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PyXEL: Exploring Bitstream Analysis to Assess and 
Enhance the Robustness of Designs on FPGAs 

Abstract— Commercial hardware-reconfigurable systems-

on-chip are highly attractive for mission-critical applications in 

the space and automotive industries. However, their 

vulnerability to soft errors is a major concern, and analyzing the 

robustness of these systems is a complex task due to the lack of 

dedicated tools, information, and methodologies available. 

PyXEL is a tool designed to address these issues, providing the 

methodology for automating reliability analysis based on 

radiation and fault injection campaigns and facilitating the 

development of mitigation solutions based on customized place-

and-route. Furthermore, PyXEL offers the methodology for 

visualizing, decoding, and analyzing the configuration data of 

programmable hardware devices, enabling more precise and 

efficient evaluation and analysis of the robustness of systems 

implemented on programmable hardware devices. 
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I. INTRODUCTION 

Field Programmable Gate Arrays (FPGAs) and, more 
recently, reconfigurable Systems-on-Chip (SoCs) are gaining 
popularity for various purposes, from prototyping to high-
performance applications. The space and automotive 
industries are particularly drawn to these devices due to their 
hardware reconfigurability, which allows them to adapt to 
different scenarios, reduce costs, and extend system lifetime. 
SRAM-based reconfigurable hardware devices, such as 
AMD-Xilinx FPGAs and SoC, allow the final user to 
configure the hardware resources available in the device fabric 
to implement nearly any circuit. The configuration of these 
devices is based on configuration data, formally a bitstream, 
which is uploaded to the configuration memory (CRAM). 
Sections of the configuration memory are dedicated to 
programming hardware resources in the device fabric based 
on the content of the memory cells. For instance, Look-up-
Tables can be configured after manufacturing to implement 
custom combinational logic functions and can be connected 
one with the other using a mix of hardwired and 
programmable interconnections, the latter usually 
implemented by pass-transistors, to build complex logical 
functions. Similarly, programmable routing can be used to 
connect LUTs input and outputs with Flip-Flops, Block 
RAMs, or pins to implement sequential logic, storage 
mechanism, and input-outputs, respectively. AMD-Xilinx and 
Intel are the leading producers of SRAM-based programmable 
hardware devices. Due to the higher performance and newest 
technology adopted by commercial-off-the-shelf devices 
compared to radiation-hardened versions, they are 
increasingly being considered and utilized in safety-critical 
applications such as space missions.  

A. Motivations 

Sensitivity to soft errors of these devices, especially to 
Single Event Upsets (SEUs), is a significant concern in the 
adoption of FPGAs and SoCs in safety-critical applications 

that must be addressed early during design flow [1][2]. One of 
the main challenges in adopting commercial programmable 
hardware-based devices for safety-critical applications is their 
susceptibility to Single Event Upsets (SEUs). An SEU results 
in an undesired corruption of the configuration memory data, 
thus producing an undesired modification of the implemented 
circuit that may lead to errors and, eventually, critical failures. 
Both ionizing and non-ionizing radiation, ranging from high-
energy protons of outer space to neutrons and alpha particles 
on Earth, is a source of SEUs in the configuration memory of 
the devices. In order to evaluate the robustness of design to 
SEUs, both accelerated radiation testing, which exposes the 
system to a high flux of high-energy particles, and fault-
injection-based analysis are commonly adopted. The function 
of the bits in the configuration data and their relation to the 
hardware resources are not provided by vendors, remaining 
largely unknown. The lack of information from the vendors 
on how resources in the device fabric are encoded in 
configuration memory significantly limits the ability of 
industry and researchers to develop more accurate and 
performant reliability evaluation methodologies, which could 
benefit from the knowledge of how a circuit can be modified 
by SEUs occurring in the configuration memory. This 
problem is even more critical in recent devices, where CRAM 
is characterized by more than 100,000,000 bits, making 
unfeasible an exhaustive evaluation and exacerbated by the 
fact that around 90% of the bits in CRAM are actually 
associated with unused hardware resources, leading to long 
evaluation campaigns to achieve a reasonable number of 
events. Indeed, due to programmable architecture's intrinsic 
characteristics, only a subset of the hardware resources will be 
used by the application implemented within the device. 
Consequently, only a subset of configuration memory bits will 
be a source of errors when corrupted. The missing reliable 
mapping between CRAM and hardware prevents many 
reliability evaluation techniques from being applied to these 
devices, such as fine-grained fault injection, specific fault 
emulation (e.g., open routing, LUT corruption), fault 
localization in radiation testing and fault injection campaigns, 
and more. Additionally, automatization and integration of 
bitstream analysis, fault injection tasks, and custom place-and-
route solutions are inhibited by the lack of APIs and 
integration mechanisms, currently constrained to low-
performance Tcl scripts.  

B. Related Works and Open Challenges 

Some vendors, such as Xilinx,  attempted to address issues 
in evaluating the reliability of design implemented in 
programmable hardware by providing a feature within their 
vendor tool, which identifies a subset of the entire CRAM to 
be considered for robustness analysis called Essential Bits 
(EBs). The purpose of EBs is to reduce the number of bits that 
must be evaluated during robustness analysis. However, EBs 
still do not provide information for mapping faults to specific 
modules or hardware resources. Additionally, the coordinates 
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of EBs are provided in a proprietary format, meaning it can 
only be used to evaluate system reliability by fault injection 
based on a dedicated IP Core provided by the vendor, which 
increases complexity since it requires modifying the design 
for placing the core in the programmable hardware. Finally, 
EBs are based on used tiles rather than basic elements, which 
results in overestimating the subset.  

The third-party tools available to support FPGA design 
analysis are mainly dedicated to facilitating and automating 
partial reconfiguration tasks and design placement and routing 
[5]-[8]. Except for [7], which partially supports coarse-grained 
bitstream manipulation with partial reconfiguration purposes, 
and [8] supporting user-defined initialization states update and 
configuration frame identification, bitstream analysis, 
manipulation, and mapping are not supported at all. Except for 
[9], which targets two-generation old Spartan-VI FPGA 
successfully, tools such as [9][10]-[12] have made attempts to 
reverse engineering bitstream, obtaining only partial results 
and targeting FPGA families that are three generations or 
more out of date compared to the current ones. Additionally, 
these tools are based on the Xilinx Design Language (XDL) 
supported by ISE, the previous iteration of the vendor 
development tool, but  XDL is not a viable option for current 
devices since it is no longer supported in the more recent 
Vivado Design Suite, the provided vendor tool for 
development on Xilinx programmable devices. The 
discontinued support for XDL and the lack of APIs for 
interfacing with the Vivado framework raise an additional 
challenge to interface third-party tools with the vendor's tool, 
and automatizing tasks such as information extraction and 
custom place-and-route solutions for fault mitigation 
purposes. 

C. Main Contribution 

This work presents PyXEL, a Python-based tool designed 
to facilitate the evaluation of the robustness of programmable 
hardware designs, as well as the implementation of mitigation 
strategies by simplifying the automation of place and route. 
PyXEL provides the mechanism for automating and 
integrating fault injection tasks, bitstream analysis, and 
custom place-and-route solutions. Thus, PyXEL provides 
comprehensive support for the automation of radiation testing 
and fault injection experiments, mandatory for evaluating the 
robustness of design implemented on programmable 
hardware. Additionally, it includes the methodology for 
visualizing, decoding, and analyzing the configuration data of 
programmable hardware devices. With this feature, solving 
the mapping between CRAM and hardware, PyXEL can 
support comprehensive reliability analysis techniques, such as 
fine-grained fault injection, specific fault emulation (e.g., 
open routing, LUT corruption), and fault localization in 
radiation testing that are not currently supported by vendors or 
third-party tools.  

Please note that PyXEL was initially designed to make it 
easier to evaluate the effects of faults in FPGA routing [3]. 
The new version of the tool presented in this work has been 
rebuilt from the ground up and does not share any of the code, 
methodology, or features.  

II. METHODOLOGY 

PyXEL offers several features that help to evaluate the 
reliability of designs implemented on programmable hardware 
thoroughly. It focuses mainly on Xilinx devices, the most used 
programmable hardware devices. Nevertheless, due to the 

general characteristics of the proposed approach, the 
methodology can be readily adapted for use with other 
programmable hardware families.  

PyXEL can be used during radiation testing for automating 
experiment flow and extracting fault models occurring in the 
configuration memory. Additionally, PyXEL offers support 
for automating fault injection campaigns and mapping faults 
affecting the CRAM with hardware resources and modules 
implemented in the device. This allows for evaluating a 
design's robustness to soft errors and identifying modules with 
the highest sensitivity. Furthermore, the PyXEL integration 
mechanism supports the development of custom place-and-
route solutions, such as module isolation for fault containment 
[4]. These features enable a precise and efficient evaluation 
and enhancement of design robustness, allowing for a 
comprehensive analysis, including fault model identification, 
robustness evaluation, and mitigation,  based on the flow 
depicted in Figure 1. 

A. Mechanism of Integration with the EDA tool 

Most EDA tools for FPGA development, particularly 
Vivado provided by Xilinx, offer a Tcl command interface for 
scripting. While Tcl is a standard language in the 
semiconductor industry, it can be slow and cumbersome, 
particularly when dealing with complex algorithms or object-
oriented programming. Additionally, the development flow is 
often based on intermediate stages describing intermediate 
steps, such as synthesis and place-and-route, describing how a 
design is translated and mapped to the hardware resources in 
the reconfigurable device. As these file formats are 
proprietary, an equivalent high-level description of the 
intermediate stages must be extracted from Vivado to be 
managed in PyXEL. Integration between PyXEL and the EDA 
tools is based on a mechanism that wraps the Tcl interpreter 
internally to Vivado with a Tcl server. The server executes the 
request received on a dedicated socket by PyXEL directly in 
the Vivado-embedded interpreter, returning the results to 
PyXEL. This effectively wraps the Tcl interpreter, allowing 
PyXEL to offer optimized APIs for interacting with Vivado 
Tcl transparently to the user. This mechanism is essential for 
easing the development of complex algorithms, such as place-
and-route approaches. It is also the main mechanism adopted 
for integrating Vivado operations within PyXEL, allowing for 
easy and transparent device and design queries and 
manipulation of place and route via in-tool APIs. 

 

Fig. 1: Steps of the proposed case of study for the evaluation and mitigation 
of a benchmark circuit using PyXEL. 



B. Automating Evaluation of Robustness  

PyXEL can be used for evaluating the robustness of design 
implemented on programmable hardware devices. An 
overview of the modules embedded in PyXEL to facilitate the 
automatization of radiation testing and fault injection 
campaigns on actual devices is depicted in Figure 2. For 
performing operations, such as device configuration, system 
reset, software deployment and execution for system-on-
chips, and configuration memory readback, the modules 
exploit the previously introduced mechanism for EDA 
integration, which is used transparently by the user. 
Furthermore, PyXEL includes a listener module for receiving 
data from the device implemented as a parallel thread of the 
Experiment Manager to capture outputs on serial connections 
or sockets to be classified later that run. PyXEL can be 
instrumented to emulate different fault models at the memory 
level as well as at the logic elements level. This feature is 
managed by a Fault Emulator module able to emulate fault 
models in the configuration data, aware of the implemented 
design characteristics and the configuration memory 
architecture of the device, accordingly to the user 
instrumentation. PyXEL also provides a Mapper to relate bits 
in the configuration data with the associated hardware 
resources, so supporting fault localization during radiation 
testing and fault location selection during fault injection 
campaigns.     

C. Bitstream Analysis and Decoding 

Configuration bitstreams are binary files used to program 
programmable hardware consisting of hundreds of millions of 
bits containing metadata, configuration data, and 
programming instructions. The structure of these devices 
consists of multiple tiles, each containing basic hardware 
resources that can be configured to implement a specific 
function. For example, these resources include elements such 
as programmable interconnects (PIPs) connecting routing 
paths or Look-Up Tables (LUTs) that can implement custom 
logic functions. Each tile is associated with specific bits in the 

configuration memory, configuring the elements within the 
tile. The configuration memory structure is made of frames, 
the smallest addressable group of bits in the configuration 
memory. Each frame typically contains around 3,000 bits, and 
the number of frames varies significantly depending on the 
device size and architecture. While vendors partially disclose 
the bitstream file structure, the actual function of the bits in 
the configuration data and their relation to hardware resources 
remain largely unknown.  

PyXEL provides a suite of features to facilitate bitstream 
analysis, comprehension, and decoding of configuration 
bitstreams, as well as a database of specific devices. It can 
parse the bitstream to identify metadata, headers, and 
configuration commands. Based on this information, PyXEL 
can create an in-memory object of the configuration data that 
can be manipulated for fault emulation and visualization. 
PyXEL includes a visualization mechanism that converts the 
configuration data into a two-dimensional bitmap based on 
configuration frames, allowing for visual inspection of the 
bitstream and correlation between sections of the bitstream 
and parts of the programmable hardware fabric.  

Additionally, PyXEL provides a database of devices and 
their associated bitstream information, which can be used to 
perform module-aware and resource-aware fault injection and 
localization. To provide this feature, PyXEL includes a 
comprehensive methodology and suite of software modules 
for automatically decoding configuration bitstreams. This 
consists of a TIle-Mapper (TIM) and a Tile Encoder-Decoder 
(TED). TIM uses an algorithm to map tiles to the 
corresponding section of the configuration memory. The 
required device architecture information is extracted through 
the previously introduced EDA integration mechanism. TED 
associates bits in the memory section identified by TIM with 
the basic hardware resources. To instrument TED, PyXEL 
generates problem-solution pairs consisting of the state of the 
hardware resources and associated bits, retrieved using TIM 
from a set of input designs. Tiles of the same type and their 
related bitmaps are correlated to link bits to the state of the 
resources, thus incrementally reducing the number of bits 
associated with a specific configuration of a particular 
resource within a tile, as depicted in Figure 3. This approach 
does not require particular designs to decode the resources in 
a tile, providing quick convergence due to many tiles of the 
same type using different resources usually available within 
an implemented design. If needed, further refinement of the 
results can be achieved with designs tailored to specific 
resources. This methodology has been applied to 
interconnection and logic tiles, allowing for the mapping and 
decoding of the vast majority of PIPs and logic within 
configurable logic and interconnection tiles. For instance, 
about the UltraScale+ device family, PyXEL was able to 
associate bits to used PIPs with excellent accuracy without any 
user intervention, reaching an accuracy greater than 98% in 
only a few minutes per design. 

III. CASE OF STUDY AND VALIDATION 

PyXEL has been utilized for supporting numerous fault 
injection campaigns and radiation tests [13][14]. This section 
presents a comprehensive case study of a hardened-by-
redundancy benchmark circuit, implemented on an 
XCZU3EG, consisting of three independent replicas of a 
CORDIC computational core implemented in the 
programmable hardware and controlled by software voter on 
the processor system, as depicted in Figure 4, is presented. The 

 

Fig. 3: Automatized Flow for associating configuration data with hardware 
resources.  

 

 

Fig. 2: Modules embedded in PyXEL for automatizing fault injection 

campaign for evaluating of the robustness of a design.  



comprehensive analysis flow, illustrated in Figure 1, based on 
PyXEL, includes fault model extraction during radiation 
testing, an assessment of system and module robustness 
through fault injection campaigns, and design hardening via a 
custom isolation-based placement solution. First, PyXEL was 
employed to characterize the configuration memory of an 
UltraScale+ device during a proton test [13]. The device under 
test was located in the irradiation room and connected to a host 
computer running the PyXEL tool via a serial link. Through 
PyXEL, the configuration memory content was automatically 
evaluated through periodic readback operations, and fault 
models were extracted and used in a fault injection campaign 
to evaluate system robustness. Subsequently, PyXEL was 
utilized to assess the robustness of the benchmark design by 
conducting a fault injection campaign based on the emulation 
of fault models resulting from the radiation test experiment in 
the device's configuration memory. Each emulated fault, 
including single and multiple-bit upsets,  was evaluated by 
extensively executing computations on the hardware cores. 
PyXEL was employed to manage all the steps of the 
experiment, such as fault location generation, fault emulation, 
device configuration, and results collection and 
categorization. Outcomes have been categorized into Data 
Detectable Data Corruption (DDC), Data Unavailability 
(DU), and Silent Data Corruption (SDC). The outcome is 
classified as DDC when a fault is a source of errors in the 
computations of a single core, while it is classified as DU if it 
prevents the system from completing the execution. Finally, 
SDC is the most critical effect, resulting in a corruption of the 
outputs that affected more than one module, leading to 
undetectable data corruption. After 10,000 fault injection 
experiments targeting used tiles, the DDC Rate was 5.47%, 
the DU rate was 1.39%, and the SDC rate was 1.12%.PyXEL 
fault mapping capability has been used to identify modules 
associated with faulty behavior. As a result, we found that 
some SDC occurrence was associated with multiple replicas 
failing together due to a single fault. This is a known 
phenomenon where resources, such as interconnections, 
shared between different TMR domains can lead to TMR 
failures. A technique for mitigating this phenomenon is based 
on the isolated placement of modules to prevent multi-domain 
failure [4]. PyXEL has been used for controlling the 
placement of the modules using the feature exposed in II.A. 
The isolated version presented an overhead of resources of 
about 2%. A new fault injection campaign reported a 

significant drop in errors rate, resulting in a DDC of 2.82%, a 
DU of 0.27%, and no SDC, as reported in Table I.  

IV. CONCLUSIONS 

We presented PyXEL, a tool for automating reliability 
analysis, bitstream decoding, and custom place-and-route. 
PyXEL provides methodologies and means for performing a 
comprehensive automatized evaluation of the robustness of 
designs implemented in programmable hardware. 
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TABLE I.  ROBUSTNESS EVALUATION RESULTS 

Circuit 
Error Rates 

DDC [%] UD [%] SDC [%] Total 

TMR 5.47% 1.39% 1.12% 7.98% 

ISOLATED TMR 2.82% 0.27% 0.00% 3.09% 

 

Fig. 4:  Benchmark implemented on the ZU3EG  
 


