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Stabilized Single Current Inverse Source
Formulations Based on Steklov-Poincaré Mappings

Paolo Ricci, Graduate Student Member, IEEE, Ermanno Citraro, Graduate Student Member, IEEE,
Adrien Merlini, Member, IEEE, Francesco P. Andriulli, Senior Member, IEEE

Abstract—The inverse source problem in electromagnetics has
proved quite relevant for a large class of applications. When it
is coupled with the equivalence theorem, the sources are often
evaluated as electric and/or magnetic current distributions on
an appropriately chosen equivalent surface. In this context, in
antenna diagnostics in particular, Love solutions, i.e., solutions
which radiate zero-fields inside the equivalent surface, are often
sought at the cost of an increase of the dimension of the linear
system to be solved. In this work, instead, we present a reduced-
in-size single current formulation of the inverse source problem
that obtains one of the Love currents via a stable discretization
of the Steklov-Poincaré boundary operator leveraging dual func-
tions. The new approach is enriched by theoretical treatments and
by a further low-frequency stabilization of the Steklov-Poincaré
operator based on the quasi-Helmholtz projectors that is the first
of its kind in this field. The effectiveness and practical relevance
of the new schemes are demonstrated via both theoretical and
numerical results.

Index Terms—Boundary-element method, inverse source prob-
lem, Love currents, low-frequency breakdown, Steklov-Poincaré
operator.

I. INTRODUCTION

THE inverse source problem in electromagnetics, i.e., the
recovery of a configuration of sources radiating a given

field, has been adopted in a variety of applications ranging
from antenna diagnostics to near-to-far-field reconstructions
[1]–[3]. These sources are often electric and/or magnetic cur-
rent distributions residing on a conveniently placed equivalent
surface that can be tailored to scatter the target field by virtue
of the equivalence theorem. These currents have traditionally
been found within a boundary element framework on apertures
or on arbitrary equivalent surfaces (see for example [4], [5]).
Among inverse source strategies, single current solutions, that
reconstruct only one family among electric or magnetic cur-
rents, are appealing because of the reduced dimensions of the
linear systems to be solved and because of their reduced (nu-
merical) nullspace that is limited to the intrinsic ill-posedness
of the problem associated to the non-radiating modes. These
strategies, however, have been reported to require more care in
the solution process if further physical constraints are not used
to ensure a simple relationship between equivalent currents
and fields [6], [7]. On the other hand, the double current
formulations have non-unique solutions due to the presence
of non-radiating currents. Whereas the non-uniqueness can
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be addressed by selecting a particular solution [8]–[10], the
numerical ill-conditioning of the matrix, inherited by the ill-
posed nature of the inverse problem, remains to be addressed.
To this end, truncated singular value decompositions (TSVD)
or Tikhonov regularizations have been used to further regular-
ize the problem [2], [11], [12].

Another feature of interest among inverse source schemes
is their capacity to find equivalent Love currents—that are
directly related to the tangential fields—which is considered
in the literature particularly useful for antenna diagnostics [6],
[12]. The Love currents can be obtained by adding further
constraints to double current formulations [6], [13], [14] or
by filtering any of the solution via Calderón projection [15].
Another interesting approach, leveraging Huygens radiators
and valid for plane waves, has been proposed in [16] to reduce
the size of the Love-constrained problem to that of a single
current formulation, at the price of an approximation.

In this work we follow a different approach. While still
targeting a single current formulation, we leveraged dual
discretizations to avoid approximating the relationships linking
electric and magnetic currents. The contribution of this paper
is then twofold: we present a new single current formulation
capable of obtaining Love currents by leveraging a stable
discretization of the Steklov-Poincaré operator [17] without
resorting to any approximations of the electromagnetic rela-
tions. This results in a single current formulation that delivers
one of the Love currents. A similar equation has been used
in a different context in [18] and [19]. Differently from what
has been presented in those contributions, here we propose a
discretization scheme based on dual elements which achieves
an optimal conditioning despite a higher cost to generate the
matrix entries. Moreover we present the first frequency sta-
bilization of Steklov-Poincaré operators via quasi-Helmholtz
projectors and we leverage on this new result to stabilize
in frequency the new formulations. What we propose is
then, to the best of our knowledge, the first low-frequency
regularization of a full-wave inverse source scheme showing
high level of accuracy and numerical stability till arbitrarily
low-frequencies.

The paper is organized as follows: the main electromagnetic
operators are introduced in Section II, the new formulations
are presented in Section III, whereas Section IV presents the
frequency stabilization of the Steklov-Poincaré operator and
its application to the the new equations. Finally Section V
illustrates the accuracy and stability of the new formulation
through numerical test cases. Section VI concludes the latter.
Very preliminary results from this work were presented in the
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conference contribution [20].

II. BACKGROUND AND NOTATION

Let Γ be a two-dimensional smooth manifold in R3 delimit-
ing the internal and external domains Ω− and Ω+. Consider a
time-harmonic source in Ω− generating Maxwellian fields in
Ω−∪Ω+ = R3. In light of the equivalence theorem [21], there
exist equivalent current densities M and J on Γ which radiate
in Ω+ the same fields as the original source and radiate in Ω−

possibly different electric and magnetic fields; these currents
satisfy

M =
(
E+ −E′−)× n̂r , (1)

J = n̂r ×
(
H+ −H ′−) , (2)

where n̂r is the unit normal vector to Γ in r pointing towards
Ω+, E+, H+ are the original electric and magnetic field in
Ω+ and E′−, H ′− are the new fields in Ω−. The e−iωt time-
harmonic dependence is assumed and suppressed throughout
the paper. Solving the inverse source problem consists in
finding a set of equivalent currents M , J given the electric
and/or magnetic fields’ observations on a two-dimensional
smooth and simply connected manifold Γm ⊂ Ω+. These
observations are the output of the actual fields’ measurement
which includes possible probe compensation. We assume a
sampling able to capture the degrees of freedom (defined as
in [22]) and thus satisfy the equivalence theorem. The problem
can be solved naturally by the boundary element method.
In this framework, define the electric field integral operator
(EFIO) on Γ

Trf = ik Ts,rf + ik−1 Th,rf (3)

with

Ts,rf = n̂r ×
∫
Γ

eik|r−r′|

4π |r − r′|
f(r′) dr′ , (4)

Th,rf = n̂r ×∇
∫
Γ

eik|r−r′|

4π |r − r′|
∇s · f(r′) dr′ , (5)

and the magnetic field integral operator (MFIO) [23]

Krf = −n̂r × p.v.

∫
Γ

∇× eik|r−r′|

4π |r − r′|
f(r′) dr′ , (6)

where k is the wavenumber and r lies on any two-dimensional
manifold in Ω+ (possibly Γ or Γm), to which the definition
of n̂r is extended. In the case r ∈ Γ Tr, Kr are denoted by
T , K respectively. When r ∈ Γm, the radiation operator

R =

[
−Kr Tr
−Tr −Kr

]
(7)

is a linear map between equivalent sources on Γ and observed
tangential fields on Γm, meaning that

R
[
−M
ηJ

]
=

[
n̂r ×E+

ηn̂r ×H+

]
, (8)

with η =
√
µ/ϵ and ϵ, µ being the permittivity and the

permeability of the medium respectively. The inverse problem
aims at finding unknown current distributions that satisfy (8),
or part of it. Indeed, by selecting a single block of R—either

Kr or Tr—and solving for the corresponding reduced right
hand side—E+ or H+—four different single current formu-
lations can be obtained. Alternatively, three double current
formulations can be derived by considering the full radiator
or one of its rows only. The latter systems of continuous
equations admit several solutions because multiple equivalent
currents can radiate the same external field in Ω+ and the
physical meaning of the solution depends on the type of
implicit or explicit additional constraints used to select a par-
ticular solution. The Love currents ML, JL are one of these
particular solutions that are obtained by imposing the fields
radiated in Ω− to be identically 0 [6]. One way of enforcing
this condition is to leverage the well-known Calderón projector
[24]

P− =

[I
2 +K −T
T I

2 +K

]
, (9)

where I is the identity operator, that can be added to the
system of equations (8) [13] as[

R
P−

]
·
[
−ML

ηJL

]
=
[
n̂r ×E+, n̂r × ηH+, 0, 0

]T
. (10)

III. CONFORMING DISCRETIZATION OF A
STEKLOV-POINCARÉ-BASED EQUATION

In this section we introduce a single source method which
enforces the Love condition without increasing the matrix
system size with regards to standard single source formula-
tions. Starting from the formulation in (10), consider the Love
condition expressed with the inner Calderón projector

P−
[
−ML

ηJL

]
= 0 . (11)

Clearly, for k different from resonant wavenumbers of Γ [25],
(11) defines a relation between the two Love currents

ηJL = −
(
I
2
+K

)−1

T (−ML) (12)

where
(I
2 +K

)−1 T is the Steklov-Poincaré operator [17]. By
replacing (12) in the first row equation of (8), we obtain the
equation(

−Kr − Tr
(
I
2
+K

)−1

T

)
(−ML) = n̂r ×E+ , (13)

which is a single source equation that naturally yields the
magnetic Love current ML. If instead of this current, the
electric Love current JL is desired as the first outcome of the
procedure, a similar strategy can be applied obtaining(

Tr +KrT −1

(
I
2
+K

))
(ηJL) = n̂r ×E+. (14)

An alternative approach to study (13) and (14) leverages the
equivalence theorem, following a similar procedure to the one
presented in chapter 3 of [26]. In this context, (13) and (14) can
be the interpreted as the equations obtained after accordingly
changing the material of the internal domain while imposing
the Love condition as described in [27].

To numerically solve (13) and (14), the discretization
scheme will require particular attention. Starting with (13), the
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magnetic current is expanded as ML(r) ≈
∑Ne

i=1 mif i(r)
where {f i} are Rao-Wilton-Glisson (RWG) basis functions
(here used without edge normalization) and Ne is the num-
ber of mesh edges. The electric operator T is then tested
with rotated RWG functions [28] which yields the matrix
T = ikTs + ik−1Th, where [Ts]ij = ⟨n̂r × f i, Tsf j⟩Γ,
[Th]ij = ⟨n̂r × f i, Thf j⟩Γ, and ⟨a, b⟩Γ =

∫
Γ
a(r) · b(r) dr.

As a consequence, the
(I
2 +K

)−1
term must be tested with

rotated-RWGs, and to allow for a non-singular discretization
of the identity, the source functions used for its discretization
must be dual elements [29]—we will use in the following
the Buffa-Christiansen (BC) basis functions, a definition of
which can be found in [29], [30]. We define the Gram
matrix [G]ij = ⟨n̂r × f i, gj⟩Γ , where {gj(r)} denote the
BC functions and propose as matrix discretization for the K
operator [K]ij = ⟨n̂r×f i,Kgj⟩Γ. Finally, as a consequence of
this choice, the source functions of Tr must be BC functions
and a possible choice for the testing functions are rotated-
BC basis functions living on Γm. Thus, we define Tm =
ikTs,m + ik−1Th,m where [Ts,m]ij = ⟨n̂r × gi, Ts,rgj⟩Γm

and [Th,m]ij = ⟨n̂r × gi, Th,rgj⟩Γm . From the above choices
the discretization of the leftmost Kr is entirely determined as
[Km]ij = ⟨n̂r × gi,Krf j⟩Γm

. By combining the previous
discretization schemes we obtain the discretized equation(

−Km − Tm (G/2 +K)
−1

T
)
(−m) = em (15)

where [em]i = ⟨n̂r × gi, n̂r × E+⟩Γm
is the discretization

of the observed electric field and m is the vector of solution
coefficients mi. For (14), a similar reasoning leads to(

Tm +KmT−1
(
−GT/2 +K

))
(ηj) = εm , (16)

with Tm = ikTs,m + ik−1Th,m, [Ts,m]ij = ⟨n̂r ×
f i, Ts,rf j⟩Γm , [Th,m]ij = ⟨n̂r × f i, Th,rf j⟩Γm , [Km]ij =

⟨n̂r × f i,Krgj⟩Γm , T = ikTs + ik−1Th, [Ts]ij = ⟨n̂r ×
gi, Tsgj⟩Γ, [Th]ij = ⟨n̂r × gi, Thgj⟩Γ, [K]ij = ⟨n̂r ×
gi,Krf j⟩Γ, [εmi] = ⟨n̂r × f i, n̂r × E+⟩Γm

and j is the
vector of coefficients ji of the electric current expansion
JL(r) ≈

∑Ne

i=1 jif i(r).
The reader should note that using RWG or BC as testing

functions has an important theoretical value and it follows a
consolidated practice in the literature (see [7], [13]). At the
same time, however, it does not lead to formulations that can
be applied directly to a realistic measurement setting to which,
however, it can be extended. In fact, we observe that both the
RWG and the BC testing functions can be used to interpolate
a point-matching scenario. The point-matching strategy can
then be handled similarly to previous works in the literature
(as in [2], [6], [7] and references therein). Moreover, it should
also be noted that it is not necessary to solve both (15) and
(16) to obtain both currents: once one of the two currents
has been computed (discretized with RWGs), the discretization
of the other as a linear combination of BCs can be obtained
after back substitution in (12). In addition, only one current is
required to compute the probed field in the outside region by
using (13) or (14), respectively, following the discretization
strategies delineated above with the sole difference that the
leftmost operators must be evaluated in the point of interest,

and not tested with primal or dual functions. Finally, it is
noted that the introduced single-source formulations need the
additional inversion of first and second kind operators in (16)
and (15) respectively. Thus the use of (15) should be preferred
as the computational overhead of this formulation would be the
inversion of G/2 +K, which is usually well-conditioned and
therefore leads to better performances when using the standard
iterative solvers present in the literature.

IV. QUASI-HELMHOLTZ STABILIZATION

The linear system in (16) inherits the well-known low-
frequency breakdown of the EFIO, that causes, among other
things, the conditioning of the system to grow unbounded
as the frequency decreases [31], [32]; at the same time the
linear system in (15) will behave, frequency-wise, like an
MFIO requiring low-frequency stabilization to avoid numerical
cancellations due to a different behavior over frequency of
the solenoidal and non-solenoidal components of fields and
solutions [33]. Note that some of the standard inverse source
formulations in the literature may also suffer from similar
low-frequency problems and may benefit from a stabilization
scheme similar to the one proposed below. In this contribution
however, for the sake of brevity, we will limit the analysis to
the low-frequency stabilization of our new formulations only.
Define Pk = PΛHk−1/2 + iPΣk1/2, Pk = PΣHk−1/2 +
iPΛk1/2, where PΣ = Σ(ΣTΣ)+ΣT , PΛH = I − PΣ,
PΛ = Λ(ΛTΛ)+ΛT , PΣH = I−PΛ are the quasi-Helmholtz
projectors defined respectively in the RWG space and in the
dual BC space, I is the identity matrix, and where Σ, Λ, are
the star-to-RWG and loop-to-RWG transformation matrices,
the definitions of which can be found in [32]. We indicate with
(·)+ the Moore-Penrose (MP) pseudoinverse operator. These
projectors allow us to separate the components of the solutions
with a different behavior over frequency and to rescale them
to avoid numerical cancellations. We propose the following
regularization schemes for (15) and (16), respectively

Pk

(
−Km − Tm (G/2 +K)

−1
T
)
Pkx = Pkem, (17)

Pk

(
Tm +KmT−1

(
−GT /2 +K

))
Pky = Pkεm (18)

where −m = Pkx and ηj = Pky. The frequency stability
of the above equations will now be demonstrated in two
steps: the stabilization of the Steklov-Poincaré operators used
in (15), (16) and the one of equations (15), (16) them-
selves. First we will show that quasi-Helmholtz projectors
can successfully regularize the Steklov-Poincaré operators in
both discretizations presented here. This is proven in (19)
and (20) where we exploited standard cancellation properties
of projectors on solenoidal spaces [23] (i.e., PΛHTh =
ThP

ΛH = PΣHTh = ThPΣH = 0) from which Th =
PΣThP

Σ and Th = PΛThPΛ. In addition in (20) we
used the result ∥PΣ

(
−GT /2 +K

)−1 PΛ∥ = O
(
k2
)

which
follows from ∥PΣ

(
−GT /2 +K

)
PΛ∥ = O

(
k2
)

(proven
in Section IV.B.1 of [23]) after following a similar proce-
dure as the one in Appendix B of [23]; in (19) the result
∥PΛ (G/2 +K)

−1
PΣ∥ = O

(
k2
)

which can be proven in a
similar and dual way. This ends the proof of the stabilization
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P−1
k

(
(G/2 +K)

−1
T
)
Pk =

(√
kPΣH +

1

i
√
k
PΛ

)(
(G/2 +K)

−1

(
ikTs +

i
k
Th

))(
1√
k
PΛH + i

√
kPΣ

)
= PΣH (G/2 +K)

−1
(ikTs)P

ΛH + ikPΣH (G/2 +K)
−1 (ikTs + ik−1Th

)
PΣ

+ (ik)−1PΛ (G/2 +K)
−1

(ikTs)P
ΛH + PΛ (G/2 +K)

−1 (ikTs + ik−1Th

)
PΣ

= −PΣH (G/2 +K)
−1

ThP
Σ + PΛ (G/2 +K)

−1
TsP

ΛH (19)

+ ik−1PΛ (G/2 +K)
−1

PΣThP
Σ +O (k)

= −PΣH (G/2 +K)
−1

ThP
Σ + PΛ (G/2 +K)

−1
TsP

ΛH +O (k)(
P−1
k

(
T−1

(
−GT /2 +K

))
Pk

)−1
=

(√
kPΛH +

1

i
√
k
PΣ

)((
−GT /2 +K

)−1
(

ikTs +
i
k
Th

))(
1√
k
PΣH + i

√
kPΛ

)
= PΛH

(
−GT /2 +K

)−1
(ikTs)PΣH + ikPΛH

(
−GT /2 +K

)−1 (
ikTs + ik−1Th

)
PΛ

+ (ik)−1PΣ
(
−GT /2 +K

)−1
(ikTs)PΣH +PΣ

(
−GT /2 +K

)−1 (
ikTs + ik−1Th

)
PΛ

= −PΛH
(
−GT /2 +K

)−1 ThPΛ +PΣ
(
−GT /2 +K

)−1 TsPΣH (20)

+ ik−1PΣ
(
−GT /2 +K

)−1 PΛThPΛ +O (k)

= −PΛH
(
−GT /2 +K

)−1 ThPΛ +PΣ
(
−GT /2 +K

)−1 TsPΣH +O (k)

of the Steklov-Poincaré operator. As a second step, we demon-
strate the frequency regularity of (17) noticing that PkKmPk

is frequency stable [33] and that PkTm (G/2 +K)
−1

TPk =

(PkTmPk)
(
P−1
k (G/2 +K)

−1
TPk

)
which, following the

above developments and the regularity of PkTmPk, is the
product of two frequency regular operators and thus is fre-
quency regular. Dually the stability and well-conditioning
of (18) is proved with PkKmT−1

(
−GT /2 +K

)
Pk =

(PkKmPk)
(
P−1
k T−1

(
−GT /2 +K

)
Pk

)
and the frequency

regularity of PkKmPk (on simply-connected geometries),
P−1
k T−1

(
−GT /2 +K

)
Pk, and PkTmPk. We conclude this

section by noticing that the proposed strategies hold for plane
wave sources, but they can be adapted for different excitations
by modifying the coefficients of Pk and Pk in an analogous
way to what would be needed for the EFIO and the MFIO
[34]. The extension to different excitation has been omitted
from this paper for the sake of clarity and brevity. Finally,
we highlight that in the implementation of (17) and (18) we
explicitly set to 0 the static component of the terms PΣKmPΛ,
PΛKmPΣ, PΣ

(
−GT /2 +K

)
PΛ, and PΛ (G/2 +K)PΣ.

V. NUMERICAL RESULTS AND DISCUSSION

A series of tests is now presented to demonstrate recon-
struction, enforcement of the Love condition, and frequency
behavior of the formulation. First the reconstruction capability
of the Steklov-Poincaré approach (15) is tested: it maps
magnetic currents to electric fields, a most relevant setting
for real case scenarios. The electric field of a combination
of Hertzian dipoles at frequency f = 5GHz is sampled with
ideal probes on a spherical surface Γm at 1λ = 2π/k distance
from a spherical equivalent surface Γ of radius a = 6 cm. The
surfaces Γ and Γm are discretized with an average mesh edge
length of λ/10 as common in the literature. Similarly to what
is done in [12], noise is added to the sampled fields sampled
to obtain a signal to noise ratio SNR = 60dB. Our work is

0 0.6 3.0 6.0

Distance from  [cm]

10-5

10-3

10-1
(e

t+
)

Current Calderón projection

Calderón side constraint

Zero-field enforcement

This work Eq. 15

Fig. 1. Field reconstruction error ϵ for the different Love formulations. The
fields are obtained from a combination of Hertzian dipoles oscillating at f =
5GHz and noise has been applied to obtain a SNR = 60dB. The field
observations are performed on a spherical surface of same center as Γ and
situated 1λ away from Γ. The evaluation of ϵ is then performed on spherical
surfaces concentric to Γ with different radii.

then compared to other Love formulations analyzed in [6], [7],
[13] which are three of the several possible approaches that
can be found in the literature. The reconstruction capabilities
of the formulations are evaluated on several spherical surfaces
concentric to Γ, which we define according to the difference
between their radius and the one of Γ. On these surfaces, we
compute the fields et reconstructed by the different formula-
tions and their error ϵ (et) with respect to the original noise-
less field eref radiated by the source. The error is defined
as

ϵ (et) :=

√√√√∑N
n=1 |[et]n − [eref ]n|2∑N

n=1 |[eref ]n|2
(21)
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Fig. 2. Modulus of the electric field in a xy planar section of R3: fields are normalized on the maximum value of the reference field and are obtained from
a combination of Hertzian dipoles oscillating at f = 5GHz.
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10-9

10-5

100

107

(e
t+
)

Current Calderón projection

Calderón side constraint

Zero-field enforcement

This work Eq. 17

Fig. 3. Field reconstruction error ϵ for the different Love formulations. The
equivalent currents and the field samplings are defined on the same meshes
used in Fig. 1. The fields are scattered from a 1 cm-radius PEC sphere
concentric to Γ illuminated by a plane wave oscillating at f = 5 · 10−20Hz.

where N is here used to represent the number of edges of the
meshes on which the field is tested. The reconstruction errors
obtained in this way in Ω+ are reported in Fig. 1. We can
observe that in this setting all the the considered formulations
manage to reconstruct the field up to noise level.

Then, to verify the Love condition, we check whether the
internal fields radiated by equivalent currents obtained are zero
(within the discretization error) inside the equivalent surface.
Results are shown in Fig. 2 where the magnitude of the
radiated electric field is displayed on the plane z = 0 for the
different formulations and qualitatively confirm that all Love
formulations find

∑Ne

i=1 mif i ≈ ML = −n̂r×E+ on Γ. The
better Love condition achieved by the zero-field enforcement
method can be attributed to the stronger constraining of the
system. Still, a better Love constraining does not imply a better
reconstruction of the external fields, as the internal and the
external problems are decoupled.

To evaluate the low-frequency behavior of (17), we fix the
geometries Γ and Γm and we decrease the frequency to f =
5 · 10−20Hz. The reader should note that, differently from the
previous one, the importance of this test is a purely theoretical
one. By stably reconstructing a quasi static setting, in fact,
we show that the impact of our new technology encompasses

low-frequency scenarios, that however will require specific
measurement settings [35]. The application of this scheme to
these scenarios, however, will be the topic of specific future
investigations.

Moreover, as a right-hand side we use the fields scattered
by perfect electric conductor (PEC) illuminated by a plane
wave. The EFIO is used to evaluate the electric currents on a
spherical surface Γs, concentric to Γ and with a radius of 1 cm,
discretized with a triangle mesh composed of 120 edges. The
magnetic currents are here not considered as Γs is assumed to
be a PEC object. Also in this case quasi-Helmoltz projectors
are exploited to cure the low-frequency breakdown, resulting
in

PkTPky = Pke
i (22)

where ei is the incident field obtained from a plane wave
and tested on Γs using RWG basis functions. This equation
can be solved by means of standard techniques [23], which
include the extraction of the static contribution of the plane
wave and the cancellation of Th in solenoidal spaces. The
solution of (22) can then be used to scatter the fields on Γm

and on the previously test spheres, whose distance from Γ has
not been changed with respect to the previous test. Finally, we
employ these fields in an analogous way to what we did in
Fig. 1 to study the reconstruction capabilities of the considered
formulations also in this setting. As expected, the results in
Fig. 3 show that our formulation is the only one still able to
correctly reconstruct the field, as the low-frequency breakdown
and the numerical cancellations are successfully handled.
Similarly to the previous test, by studying the magnitude of
the electric field on the plane z = 0 we can observe in Fig. 4
that our formulation is still able to enforce the Love condition.

VI. CONCLUSION

We have presented a new single current approach that natu-
rally yields Love solutions of the inverse source problem and
we have shown that the Love condition is satisfied. Although
the presented strategy is currently considered for non-resonant
settings, the extension to the resonant setting is possible and
will be the focus of further investigations. The technique is
enriched by the first frequency stabilization of the Steklov-
Poincaré operator via quasi-Helmholtz projectors then used
to stabilize the new formulation till arbitrary low frequency.
This was then confirmed both by theoretical treatments and
by numerical results.
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