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Abstract—This paper proposes a bio-inspired Complete Cover-
age Path Planner suitable for several precision agriculture tasks,
such as terrain and crop mapping, inspection, and crop spraying.
This grid-based method reproduces the dynamics of the neural
activity in a biological neural system to represent dynamically
varying environments. By providing appropriate inputs to the
neurons of the grid, their neural activity can be exploited to guide
the robot towards uncovered regions of the area and enforce the
desired coverage pattern. Both known and unexpected obstacles
can be easily handled, since the sudden discovery of an obstacle
simply modifies the local neural activity online. Thus, the need
for complete re-planning phases is canceled. A deadlock-escaping
mechanism is also proposed to efficiently recover from dead ends.
Finally, simulation results are provided to show the flexibility and
effectiveness of the method in dynamic environments.

Index Terms—Complete Coverage Path Planning, Bio-
Inspired, Intelligent Agriculture Machine, Precision Agriculture

I. INTRODUCTION

In the latest years, the increase in population and the
expansion of urban areas has led the agricultural sector to
look for innovative solutions to increase the productivity of
farmlands. In this context, precision agriculture [1] aims at
enhancing the efficiency and reducing the cost of agricultural
processes relying on intelligent agricultural machines, in the
form of both Unmanned Ground Vehicles (UGVs) and Un-
manned Aerial Vehicles (UAVs) [2], [3]. The introduction of
automation technologies in the agricultural sector has risen
robotics problems heavily related to field logistics, such as
the Agricultural Routing Planning (ARP) problem, [4]. In
particular, many ARP problems consist of efficiently achieving
a complete traversal of an entire work region and, hence, can
be classified as Complete Coverage Path Planning (CCPP)
problems. Terrain and crop mapping, inspection, and crop
spraying are typical precision agriculture examples of such
tasks, [1].

The CCPP problem is studied in different fields and appli-
cations, both in indoor and outdoor environments [5]–[7], and
is addressed by employing both offline and online planners.
Offline CCPP methods, while being able to achieve optimal
coverage planning results, require the entire knowledge of the
work region and are usually characterized by higher com-
putational times [8]. Common examples for offline coverage

planners are the exact cellular decomposition methods, which
divide the original map into smaller regions that can be
traversed with simple patterns, e.g. sweep movements. These
methods are commonly adopted for agricultural purposes. As
an example [9] and [10] focus on optimizing the visiting
sequence of the sub-regions as well as their ingress and
egress point. Even though these method can achieve optimal
coverage, they lack reactivity and are not suitable to face con-
tingencies, as any change in the environment would trigger an
entire re-planning phase. Such a re-planning could introduce
waiting times that may compromise the execution of the task,
especially for unmanned systems with limited time autonomy.

On the other hand, online coverage planning methods are
more reactive and suitable for dynamic and unknown envi-
ronments. They usually rely on a grid-based discretization
of the work region, which allows handling of the robot’s
maneuvering capability [8], [11], [12]. As an example, in [13]
genetic algorithms are adopted to optimize the coverage in a
local grid surrounding the robot’s current position. In [14], the
coverage is achieved by iteratively selecting the node of the
grid that minimizes the translational and rotational distances
w.r.t. the current position while remaining in the proximity of
previously visited nodes. The local approach of these methods
reduces the computational effort. A promising method is
proposed in [15]–[17], where the dynamics of a biological
neural system are exploited to model dynamically varying
environments. Nodes characterized by higher neural activity
represent uncovered regions, while obstacles are identified by
negative neural activity. Even though the results prove the
adaptability to dynamic scenarios, the solution obtained is
highly sub-optimal. Furthermore, online planners can suffer
from deadlock situations in which the robot is surrounded
by obstacles or already covered areas, and require escape
strategies.

In this work, an online Bio-Inspired Complete Coverage
Path Planner (BI-CCPP) is proposed to address coverage
problems in precision agriculture. The method is derived from
[15]–[17]. By appropriately shaping the external input and
the objective function, this work enhances its performances
and adapts the coverage strategy to different applications.
Furthermore, a novel escaping mechanism is proposed for



deadlock situations, which still occur in state-of-the-art im-
plementation. The following sections are organized as follows.
Sec. II exposes the problem statement and the contribution of
the proposed method w.r.t. the state of the art. In Sec. III the
mathematical model of the BI-CCPP is detailed. Simulation
results are presented and discussed in Sec. IV, including a
comparison with the state-of-the-art counterpart of the pro-
posed method. Our conclusions are drawn in Sec. V.

II. PROBLEM STATEMENT AND CONTRIBUTION

This work focuses on the Complete Coverage Path Planning
problem for precision agriculture coverage operations. Given
the 2D map of the work region, the CCPP computes the path
that allows the robotic machine to traverse the entire area,
avoiding the obstacles located in it. However, to maximize
the safety of such automated operations, the CCPP should be
able to quickly react to the presence of unforeseen obstacles.
Furthermore, due to the variety of coverage tasks associated
with the agricultural sector, e.g. mapping, inspection, spraying,
and harvesting, the CCPP should be characterized by a high
level of flexibility in its formulation. Such flexibility allows
the end-user to slightly modify the behavior of the CCPP and
adapt it to the application of interests, e.g. favoring coverage
based on concentric patterns or sweep movements.

The Bio-Inspired Complete Coverage Path Planner (BI-
CCPP) proposed in this work takes into account these con-
siderations. The main advantages of this method w.r.t. the
literature are: (i) its grid-based nature cancels the need to
decompose the work region into smaller units, a practice that
is usually encountered in agricultural coverage planners, [9],
[10]; (ii) its computational efficiency allows to easily consider
sudden variations in the work region and unforeseen obstacles,
overcoming the offline nature of many field coverage planners,
[9], [10], and enhancing the safety of automated precision
agriculture; (iii) the proposed formulation of the external
input acting on the work region and of the objective function
used to select the next location increases the performances
and the flexibility w.r.t. its literature counterparts, [15]–[17],
making the BI-CCPP versatile and suitable for a wide range of
coverage tasks; (iv) the deadlock-escape mechanism proposed
allows to efficiently escape from deadlocks and move towards
uncovered areas of the work region.

III. BIO-INSPIRED COMPLETE COVERAGE PATH PLANNER

A. Bio-inspired topological model

The main concept of the proposed method is to develop a
neural system, whose dynamic neural activity represents the
dynamically varying environment. Such a neural network is
obtained by discretizing the work region in a grid composed
of squared cells with side l, in which each node represents a

Fig. 1. Representation of neural connections between the central neuron (blue)
and the neighboring neurons (light blue) within its receptive field (red).

neuron. The dynamics of each neuron is characterized by the
shunting equation [18], described as:

dxi

dt
=−Axi + (B − xi)

[Ii]
+
+

K∑
j=1

ωij [xj ]
+


− (D + xi) [Ii]

−
, (1)

where A,B,D are positive constants representing the passive
decay rate, the upper and the lower bounds of the neural
activity, xi is the neural activity of the i − th neuron,
bounded in [−D,B] and the functions [a]

+ and [a]
− are

defined respectively as max(a, 0) and max(−a, 0). The terms(
[Ii]

+
+
∑K

j=1 ωij [xj ]
+
)

and [Ii]
− represent the excitatory

and inibitory inputs acting on the i− th neuron. In particular,∑K
j=1 ωij [xj ]

+ expresses the excitatory input caused by the
positively excited neurons among the K neighboring ones
within the i − th neuron’s receptive field of radius r0. The
connection weight between the i − th neuron and its j − th
neighbor is ωij =

µ
dij

, where µ is a positive constant and dij
is the euclidean distance between neurons. In most of cases,
r0 = 1.5l and K = 8, as shown in Fig. 1. Finally, Ii represents
the external input to the i − th neuron and is determined by
the environment of the work region, in order to reflect any
change in the scenario. In the current literature [15]–[17], it
is defined depending on the status of the i− th node as:

Ii =


Eu if it is not covered yet

−Eo if it is occupied by an obstacle

−Ec if it is alreday covered

, (2)

where Eu = Eo = E ≫ B, E is a very large positive constant
and Ec = 0. In such a way, the activity of uncovered areas
remains at high positive values, while regions occupied by
obstacles possess strongly negative neural activity and already
covered cells are characterized by intermediate positive values
due to the activity propagation through neural connections.
The shunting equation of Eq. (1) guarantees that only positive
values of activity are propagated among the neurons, hence
uncovered areas globally attract the robot, while obstacles
block the propagation only locally. Since the external input



of uncovered areas Eu is equal in each area of the work
region, however, it is difficult to effectively control the pattern
characterizing the coverage.

B. External input shaping

This work proposes to exploit the external input of uncov-
ered areas Eu to enforce desired behaviors on the BI-CCPP.
Supposing that a gradual coverage based on sweep movements
along the Y direction and driving direction towards +X is
desired, Eu(X) should decrease as X increases. A formulation
suitable for this purpose is:

Eu(X) = E

(
2

(
XM −X

XM −Xm

)2

+ 0.5

)
, (3)

with Xm, XM being respectively the minimum and the max-
imum value of X in the work region. In this way, the neural
activity of uncovered regions is higher for lower values of
X and viceversa, inducing the robot to gradually move from
lower to higher values of the X coordinate.

Differently, when concentric movements are preferred,
Eu(X,Y ) should be shaped as a paraboloid centered in the
center of the work region. Thus:

Eu(X,Y ) = E

(
2

(X −Xc)
2
+ (Y − Yc)

2

(XM −Xc)
2
+ (YM − Yc)

2 + 0.5

)
,

(4)
where Xc = 1

2 (XM +Xm) , Yc = 1
2 (YM + Ym) are the

coordinates of the work region’s centre and XM , Xm, YM , Xm

represent the maximum and minimum values of the coordi-
nates X and Y . In such way, the neural activity of nodes
close to the border is higher than the one of central nodes,
and a general inward movement is enforced.

C. Traversing strategy

To efficiently achieve complete coverage of the work region,
the robot should travel a short path, make fewer turns and
avoid visiting already covered areas multiple times. Unlike
the state-of-the-art implementation [15]–[17], the proposed
BI-CCPP generates the coverage path considering not only
the neural activity landscape of the map and the previous
location of the robot, but also the state of the neighboring
areas. Considering a given current robot location pc in the
grid-map discretizing the work region, the next robot location
pn is selected by

pn ⇐ max (xj + cyj + dzj , j = 1, 2, . . . ,K) , (5)

where xj is the neural activity of the j−th neighbor of pc and
c, d are positive constants. Variable yj is a function penalizing
sharp turns and is computed as:

yj = 1− ∆θj
π

, (6)

with ∆θj ∈ [0, π] being the absolute heading angle change
between the current and the next robot moving directions, i.e.
∆θj = |θj−θc| = |atan2(ypj −ypc , xpj −xpc)−atan2(ypc −

Algorithm 1: Deadlock-escape pseudoalgorithm
Input: neural activity x(X,Y ), current position pc,

nominal parameters cnom, dnom, µnom

Output: neural activity x(X,Y ), next location pn
1 while xj ≤ xi ∀ j ∈ [1,K] do
2 if xi ≥ 0 then
3 Update x(X,Y ) using Eq. (1);
4 else
5 Increase µ;
6 Update x(X,Y ) using Eq. (1);
7 end
8 end
9 Select next location pn using Eq. (5) with c = d = 0;

10 Reset c, d, µ to initial cnom, dnom, µnom;

ypp , xpc − xpp)|, and pp being the previous robot location.
Finally, variable zj is computed as:

zj =
Kjc +Kjo

Kj
, (7)

where Kjc ,Kjo represent respectively the number of already
covered and occupied neurons among the Kj neighbors of the
j−th neighboring neuron of pc. This term favors the selection
of the next locations that remain close to already covered areas
and obstacles, inducing the robot to proceed gradually in the
coverage task. In this way, uncovered areas are less likely to
be left behind during the coverage and, consequently, the need
to traverse already visited areas is reduced.

Once the next location pn has been identified, the robot
moves from pc to pn, whose status is set as covered. The
external input of the network I(X,Y ) is updated to reflect
eventual changes in the environment, the neurons’ dynamics
for the current step are computed using Eq. (1) and the neural
activity of the whole map x(X,Y ) is updated with discrete
time step dt. Then, the whole process is repeated iteratively
until complete coverage of the work region is achieved.

D. Deadlock-escaping strategy

Due to the local nature of the BI-CCPP, the algorithm
may encounter deadlocks, i.e. situations in which the robot is
surrounded by areas that are already covered or occupied by an
obstacle. In such cases, the neural activity of the neighborhood
is lower than or equal to the one characterizing the current po-
sition. To successfully escape from such deadlocks, this work
proposes to modify Eq. (2) by imposing the external input for
covered regions to be slightly negative, i.e. 0 < Ec ≪ E.
The selection of this parameter is fundamental for the escape
mechanism expressed in Alg. 1.

Suppose that the robot encounters a deadlock when
located at pc, which identifies the i − th neuron
(xj <= xi ∀ j ∈ [1,K]). At first, the neural activity of the
network is iteratively updated until xi < 0. Then, the parame-
ter governing the intensity of neural connections µ is gradually
increased as the activity landscape continues to evolve. As a



result, the activity level in the map gradually propagates only
from the areas of the map that are not covered yet and, thus,
possess high activity values. Once the activity propagation
reaches the proximity of the i−th neuron and at least one of its
neighbors assumes xj > xi, the robot selects the neighboring
neuron with maximum activity as the next location pn, i.e.
using Eq. (5) with c = 0, d = 0. Afterward, the value of
the parameter c, d, and µ are reset to their nominal values,
resulting in the neural activity gradually contracting towards
the uncovered regions and in the robot following its trail.

Note that, if the parameter Ec is not chosen as previously
described at the beginning of Sec. III-D, the neural activity
of already covered regions would assume close to zero but
positive values. This, coupled with the increase of µ, would
result in neural activity propagating also from visited regions
of the map, potentially causing the robot to be stuck in
an already covered area without being able to complete the
coverage. Thus, the aforementioned modification of Eq. (2)
is essential to successfully execute the deadlock-escaping
mechanism.

IV. RESULTS

In this section, the results obtained using the proposed BI-
CCPP to completely cover a dynamic and partially unknown
work region are analyzed. The operating area is a region
200 m× 200 m large, which is discretized using square cells
of l = 10 m. The area contains two known obstacles and one
unknown obstacle that forces a deadlock upon its discovery.
The starting point (S) of the robot is placed at p0 = [0, 0]T m.
The tests are carried out using Matlab and the proposed
algorithm is exploited to perform the two patterns mostly used
for coverage purposes: sweep and concentric movements. A
comparison with the literature counterpart of the BI-CCPP is
provided, too. Finally, computational times considerations are
carried out.

Fig. 2. Sweep-based coverage path with sudden discovery of the unknown
obstacle (red) in (C).

A. Coverage based on sweep movements

The parameters of the BI-CCPP in Eq. (1) are selected as
A = 20, B = D = 1, E = 50, Ec = 0.5, dt = 0.01 s. In
order to induce a +X driving direction with sweep movements
along the Y axis, the external input I(X,Y ) is set using Eq.
(2) and (3). The nominal value of µ is set to µnom = l and,
when the deadlock escape mechanism is triggered, its value is
gradually increased at each time step following the law µt+1 =
µt +0.1µnom. Selecting µ as a multiple of the cell side l is a
convenient choice since it ensures that the connection weight
ωij does not depend on the size of the cells. In this way, the
same coverage behavior can be reproduced despite scaling the
scenario. Finally, the nominal values of the parameters of Eq.
(5) are selected through a tuning process as cnom = 0.05,
dnom = 0.1.

The results are depicted in Fig. 2, in which: (i) black and
white cells represent, respectively, occupied and free areas,
(ii) yellow and red patches identify known and initially un-
known obstacles, (iii) dashed red lines represent path segments
overlapping with already covered cells. Initially, the robot
traverses the work region with regular sweep movements until
a deadlock occurs in (A). However, thanks to the proposed
escaping mechanism, the BI-CCPP is able to recover effi-
ciently from this situation and continue the coverage task (B).
From this point on, the sweep pattern is deformed by the
shape of the obstacles. Nonetheless, the +X driving direction
of the coverage strategy still remains noticeable. When the
robot reaches the point (C) and the L−shaped obstacle is
discovered, intentionally creating another deadlock (D). The
escaping method is used to return to the coverage task in (E).
The deadlock escaping mechanism is activated again in (F)
and (H), successively guiding the robot towards the top-right
corner of the map and achieve complete coverage of the map
(T).

Fig. 3. Concentric coverage path with sudden discovery of the unknown
obstacle (red) in (A).



B. Coverage based on concentric movements

The parameters of the BI-CCPP are selected analogously to
the case of sweep movements, with the following exceptions:
(i) the external input I(X,Y ) is set using Eq. (2) and (4) to
induce a concentric pattern during the coverage task; (ii) the
nominal value of the parameter dnom of Eq. (5) is lowered
to dnom = 0.05 to help in following concentric movements
rather than turning back to stay close to visited regions.

The results are depicted in Fig. 3, in which objects and
paths are color-coded as in the previous case. The robot starts
covering the work region with concentric movements, until the
unknown U−shaped obstacles is discovered (A). Note that the
form of such obstacle has been selected to artificially induce a
deadlock, (B). As in the previous case, the BI-CCPP is able to
effectively return to the coverage task exploiting the proposed
escape strategy. Analogous considerations can be repeated for
the the next deadlock points, (D) and (F). Finally, due to
the induced concentric pattern, the robot achieves complete
coverage of the working region in the central area of the map
(T).

C. Comparison with the literature counterpart

The proposed method is now compared to its literature
counterpart, [15]–[17]. The parameters of the method are
selected as follows: (i) the external input I(X,Y ) is set using
exclusively Eq. (2), which means Eu = const = E,Ec = 0;
(ii) the evaluation of the variable zj is removed from Eq.
(5) setting dnom = 0; (iii) the proposed deadlock escape
mechanism is replaced by the bio-inspired path planning from
a starting point to a target point adopted in the literature, [15],
[19], [20].

Graphical results are depicted in Fig. 4, while quantitative
comparison is reported in Tab. I. Initially, the coverage follows
the behavior of the concentric case due to the absence of zj in
the objective function, Eq. (5). The algorithm is still capable
of reacting to the sudden discovery of the U−shaped obstacle
in (A), and the path planning method from [19], [20] is still
able to escape the deadlock point (B). However, the concentric
pattern is lost and substituted by local and smaller patterns as
the robot encounters other obstacles. This phenomenon leads
to several deadlock points, (D), (F), (H), (J), (L), (N), and
to a final point (T) which is neither in the center nor on the
border of the work region. This behavior is caused by the
selection of Eu = const, which does not induce any kind of
priority to the uncovered cells of the map. Accordingly, the
number of steps, deadlocks and repetitions characterizing the
literature counterpart of the BI-CCPP is higher w.r.t. both the
sweep-based and concentric movements cases. The proposed
method outperforms the literature counterpart even considering
the percentage of repetitions over planning steps, with a result
of 4.65%, 1.59%, 5.36% respectively for the sweep, concentric
and literature counterparts cases. Finally, as for the length of
the planned path, the concentric movements based BI-CCPP
achieves the lowest value, improving the performances of the
literature counterpart even considering the similarity in their
initial coverage behavior. On the other hand, the higher length

Fig. 4. Coverage path obtained through literature counterpart with sudden
discovery of the unknown obstacle (red) in (A).

TABLE I
PERFORMANCES COMPARISON

Sweep Concentric Literature
Nsteps 387 377 392

Length[m] 4197.2 3840.4 4077.4
Ndeadlock 4 3 7
Nrepetitions 18 6 21

of the sweep-based BI-CCPP is caused by the sweep strategy
itself, which forces the robot to remain closer to already visited
areas and consequently move diagonally.

Such results demonstrate that the proposed reformulation
of the neurons’ external input and of the objective function
is capable of inducing desired patterns on the BI-CCPP,
increasing its performances and flexibility w.r.t. to its literature
counterpart.

D. Computational times and applicability considerations

The BI-CCPP has been tested on a computer with Intel
Core i7-8750H (2.20 GHz) and 16 GB RAM. More than 375
planning steps are executed in each simulation and the mean
computational time for a single planning step is 4.8×10−4 s.
Even when deadlocks occur, the maximum computational time
required to plan a single step remains limited to 2.6×10−2 s.
Hence, the BI-CCPP can easily face unforeseen obstacles or
changes in the working scenario, even if they require the re-
computation of the last planning step.

Eventually, considering the extension of typical work re-
gions for precision agriculture tasks, the BI-CCPP can also
use the current knowledge of the environment to compute an
estimate of the remaining coverage path in a small amount
of time. Considering the worst case of the results shown,
i.e. when the robot is still at the starting point, the method
requires just 1.3 × 10−1 s to compute an estimate of the
remaining coverage path. This capability can be conveniently



used to check the feasibility of the task, taking into account
the endurance of the robotic agricultural machine.

V. CONCLUSIONS

This work proposes an online and computationally efficient
Bio-Inspired Complete Coverage Path Planner for precision
agriculture tasks. The grid-based algorithm takes inspiration
from the dynamics of neural activity in biological neural
systems to discretize the work region into a neural system
and model the dynamicity of the environment. Its enhanced
flexibility allows the user to easily vary the coverage strategy
by shaping the external input of the neurons and adjusting
the value of the objective function’s parameters. Such a
feature makes the method suitable for several applications, e.g.
terrain and crop mapping, inspection, and crop spraying. The
novel escaping mechanism to recover from deadlock situations
exploits the capability of neurons to transfer the neural activity
across the work region and correctly attract the robotic agent
towards uncovered areas.

The results demonstrate the ability of the BI-CCPP to
outperform its literature counterpart and induce the desired
behaviors and patterns for the coverage task. Furthermore, the
algorithm is able to successfully avoid all the obstacles present
in the work region, even initially unknown ones. Finally,
all intentionally induced deadlocks are efficiently overcome
and the method’s capability to achieve complete coverage is
corroborated.

Future works will focus on the correlation between the field
of view of the robot’s sensors and the dimensions of the cells.
Finally, path local optimization methods will be included to
further improve the performance of the algorithm.

REFERENCES

[1] S. Azimi, M. S. Zainal Abidin, A. Emmanuel, and H. Hasan, “Robotics
and automation in agriculture: Present and future applications,” Appli-
cations of Modelling and Simulation, vol. 4, pp. 130–140, 04 2020.

[2] P. Gonzalez-de Santos, R. Fernandez, D. Sepúlveda, E. Navas, and
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