q, this would imply the condition normally
derived for type-I Weyl semimetals [68]. Here instead, we
obtain the constraint

w sin Q ψ†(0)χ (0) = �0ψ
†(0)σ yχ (0), (E2)

provided ψ and χ are well-behaved for x → ∞. We note that,
taking ψ = χ , the above equation implies that the density
current Jx = h̄−1∂kH across the boundary vanishes. It also
implies that the state on the surface must take the form

χQ(x = 0) = 1√
2

(
e−iζ/2

eiζ/2

)
, (E3)

where the phase ζ must be a function of Q and satisfy
w

�0
sin Q = sin ζ . (E4)

The latter equation directly implies the expression of ζ given
in Sec. IV B and, for Q = 0, reduces to the eigenstate of σ x

FIG. 10. Plot of the penetration length λQ in (51) of the arc
including the origin in the Weyl-I and the Weyl-II phase. The curves
are obtained with parameters μ/w = 0.1 and �0/w = 1.1 (dashed
red line) and �0/w = 0.9 (solid green line).

with a positive eigenvalue. This is the familiar form describing
a straight “arc” in type-I Weyl semimetals or the Majorana end
mode in the Kitaev model. Taking an ansatz wave function
in the form (50) with an unspecified λQ in the exponent, it
can be directly verified applying the Hamiltonian (E1) that
this represents a zero-energy eigenstate only if the penetration
length is a function of the momentum Q and the condition

w cos Q − μ

2
− �0

λQ
cos ζ = 0 (E5)

is satisfied. Finally, one solves for the penetration length
λQ, and the relation cos ζ = ±

√
�2

0 − w2 sin2 Q selects the
branch of the solution for ζ from the condition that λQ > 0
along the arc. To this end, we recall that, in the Weyl-I phase,
the arc connects the projection of the nodes k(0,±)

W through
the origin for μ > 0, i.e., cos Q > 0, while for μ < 0 the
arc winds instead across the BZ and cos Q < 0. The same
procedure can be readily applied to the type-II Weyl phase,
with the important difference that there appear bulk states
around the Weyl nodes. Therefore, the arc support is shorter
and spans the interval [−Q∗, Q∗] for μ > 0, while it joins
π − Q∗ and −π + Q∗ including the point Q = π for μ < 0.

Similarly, one can describe the “arc” connecting the projec-
tion of the Weyl nodes k(π,±)

W by considering the expansion of
(33) around k = π . It is readily verified that this Hamiltonian
can be formally obtained from H0 by exchanging w → −w

and �0 → −�0. By repeating the steps above, the surface
state must once again reduce to (E3) on the boundary, and
the form (50) describes a zero-energy state imposing

w cos Q + μ

2
− �0

λQ
cos ζ = 0. (E6)

Solving (E5) and (E6) for λQ, the branch of the phase ζ is
again selected by the condition λQ > 0. To this end, it is
important to notice that the Fermi arc support includes Q = π

if μ > 0, while it includes the origin Q = 0 for μ < 0. Joining
the above considerations, one finds the expression (51) in the
main text, also represented in Fig. 10 for two sample values of
parameters in the two Weyl phases.
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APPENDIX F: ANALYTICAL EXPRESSION FOR THE CURRENT AT μ = 0

Here we show that, starting from the general expression (57) for the current, for the special case μ = 0 we can derive an
analytical expression of I (Q) that holds for arbitrary values of �0. We first observe that, for μ = 0, the function (A2) determining
the gapless and gapped regions reduces to �(k; Q) = cos2 Q − (1 − �2

0/w
2) sin2 k. Then, taking into account the sign of h0 [see

Eq. (4)], the conditions (59) enable one to determine the values of the spectral asymmetry over the Brillouin zone,

k∗
Q < k < π − k∗

Q →
{
η = +1 if Q ∈]0; π ],
η = −1 if Q ∈ [−π ; 0[,

− π + k∗
Q < k < −k∗

Q →
{
η = −1 if Q ∈]0; π ],
η = +1 if Q ∈ [−π ; 0[, (F1)

|k| < k∗
Q or π − k∗

Q < |k| < π → η = 0,

where

k∗
Q = arcsin

(
| cos Q|√

1 − (�0/w)2

)
. (F2)

The expression (57) of the current consists of two contributions, one proportional to η, which represents the current IU (Q)
carried by unpaired fermions and holes, and a second term proportional to 1 − |η|, which represents the supercurrent IS (Q) due
to Cooper pairs. Let us start by determining the former contribution. Identifying through Eq. (F1) the k-regions where η = ±1,
one finds

IU (Q; μ = 0) = − we

2π h̄

∫ π

−π

dk sin (k − Q)η(k, Q) = −4
we

2π h̄
θ

(
|sin (Q)| − �0

w

)
cos(k∗

Q) cos (Q)sgn(sin Q). (F3)

Recalling Eq. (F2), one obtains

IU (Q; μ = 0) = −4we

2π h̄
θ [w|sin (Q)| − �0]

√
w2 sin2 Q − �2

0

w2 − �2
0

cos (Q)sgn(sin Q). (F4)

Let us now consider the current associated with Cooper pairs (η = 0). From the expression (57), the current associated with the
Cooper pairs is

IS (Q; μ = 0) = − we

2π h̄

∫ π

−π

dk
sin (k − Q)ξ (k; Q)√

ξ 2(k; Q) + |�k|2
[1 − |η(k, Q)|]. (F5)

By introducing the quantity

δQ =
(

�0

w cos (Q)

)2

(F6)

and by exploiting the fact that |η(k, Q)| and ξ (k, Q) are even functions of k, some straightforward algebra leads one to write

IS (Q; μ = 0) = we

2π h̄
2 sin Q sgn(cos Q)

∫ π

0
dk

cos2 k√
cos2 k + δQ sin2 k

[1−|η(k, Q)|]. (F7)

One can now identify from Eq. (F1) the regions with η = 0 and write

IS (Q; μ = 0) = we

2π h̄
2 sin Q sgn(cos Q)

⎧⎪⎨
⎪⎩θ (w| sin Q| − �0)

⎛
⎜⎝∫ k∗

Q

0
dk

cos2 k√
cos2 k + δQ sin2 k

+
∫ π

π−k∗
Q

dk
cos2 k√

cos2 k + δQ sin2 k

⎞
⎟⎠

− θ (�0 − w| sin Q|)
∫ π

0
dk

cos2 k√
cos2 k + δQ sin2 k

⎫⎪⎬
⎪⎭. (F8)

Let us now focus on the two integrals appearing in the first term. We notice that, by changing the integration variable k = π − k′
in the second integral, the latter turns out to be equal to the first one. Similarly, the integral appearing in the second term can be
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written as twice the integral from 0 to π/2. This enables one to rewrite

IS (Q; μ = 0) = we

2π h̄

4 sin Q sgn(cos Q)

1 − δQ

{
θ

(
|sin (Q)| − �0

w

)
(E (k∗

Q; 1 − δQ) − δφ F (k∗
Q; 1 − δQ))

+ θ

(
�0

w
− |sin (Q)|

)√
δQ

(
E

(
1 − 1

δQ

)
− K

(
1 − 1

δQ

))}
, (F9)

where E , F , and K are incomplete elliptic functions, while E (x) ≡ E ( π
2 ; x) and K (x) ≡ F ( π

2 ; x). Finally, exploiting the proper-
ties of the elliptic integrals

√
xE (1 − 1/x) = E (1 − x) and

√
xK (1 − 1/x) = x K (1 − x) for x > 0, and combining together the

contributions (F4) and (F9), one finally obtains the current at μ = 0,

I (Q; μ = 0) = −4we

2π h̄

{
θ [w|sin (Q)| − �0]

[√
w2 sin2 Q − �2

0

w2 − �2
0

cos (Q)sgn(sin Q)

− sin Q sgn(cos Q)

1 − δQ
(E (k∗

Q; 1 − δQ) − δQ F (k∗
Q; 1 − δQ))

]

− θ (�0 − w|sin Q|) sin Q sgn(cos Q)

1 − δQ
[E (1 − δQ) − δQ K (1 − δQ)]

}
, (F10)

where δQ is Eq. (F6) and k∗
Q is Eq. (F2). The current near Q = 0 and for �0 � w gives

I (Q; μ = 0) ∼ we Q

2π h̄

{
4 +

[
3 − 4 ln 2 + 2 ln

(
�0

w

)]
�2

0

w2

}
(F11)

and to leading order the slope dI/dQ depends only on the bandwidth parameter w.
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