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A Numerical Algorithm Based on Probing to
Find Optimized Transmission Conditions

Martin J. Gander, Roland Masson, and Tommaso Vanzan

1 Motivation

Optimized Schwarz Methods (OSMs) are very versatile: they can be used with or
without overlap, converge faster compared to other domain decomposition methods
[5], are among the fastest solvers for wave problems [10], and can be robust for
heterogeneous problems [7]. This is due to their general transmission conditions,
optimized for the problem at hand. Over the last two decades such conditions have
been derived for many Partial Differential Equations (PDEs), see [7] for a review.
Optimized transmission conditions can be obtained by diagonalizing the OSM

iteration using a Fourier transform for two subdomains with a straight interface. This
works surprisingly well, but there are important cases where the Fourier approach
fails: geometries with curved interfaces (there are studies for specific geometries,
e.g. [11, 9, 8]), and heterogeneous couplings when the two coupled problems are
quite different in terms of eigenvectors of the local Steklov-Poincaré operators [6].
There is therefore a great need for numerical routines which allow one to get cheaply
optimized transmission conditions, which furthermore could then lead to OSM
black-box solvers. Our goal is to present one such procedure.
Let us consider the simple case of a two nonoverlapping subdomain decomposi-

tion, that is Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, Γ := Ω1 ∩ Ω2, and a generic second order
linear PDE

L(𝑢) = 𝑓 , in Ω, 𝑢 = 0 on 𝜕Ω. (1)
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The operator L could represent a homogeneous problem, i.e. the same PDE over the
whole domain, or it could have discontinuous coefficients along Γ, or even represent
a heterogeneous coupling. Starting from two initial guesses 𝑢0

1, 𝑢
0
2, the OSM with

double sided zeroth-order transmission conditions computes at iteration 𝑛

L(𝑢𝑛1 ) = 0 on Ω1, (𝜕𝑛1 + 𝑠1)𝑢𝑛1 = (𝜕𝑛1 + 𝑠1)𝑢𝑛−1
2 on Γ,

L(𝑢𝑛2 ) = 0 on Ω2, (𝜕𝑛2 + 𝑠2)𝑢𝑛2 = (𝜕𝑛2 + 𝑠2)𝑢𝑛−1
1 on Γ,

(2)

where 𝑠1, 𝑠2 ∈ R are the parameters to optimize.
At the discrete level, the original PDE (1) is equivalent to the linear system
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where the unknowns are split into those interior to domainΩ𝑖 , that is u𝑖 , 𝑖 = 1, 2, and
those lying on the interface Γ, i.e. uΓ. It is well known that the Dirichlet-Neumann
and Neumann-Neumann methods can be seen as Richardson type methods to solve
the discrete Steklov-Poincaré equation

ΣuΓ = `,

where Σ := Σ1 + Σ2, Σ𝑖 := 𝐴𝑖ΓΓ − 𝐴𝑖Γ𝐼 (𝐴𝑖𝐼 𝐼 )−1𝐴𝑖𝐼Γ, ` := `1 + `2, `𝑖 := f𝑖Γ −
𝐴𝑖Γ𝐼 (𝐴𝑖𝐼 𝐼 )−1f𝑖 , 𝑖 = 1, 2. It is probably less known that the OSM (2) can be interpreted
as an Alternating Direction Implicit scheme (ADI, see e.g. [2]), for the solution of
the continuous Steklov-Poincaré equation. This interesting point of view has been
discussed in [1, 3]. At the discrete level, it results in the equivalence between a
discretization of (2) and the ADI scheme

(𝑠1𝐸 + Σ1)_𝑛+
1
2 = (𝑠1𝐸 − Σ2)_𝑛 + `, (𝑠2𝐸 + Σ2)_𝑛+1 = (𝑠2𝐸 − Σ1)_𝑛+

1
2 + `,

where 𝐸 is either the mass matrix on Γ using a Finite Element discretization, or
simply an identity matrix using a Finite Difference stencil. From now on, we will
replace 𝐸 with the identity 𝐼 without loss of generality.Working on the error equation,
the iteration operator of the ADI scheme is

𝑇 (𝑠1, 𝑠2) := (𝑠2𝐼 + Σ2)−1 (𝑠2𝐼 − Σ1) (𝑠1𝐼 + Σ1)−1 (𝑠1𝐼 − Σ2), (3)

and one would like to minimize the spectral radius, min𝑠1 ,𝑠2 𝜌(𝑇 (𝑠1, 𝑠2)). It would
be natural to use the wide literature available on ADI methods to find the optimized
parameters 𝑠1, 𝑠2 for OSMs. Unfortunately, the ADI literature contains useful results
only in the case where Σ1 and Σ2 commute, which is quite a strong assumption.
In our context, the commutativity holds for instance if Ω1 = Ω2 and L represents
a homogeneous PDE. Under these hypotheses, Fourier analysis already provides
good estimates of the optimized parameters. Indeed it can be shown quite generally
that the Fourier analysis and ADI theory lead to the same estimates. Without the
commutativity assumption, the ADI theory relies on rough upper bounds which do
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not lead to precise estimates of the optimized parameters. For more details on the
links between ADI methods and OSMs we refer to [13, Section 2.5].
Let us observe that if one used more general transmission conditions represented

by matrices Σ̃1 and Σ̃2, (3) becomes

𝑇 (Σ̃1, Σ̃2) = (Σ̃2 + Σ2)−1 (Σ̃2 − Σ1) (Σ̃1 + Σ1)−1 (Σ̃1 − Σ2).

Choosing either Σ̃1 = Σ2 or Σ̃2 = Σ1 leads to 𝑇 = 0, and thus one obtains that the
local Steklov-Poincaré operators are optimal transmission operators [12].

2 An algorithm based on probing

Our algorithm to find numerically optimized transmission conditions has deep roots
in the ADI interpretation of the OSMs and it is based on the probing technique.
By probing, we mean the numerical procedure through which we estimate a generic
matrix 𝐺 by testing it over a set of vectors. In mathematical terms, given a set of
vectors x𝑘 and y𝑘 := 𝐺x𝑘 , 𝑘 ∈ K, we consider the problem

Find 𝐺 such that 𝐺x𝑖 = y𝑖 ,∀𝑖 ∈ I. (4)

As we look for matrices with some nice properties ( diagonal, tridiagonal, sparse...),
problem (4) does not always have a solution. Calling𝐷 the set of admissiblematrices,
we prefer to consider the problem

min
𝐺∈𝐷

max
𝑘∈K
∥y𝑘 − 𝐺x𝑘 ∥. (5)

Having remarked that the local Steklov-Poincaré operators represent optimal
transmission conditions, it would be natural to approximate them using probing.
Unfortunately, this idea turns out to be very inefficient. To see this, let us carry out
a continuous analysis on an infinite strip, Ω1 = (−∞, 0) × (0, 1) and Ω2 = (0,∞) ×
(0, 1). We consider the Laplace equation and, denoting with S𝑖 the continuous
Steklov-Poincaré operators, due to symmetry we have S1 = S2 =: S𝑒. In this simple
geometry, the eigenvectors of S𝑒 are 𝑣𝑘 = sin(𝑘𝜋𝑦), 𝑘 ∈ N+ with eigenvalues
`𝑘 = 𝑘𝜋 so that S𝑒𝑣𝑘 = `𝑘𝑣𝑘 =: 𝑦𝑘 , see [5]. We look for an operator 𝑆 = 𝑠𝐼, 𝑠 ∈ R+,
which corresponds to a Robin transmission condition with parameter 𝑠. As probing
functions, we choose the normalized functions 𝑣𝑘 , 𝑘 = 1, ..., 𝑁ℎ, where 𝑁ℎ is the
number of degrees of freedom on the interface. Then (5) becomes

min
𝑆=𝑠𝐼, 𝑠∈R+

max
𝑘∈[1,𝑁ℎ ]

∥𝑦𝑘 − 𝑆𝑣𝑘 ∥ = min
𝑠∈R+

max
𝑘∈[1,𝑁ℎ ]

∥`𝑘𝑣𝑘 − 𝑠𝑣𝑘 ∥ = min
𝑠∈R+

max
𝑘∈[1,𝑁ℎ ]

|𝑘𝜋 − 𝑠 |.
(6)

The solution of (6) is 𝑠∗ = 𝑁ℎ 𝜋
2 while, according to a Fourier analysis and numerical

evidence [5], the optimal parameter is 𝑠opt =
√
𝑁ℎ𝜋. This discrepancy is due to the
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fact that problem (6) aims to make the parenthesis (𝑠𝑖 𝐼 − Σ3−𝑖), 𝑖 = 1, 2 as small as
possible, but it completely neglects the other terms (𝑠𝑖 𝐼 + Σ𝑖).
This observation suggests to consider the minimization problem

min
Σ̃1 ,Σ̃2∈𝐷

max
𝑘∈K

∥Σ2x𝑘−Σ̃1x𝑘 ∥
∥Σ1x𝑘+Σ̃1x𝑘 ∥

∥Σ1x𝑘−Σ̃2x𝑘 ∥
∥Σ2x𝑘+Σ̃2x𝑘 ∥

. (7)

We say that this problem is consistent in the sense that, assuming Σ1, Σ2 share a
common eigenbasis {v𝑘}𝑘 with eigenvalues

{
`𝑖𝑘

}
, Σ̃𝑖 = 𝑠𝑖 𝐼, 𝑖 = 1, 2, 𝑘 = 1, . . . , 𝑁ℎ,

then choosing x𝑘 = v𝑘 , we have

min
Σ̃1 ,Σ̃2∈𝐷

max
𝑘∈K

∥Σ2x𝑘−Σ̃1x𝑘 ∥
∥Σ1x𝑘+Σ̃1x𝑘 ∥

∥Σ1x𝑘−Σ̃2x𝑘 ∥
∥Σ2x𝑘+Σ̃2x𝑘 ∥

= min
𝑠1 ,𝑠2

max
𝑘∈K

��� 𝑠1−`2
𝑘

𝑠1+`1
𝑘

𝑠2−`1
𝑘

𝑠2+`2
𝑘

��� = min
𝑠1 ,𝑠2∈R+

𝜌(𝑇 (𝑠1, 𝑠2)),

that is, (7) is equivalent to minimize the spectral radius of the iteration matrix.
We thus propose our numerical procedure to find optimized transmission condi-

tions, summarized in Steps 2-4 of Algorithm 1.4 Martin J. Gander, Roland Masson, and Tommaso Vanzan

Algorithm 1
Require: A set of vector x: , : ∈ K, a characterization of Σ̃1, Σ̃2.
1: [Optional] For 8 = 1, 2, perform # iterations of the power method to get approximations

of selected eigenvectors x8: , 8 = 1, 2, : ∈ K. Map x89 into x: , for 8 = 1, 2, 9 ∈ K and
: = 1, . . . , 2 |K |. Redefine K := {1, . . . , 2 |K | }.

2: Compute H8: = Σ8x: , : ∈ K,.
3: Call an optimization routine to solve (7).
4: Return the matrices Σ̃ 9 , 9 = 1, 2.

fact that problem (6) aims to make the parenthesis (B8 � − Σ3−8), 8 = 1, 2 as small as
possible, but it completely neglects the other terms (B8 � + Σ8).

This observation suggests to consider the minimization problem

min
Σ̃1 ,Σ̃2∈�

max
:∈K

‖Σ2x:−Σ̃1x: ‖
‖Σ1x:+Σ̃1x: ‖

‖Σ1x:−Σ̃2x: ‖
‖Σ2x:+Σ̃2x: ‖

. (7)

We say that this problem is consistent in the sense that, assuming Σ1,Σ2 share a
common eigenbasis {v: }: with eigenvalues

{
`8:

}
, Σ̃8 = B8 �, 8 = 1, 2, : = 1, . . . , #ℎ ,

then choosing x: = v: , we have

min
Σ̃1 ,Σ̃2∈�

max
:∈K

‖Σ2x:−Σ̃1x: ‖
‖Σ1x:+Σ̃1x: ‖

‖Σ1x:−Σ̃2x: ‖
‖Σ2x:+Σ̃2x: ‖

= min
B1 ,B2

max
:∈I

∈
��� B1−`2

:

B1+`1
:

B2−`1
:

B2+`2
:

��� = min
B1 ,B2∈R+

d() (B1, B2)),

that is, (7) is equivalent to minimize the spectral radius of the iteration matrix.
We thus propose our numerical procedure to find optimized transmission condi-

tions, summarized in Steps 2-4 of Algorithm 1. It requires as input a set of probing
vectors and a characterization for the transmission matrices Σ̃8 , that is if the matrices
are identity times a real parameter, diagonal, or tridiagonal, sparse etc. We then
precompute the action of the local Schur complement on the probing vectors. We
finally solve (7) using an optimization routine such as fminsearch in Matlab, which
is based on the Nelder-Mead algorithm.

The application of Σ8 to a vector x: requires a subdomain solve, thus Step 2
requires 2|K | subdomain solves which are embarrassingly parallel. Step 3 does not
require any subdomain solves, and thus is not expensive.

As discussed in Section 3, the choice of probing vectors plays a key role to obtain
good estimates. Due to the extensive theoretical literature available, the probing
vectors should be heuristically related to the eigenvectors associated to the minimum
and maximum eigenvalues of Σ8 . It is possible to set the probing vectors x: equal to
lowest and highest Fourier modes. This approach is efficient when the Fourier analysis
itself would provide relatively good approximations of the parameters. However there
are instances, e.g. curved interfaces or heterogeneous problems, where it is preferable
to have problem-dependent probing vectors. We thus include an additional optional
step (Step 1), in which, starting from a given set of probing vectors, e.g Fourier
modes, we perform # iterations of the power method, which essentially correspond
to # iterations of the OSM, to get more suitable problem-dependent probing vectors.

It requires as input a set of probing vectors and a characterization for the transmission
matrices Σ̃𝑖 , that is if the matrices are identity times a real parameter, diagonal, or
tridiagonal, sparse etc. We then precompute the action of the local Schur comple-
ment on the probing vectors. We finally solve (7) using an optimization routine such
as fminsearch inMatlab, which is based on the Nelder-Mead algorithm.
The application of Σ𝑖 to a vector x𝑘 requires a subdomain solve, thus Step 2

requires 2|K | subdomain solves which are embarrassingly parallel. Step 3 does not
require any subdomain solves, and thus is not expensive.
As discussed in Section 3, the choice of probing vectors plays a key role to obtain

good estimates. Due to the extensive theoretical literature available, the probing
vectors should be heuristically related to the eigenvectors associated to the minimum
and maximum eigenvalues of Σ𝑖 . It is possible to set the probing vectors x𝑘 equal to
lowest and highest Fouriermodes. This approach is efficientwhen the Fourier analysis
itself would provide relatively good approximations of the parameters. However there
are instances, e.g. curved interfaces or heterogeneous problems, where it is preferable
to have problem-dependent probing vectors. We thus include an additional optional
step (Step 1), in which, starting from a given set of probing vectors, e.g Fourier
modes, we perform 𝑁 iterations of the power method, which essentially correspond
to 𝑁 iterations of the OSM, to get more suitable problem-dependent probing vectors.
To compute the eigenvector associated to the minimum eigenvalue of Σ𝑖 , we rely
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Fig. 1: Contour plot of the spectral radius of the iteration matrix 𝑇 (Σ̃1, Σ̃2) with Σ̃𝑖 = 𝑠𝑖 𝐼 (left)
and of 𝑇 (Σ̂1, Σ̂2) with Σ̂𝑖 = 𝑝𝐼 + 𝑞𝐻 (right). The red crosses are the parameters obtained through
Alg. 1.

on the inverse power method which requires to solve a Neumann boundary value
problem. Including Step 1, Algorithm 1 requires in total 2|K |(𝑁 + 2) subdomain
solves, where |K | is the number of probing vectors in the input.

3 Numerical experiments

We start with a sanity check considering a Laplace equation on a rectangle Ω, with
Ω1 = (−1, 0)× (0, 1),Ω2 = (0, 1)× (0, 1) and Γ = {0}× (0, 1). Given a discretization
of the interface Γ with 𝑁ℎ points, we choose as probing vectors the discretization of

𝑥1 = sin(𝜋𝑦), 𝑥2 = sin(
√︁
𝑁ℎ𝜋𝑦), 𝑥3 = sin(𝑁ℎ𝜋𝑦), (8)

motivated by the theoretical analysis in [5], which shows that the optimized pa-
rameters 𝑠𝑖 satisfy equioscillation between the minimum, the maximum and a
medium frequency which scales as

√
𝑁ℎ. We first look for matrices Σ̃𝑖 = 𝑠𝑖 𝐼

representing zeroth order double sided optimized transmission conditions. Then,
we look for matrices Σ̂𝑖 = 𝑝𝐼 + 𝑞𝐻, where 𝐻 is a tridiagonal matrix 𝐻 :=
diag( 2

ℎ2 ) − diag( 1
ℎ2 ,−1) − diag( 1

ℎ2 , +1), where ℎ is the mesh size. At the continuous
level, Σ̂𝑖 represent second order transmission conditions. Fig. 1 shows that Alg. 1
permits to obtain excellent estimates in both cases with just three probing vectors.
We emphasize that Alg. 1 requires 6 subdomain solves, which can be done in paral-
lel, and leads to a convergence factor of order ≈ 0.07 for second order transmission
conditions. It is clear that, depending on the problem at hand, this addition of 6
subdomain solves is negligible, considering the advantage of having such a small
convergence factor.
We now look at a more challenging problem. We solve a second order PDE

−∇ · a(x)∇𝑢 + a(x)⊤ · ∇𝑢 + [(x)𝑢 = 𝑓 in Ω, (9)
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Fig. 2: Left: Ω decomposed into Ω1 and Ω2. Middle: optimized parameters obtained using Fourier
analysis or Algorithm 1 with different sets of probing vectors. Right: eigenvectors associated to the
smallest eigenvalues of Σ 𝑗 , 𝑗 = 1, 2.

where Ω is represented in Fig. 2 on the top-left.
The interface Γ is the parametric curve 𝛾(𝑡) : [0, 1] → (𝑟 sin( �̂�𝜋𝑡), 𝑡), with 𝑟 ∈

R+. The coefficients are set to a(x) = 1, a(x) = (10(𝑦 +𝑥2), 0)⊤, [(x) = 0.1(𝑥2 + 𝑦2)
in Ω1, a(x) = 100, a(x) = (10(1 − 𝑥), 𝑥)⊤, [(x) = 0 in Ω2, 𝑓 (x) = 𝑥2 + 𝑦2 in Ω.
The geometric parameters are 𝑟 = 0.4, �̂� = 6 and the interface is discretized with
𝑁ℎ = 100 points. Driven by the theoretical analysis [7], we rescale the transmission
conditions according to the physical parameters, setting 𝑆𝑖 := 𝑓𝑖 (𝑠)𝐼, where 𝑓𝑖 :=
a𝑖 (𝑠2 + 𝑎2

𝑖1
4a2
𝑖

+ 𝑎2
𝑖2

4a2
𝑖

+ [𝑖
a𝑖
)1/2 − 𝑎𝑖1

2 . The center panel of Fig. 2 shows a comparison
of the optimized parameters obtained by a Fourier analysis to the one obtained by
Alg. 1 using as probing vectors the sine frequencies (8). It is evident that both
do not deliver efficient estimates. The failure of Alg. 1 is due to the fact that, in
contrast to the Laplace case, the sine frequencies do not contain information about
the slowest modes. On the right panel of Fig 2, we plot the lowest eigenvectors of Σ𝑖 ,
which clearly differ significantly from the simple lowest sine frequency.We therefore
consider Alg. 1 with the optional Step 1 and as starting probing vectors we only use
the lowest and highest sine frequencies. The center panel of Fig. 2 shows that Alg. 1
delivers efficient estimates with just one iteration of the power method. Let us now
study the computational cost. To solve (9) up to a tolerance of 10−8 on the error,
an OSM using the Fourier estimated parameters (black cross in Fig 2) requires 21
iterations, while only 12 are needed by Algorithm 1 with only one iteration of the
power method. In the offline phase of Algorithm 1, we need to solve 4 subdomain
problems in parallel in Step 1, and further 8 subdomain problems again in parallel
in Step 2. Therefore the cost of the offline phase is equivalent to two iterations of
the OSM in a parallel implementation, and consequently Alg. 1 is computationally
attractive even in a single-query context.
Fourier estimates depend on the choice of 𝑘min and 𝑘max and in Fig. 2, we set

𝑘min = 𝜋 and 𝑘max = 𝜋/ℎ. Inspired by [8] and a reviewer’s comment, we optimized
with 𝑘min = 𝜋/|Γ| ≈ 𝜋/4.96 obtaining 𝑠 = 14.41, which is very close to the
optimal 𝑠∗. However, rescaling 𝑘min with |Γ | is not generally a valid approach.
Considering Ω1 as the ellipse of boundary (cos(2𝜋𝑡), 0.5 sin(2𝜋𝑡)), 𝑡 ∈ (0, 1), and
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Fig. 3: Comparison between the optimized parameters obtained through Fourier analysis and Alg.
1 for single sided Robin boundary conditions (left) and double sided Robin boundary conditions
(right).

Ω2 = [0, 2] × [0, 1] \ Ω1, see Fig. 2 bottom-left, then 𝑠∗ = 40, while 𝑠𝑘min=𝜋 = 31.5
and 𝑠𝑘min=𝜋/ |Γ | = 20.44. Thus, rescaling 𝑘min worsens the Fourier estimate.
Next, we consider the Stokes-Darcy system in Ω, with Ω1 = (−1, 0) × (0, 1),

Ω2 = (0, 1) × (0, 1) and Γ = {0} × (0, 1) with homogeneous Dirichlet boundary
conditions along 𝜕Ω. Refs. [6, 13] show that the Fourier analysis fails to provide
optimized parameters since the two subproblems do not share a common separation
of variable expansion in bounded domains, unless periodic boundary conditions are
enforced, see also [7][Section 3.3]. Thus, the sine functions do not diagonalize the
OSM iteration, even in the simplified domainΩwith straight interface. Nevertheless,
we apply Alg. 1 using two different sets of sines as probing vectors, corresponding
to frequencies K1 =

{
1,
√
𝑁ℎ, 𝑁ℎ

}
and K2 =

{
1, 2,
√
𝑁ℎ, 𝑁ℎ

}
. In K2 the first even

frequency is included because in Ref. [6] it was observed that the first odd Fourier
frequency converges extremely fast.
Fig 3 shows the estimated parameters for single and double sided zeroth order

transmission conditions obtained through a Fourier analysis [4] and using Alg. 1.
The left panel confirms the intuition of [6], that is, the first even frequency plays a
key role in the convergence. The right panel shows that Alg. 1, either withK1 orK2
provides better optimized parameters than the Fourier approach.
Next, we consider the stationary heat transfer model coupling the diffusion equa-

tion ∇· (−_∇𝑢1 (x)) = 0 in the porous medium domainΩ1 = (0, 𝐿) × (5, 15) with the
convection diffusion equation ∇ · (𝑢2 (x)V𝑡 (𝑦) − _𝑡 (𝑦)∇𝑢2 (x)) = 0 in the free flow
domain Ω2 = (0, 𝐿) × (0, 5). Both the turbulent velocity V𝑡 = (𝑉𝑡 (𝑦), 0)𝑇 and the
thermal conductivity _𝑡 (𝑦) exhibit a boundary layer at the interface Γ = (0, 𝐿) × {5}
and are computed from the Dittus-Boelter turbulent model. Dirichlet boundary con-
ditions are prescribed at the top ofΩ1 and on the left ofΩ2, homogeneous Neumann
boundary conditions are set on the left and right of Ω1 and at the bottom of Ω2, and
a zero Fourier flux is imposed on the right of Ω2. Flux and temperature continuity
is imposed at the interface Γ. The model is discretized by a Finite Volume scheme
on a Cartesian mesh of size 50 × 143 refined on both sides of the interface. Figure 4
shows that the probing algorithm provides a very good approximation of the optimal
solution for the case 𝐿 = 100 m, 𝑉 𝑡 = 5 m/s (mean velocity) both with the 3 sine
vectors (8) and with the 6 vectors obtained from the power method starting from the
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Fig. 4: For 𝐿 = 100 m, 𝑉 𝑡 = 5 m/s (left) and 𝐿 = 10 m, 𝑉 𝑡 = 0.5 m/s (right), comparison of the
double sided Robin parameters 𝑠1 and 𝑠2 obtained from the probing algorithm using either the 3
sine vectors or the 6 vectors obtained from the 3 sines vectors by 2 PM iterations on both sides. It
is compared with the minimizer of the spectral radius 𝜌(𝑇 (𝑠1, 𝑠2)) .

sine vectors. In the case 𝐿 = 10 m, 𝑉 𝑡 = 0.5 m/s, the spectral radius has a narrow
valley with two minima. In that case the probing algorithm fails to find the best local
minimum but still provides a very efficient approximation.
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