
979-8-3503-3265-0/23/$31.00 ©2023 IEEE

PyXEL: Exploring Bitstream Analysis to Assess and
Enhance the Robustness of Designs on FPGAs

Abstract— Commercial hardware-reconfigurable systems-

on-chip are highly attractive for mission-critical applications in

the space and automotive industries. However, their

vulnerability to soft errors is a major concern, and analyzing the

robustness of these systems is a complex task due to the lack of

dedicated tools, information, and methodologies available.

PyXEL is a tool designed to address these issues, providing the

methodology for automating reliability analysis based on

radiation and fault injection campaigns and facilitating the

development of mitigation solutions based on customized place-

and-route. Furthermore, PyXEL offers the methodology for

visualizing, decoding, and analyzing the configuration data of

programmable hardware devices, enabling more precise and

efficient evaluation and analysis of the robustness of systems

implemented on programmable hardware devices.

Keywords— Fault Injection, FPGA, Reliability, Robustness

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) and, more
recently, reconfigurable Systems-on-Chip (SoCs) are gaining
popularity for various purposes, from prototyping to high-
performance applications. The space and automotive
industries are particularly drawn to these devices due to their
hardware reconfigurability, which allows them to adapt to
different scenarios, reduce costs, and extend system lifetime.
SRAM-based reconfigurable hardware devices, such as
AMD-Xilinx FPGAs and SoC, allow the final user to
configure the hardware resources available in the device fabric
to implement nearly any circuit. The configuration of these
devices is based on configuration data, formally a bitstream,
which is uploaded to the configuration memory (CRAM).
Sections of the configuration memory are dedicated to
programming hardware resources in the device fabric based
on the content of the memory cells. For instance, Look-up-
Tables can be configured after manufacturing to implement
custom combinational logic functions and can be connected
one with the other using a mix of hardwired and
programmable interconnections, the latter usually
implemented by pass-transistors, to build complex logical
functions. Similarly, programmable routing can be used to
connect LUTs input and outputs with Flip-Flops, Block
RAMs, or pins to implement sequential logic, storage
mechanism, and input-outputs, respectively. AMD-Xilinx and
Intel are the leading producers of SRAM-based programmable
hardware devices. Due to the higher performance and newest
technology adopted by commercial-off-the-shelf devices
compared to radiation-hardened versions, they are
increasingly being considered and utilized in safety-critical
applications such as space missions.

A. Motivations

Sensitivity to soft errors of these devices, especially to
Single Event Upsets (SEUs), is a significant concern in the
adoption of FPGAs and SoCs in safety-critical applications

that must be addressed early during design flow [1][2]. One of
the main challenges in adopting commercial programmable
hardware-based devices for safety-critical applications is their
susceptibility to Single Event Upsets (SEUs). An SEU results
in an undesired corruption of the configuration memory data,
thus producing an undesired modification of the implemented
circuit that may lead to errors and, eventually, critical failures.
Both ionizing and non-ionizing radiation, ranging from high-
energy protons of outer space to neutrons and alpha particles
on Earth, is a source of SEUs in the configuration memory of
the devices. In order to evaluate the robustness of design to
SEUs, both accelerated radiation testing, which exposes the
system to a high flux of high-energy particles, and fault-
injection-based analysis are commonly adopted. The function
of the bits in the configuration data and their relation to the
hardware resources are not provided by vendors, remaining
largely unknown. The lack of information from the vendors
on how resources in the device fabric are encoded in
configuration memory significantly limits the ability of
industry and researchers to develop more accurate and
performant reliability evaluation methodologies, which could
benefit from the knowledge of how a circuit can be modified
by SEUs occurring in the configuration memory. This
problem is even more critical in recent devices, where CRAM
is characterized by more than 100,000,000 bits, making
unfeasible an exhaustive evaluation and exacerbated by the
fact that around 90% of the bits in CRAM are actually
associated with unused hardware resources, leading to long
evaluation campaigns to achieve a reasonable number of
events. Indeed, due to programmable architecture's intrinsic
characteristics, only a subset of the hardware resources will be
used by the application implemented within the device.
Consequently, only a subset of configuration memory bits will
be a source of errors when corrupted. The missing reliable
mapping between CRAM and hardware prevents many
reliability evaluation techniques from being applied to these
devices, such as fine-grained fault injection, specific fault
emulation (e.g., open routing, LUT corruption), fault
localization in radiation testing and fault injection campaigns,
and more. Additionally, automatization and integration of
bitstream analysis, fault injection tasks, and custom place-and-
route solutions are inhibited by the lack of APIs and
integration mechanisms, currently constrained to low-
performance Tcl scripts.

B. Related Works and Open Challenges

Some vendors, such as Xilinx, attempted to address issues
in evaluating the reliability of design implemented in
programmable hardware by providing a feature within their
vendor tool, which identifies a subset of the entire CRAM to
be considered for robustness analysis called Essential Bits
(EBs). The purpose of EBs is to reduce the number of bits that
must be evaluated during robustness analysis. However, EBs
still do not provide information for mapping faults to specific
modules or hardware resources. Additionally, the coordinates

Corrado De Sio, Sarah Azimi, Luca Sterpone
Dipartimento di Automatica e Informatica (DAUIN)

Politecnico di Torino

Turin, Italy
{corrado.desio, sarah.azimi, luca.sterpone}@polito.it

David Merodio Codinachs, Filomena Decuzzi
European Space Research and Technology Centre (ESTEC)

European Space Agency (ESA)

Noordwijk, The Netherlands
{david.merodio.codinachs, filomena.decuzzi}@esa.int

of EBs are provided in a proprietary format, meaning it can
only be used to evaluate system reliability by fault injection
based on a dedicated IP Core provided by the vendor, which
increases complexity since it requires modifying the design
for placing the core in the programmable hardware. Finally,
EBs are based on used tiles rather than basic elements, which
results in overestimating the subset.

The third-party tools available to support FPGA design
analysis are mainly dedicated to facilitating and automating
partial reconfiguration tasks and design placement and routing
[5]-[8]. Except for [7], which partially supports coarse-grained
bitstream manipulation with partial reconfiguration purposes,
and [8] supporting user-defined initialization states update and
configuration frame identification, bitstream analysis,
manipulation, and mapping are not supported at all. Except for
[9], which targets two-generation old Spartan-VI FPGA
successfully, tools such as [9][10]-[12] have made attempts to
reverse engineering bitstream, obtaining only partial results
and targeting FPGA families that are three generations or
more out of date compared to the current ones. Additionally,
these tools are based on the Xilinx Design Language (XDL)
supported by ISE, the previous iteration of the vendor
development tool, but XDL is not a viable option for current
devices since it is no longer supported in the more recent
Vivado Design Suite, the provided vendor tool for
development on Xilinx programmable devices. The
discontinued support for XDL and the lack of APIs for
interfacing with the Vivado framework raise an additional
challenge to interface third-party tools with the vendor's tool,
and automatizing tasks such as information extraction and
custom place-and-route solutions for fault mitigation
purposes.

C. Main Contribution

This work presents PyXEL, a Python-based tool designed
to facilitate the evaluation of the robustness of programmable
hardware designs, as well as the implementation of mitigation
strategies by simplifying the automation of place and route.
PyXEL provides the mechanism for automating and
integrating fault injection tasks, bitstream analysis, and
custom place-and-route solutions. Thus, PyXEL provides
comprehensive support for the automation of radiation testing
and fault injection experiments, mandatory for evaluating the
robustness of design implemented on programmable
hardware. Additionally, it includes the methodology for
visualizing, decoding, and analyzing the configuration data of
programmable hardware devices. With this feature, solving
the mapping between CRAM and hardware, PyXEL can
support comprehensive reliability analysis techniques, such as
fine-grained fault injection, specific fault emulation (e.g.,
open routing, LUT corruption), and fault localization in
radiation testing that are not currently supported by vendors or
third-party tools.

Please note that PyXEL was initially designed to make it
easier to evaluate the effects of faults in FPGA routing [3].
The new version of the tool presented in this work has been
rebuilt from the ground up and does not share any of the code,
methodology, or features.

II. METHODOLOGY

PyXEL offers several features that help to evaluate the
reliability of designs implemented on programmable hardware
thoroughly. It focuses mainly on Xilinx devices, the most used
programmable hardware devices. Nevertheless, due to the

general characteristics of the proposed approach, the
methodology can be readily adapted for use with other
programmable hardware families.

PyXEL can be used during radiation testing for automating
experiment flow and extracting fault models occurring in the
configuration memory. Additionally, PyXEL offers support
for automating fault injection campaigns and mapping faults
affecting the CRAM with hardware resources and modules
implemented in the device. This allows for evaluating a
design's robustness to soft errors and identifying modules with
the highest sensitivity. Furthermore, the PyXEL integration
mechanism supports the development of custom place-and-
route solutions, such as module isolation for fault containment
[4]. These features enable a precise and efficient evaluation
and enhancement of design robustness, allowing for a
comprehensive analysis, including fault model identification,
robustness evaluation, and mitigation, based on the flow
depicted in Figure 1.

A. Mechanism of Integration with the EDA tool

Most EDA tools for FPGA development, particularly
Vivado provided by Xilinx, offer a Tcl command interface for
scripting. While Tcl is a standard language in the
semiconductor industry, it can be slow and cumbersome,
particularly when dealing with complex algorithms or object-
oriented programming. Additionally, the development flow is
often based on intermediate stages describing intermediate
steps, such as synthesis and place-and-route, describing how a
design is translated and mapped to the hardware resources in
the reconfigurable device. As these file formats are
proprietary, an equivalent high-level description of the
intermediate stages must be extracted from Vivado to be
managed in PyXEL. Integration between PyXEL and the EDA
tools is based on a mechanism that wraps the Tcl interpreter
internally to Vivado with a Tcl server. The server executes the
request received on a dedicated socket by PyXEL directly in
the Vivado-embedded interpreter, returning the results to
PyXEL. This effectively wraps the Tcl interpreter, allowing
PyXEL to offer optimized APIs for interacting with Vivado
Tcl transparently to the user. This mechanism is essential for
easing the development of complex algorithms, such as place-
and-route approaches. It is also the main mechanism adopted
for integrating Vivado operations within PyXEL, allowing for
easy and transparent device and design queries and
manipulation of place and route via in-tool APIs.

Fig. 1: Steps of the proposed case of study for the evaluation and mitigation
of a benchmark circuit using PyXEL.

B. Automating Evaluation of Robustness

PyXEL can be used for evaluating the robustness of design
implemented on programmable hardware devices. An
overview of the modules embedded in PyXEL to facilitate the
automatization of radiation testing and fault injection
campaigns on actual devices is depicted in Figure 2. For
performing operations, such as device configuration, system
reset, software deployment and execution for system-on-
chips, and configuration memory readback, the modules
exploit the previously introduced mechanism for EDA
integration, which is used transparently by the user.
Furthermore, PyXEL includes a listener module for receiving
data from the device implemented as a parallel thread of the
Experiment Manager to capture outputs on serial connections
or sockets to be classified later that run. PyXEL can be
instrumented to emulate different fault models at the memory
level as well as at the logic elements level. This feature is
managed by a Fault Emulator module able to emulate fault
models in the configuration data, aware of the implemented
design characteristics and the configuration memory
architecture of the device, accordingly to the user
instrumentation. PyXEL also provides a Mapper to relate bits
in the configuration data with the associated hardware
resources, so supporting fault localization during radiation
testing and fault location selection during fault injection
campaigns.

C. Bitstream Analysis and Decoding

Configuration bitstreams are binary files used to program
programmable hardware consisting of hundreds of millions of
bits containing metadata, configuration data, and
programming instructions. The structure of these devices
consists of multiple tiles, each containing basic hardware
resources that can be configured to implement a specific
function. For example, these resources include elements such
as programmable interconnects (PIPs) connecting routing
paths or Look-Up Tables (LUTs) that can implement custom
logic functions. Each tile is associated with specific bits in the

configuration memory, configuring the elements within the
tile. The configuration memory structure is made of frames,
the smallest addressable group of bits in the configuration
memory. Each frame typically contains around 3,000 bits, and
the number of frames varies significantly depending on the
device size and architecture. While vendors partially disclose
the bitstream file structure, the actual function of the bits in
the configuration data and their relation to hardware resources
remain largely unknown.

PyXEL provides a suite of features to facilitate bitstream
analysis, comprehension, and decoding of configuration
bitstreams, as well as a database of specific devices. It can
parse the bitstream to identify metadata, headers, and
configuration commands. Based on this information, PyXEL
can create an in-memory object of the configuration data that
can be manipulated for fault emulation and visualization.
PyXEL includes a visualization mechanism that converts the
configuration data into a two-dimensional bitmap based on
configuration frames, allowing for visual inspection of the
bitstream and correlation between sections of the bitstream
and parts of the programmable hardware fabric.

Additionally, PyXEL provides a database of devices and
their associated bitstream information, which can be used to
perform module-aware and resource-aware fault injection and
localization. To provide this feature, PyXEL includes a
comprehensive methodology and suite of software modules
for automatically decoding configuration bitstreams. This
consists of a TIle-Mapper (TIM) and a Tile Encoder-Decoder
(TED). TIM uses an algorithm to map tiles to the
corresponding section of the configuration memory. The
required device architecture information is extracted through
the previously introduced EDA integration mechanism. TED
associates bits in the memory section identified by TIM with
the basic hardware resources. To instrument TED, PyXEL
generates problem-solution pairs consisting of the state of the
hardware resources and associated bits, retrieved using TIM
from a set of input designs. Tiles of the same type and their
related bitmaps are correlated to link bits to the state of the
resources, thus incrementally reducing the number of bits
associated with a specific configuration of a particular
resource within a tile, as depicted in Figure 3. This approach
does not require particular designs to decode the resources in
a tile, providing quick convergence due to many tiles of the
same type using different resources usually available within
an implemented design. If needed, further refinement of the
results can be achieved with designs tailored to specific
resources. This methodology has been applied to
interconnection and logic tiles, allowing for the mapping and
decoding of the vast majority of PIPs and logic within
configurable logic and interconnection tiles. For instance,
about the UltraScale+ device family, PyXEL was able to
associate bits to used PIPs with excellent accuracy without any
user intervention, reaching an accuracy greater than 98% in
only a few minutes per design.

III. CASE OF STUDY AND VALIDATION

PyXEL has been utilized for supporting numerous fault
injection campaigns and radiation tests [13][14]. This section
presents a comprehensive case study of a hardened-by-
redundancy benchmark circuit, implemented on an
XCZU3EG, consisting of three independent replicas of a
CORDIC computational core implemented in the
programmable hardware and controlled by software voter on
the processor system, as depicted in Figure 4, is presented. The

Fig. 3: Automatized Flow for associating configuration data with hardware
resources.

Fig. 2: Modules embedded in PyXEL for automatizing fault injection

campaign for evaluating of the robustness of a design.

comprehensive analysis flow, illustrated in Figure 1, based on
PyXEL, includes fault model extraction during radiation
testing, an assessment of system and module robustness
through fault injection campaigns, and design hardening via a
custom isolation-based placement solution. First, PyXEL was
employed to characterize the configuration memory of an
UltraScale+ device during a proton test [13]. The device under
test was located in the irradiation room and connected to a host
computer running the PyXEL tool via a serial link. Through
PyXEL, the configuration memory content was automatically
evaluated through periodic readback operations, and fault
models were extracted and used in a fault injection campaign
to evaluate system robustness. Subsequently, PyXEL was
utilized to assess the robustness of the benchmark design by
conducting a fault injection campaign based on the emulation
of fault models resulting from the radiation test experiment in
the device's configuration memory. Each emulated fault,
including single and multiple-bit upsets, was evaluated by
extensively executing computations on the hardware cores.
PyXEL was employed to manage all the steps of the
experiment, such as fault location generation, fault emulation,
device configuration, and results collection and
categorization. Outcomes have been categorized into Data
Detectable Data Corruption (DDC), Data Unavailability
(DU), and Silent Data Corruption (SDC). The outcome is
classified as DDC when a fault is a source of errors in the
computations of a single core, while it is classified as DU if it
prevents the system from completing the execution. Finally,
SDC is the most critical effect, resulting in a corruption of the
outputs that affected more than one module, leading to
undetectable data corruption. After 10,000 fault injection
experiments targeting used tiles, the DDC Rate was 5.47%,
the DU rate was 1.39%, and the SDC rate was 1.12%.PyXEL
fault mapping capability has been used to identify modules
associated with faulty behavior. As a result, we found that
some SDC occurrence was associated with multiple replicas
failing together due to a single fault. This is a known
phenomenon where resources, such as interconnections,
shared between different TMR domains can lead to TMR
failures. A technique for mitigating this phenomenon is based
on the isolated placement of modules to prevent multi-domain
failure [4]. PyXEL has been used for controlling the
placement of the modules using the feature exposed in II.A.
The isolated version presented an overhead of resources of
about 2%. A new fault injection campaign reported a

significant drop in errors rate, resulting in a DDC of 2.82%, a
DU of 0.27%, and no SDC, as reported in Table I.

IV. CONCLUSIONS

We presented PyXEL, a tool for automating reliability
analysis, bitstream decoding, and custom place-and-route.
PyXEL provides methodologies and means for performing a
comprehensive automatized evaluation of the robustness of
designs implemented in programmable hardware.

REFERENCES

[1] H. Quinn, "Radiation effects in reconfigurable FPGAs", Semicond. Sci.
Technol., vol. 32, no. 4, Apr. 2017.

[2] C. De Sio, S. Azimi and L. Sterpone, "FireNN: Neural Networks
Reliability Evaluation on Hybrid Platforms," in IEEE Transactions on
Emerging Topics in Computing, vol. 10, no. 2, pp. 549-563, 1 April-
June 2022, doi: 10.1109/TETC.2022.3152668.

[3] L. Bozzoli, C. De Sio, L. Sterpone and C. Bernardeschi, "PyXEL: An
Integrated Environment for the Analysis of Fault Effects in SRAM-
Based FPGA Routing," 2018 International Symposium on Rapid
System Prototyping (RSP), Turin, Italy, 2018, pp. 70-75, doi:
10.1109/RSP.2018.8632000.

[4] A. Portaluri, C. De Sio, S. Azimi and L. Sterpone, "A New Domains-
based Isolation Design Flow for Reconfigurable SoCs," 2021 IEEE
27th International Symposium on On-Line Testing and Robust System
Design (IOLTS), Torino, Italy, 2021, pp. 1-7, doi:
10.1109/IOLTS52814.2021.9486687.

[5] S. A. Guccione, D. Levi, P. Sundararajan, “JBits: A Java-based
interface for reconfigurable computing”, Second Annual Military and
Aerospace Applications of Programmable Devices and Technologies
Conference (MAPLD), Laurel, MD, September 1999.

[6] T. Haroldsen, B. Nelson, and B. Hutchings, “RapidSmith 2: A
Framework for BEL-level CAD Exploration on Xilinx FPGAs”, 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA '15). Association for Computing Machinery, New York,
NY, USA, 66–69. https://doi.org/10.1145/2684746.2689085.

[7] K. Dang Pham, E. Horta and D. Koch, "BITMAN: A tool and API for
FPGA bitstream manipulations," Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017, Lausanne, Switzerland, 2017,
pp. 894-897, doi: 10.23919/DATE.2017.7927114.

[8] C. Lavin and A. Kaviani, "RapidWright: Enabling Custom Crafted
Implementations for FPGAs," 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM), Boulder, CO, USA, 2018, pp. 133-140, doi:
10.1109/FCCM.2018.00030.

[9] T. Zhang, J. Wang, S. Guo and Z. Chen, "A Comprehensive FPGA
Reverse Engineering Tool-Chain: From Bitstream to RTL Code," in
IEEE Access, vol. 7, pp. 38379-38389, 2019, doi:
10.1109/ACCESS.2019.2901949

[10] F. Benz, A. Seffrin and S. A. Huss, "Bil: A tool-chain for bitstream
reverse-engineering," 22nd International Conference on Field
Programmable Logic and Applications (FPL), Oslo, Norway, 2012, pp.
735-738, doi: 10.1109/FPL.2012.6339165.

[11] Z. Ding, Qiang Wu, Yizhong Zhang, Linjie Zhu, Deriving an NCD file
from an FPGA bitstream: Methodology, architecture and evaluation,
Microprocessors and Microsystems, Volume 37, Issue 3, 2013, pp 299-
312, ISSN 0141-9331, https://doi.org/10.1016/j.micpro.2012.12.003.

[12] Y. Junghwan, et al.. 2018. “A Bitstream Reverse Engineering Tool for
FPGA Hardware Trojan Detection”, 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS '18). Association for
Computing Machinery, New York, NY, USA, 2318–2320.
https://doi.org/10.1145/3243734.3278487

[13] S. Azimi, et al. , A comparative radiation analysis of reconfigurable
memory technologies: FinFET versus bulk CMOS, Microelectronics
Reliability, Volume 138, 2022, 114733, ISSN 0026-2714,
https://doi.org/10.1016/j.microrel.2022.11473

[14] C. De Sio, S. Azimi, L. Sterpone, On the analysis of radiation-induced
failures in the AXI interconnect module, Microelectronics Reliability,
Volume 114, 2020, 113733, ISSN 0026-2714,
https://doi.org/10.1016/j.microrel.2020.113733.

TABLE I. ROBUSTNESS EVALUATION RESULTS

Circuit
Error Rates

DDC [%] UD [%] SDC [%] Total

TMR 5.47% 1.39% 1.12% 7.98%

ISOLATED TMR 2.82% 0.27% 0.00% 3.09%

Fig. 4: Benchmark implemented on the ZU3EG

