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Interpolation with the polynomial kernels

Giacomo Elefante a ·Wolfgang Erb a · Francesco Marchetti a · Emma Perracchione b ·Davide Poggiali c ·Gabriele Santin d

Abstract

The polynomial kernels are widely used in machine learning and they are one of the default choices to
develop kernel-based classification and regression models. However, they are rarely used and considered
in numerical analysis due to their lack of strict positive definiteness. In particular they do not enjoy the
usual property of unisolvency for arbitrary point sets, which is one of the key properties used to build
kernel-based interpolation methods.
This paper is devoted to establish some initial results for the study of these kernels, and their related
interpolation algorithms, in the context of approximation theory. We will first prove necessary and
sufficient conditions on point sets which guarantee the existence and uniqueness of an interpolant. We
will then study the Reproducing Kernel Hilbert Spaces (or native spaces) of these kernels and their norms,
and provide inclusion relations between spaces corresponding to different kernel parameters. With these
spaces at hand, it will be further possible to derive generic error estimates which apply to sufficiently
smooth functions, thus escaping the native space. Finally, we will show how to employ an efficient stable
algorithm to these kernels to obtain accurate interpolants, and we will test them in some numerical
experiment. After this analysis several computational and theoretical aspects remain open, and we will
outline possible further research directions in a concluding section.
This work builds some bridges between kernel and polynomial interpolation, two topics to which the
authors, to different extents, have been introduced under the supervision or through the work of Stefano
De Marchi. For this reason, they wish to dedicate this work to him in the occasion of his 60th birthday.

1 Introduction
Positive definite kernels are widely used in a variety of problems ranging from numerical analysis to machine learning, including
Gaussian process regression.

In different fields they come into play from different directions. In numerical analysis, they provided data-dependent bases
that permit interpolation of scattered data [7, 15, 37]; in machine learning, they are usually the result of the application of a
feature map on the input data, used to transform linear algorithms into nonlinear ones by means of an high dimensional space
[33, 34, 35]; in Gaussian process regression, they represent the covariance function of a stochastic process [29].

Despite this remarkable variety, a large part of the success of kernel methods is due to the fact that they can be analyzed to
some extent within the unified framework of Reproducing Kernel Hilbert Spaces (RKHS) [31], which provide a solid mathematical
underpinning to different algorithmic approaches. This connection has the additional benefit that novel ideas and points of
view may often spread from one field to another through this common perspective, see e.g. [1, 21, 23, 26, 32] for a few recent
examples.

However, it is still the case that some requirements and conditions are peculiar to one or the other specific setting, and thus
this spill over is not always possible. In particular, a major difference between the point of view of machine learning and Gaussian
process on one hand, and the one of numerical analysis on the other, is the definiteness of the kernel in the following sense.

Definition 1.1 (Definiteness classes). Let Ω ̸= ; be a set and let k : Ω×Ω→ R be symmetric. Then k is said to be positive definite
on Ω if for all N ∈ N and for all sets X := {x i}Ni=1 ⊂ Ω the kernel matrix A := (k(x i , x j))Ni, j=1 ∈ R

N×N is positive semidefinite. The
kernel is additionally said to be strictly positive definite if A is positive definite whenever the points in X are pairwise distinct.

In the analysis of stochastic processes kernels are used as covariance functions, which are in general only positive definite.
In machine learning, data approximation models are usually defined as the solution of an optimization problem, which can be
proven to be convex even if the employed kernel is just positive definite. The approximation models considered in numerical
analysis are instead mostly interpolatory, and their existence is guaranteed for general distributions of the interpolation points
only if the kernel is strictly positive definite. Namely, given an input space Ω ̸= ;, a set X := {x i}Ni=1 ⊂ Ω of pairwise distinct
interpolation points, and a set Y := {yi}Ni=1 ⊂ R of target values, a kernel is used to build an interpolatory model

s(x) :=
N
∑

i=1

ci k(x , x i), x ∈ Ω, s(x i) = yi , for all 1≤ i ≤ N . (1)
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This model exists precisely when there exists a vector c := (c1, . . . , cN )T ∈ RN which solves

Ac = y, (2)

with y := (y1, . . . , yN )T ∈ RN and A as in Definition 1.1. The solvability of this system is in turn guaranteed if A is positive definite
and thus invertible for any set X , i.e., if k is strictly positive definite. In other words, strictly positive definite kernels are used in
numerical analysis to construct data-dependent interpolation models of the form (1), thus enabling the interpolation of arbitrarily
scattered data for arbitrary input space dimension. This capability in particular permits to overcome the limitations of classical
techniques such as polynomial interpolation, which require instead precise geometrical conditions on the interpolation points.

This distinction has the effect that many kernels which are commonly employed in machine learning and Gaussian process
regression are almost unknown in approximation theory and numerical analysis, since they are only positive definite. In particular,
in this paper we consider the notable family of polynomial kernels ka,p(x , y) := (a+ 〈x , y〉)p defined for a ≥ 0 and p ∈ N on a
subset Ω ̸= ; of the Euclidean space Rd . These kernels are widely used in machine learning, where they are often even considered
the essential basic example of a positive definite kernel. For example, together with the Gaussian kernel, polynomial kernels are
the only ones implemented by default in the widespread Scikit-Learn Python machine learning library [8, 28], as well as in the
Matlab Statistics and Machine Learning Toolbox [36].

Due to their lack of strict positive definiteness, they have however received little attention in approximation theory. For this
reason in this work we aim at establishing an interpolation theory for these polynomial kernels. In particular, after recalling some
additional details on their definition and properties in Section 2, we characterize in Section 3 sets of points X which are unisolvent
for the polynomial kernels, i.e., which allow unique interpolation. As proven in Theorem 3.5, we obtain the remarkable result
that any set of pairwise distinct points in Rd is unisolvent provided p is chosen large enough. After the existence of an interpolant
is established, we obtain in Section 4 an error bound for its approximation error. This in particular allows one to “escape the
native space” in the sense of [25], i.e., approximating functions which are outside of the RKHS of the kernel. In the same section
we also use an argument of [39] to provide a characterization of the RKHS, which turns out to be simply the space Pd

p(Ω) of d
variate polynomials of degree p over Ω or the corresponding homogeneous space Hd

p(Ω), each equipped with a suitable inner
product. Moreover, we study the stability of this interpolation process in Section 4.2, and show that, although the direct solution
of the linear system (2) is possibly highly unstable, one can apply the celebrated RBF-QR algorithm [17, 18] to ka,p, thus obtaining
stable computations. From this analysis of existence, convergence, and stability it turns out that polynomial-kernel interpolation
is strictly related to standard polynomial interpolation, perhaps unsurprisingly. In particular, we argue that good interpolation
points for these kernels can be found from good interpolation points for polynomial interpolation, such as [3, 4, 5, 6, 9, 10].
Finally, we test our findings in a number of experiments in Section 6, and comment on some possible extensions in Section 7.

2 Background on polynomials and the polynomial kernels

2.1 Multivariate polynomial spaces

We start by recalling some notation and the necessary background results on multivariate polynomials.
Let d ∈ N and p ∈ N. Given a multiindex ζ := (ζ1, . . . ,ζd) ∈ Nd

0 , we write |ζ| := ζ1+. . .+ζd for its length and ζ! := ζ1!·. . .·ζd !

for its factorial, and denote the monomial with degrees ζ as xζ :=
∏d

i=1 xζi
i , x ∈ Rd . For two multiindices ζ,β ∈ Nd

0 , the term
δζβ has value 1 when ζi = βi for all 1≤ i ≤ d, and otherwise it has value zero.

We denote as Pd
p the space of polynomials over Rd of total degree at most p, and as Hd

p the corresponding homogeneous

space, i.e., the space of polynomials over Rd of total degree exactly p. The two spaces have dimension M d
p :=
�d+p

d

�

= dim(Pd
p)

and M d−1
p = dim(Hd

p), respectively.
Using a notation that will be motivated in the next section, for any a ≥ 0 we denote two sets of multi-indices that we will use

repeatedly as

Ia(p, d) :=

��

ζ ∈ Nd
0 , |ζ| ≤ p
	

, a > 0
�

ζ ∈ Nd
0 , |ζ|= p
	

, a = 0,
(3)

and set

Ma :=

¨

M d
p = dim(Pd

p), a > 0

M d−1
p = dim(Hd

p), a = 0,
(4)

so that Ma = dim(Ia(p, d)).

2.2 The polynomial kernels

With these notations in hand, we can now give a formal definition of the family of polynomial kernels and state some of their
properties. The content of this section is a collection of classical results, for which we refer e.g. to [33, 34, 35].

Let d ∈ N, Ω ⊂ Rd , and let a ≥ 0, p ∈ N be fixed. The polynomial kernel k := ka,p : Ω×Ω → R is defined as k(x , y) :=
(a+ 〈x , y〉)p, x , y ∈ Ω, where 〈x , y〉 is the inner product on Rd .

If a > 0, using the notation (3) and the multinomial expansion we have

ka,p(x , y) =

�

a+
d
∑

i=1

x i yi

�p

=
∑

(ζ0,ζ)∈Nd+1
0

ζ0+|ζ|=p

p!aζ0

ζ0!ζ!
xζ yζ =
∑

ζ∈Nd
0 ,|ζ|≤p

p!ap−|ζ|

(p− |ζ|)!ζ!
xζ yζ =
∑

ζ∈Ia(p,d)

da
ζ

xζ yζ, (5)
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where for a > 0 we defined

da
ζ

:=
p!ap−|ζ|

(p− |ζ|)!ζ!
, ζ ∈ Ia(p, d). (6)

Considering an arbitrary enumeration {ζ(1), . . . ,ζ(Ma)} of the set Ia(p, d), with Ma as defined in (4), the representation (5) shows
that the function Φa,p : Rd → RMa defined for a > 0 by

Φa,p(x) :=
h

Ç

da
ζ(1)

xζ
(1)

,
Ç

da
ζ(2)

xζ
(2)

, . . . ,
Ç

da
ζ(Ma )

xζ
(Ma )
iT

, x ∈ Rd , (7)

is a feature map for ka,p on Rd with feature space RMa , i.e., it holds ka,p(x , y) = Φa,p(x)TΦa,p(y) for all x , y ∈ Rd .
If instead a = 0, again with the notation (3) the same chain of reasoning as above proves that

k0,p(x , y) =
∑

ζ∈I0(p,d)

d0
ζ

xζ yζ, d0
ζ

:=
p!
ζ!

, ζ ∈ I0(p, d). (8)

In this case, taking an arbitrary enumeration {ζ(1), . . . ,ζ(M0)} of this set, with M0 as in (4), we obtain as before that a feature map
for k0,p is Φ0,p : Rd → RM0 with

Φ0,p(x) :=
hr

d0
ζ(1)

xζ
(1)

,
r

d0
ζ(2)

xζ
(2)

, . . . ,
r

d0
ζ(M0)

xζ
(M0)
iT

, x ∈ Ω. (9)

Both for a > 0 and a = 0, the existence of a feature map implies that the polynomial kernel is positive definite, i.e., for each
X := {x i}Ni=1 ⊂ Ω the kernel matrix A := (ka,p(x i , x j))Ni, j=1 ∈ R

N×N is positive semidefinite. This is immediate from Definition 1.1
since A is the Gramian matrix of the N vectors {Φa,p(x) : x ∈ X }. On the other hand, since the image of this feature map is an
Ma-dimensional feature space, and Ma <∞, the kernel ka,p is not strictly positive definite, i.e., the matrix A may be singular even
for pairwise distinct points X . In particular, if N > Ma there exists no set X ∈ Rd of N points such that the kernel matrix is non
singular, since this would require the N vectors {Φa,p(x) : x ∈ X } to be linearly independent in an Ma < N dimensional space.

We recall moreover (see e.g. [31]) that each positive definite kernel k : Ω×Ω→ R is associated to a RKHS (H, 〈·, ·〉H), which
is a Hilbert space of functions from Ω to R, where the kernel acts as a reproducing kernel, i.e., it holds

• k(·, x) ∈ Ω for all x ∈ Ω
• 〈k(·, x), f 〉H = f (x) for all x ∈ Ω and f ∈H,

and that this RKHS is unique given a positive definite kernel k and a set Ω.
The RKHS of a kernel is often called its native space in the approximation theory literature. We denote as Ha,p :=Ha,p(Ω) the

native space of ka,p on Ω, and we will discuss its characterization in Section 4.
Remark 1. We remark that there are possible extensions to the definition of the polynomial kernel that we use in this section. Most
notably, one may consider more general sets Ω, not necessarily in the Euclidean space, and replace 〈x , y〉 with a corresponding
inner product on Ω. Although this extension is of potential interest, we do not consider it in this paper.

3 Existence and characterization of unisolvent sets
We start by analyzing conditions on a set of interpolation points that guarantee the existence of a unique polynomial kernel
interpolant. As recalled in Section 1, the kernel interpolant (1) exists and is unique whenever the linear system (2) has a unique
solution, i.e., when the kernel matrix of ka,p on X is invertible, i.e., positive definite since it is positive semidefinite by construction.
We will thus investigate conditions for the invertibility of this kernel matrix.

To derive our characterization we are going to use some relations with interpolation points for classical polynomials. To this
end, we recall the following definition.

Definition 3.1 (Unisolvent set). Let Ω ⊂ Rd and let U ⊂ C(Ω) be a finite dimensional linear space of continuous functions. A set
of N := dim(U) points X := {x i}Ni=1 ⊂ Ω is said to be U-unisolvent if one of the following equivalent conditions hold:

(i) For each Y := {yi}Ni=1 there exists a unique element u ∈ U which interpolates Y on X , i.e, u(x i) = yi , 1≤ i ≤ N .

(ii) If u ∈ U and u|X = 0, then u= 0.

(iii) If {u1, . . . , uN} is a basis of U , then the matrix V := V
�

{u j}Nj=1, X
�

:= [u j(x i)]Ni, j=1 ∈ R
N×N is invertible.

We furthermore recall that the matrix V defined in point (iii) is called a Vandermonde matrix if U = Pp
d for some p, d ∈ N,

and if {u1, . . . , uN} is any enumeration of the monomial basis of this space.
The fundamental step to derive the results of this section is the following simple lemma, which establishes a connection

between the kernel matrix and a rectangular Vandermonde matrix.

Lemma 3.1. Let p ∈ N and a ≥ 0, and let
�

ζ(i)
	Ma

i=1
be an enumeration of Ia(p, d). Let furthermore XN ⊂ Ω be a set of N ≤ Ma

pairwise distinct points and let V ∈ RN×M be the Vandermonde matrix given by the evaluation of the monomials {xζ(i)}Ma
i=1 on XN ,

with columns ordered according to the chosen enumeration, i.e.,

V :=







xζ
(1)

1 . . . xζ
(Ma )

1
...

. . .
...

xζ
(1)

N . . . xζ
(Ma )

N






. (10)
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Then for all a > 0 the kernel matrix A of ka,p on XN satisfies

A= V DV T ,

where D := diag
�

da
ζ(1)

, . . . , da
ζ(Ma )

�

and da
ζ

is defined as in (6) for a > 0 and as in (8) for a = 0.

Proof. We consider the case a > 0, since for a = 0 the argument is the same. The result follows by direct computation using the
representation (5) of the kernel. Indeed, using the definition of V, D given in the statement we have for all 1≤ i, j ≤ N that

Ai j = ka,p(x i , x j) =
∑

ζ∈I(p,d)

da
ζ

xζi xζj =
Ma
∑

ℓ=1

da
ζ(ℓ)

xζ
(ℓ)

i xζ
(ℓ)

j =
Ma
∑

ℓ=1

da
ℓ
ViℓVjℓ = (V DV T )i j ,

which is the desired representation.

We furthermore need the following result which shows that, under a certain rank condition, any set of points can be completed
to a unisolvent set. Observe that for our purposes it is sufficient to prove that the set XM defined in the lemma is in Rd , so we do
not put much care in constraining its location into a smaller compact subset of Rd .

Lemma 3.2. Let M , N ∈ N, N ≤ M, U := span{ui}Mi=1 be a linear space of functions in Rd , and let XN ⊂ Rd be such that the matrix
V := [u j(x i)]1≤i≤N ,1≤ j≤M ∈ RN×M has full row rank. Then there exist an U-unisolvent set XM ⊂ Rd with XN ⊂ XM .

Proof. The proof is a simple extension of Lemma 1 in [2]. Since V has full row rank there exists { j1, . . . , jN} ⊂ {1, . . . , M} such
that Ṽ := [Vi, jℓ]1≤i,ℓ≤N ∈ RN×N is invertible, and in particular det(Ṽ ) ̸= 0. We can then pick any jN+1 ∈ {1, . . . , M} \ { j1, . . . , jN}
and consider the matrix function V ′(x) := V ({u jℓ}

N+1
ℓ=1 , XN ∪ {x}}. Computing the determinant of V ′(x) by expanding the last

column gives

g(x) := det(V ′(x))) =
N+1
∑

j=1

c ju j(x),

where cN+1 = det(Ṽ ) ̸= 0 by assumption. It follows that g ̸= 0 since the u j are linearly independent, and thus there exists an
xN+1 ∈ Rd such that g(xN+1) ̸= 0 (clearly xN+1 /∈ XN ). We can thus define XN+1 := XN ∪ {xN+1} and repeat the operation by
picking another jN+2 until { j1, . . . , jM}= {1, . . . , M}.

These lemmas immediately give the first characterization of unisolvency for polynomial kernel interpolation, that is stated in
the following proposition. Observe that in this case we make a distinction between points in Ω, which is the given domain where
the interpolation problem is defined, and point which instead may be in Rd \Ω.

Proposition 3.3. Let p ∈ N and a ≥ 0, and let XN ⊂ Ω be a set of N ≤ Ma pairwise distinct points. Then the kernel matrix of ka,p on
XN is invertible (and thus positive definite) if and only if the Vandermonde matrix (10) has full row rank N.

In particular, this is the case if and only if there exists a set XMa
⊂ Ω such that XN ⊂ XMa

and XMa
is Pd

p(Ω)-unisolvent if a > 0, or
Hd

p(Ω)-unisolvent if a = 0.

Proof. For any u ∈ RN \ {0} we have by Lemma 3.1 that uT Au= uT V DV T u= vT Dv, with v := V T u ∈ RMa . Since the matrix D is
invertible by construction, we have that vT Dv = 0 if and only if v = 0, i.e., if V T u= 0, i.e., if and only if the columns of V T - or
the rows of V - are linearly dependent. This proves that in fact uT Au ̸= 0 for all u ∈ RN \ {0}, i.e., A is positive definite, if and only
if the rows of V are linearly independent.

It remains to prove that this condition is equivalent to the existence of a set XMa
that contains XN and is unisolvent for the

corresponding space of polynomials. If XN is a subset of a set of unisolvent points XMa
(either for Pd

p or Hd
p), then the columns of

V are clearly linearly independent, since V is obtained by selecting N rows from the full Vandermonde matrix V ′ given by the
evaluation of the same monomials on the entire set of points XMa

, and V ′ is invertible by definition since XMa
is unisolvent for the

corresponding space of polynomials. The converse implication follows instead from Lemma 3.2.

As one may expect, the condition of the last proposition is related to the unisolvency of the interpolation set for standard
polynomial interpolation. However, it is remarkable that it is sufficient (and necessary) to have XN ⊂ XMa

with XMa
a polynomially

unisolvent set (either Pd
p -unisolvent for a > 0, or Hd

p -unisolvent for a = 0), since this opens the possibility to solve polynomial-like
interpolation problems with an arbitrary number of interpolation points. This is in contrast with the case of standard polynomial
interpolation, which requires N = Ma and Ma takes only some specific values, depending on d and p. Moreover, the construction
of Proposition 3.3 shows that the points XMa

\ XN are not bounded to be in Ω, but can be chosen in the entire space Rd .
As a consequence of Proposition 3.3, we show that the connection with polynomial interpolation is even stronger, i.e., kernel

interpolation with minimal p is in fact plain polynomial interpolation, either in Pd
p or Hd

p . We have the following.

Corollary 3.4. Let p ∈ N and a ≥ 0. Assume that N = Ma and that the points XN are Pd
p-unisolvent if a > 0 or Hd

p-unisolvent if
a = 0. Then the polynomial kernel interpolant on XN coincides with the polynomial interpolant from Pd

p if a > 0 or from Hd
p if a = 0.

Proof. We have A= V DV T from Lemma 3.1, and since Ma = N then V is a square invertible matrix. It follows that A= V B with
an invertible matrix of change of basis B := DV T , and thus the monomial basis {xζ(i)}Ma

i=1 spans the same space of the kernel basis
{k(·, x i)}Ni=1 of (1). In particular the two interpolants coincide by uniqueness (see point (i) of Definition 3.1).
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Finally, we combine Proposition 3.3 with a construction of polynomial-unisolvent sets in order to derive an explicit character-
ization of point sets for interpolation with the polynomial kernel in the case a > 0.

Theorem 3.5. Let a > 0 and let XN ⊂ Ω be a set of N pairwise distinct points. Then for any p ≥ d(N − 1) there exists a set XMd
p
⊂ Ω

of M d
p points such that XN ⊂ XMd

p
and XMd

p
is Pd

p -unisolvent. In particular, the kernel matrix of ka,p on XN is invertible if p ≥ d(N −1).

Proof. By virtue of [11, Theorem 1], it is sufficient for XMd
p

to satisfy the following geometric property: For each x i ∈ XMd
p
, there

exist p distinct hyperplanes Gi1, . . . , Gip such that

1. x i does not lie on any of these hyperplanes;

2. all the other nodes XMd
p
\ {x i} lie on at least one of the hyperplanes.

In order to construct XMd
p
, we can proceed as follows. For each x i ∈ XN , let Li1 , . . . , Lid be d hyperplanes such that Li1 ∩ · · ·∩ Lid =

{x i} and x j /∈ Li1 ∪ · · · ∪ Lid for j ̸= i with j, i = 1, . . . , N . Moreover, such Nd hyperplanes are chosen to be pairwise non-parallel.
This construction is always feasible. To get a better intuition, it is possible to reason iteratively. With x i ∈ XN fixed, consider d
hyperplanes that do not intersect any point in XN besides x i , thus they are not parallel and moreover choose them such that they
do not contain any line connecting x i with another of the other points. Then, consider another point x j ∈ XN , j ≠ i. We can
again choose d hyperplanes that intersect at x j and do not contain the lines connecting x j with the other points in XN and are
not parallel with the other previously chosen. This is possible due to the infinitely many directions of the hyperplanes passing
through x j . Furthermore, we can surely select pairwise non-parallel hyperplanes (if two hyperplanes turn out to be parallel, we
can simply rotate one of the two by using the corresponding node as center of rotation and avoid the parallelism).

Then, proceeding with the proof, the considered hyperplanes intersect at
�Nd

d

�

points that satisfy the mentioned geometric
property. Then, by setting p = Nd − d = d(N − 1), we have

�Nd
d

�

= M d
p and XMd

p
consists of such points.

Moreover, we observe that it is possible to construct XMd
p

for any p = Nd−d+ j, j ≥ 1, by adding to the Nd hyperplanes further
j pairwise non-parallel ones that intersect the other hyperplanes in distinct new points, taking then the resulting intersection
points. This proves that the same construction works for any p ≥ d(N − 1).

Finally, Proposition 3.3 proves that XN can be used for interpolation with the polynomial kernel ka,p if p ≥ d(N − 1).

We remark that this theorem has the notable implication that, if a > 0, any set of pairwise distinct points can be used for
interpolation with ka,p provided that p is large enough.
Remark 2. It remains open to investigate if this construction works also for a = 0, i.e., for the space of homogenous polynomials.
Moreover, it would be interesting to investigate if the lower bound p ≥ d(N − 1) provided by the theorem is sharp. For now, we
observe that this is clearly optimal for d = 1, since in this case the theorem implies that any p ≥ N − 1 can be used, or in fact that
no point needs to be added. This corresponds to the fact that any set of pairwise distinct points is unisolvent for polynomial
interpolation in R.

4 Interpolation, stability, and error estimation
Now that the existence of interpolants is established we want to understand the corresponding approximation behavior.

In the last section we dealt with interpolation problems in terms of generic target data y ∈ RN . From now on, we will
additionally assume that there exists a continuous function f ∈ C(Ω) such that yi := f (x i), 1 ≤ i ≤ N . In this case, we will
denote the ka,p-interpolant (1) as IX ,a,p f . From the representation (1), it is immediate to see that IX ,a,p f is an element of the
linear subspace Va,p(X ) := span{ka,p(·, x) : x ∈ X } ⊂ Ha,p, and thus IX ,a,p can be understood as a map from C(Ω) (or Ha,p) to
Va,p(X ). For this reason, we are interested in obtaining more explicit information on the native space Ha,p(Ω) on Ω ⊂ Rd , which
will connect it to suitable spaces of polynomials.

In any case, we underline that in order to obtain asymptotic stability or convergence estimates, one would like to consider an
increasing number N of interpolation points. To ensure the existence of the interpolant, one thus needs to consider a kernel
ka,p with an N (or X ) dependent parameter p, and the design of an optimal choice of p to have stability and convergence is
an interesting question. In the following sections we will try to connect the stability and accuracy of kernel interpolation to
polynomial interpolation, which seems a promising way to address these issues.
Remark 3. In contrast with polynomial interpolation, the interpolation space Va,p(X ) is depending on X . In the language of
Definition 3.1, we should thus say that X allows unique interpolation by ka,p if and only if the points X are Va,p(X )-unisolvent. To
simplify the presentation, in the following we will instead simply write that the set X is Ha,p-unisolvent.

4.1 Native space

We first derive some characterization of the space Ha,p for a ≥ 0 and p ∈ N, and to this end we introduce some additional notation.
Given γ ∈ Nd

0 with |γ| ≤ p, and f ∈ C p(Ω), we write

Dγ f (x) :=
d
∏

i=1

�

∂
γ(i)

x(i)
f (x)
�

for the derivative of f with multi-index γ. For all a ≥ 0 and ζ ∈ Ia(p, d), we furthermore define the weights

wa
ζ

:= (ζ!)2da
ζ
=

� p!ζ!
(p−|ζ|)! a

p−|ζ|, a > 0,
p!ζ!, a = 0,

(11)
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so that (5) and (8) give

ka,p(x , y) =
∑

ζ∈Ia(p,d)

da
ζ

xζ yζ =
∑

ζ∈Ia(p,d)

wa
ζ

xζ

ζ!
yζ

ζ!
.

For γ ∈ Ia(p, d) and x ∈ Ω this implies that

�

Dγx ka,p(x , y)
�

x=0
=
∑

ζ∈Ia(p,d)

wa
ζ

�

Dγ
xζ

ζ!

�

x=0

yζ

ζ!
= wa

γ

yγ

γ!
, (12)

since
�

Dγxζ
�

x=0
= 0 if ζ ̸= γ, while Dγxγ/γ!= 1.

With these observations we can prove the following result. The characterization of Ha,p is a special case of the argument of
Section 2 in [39] that we repeat for completeness.

Theorem 4.1. The native space of ka,p on Ω is Ha,p(Ω) = Pd
p(Ω) if a > 0 and H0,p =Hd

p(Ω) if a = 0, with the inner product

〈 f , g〉Ha,p
:=
∑

γ∈Ia(p,d)

1
wa
γ

Dγ f (0)Dγg(0), f , g ∈Ha,p. (13)

Proof. We prove the result for a > 0, since if a = 0 the same reasoning applies. Namely, the expression (13) clearly defines
a symmetric, bilinear, and positive definite form on Pd

p(Ω), and thus an inner product. Since Pd
p(Ω) is finite it follows that

�

Pd
p(Ω), 〈·, ·〉Ha,p

�

is a Hilbert space. If we prove that ka,p is a reproducing kernel on this space then it must hold that Ha,p(Ω) =
Pd

p(Ω) by uniqueness of the native space of a given kernel (see Section 2).

This is indeed the case since ka,p(·, x) ∈ Pd
p(Ω) for all x ∈ Ω thanks to (5). Moreover, for all f :=

∑

β∈Ia(p,d) cβ xβ ∈ Pd
p(Ω) it

holds Dγ f (0) = γ!cγ, and thus for all x ∈ Ω using (12) we have




f , ka,p(·, y)
�

Ha,p
=
∑

γ∈Ia(p,d)

1
wa
γ

Dγ f (0)
�

Dγx ka,p(x , y)
�

x=0
=
∑

γ∈Ia(p,d)

1
wa
γ

γ!cγw
a
γ

yγ

γ!
=
∑

γ∈Ia(p,d)

cγ yγ = f (y),

which is the reproducing property of the kernel. We thus have that ka,p is a reproducing kernel and the first part of the theorem is
proven. The same argument works for a = 0 and Hd

p using (8) in place of (5).

This characterization makes it possible to study in an explicit manner the effect of the parameters a, p on the native spaces,
and thus on the corresponding approximants.

Corollary 4.2. For any a ≥ 0, p ∈ N we have the following.

(i) If 0< a′ ≤ a then the native spaces of ka,p and ka′ ,p are norm equivalent, i.e., Ha,p =Ha′ ,p as sets and

�

a′/a
�p/2
∥ f ∥Ha′ ,p

≤ ∥ f ∥Ha,p
≤ ∥ f ∥Ha′ ,p

for all f ∈Ha,p, (14)

while for any a > 0 it holds H0,p ⊂Ha,p with ∥ f ∥Ha,p
= ∥ f ∥H0,p

for all f ∈H0,p.

(ii) If a > 0 and p, q ∈ N with 0≤ q ≤ p, we have that Ha,q ⊂Ha,p, and the norms of the two spaces are equivalent on Ha,q with

a(q−p)/2 ∥ f ∥Ha,p
≤ ∥ f ∥Ha,q

≤ a(q−p)/2
�

p
p− q

�1/2

∥ f ∥Ha,p
for all f ∈Ha,q. (15)

Proof. For the first point we have clearly Ha,p =Ha′ ,p = Pd
p as sets. Moreover for all ζ ∈ Ia(p, d) we have

wa
ζ
=

p!ζ!
(p− |ζ|)!

ap−|ζ| =
� a

a′

�p−|ζ|
wa′

ζ
,

and thus
wa′

ζ
≤ wa

ζ
≤
�

a/a′
�p

wa′

ζ
, (16)

since a/a′ ≥ 1. Using this relation in the definition (13) of the norm implies that

�

a′

a

�p/2

∥ f ∥Ha′ ,p
≤ ∥ f ∥Ha,p

≤ ∥ f ∥Ha′ ,p
,

which is (14). Finally H0,p = Hd
p ⊂ P

d
p = Ha,p for all a > 0, and so it makes sense to compute the Ha,p-norm of f (x) =

∑

ζ∈I0(p,d) cζxζ ∈H0,p. Since Dγ f (0) = 0 for all γ ∈ Nd
0 with |γ|< p, and since wa

γ
= w0

γ
if |γ|= p (see (11)), we have

∥ f ∥2Ha,p
=
∑

γ∈Ia(p,d)

1
wa
γ

(Dγ f (0))2 =
∑

γ∈I0(p,d)

1
wa
γ

(Dγ f (0))2 =
∑

γ∈I0(p,d)

1
w0
γ

ap−|γ|

(p− |γ|)!
(Dγ f (0))2 = ∥ f ∥2H0,p

,

and this concludes the proof of the first part.
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In the second case the space inclusion is also clear, and to prove the norm equivalence we write wa
ζ
(p), wa

ζ
(q) with an explicit

dependence on the polynomial degrees p, q. For f ∈Ha,q we have by definition of the norm of Ha,p that

∥ f ∥2Ha,p
=
∑

ζ∈Ia(p,d)

1
wa
ζ
(p)

�

Dζ f (0)
�2
=
∑

ζ∈Ia(q,d)

1
wa
ζ
(p)

�

Dζ f (0)
�2

, (17)

where the second equality follows from the fact that the derivatives vanish for |ζ|> q. Moreover for all ζ ∈ Ia(q, d) we have

wa
ζ
(p) =

p!ζ!
(p− |ζ|)!

ap−|ζ| =
p · · · (q+ 1)q!ζ!

(p− |ζ|) · · · (q+ 1− |ζ|)(q− |ζ|)!
aq−|ζ|ap−q =

p · · · (q+ 1)
(p− |ζ|) · · · (q+ 1− |ζ|)

ap−qwa
ζ
(q),

and this quantity is minimized when |ζ|= 0 and maximized when |ζ|= q, giving

ap−qwa
ζ
(q)≤ wa

ζ
(p)≤ ap−q
�

p
p− q

�

wa
ζ
(q).

Inserting these bounds in (17) gives

aq−p
�

p
p− q

�−1

∥ f ∥2Ha,q
≤ ∥ f ∥2Ha,p

≤ aq−p ∥ f ∥2Ha,q
for all f ∈Ha,q,

which can be rearranged to obtain (15).

Remark 4. The inclusion relation Ha,p ⊂Ha,p′ for p ≤ p′ and a = 1, and the equivalence between the corresponding norms, was
already proven in [38] by other arguments (see Proposition 4.3 and Proposition 6.3). The other relations are instead new to the
best of our knowledge. Moreover, the case (ii) cannot be extended to a = 0, since in this case the spaces H0,p and H0,p−q have
empty intersection unless q = p. Finally, we remark that the general case a ̸= a′, p ̸= q can be obtained by combining the two
cases (i) and (ii) of Corollary 4.2.

We point out that (13) implies that the monomials are orthogonal in Ha,p, i.e., for all ζ,β ∈ Ia(p, d) we have
�

xζ

ζ!
,

xβ

β!

�

Ha,p

=
1

wa
ζ

δζβ . (18)

From this fact we may also deduce that the norm inequality (14) is sharp for all 0< a′ ≤ a. Indeed, the right inequality in (14) is
an equality for f (x) := xζ with |ζ|= p, since in this case we have by (18) that



xζ




2

Ha,p
=
(ζ!)2

wa
ζ

=
ζ!
p!
=
(ζ!)2

wa′
ζ

=


xζ




2

Ha′ ,p
,

where we used the definition (11) of wa
ζ

and wa′
ζ

. Similarly, the left inequality in (14) is met for |ζ|= 0, i.e. xζ = 1 and ζ!= 1,
since in this case we have again by (18) that



xζ




2

Ha,p
=

1
wa
ζ

=
1
ap
=
�

a′

a

�p 1

wa′
ζ

=
�

a′

a

�p


xζ




2

Ha′ ,p
.

In particular, maximal-degree monomials have the same norm independently of a > 0, while lower degree monomials have an
increasingly large norm as a→ 0, up to not even being elements of Ha,p in the limiting case, since indeed H0,p is the homogeneous
space. In this sense, the parameter a ≥ 0 has a regularizing effect, promoting high degree components in a minimal norm solution
of the interpolation problem.

For (15), similar arguments prove that the equality is obtained for |ζ| = 0 (the lower bound), and |ζ| = q (the upper
bound). It thus happens that if p ≥ q, the elements of Ha,q have an Ha,p-norm which increases with a factor between a(q−p)/2 and

a(q−p)/2
� p

p−q

�1/2
. In particular, low-degree and high-degree monomials have norm that are increasingly separated, and thus also

increasing p has a regularization effect, and the monomials xζ have minimal norm in Ha,p with p = |ζ|.

4.2 Stability

We now derive a simple stability results for the interpolation map IX ,a,p : C(Ω) → Va,p(X ), as a function of a set X ⊂ Ω of
Ha,p-unisolvent points. We recall that the Lebesgue function associated to the interpolation process is defined as

λX ,a,p(x) := sup
0̸= f ∈Va,p(X )

| f (x)|


 f|X




∞

, x ∈ Ω, (19)

such that one obtains the stability bound

|IX ,a,p f (x)| ≤ λX ,a,p(x)


 f|X




∞ ≤ λX ,a,p(x)∥ f ∥L∞(Ω) for all f ∈ C(Ω), x ∈ Ω, (20)

which can be also written in terms of the associated Lebesgue constant ΛX ,a,p :=


λX ,a,p





L∞(Ω)
as



IX ,a,p f




L∞(Ω)
≤ ΛX ,a,p



 f|X




∞ ≤ ΛX ,a,p ∥ f ∥L∞(Ω) for all f ∈ C(Ω). (21)
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Moreover, the fact that X is unisolvent ensures the existence of a Lagrange basis
�

ℓi,a,p

	N

i=1
of Va,p(X ), which gives

IX ,a,p f (x) =
N
∑

i=1

f (x i)ℓi,a,p(x), x ∈ Ω, (22)

and λX ,a,p(x) =
∑N

i=1

�

�ℓi,a,p(x)
�

�.
Although we are still not able to obtain explicit bounds on λX ,a,p and ΛX ,a,p, we can prove the following result.

Theorem 4.3. Let B ⊂ Rd be a set and let X ⊂ Ω be a set of Pd
p -unisolvent points. Let

Λ
pol
X := sup

0 ̸= f ∈Pd
p (B)

∥ f ∥L∞(B)


 f|X




∞

(23)

be the Lebesgue constant for polynomial interpolation of degree p on X .
Let a ≥ 0, p ∈ N, and let X be Ha,p-unisolvent. For any XMa

⊃ X which is Pd
p -unisolvent, it holds



IX ,a,p f




L∞(Ω)
≤ Λpol

XMa
∥ f ∥L∞(B) for all f ∈ C(B),

where B ⊂ Rd is any set which contains XMa
.

Proof. The results simply follows from the fact that IX ,a,p f ∈Ha,p = Pd
p and by the definition of Λpol

XMa
. Such XMa

exists thanks to
Proposition 3.3, but since it needs not to be contained in Ω we consider an enclosing set B.

This results shows that polynomial kernel interpolation on X is at least as stable as polynomial interpolation on any XMa
⊃ X .

This points to the fact that understanding how to complete a set of points to a set of polynomially unisolvent points of small
Lebesgue constant may be highly relevant in this context. The fact is also related to the possible minimality of the construction in
Theorem 3.5 (see also Remark 3). Moreover, although choosing XMa

\ XN outside of Ω may possibly lead to a smaller Lebesgue
constant, one pays the price of obtaining a bound in terms of the norm ∥ f ∥L∞(B) computed on a larger set B ⊃ Ω, which may
possibly be significantly larger than ∥ f ∥L∞(Ω).

On the other hand, if one is free to choose N points to sample a function to construct a ka,p interpolant, this result suggests
that it could be a good idea to select them from a Pd

p -unisolvent set with small Lebesgue constant.

4.3 Error estimation

As it is typically the case in kernel interpolation, we start by assuming that f ∈Ha,p. In this case, we recall that the interpolant
as a map IX ,a,p : Ha,p → Va,p(X ) coincides with the Ha,p-orthogonal projection onto Va,p(X ). The norm of the associated error
operator is the power function PX ,a,p(x) defined by

PX ,a,p(x) := sup
0 ̸= f ∈Ha,p

�

� f (x)− IX ,a,p f (x)
�

�

∥ f ∥Ha,p

. (24)

By definition, the interpolation error can be controlled as
�

� f (x)− IX ,a,p f (x)
�

�≤ PX ,a,p(x)∥ f ∥Ha,p
for all f ∈Ha,p. (25)

This bound allows one to separate the error in a term depending only on f and one depending only on X , Ω and ka,p.
In particular, worst-case error bounds in Ha,p can be derived by obtaining uniform bounds on PX ,a,p in terms of the fill distance

hX := sup
x∈Ω

min
y∈X
∥x − y∥.

We refer to Chapter 11 in [37] for details on this approach.
We are not able to obtain bounds of this type yet, and we rather use the power function to outline a method to derive more

general error bounds. Indeed, as mentioned in Section 4.2 the interpolant IX ,a,p f is well defined also for any f ∈ C(Ω), even for
f /∈H, since its computation requires only the knowledge of f|X , and it is of interest to study the resulting approximation error
also in this case. We have the following result.

Proposition 4.4. Let XN ⊂ Ω be Ha,p-unisolvent. Then for all f ∈ C(Ω) we have

�

�( f − IX ,a,p f )(x)
�

�≤
�

1+λX ,a,p(x)
�





 f − f ⋆p







L∞(Ω)
+ PX ,a,p(x)




 f ⋆ − IX ,a,p f ⋆p







Ha,p

, x ∈ Ω, (26)

where
f ⋆p := inf

g∈Pd
p (Ω)
∥ f − g∥L∞(Ω)

is the uniform best polynomial approximant of f .
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Proof. We have
f − IX ,a,p f = f − f ⋆p + f ⋆p − IX ,a,p f ⋆p + IX ,a,p f ⋆p − IX ,a,p f . (27)

Using the form (22) of the interpolant, a standard argument gives

|(IX ,a,p f ⋆p − IX ,a,p f )(x)|= |IX ,a,p( f
⋆
p − f )(x)|=

N
∑

i=1

�

�ℓi,a,p(x)
�

� |( f ⋆p − f )(x i)| ≤ λX ,a,p(x) max
1≤i≤N
|( f ⋆p − f )(x i)| (28)

≤ λX ,a,p(x)∥ f ⋆ − f ∥L∞(Ω) .

Moreover, since f ⋆p ∈Ha,p = Pd
p by definition, we can apply the standard power function bound (25) and get

|( f ⋆p − IX ,a,p f ⋆p )(x)| ≤ PX ,a,p(x)




 f ⋆p − IX ,a,p f ⋆p







Ha,p

. (29)

Inserting these two bounds in (27) we get

|( f − IX ,a,p f )(x)| ≤ |( f − f ⋆p )(x)|+ |( f
⋆
p − IX ,a,p f ⋆p )(x)|+ |(IX ,a,p f ⋆p − IX ,a,p f )(x)|

≤




 f − f ⋆p







L∞(Ω)
+ |( f ⋆p − IX ,a,p f ⋆p )(x)|+ |(IX ,a,p f ⋆p − IX ,a,p f )(x)|

≤
�

1+λX ,a,p(x)
�





 f − f ⋆p







L∞(Ω)
+ PX ,a,p(x)




 f ⋆p − IX ,a,p f ⋆p







Ha,p

,

which is the bound of the statement.

This result shows that it is possible to obtain error bounds for interpolation of functions outside of the native space (thus
escaping the native space [25], or working in the so-called misspecified setting [19, 20]).

Observe also that in a sense inequality (26) is sharp with respect to the relation between polynomial interpolation in Pd
p and

kernel interpolation in Ha,p. Indeed, on one hand if f ∈Ha,p = Pd
p then f − f ⋆p = 0, and thus (26) reduces to the usual power

function bound (25) for kernel interpolation. On the other hand, if instead N = Ma then IX ,a,p f coincides with the polynomial
interpolant of f (see Corollary 3.4). It follows that f − IX ,a,p f = 0 for all f ∈Ha,p = Pd

p , and thus PX ,a,p = 0 (see (24)). In this
case (26) reduces to the standard Lebesgue function bound for polynomial interpolation.

Between these two limits, the proposition suggests as well that one may try to optimize the set XMa
and its subset XN , in

order to balance the contribution of the two terms in (26).
Moreover, we have the following.

Corollary 4.5. Under the assumptions of Proposition 4.4, let XMa
with XN ⊂ XMa

⊂ B ⊂ Rd be any Pd
p -unisolvent set. Then

�

�( f − IX ,a,p f )(x)
�

�≤
�

1+λpol
XMa
(x)
�

�





 f − f ⋆p







L∞(B)
+ max

x∈XMa

PX ,a,p(x)




 f ⋆ − IX ,a,p f ⋆p







Ha,p

�

, x ∈ B, (30)

where λpol
XMa
(x) is the Lebesgue function for polynomial interpolation.

Proof. We follow the same steps as in the proofs of Proposition 4.4. Instead of (28), since f ⋆p − IX ,a,p f ⋆p ∈ P
d
p we have

|(IX ,a,p f ⋆p − IX ,a,p f )(x)| ≤ λXMa ,a,p(x)∥ f ⋆ − f ∥L∞(B) ,

with the same argument as in Theorem 4.3. Moreover, again because f ⋆p − IX ,a,p f ⋆p ∈ P
d
p we have

|( f ⋆p − IX ,a,p f ⋆p )(x)| ≤ λ
pol
XMa
(x)




( f ⋆p − IX ,a,p f ⋆p )|XMa







∞
,

and from this we can proceed to replace (29) with

|( f ⋆p − IX ,a,p f ⋆p )(x)| ≤ λ
pol
XMa
(x) max

x∈XMa

PX ,a,p(x)




 f ⋆p − IX ,a,p f ⋆p







Ha,p

.

Inserting these two bounds in (27) we get the result.

Without the term involving the power function, inequality (30) is the error bound for polynomial interpolation of f on XMa
,

and we thus have that the error of kernel interpolation on X is comparable with the error of polynomial interpolation on XMa
. To

quantify this relation it would be sufficient to prove bounds on maxx∈XMa
PX ,a,p(x), which should be expected to be much easier

to bound than


PX ,a,p





L∞(Ω)
and with a smaller value, provided the points XMa

are not too far from Ω. Moreover, one may expect
that such a bound depends on the relation between XN and XMa

, instead of on hX .
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Remark 5. Other approaches may be followed to obtain error bounds for interpolation with the polynomial kernels. Most notably,
one can use the zero lemma of [24]. Namely, for τ := k+ s with k ∈ N, k > d/2, s ∈ (0, 1], and 1≤ t ≤∞, we denote as W τ

t (Ω)
the Lt(Ω)-Sobolev space of fractional smoothness τ. Theorem 2.12 in [24] proves that if Ω has a sufficiently smooth boundary,
then there is a constant Ck depending on k such that for any 1≤ r ≤∞ and for any f ∈W τ

t (Ω) it holds


 f − IX ,a,p f




Wτr (Ω)
≤ Ckhτ−d(1/t−1/r)+

X

�

� f − IX ,a,p f
�

�

Wτt (Ω)
,

where (x)+ :=max(x , 0). Taking in particular τ= k+ s > p gives thus


 f − IX ,a,p f




Wτr (Ω)
≤ Ckhτ−d(1/t−1/r)+

X | f |Wτt (Ω) ,

where
�

�IX ,a,p f
�

�

Wτt (Ω)
= 0 since τ > p. However, p needs to increase with N (see the beginning of Section 4), and thus τ = k+s > p

is possible only if k is itself increasing. Since Ck is increasing with k, to use this approach one would need to work out explicitly
the growth of Ck in terms of p, with a small as possible p. A similar approach has already been followed in [39], but in that case
the kernels are strictly positive definite, so one does not need to change the kernel depending on the points.

5 Stable computations
As we will demonstrate numerically in Section 6, the computation of a ka,p-interpolant may be significantly unstable from a
computational point of view, even if we proved in Section 4.2 that the Lebesgue constant of this interpolant can be growing quite
slowly, for example with a rate comparable to that of polynomial interpolation (see Theorem 4.3).

The fact that the interpolation process is provably stable even if its actual computation is unstable has been observed and
studied thoroughly in kernel interpolation [12, 13]. Moreover, this discrepancy has been attributed to the use of the so-called
direct method, i.e., the inversion of the kernel matrix, and several stable algorithm has been introduced to overcome this problem.

In particular, given parameters p ∈ N, a ≥ 0 and a set of Ha,p-unisolvent points X ⊂ Ω, in this section we show how to apply
the RBF-QR algorithm to the polynomial kernels to construct a stable basis {u j}Nj=1 of Va,p(X ). We follow Section 4.2 of [18] and
Section 4.1 in [17], where in our case the monomial basis plays the role of the Mercer basis of the kernel.

To this end we define an arbitrary but fixed ordering {ζ(i)}Ma
i=1 of the multiindices Ia(p, d) and construct the diagonal matrix

D ∈ RMa×Ma as in Lemma 3.1. Using the same ordering of the monomials, we split D as

D =
�

D1 0
0 D2

�

, (31)

now with D1 ∈ RN×N and D2 ∈ R(Ma−N)×(Ma−N). Observe in particular that the multi-indices may be sorted in such a way that the
diagonal entries of D are sorted in non-increasing order, so that D1 contains the large entries, and D2 the small ones that are likely
the cause of the instability that we observed in the numerical inversion of A. Observe that, in case of equality among values of the
diagonal, multiple possible ordering are possible. We are not investigating this aspect here, and just assume that an arbitrary
valid order is fixed.

We then assemble the Vandermonde matrix V ∈ RN×Ma associated to the same monomial ordering and compute the QR
decomposition V =QR, with Q ∈ RN×N an orthogonal matrix, and where the matrix R ∈ RN×Ma is splitted as

R := [R1|R2], R1 ∈ RN×N , R2 ∈ RN×(Ma−N). (32)

It follows from Lemma 3.1 that

A= V DV T = V DRTQT = V
�

D1 0
0 D2

��

RT
1

RT
2

�

QT = V
�

D1RT
1

D2RT
2

�

QT = V
�

I
D2RT

2 R−T
1 D−1

1

�

D1RT
1 QT , (33)

where D1RT
1 is invertible because D is invertible and V , and thus R, have full rank since the points X are unisolvent (see Proposition

3.3).
We now recall that for an arbitrary basis {u j}Nj=1 of Va,p(X ), if Cu ∈ RN×N is the matrix of change of basis from {ka,p(·, x i)}Ni=1

to this new basis, and Vu :=
�

u j(x i)
�N

i, j=1
, then [27] shows that it holds A= VuC−1

u . We may interpret the decomposition (33) in

these terms, and assume that C−1
u := D1RT

1 QT is the inverse of the matrix of change of basis from the stable basis to the kernel
basis of translates. With this definition, observe that we also have from (33) that

Vu = ACu = V
�

I
D2RT

2 R−T
1 D−1

1

�

= V C ′u,

where now

C ′u :=
�

I
D2RT

2 R−T
1 D−1

1

�

∈ RMa×N (34)

is a rectangular matrix that expresses the new basis in terms of the monomial basis. This can thus be used to express the stable
basis without the need of passing through the unstable kernel basis. Observe moreover that D2RT

2 R−T
1 D−1

1 is an (Ma − N)× N
matrix, and that its computation (and thus the computation of Cu), requires only the inverses of the N × N matrices R1 and D1,
which can be computed efficiently since R1 is triangular and D1 is diagonal.
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Algorithm 1 Construction of the interpolant

1: Input: Parameters p ∈ N, a ≥ 0, Ha,p-unisolvent interpolation points X := {x i}Ni=1 ⊂ R
d and target values y ∈ RN .

2: Define an ordering Iu := {ζ(i)}Ma
i=1 of the multiindices Ia(p, d).

3: Evaluate the Vandermonde matrix V ∈ RN×Ma associated to the points X and the given ordering (see Lemma 3.1).
4: Compute the QR decomposition QR= V , and define R1, R2 as in (32).
5: Evaluate the diagonal matrix D ∈ RMa×Ma (see Lemma 3.1) and define D1, D2 as in (31).
6: Compute C ′u as in (34).
7: Compute the coefficients cu := C−1

u y .
8: Output: C ′u, cu, Iu.

We can thus work directly in terms of this new stable basis, both to solve the linear system and to evaluate the interpolant as

Ia,p,X (x) =
N
∑

j=1

(cu) ju j(x), x ∈ Ω,

for a suitable vector of coefficients cu ∈ RN . The computation of the interpolant is summarized in Algorithm 1.
Once the matrix C ′u, the vector cu, and the ordering Iu are computed, they can be used to evaluate the interpolant on any set

X eval := {x ′i}
Neval
i=1 ⊂ R

d of Neval ∈ N evaluation points, again by using the corresponding Vandermonde matrix. We describe this
process in Algorithm 2, which returns the vector yeval with (yeval)i := Ia,p,X (x ′i).

Algorithm 2 Evaluation of the interpolant

1: Input: Evaluation points X eval := {x ′i}
Neval
i=1 ⊂ R

d , Neval ∈ N, matrix C ′u, vector cu, and indices Iu from Algorithm 1.
2: Evaluate the Vandermonde matrix V ∈ RNeval×Ma (see Lemma 3.1) associated to the points X eval and the ordering Iu.
3: Evaluate the stable basis on X eval as Vu := V C ′u.
4: Evaluate the interpolant on X eval as yeval = Vucu.
5: Output: yeval .

We remark that this approach works exactly in the same way to interpolate vector-valued functions f : Rd → Rd′ , d ′ ∈ N.
In this case y ∈ RN×d′ collects the evaluations of f on X rowwise, and the output cu of Algorithm 1 is a matrix cu ∈ RN×d′ . In
particular, this approach can also be used to compute the Lagrange basis functions (22) by a single run of Algorithm 1, simply
by defining d ′ := N and y := I ∈ RN×N . The resulting output yeval ∈ RNeval×N of Algorithm 2 contains as columns the Lagrange
functions evaluated on X eval (see Remark 13.8 in [16]).
Remark 6. The RBF-QR algorithm includes also a series of further ad-hoc optimizations that we are not discussing here for
simplicity. Moreover, the stable basis obtained by this process is expressed in terms of the monomial basis, and it is thus clearly a
polynomial basis. Similar approaches based on QR decompositions are used for point selection in polynomial interpolation, such
as the Approximate Fekete Points (AFP) of [4]. In particular, the matrices Q and Vu should be related to some sort of orthogonal
polynomials, which could be interesting to investigate to further improve the stability of the algorithm.

6 Numerical experiments
We test now numerically some aspects that were discussed in the previous sections. For simplicity we restrict to d = 1 and set
Ω= [−1, 1], so that (3) and (4) give Ia(p, 1) = {0, 1, . . . , p} and Ma = p+ 1 if a > 0, while I0(p, 1) = {p} and M0 = 1. Moreover
(5) and (8) simplify to

ka,p(x , y) =
p
∑

ζ=0

�

p
ζ

�

ap−ζ(x y)ζ, k0,p(x , y) = (x y)p.

Some examples of the values of ka,p(·, 1/2) are visualized in Figure 1.

6.1 Convergence of the interpolant and stable computations

We start by comparing kernel interpolation with polynomial interpolation, and demonstrate the potential instability of the direct
method and the effectiveness of the RBF-QR approach.

We recall that Ma = p+ 1 for d = 1, and thus the constraint N ≤ Ma means that we need to require p ≥ N − 1. Moreover, for
any p ∈ N any set of pairwise distinct points is the subset of a set of P1

p-unisolvent points, and thus in view of Proposition 3.3 we
can solve interpolation problems with any set of N pairwise distinct points provided that p ≥ N − 1.

As an example we interpolate the smooth function f (x) := cos(10x) sampled at N Chebyshev points with N = 5, . . . , 50. For
each N we test polynomial interpolation, and kernel interpolation with p = p(N) ∈ {N − 1, N + 1, N + 3, N + 5} and a ∈ {5, 10}.

We report in Figure 2 the corresponding maximum absolute errors with respect to the exact values of f , computed on a
grid of Neval = 1000 equally spaced points. It is remarkable to observe that the direct approach (first row of Figure 2) fails to
compute a converging interpolant even for small values of N and even if the corresponding polynomial interpolant is stable and
convergent. On the other hand, switching to RBF-QR (second row of Figure 2) resolves this instability, and for all the tested
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Figure 1: Values of the kernel ka,p(·, 1/2) on [−1,1] for p ∈ {1,2, 3,4} and for a = 0 (left), a = 1 (center), and a = 2 (right).

values of p and a the kernel interpolants converge at the same speed of the polynomial interpolant. However, also in this stable
case the convergence saturates at an error of roughly 10−12 at N = 30, and from there on the stability seems to slightly degrade,
up to some small oscillations for large N . It is possible that the adoption of further optimizations, as discussed in Remark 6, may
lead to an even stronger stability.

6.2 Lagrange functions and Lebesgue constant

We now consider the stability aspects of the interpolant, analysing the associated Lagrange functions and Lebesgue constant.
We first show that RBF-QR is indeed effective also in computing these cardinal functions. As an example, Figure 3 shows the

Lagrange functions of k10,25 corresponding to N = 15 Chebyshev points. Even for this small number of points, it is immediately
clear that a stable algorithm is needed to have an accurate computation.

We use these stably computed functions to evaluate the Lebesgue function and the Lebesgue constant and compare it with
the ones of polynomial interpolation. As an example, for N = 5 Chebyshev points we consider the polynomial kernel ka,p with
p ∈ {N − 1, N + 9, N + 19, N + 29} and a = 5. The first row in Figure 4 shows the Lagrange functions for the different values of p,
and it is clear that an increase of p has the effect of smoothing the oscillations in the interior of the domain and enlarging the
oscillations close to the boundary. This reflects into a Lebesgue function (left panel in Figure 4) which is decreasing in the interior
and increasing close to the boundary as p increases. This behavior causes the Lebesgue function (right panel in Figure 4) to be
initially decreasing and then increasing. In particular, the minimum value for this set of points and parameter a is reached for
p > N − 1, i.e., there exists a polynomial kernel with a Lebesgue constant which is strictly smaller than that of the polynomial
interpolant.

To further investigate the stability of the interpolants we look at the asymptotic behavior of the Lebesgue constant. We
compare the same kernels ka,p used in the previous section, but now testing both equally spaced and Chebyshev points, for
N = 5, . . . , 45. We restrict to a maximal N = 45 because the same instability in the computations observed in Section 6.1 appears
here for large N , up to making the results completely unreliable for N ≈ 50. The results are reported in Figure 5. It is clear
that in all cases the growth of the Lebesgue constant coincides with that of polynomial interpolation (i.e., p = N − 1), and thus
it has the well known logarithmic growth for Chebyshev points (left panels in Figure 5), and exponential growth for equally
spaced points (right panels in Figure 5). It is important to notice that the growth seems to be not affected by the value of a, and
especially not even by that of p. This latter fact is relevant because it implies that, at least for d = 1, the value of ΛX ,a,p depends
on X and not on XMa

, and especially it seems that the bound of Theorem 4.3 is quite pessimistic. Moreover, it seems that the
difference between the values of the Lebesgue constants of polynomial and kernel interpolation observed in Figure 4 (bottom
right) are not so significant for growing N .

7 Conclusions and perspectives
In this paper we derived some initial results for the application and analysis of polynomial kernels for the solution of interpolation
problems. We derived necessary and sufficient conditions for the existence of a unique interpolant and we provided an explicit
description of the native spaces of the polynomial kernels. In particular, we analyzed in some detail the effect of the kernel
parameters on these spaces. These results were further used to derive some first quantification of the stability and convergence of
these interpolants, with particular attention to the connection with the corresponding results in polynomial interpolation. Finally,
we have shown that a direct solution of the interpolation system leads to inaccurate computations, and that the use of the RBF-QR
algorithm can significantly mitigate this issue.

Several points remain open and will be the subject of future research. In particular, we outlined in several occasions that
a proper selection of the degree p may be crucial, and that its choice may balance between accuracy and stability. A better
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Figure 2: Convergence of the maximal absolute error of interpolation of the function f (x) = cos(10x) using N = 5, . . . , 50 Chebyshev points. For
each figure, we test a polynomial interpolant (gray line), and kernel interpolants with various values of p, and a = 5 (left column) and a = 10
(right column). The kernel interpolants are computed with the direct method (first row) and with RBF-QR (second row).
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Figure 3: Lagrange functions for the polynomial kernel with p = 25 and a = 10, and corresponding to N = 15 Chebyshev points (black dots),
computed with the direct method (gray lines) and with RBF-QR (black lines).
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Figure 4: Lagrange functions (top), Lebesgue function (bottom left), and Lebesgue constant (bottom right) for interpolation with a polynomial
kernel k5,p on N = 5 Chebyshev points and various values of p, as reported in each panel.
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Figure 5: Growth of the Lebesgue constant associated to N = 5, . . . , 45 Chebyshev (left) and equally spaced (right) points. We test kernel
interpolants with various values of p, and a = 5 (top row) and a = 10 (bottom row). We remark that the results for p = N − 1 coincide with
those of polynomial interpolation.

understanding of the role of this parameter and a systematic method for its determination are open problems. This aspect may
be connected to the so-called overparameterized regime and to ridgeless regression in machine learning, since by increasing p
one may aim at solving a data fitting problem by interpolation without regularization, and use the parameter a as an implicit
regularizer (see e.g. [22, 26, 30]).

Moreover, some results of this paper point to the fact that the properties of an interpolation set X may be related to those of a
superset XMa

of polynomially unisolvent points. Also in this case a quantitative relation is missing, as well as suitable algorithms
to select X from XMa

or completing X to XMa
. In both cases, it would be interesting to investigate processes related to Leja and

approximate Fekete points in this context, as well as to P-greedy points [14].
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