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Abstract: Modeling and controlling highly nonlinear, multivariable, unstable, coupled and 

underactuated systems are challenging problems to which a unique solution does not exist. 

Modeling and control of Unmanned Aerial Vehicles (UAVs) with four rotors fall into that category 

of problems. In this paper, a nonlinear quadrotor UAV dynamical model is developed with the 

Newton–Euler method, and a control architecture is proposed for 3D trajectory tracking. The 

controller design is decoupled into two parts: an inner loop for attitude stabilization and an outer 

loop for trajectory tracking. A few attitude stabilization methods are discussed, implemented and 

compared, considering the following control approaches: Proportional–Integral–Derivative (PID), 

Linear–Quadratic Regulator (LQR), Model Predictive Control (MPC), Feedback Linearization (FL) 

and Sliding Mode Control (SMC). This paper is intended to serve as a guideline work for selecting 

quadcopters’ control strategies, both in terms of quantitative and qualitative considerations. PID 

and LQR controllers are designed, exploiting the model linearized about the hovering condition, 

while MPC, FL and SMC directly exploit the nonlinear model, with minor simplifications. The fast 

dynamics ensured by the SMC-based controller together with its robustness and the limited 

estimated command effort of the controller make it the most promising controller for quadrotor 

attitude stabilization. The outer loop consists of three independent PID controllers: one for altitude 

control and the other two, together with a dynamics’ inversion, are entitled to the computation of 

the reference attitude for the inner loop. The capability of the controlled closed-loop system of 

executing complex trajectories is demonstrated by means of simulations in MATLAB/Simulink®. 

Keywords: unmanned aerial vehicles; feedback linearization; sliding mode control; MPC; PID; LQR; 

UAV modeling; UAV control; attitude stabilization; trajectory tracking; performance evaluation 

 

1. Introduction 

The growth of the number of applications of Unmanned Aerial Vehicles (UAVs) in 

many different fields, from civilian to military applications, has experienced a big rise 

over the last decade. As highlighted in specific literature reviews [1,2], the civilian 

applications of UAVs include activities such as parcel delivery, transportation of medical 

samples, mapping, surveillance, precision agriculture and greenhouses [3], population 

health monitoring, disaster recovery, personal use and photography, to name a few. The 

advantages due to the adoption of UAVs in each application domain have been widely 

reviewed. Just to give an example, considering the logistic domain discussed in [4], UAVs 

can contribute to optimizing the logistic process, reducing resources’ usage, traffic and 

CO2 emissions, inducing the diversification of transportation options as well as giving rise 

to new business models. 

Therefore, UAVs have gained significant interest from the engineering research 

world over the last two decades. In particular, quadrotors are the most researched and 

used type of UAVs because of their mechanical structure, which is relatively simple to 

model, their enhanced closed-loop stability with respect to other configurations and their 

high maneuverability in both indoor and outdoor spaces, as described in [5]. However, 
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quadcopters are mechatronic systems with nonlinear, multivariable, unstable, coupled 

and underactuated characteristics, which make the control not trivial. 

Literature reviews such as [6–9] provide a comprehensive analysis of the main state-

of-the-art control strategies for quadrotor UAVs. The well-known Proportional–Integral–

Derivative (PID) control can effectively handle both linear and nonlinear systems. This is 

because it is model-independent and has a simple-to-understand tuning principle. 

Additionally, PID control can achieve zero steady-state error. On the other hand, PID 

control cannot handle constraints, is poorly robust with respect to disturbances and 

uncertainties and may require extensive tuning. The research in [10] implements a 

quadrotor attitude controller by means of a PID controller optimized with a genetic 

algorithm. 

The Linear–Quadratic Regulator (LQR) control approach is equivalent to solving an 

optimization problem, with the cost function weighted of the squared norms of tracking 

error and control input signals, under the constraint of satisfying the system’s dynamics. 

It is designed with a linear approximation of the system and may not guarantee a zero 

steady-state error. LQR control can find an optimal feedback gain matrix considering both 

the tracking performances and the command input effort of the controller. 

The Feedback Linearization (FL) control approach consists of a systematic procedure 

to linearize the system with a model inversion and control it with a new control input 

term. The system is transformed into a linear system without any linearization 

assumption and can be controlled according to the linear control theory. FL performs well 

when the nonlinear plant is similar to the one used for control design, so it is not very 

robust to parametric uncertainties and cannot handle constraints. A feedback linearization 

attitude controller with proportional action is proposed in [11]. 

The Sliding Mode Control (SMC) approach aims at bringing the system state to the 

“sliding surface”, which is a subset of the state space that corresponds to a desired 

dynamical behavior. The control law is the sum of a continuous function of the system’s 

state and the reference, which guarantees that the “sliding surface” is invariant (once the 

state is on the sliding surface, it remains on it), and a discontinuous term for convergence 

to the “sliding surface”. SMC shows, in general, good robustness to model uncertainties 

and disturbances, but a smooth approximation of the control law is necessary to avoid 

chattering, which may lead to instability. 

The Model Predictive Control (MPC) approach solves an optimization problem at 

each defined time step to compute the optimal control input, satisfying the system’s 

dynamics, input and state constraints. A prediction model is exploited to predict the 

future states of the system. MPC is quite robust to disturbances but may be slow in 

tracking. The MPC-based position trajectory controller designed in [12], despite exploiting 

a linear model for prediction, shows the ability to ensure tracking of complex trajectories. 

Furthermore, other control laws can be effectively applied to quadrotors, such as H-

infinity, Backstepping, Adaptive, Fuzzy and Neural Network control. A Backstepping 

controller for position control of a quadrotor helicopter is designed and validated in [13], 

with stability being proven by the Lyapunov method. Additionally, a Fuzzy Logic 

controller for attitude control has been proposed in [14]. An L1 adaptive controller is 

designed and validated in [15] for the attitude controller of a mini-UAV. Adaptive control 

does not need a parameter tuning procedure and deals with parametric uncertainties and 

unmodelled dynamics. The Sliding Mode-based adaptive controller with Proportional–

Integral–Derivative gains proposed in [16] controls a micro-UAV, the Parrot Mambo 

Minidrone, and is demonstrated on a model-based platform. In [17], an adaptive 

controller is proven to be able to deal with parametric uncertainties and external 

disturbances and performs well with unknown time delays inserted in the closed-loop 

dynamics. 

In this paper, a comparative study of 3D trajectory control of a quadrotor system is 

proposed. The control system is decoupled into an outer loop for trajectory control and 

an inner loop for attitude control; input saturation is also taken into account. Despite 
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several reviews of control algorithms for quadrotors being proposed in the literature, such 

as [6–9] to state a few, there is, to the best extent of our knowledge, poor availability of 

comparative studies where several approaches are implemented and discussed. The 

comparative study proposed in [18] implements PID, LQR, Fuzzy and Adaptive 

controllers for position trajectory tracking, while PID, LQR and MPC-based attitude 

stabilizers are implemented and discussed in [19]. In order to enlarge the available state 

of the art of quantitative comparative performance evaluation for quadrotors’ control, we 

propose a broad comparative implementation of different control approaches (PID, LQR, 

MPC, FL and SMC) to the quadrotor attitude stabilization problem. Linearized or 

simplified attitude dynamical systems are exploited in the design phase, yet all the 

controllers are tested with the proposed full nonlinear model. According to the fast 

dynamic response, the robustness to the discrepancy between the control model and the 

full nonlinear model and an approximative L2 norm-based trade-off evaluation of both 

the tracking performance and the command effort of the controller, the most suitable 

method is selected for the inner loop control part of the complete proposed control 

architecture. The outer loop is designed to track velocity references by exploiting PID 

control and a dynamics inversion from a simplified translational dynamical model. 

This paper is organized as follows. The system model derived with the Newton–

Euler formalism is reported in Section 2, as well as the proposed control system 

architecture, the proposed control laws and the simulation parameters setting. Section 3 

presents the simulation results in which a micro-UAV is demonstrated to be able to 

execute complex trajectories with the complete control system. Conclusions and future 

research directions are drawn in Section 4. 

2. Materials and Methods 

2.1. System Model 

Quadrotor UAVs are mechatronic systems with two rigid arms arranged in a cross 

configuration and four rotors. Each pair of rotors is located at the arm’s extremity and 

rotates in opposite directions. The speed of the rotors is controlled independently. A 

picture of a commercial quadrotor platform is shown in Figure 1. The movement of flying 

quadrotors derives from the total lift force produced by all rotors and from their capability 

of inclination, which is due to the resultant forces acting on the arms and to the resultant 

counter-torque caused by the pairs of rotors. The representation shown in Figure 2 is 

derived from the configuration of Figure 1, considered as a reference for the formulation 

of the quadrotor dynamical model. 

 

Figure 1. Picture of a commercial quadcopter platform [20]. 
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Figure 2. Schematic representation of the quadrotor configuration of reference. 

Two reference frames are defined in order to characterize the position and the 

orientation of the UAV: a fixed inertial reference frame OXYZ and a body reference frame 

oxyz  attached to the quadrotor. The relation between the two is expressed by the 

homogeneous transformation matrix ��  derived with the Euler ZYX convention, also 

known as the RPY convention. The RPY convention involves three rotations. Firstly, a 

rotation of ψ (Euler yaw angle) about Z produces the frame OX�Y�Z. Secondly, a second 

rotation of ϑ (Euler pitch angle) about Y� results in the frame OX�Y�Z�. Lastly, a third 

rotation of ϕ (Euler roll angle) about X� results in the frame OX�Y�Z� (coincident with 

oxyz). These rotations are performed according to a post multiplication rule, 

�� = ������ = �

c� −s� 0

s� c� 0

0 0 1

� �

c� 0 s�

0 1 0
−s� 0 c�

� �

1 0 0
0 c� −s�

0 s� c�

� = �

c�c� c�s�s� − s�c� s�s� + c�s�c�

s�c� c�c� + s�s�s� s�s�c� − s�c�

−s� c�s� c�c�

� (1)

where c  and s  denote cosine and sine functions, respectively. ��  transforms linear 

movement-related vectors from oxyz to OXYZ. Consequently, �� transforms rotational 

movement-related vectors from OXYZ to oxyz, 

� = �
p
q
r

� = ��
� �

ϕ`
0
0

� + ��
���

� �
0
θ`
0

� + ��
���

���
� �

0
0

ψ`
� = �

1 0 −s�

0 c� c�s�

0 −s� c�c�

� �

ϕ`
θ`
ψ`

� = �� �

ϕ`
θ`
ψ`

� (2)

where p, q and r denote the rotational velocities in the body frame, while ϕˋ, ϑˋ and ψˋ 

denote the Euler rates. The Newton–Euler formalism is adopted to present the quadrotor 

dynamical model; for further details about modeling refer to [21–24]. 

In the adopted model, the following assumptions are made: 

 The structure is perfectly symmetrical. 

 The structure is perfectly rigid. 

 The quadrotor’s center of mass coincides with the origin of the body fixed frame. 

 The rotors’ motors dynamics are neglected. 

 Complex phenomena of difficult modeling are neglected, such as the ground effect, 

blade flapping and any other minor aerodynamical or inertial contributions not 

explicitly taken into account. 

It follows the translational dynamical model in the inertial fixed reference frame, 

m�`` = m� − K�
��` − (�� + �� + �� + ��)�� (3)
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�� = �

0
0

bw�
�

� , with i = 1,2,3,4 (4)

where � denotes the position vector in OXYZ, �� is the thrust force produced by rotor i, 
w� is the angular speed of rotor i, b is the thrust coefficient, m is the quadcopter’s mass, 

� is the gravity acceleration and K�
� denotes the aerodynamic thrust drag coefficient. It 

follows the rotational dynamical model in the body reference frame, 

I�` = −(� x I�) − ��� − K�
�� + � (5)

��� = I�(w� + w� − w� − w�) � × �
0
0
1

�  (6)

� = �

L(F� − F�)
L(F� − F�)

d(w�
� − w�

� + w�
� − w�

�)
� (7)

I = �

I� 0 0
0 I� 0

0 0 I�

� (8)

with the quadrotor’s arm length being L, the diagonal inertia matrix I, the inertia of the 

rotors I�, the drag coefficient d, the aerodynamic moment drag coefficient K�
�, the rotors’ 

induced moment vector � and the gyroscopic moment vector ���; the latter is due to 

the fact that the axes of rotation of the propellers are attached to the quadrotor and rotate 

with it. The complete nonlinear dynamical model of the quadrotor is derived by 

evaluating Equations (3) and (5) and considering the transformations in Equations (1) and 

(2): 

X`` = −
1

m
K�

�X` −
1

m
�s�s� + c�s�c��U�  (9)

Y`` = −
1

m
K�

�Y` −
1

m
�s�s�c� − s�c��U�  (10)

Z`` = g −
1

m
K�

�Z` −
1

m
c�c�U�  (11)

p` =
I� − I�

I�
qr −

I�

I�
q(w� + w� − w� − w�) −

1

I�
K�

�p +
1

I�
LU�  (12)

q` =
I� − I�

I�
pr −

I�

I�
p(w� + w� − w� − w�) −

1

I�
K�

�q +
1

I�
LU�  (13)

r` =
I� − I�

I�
pq −

1

I�
K�

�r +
1

I�
U� (14)

ϕ` = p + s�s�c�
��q + c�s�c�

��r  (15)

θ` = c�q − s�r (16)

ψ` = s�c�
��q + c�

��c�r (17)

� = �

U�

U�

U�

U�

� = M���� = �

b b b b
0 b 0 −b
b 0 −b 0
d −d d −d

�

⎝

⎜
⎛

w�
�

w�
�

w�
�

w�
�

⎠

⎟
⎞

  (18)

It is worth noting that Equation (18) stands for an artificial input transformation 

made for ease of representation and control law definition. U� denotes the total lift force 
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produced by the rotors, U�  and U�  are the resultant forces generating pitch and roll 

movement respectively and U�  is the resultant moment acting on the yaw axis. The 

presented quadrotor dynamical model has 12 state variables � =

(x�, x�, x�, x�, x�, x�, x�, x�, x�, x��, x��, x��) = (X, Y, Z, X�, Y�, Z�, ϕ, θ, ψ, p, q, r) and 4 input vari-

ables � = (u�, u�, u�, u�) = (U�, U�, U�, U�). Note that the rotors’ velocities giving the gyro-

scopic effect contribution still appear in Equations (12) and (13) but can be rewritten as a 

nonlinear function of the artificial input variables f(�) by inversion and manipulation of 

Equation (18). 

f(�) = � (−1)���� ⎸(M��
���)� ⎸

�

���
=  w� + w� − w� − w�  (19)

The system, besides presenting under-actuation characteristics that always yield to 

challenging control design aspects, is highly nonlinear and coupled. When dealing with a 

dynamical system with such properties, it is convenient to derive a linearized model in 

order to obtain a clearer understanding of the relation between control and state variables 

and the system’s stability. Furthermore, linearized models are often exploited for the 

design of the control law itself. 

X`` = −θg  (20)

Y`` = −ϕg  (21)

Z`` = g −
1

m
U�  (22)

ϕ`` =
1

I�
LU� (23)

θ`` =
1

I�
LU�  (24)

ψ`` =
1

I�
U� (25)

The equations from (20) to (25) refer to the linearization of the model represented by 

the equations from (9) to (17) by means of a Taylor expansion of the first order and 

adopting approximations for small angles, under the following assumptions: 

 The quadrotor is hovering: external forces and moments are neglectable, linear and 

rotational velocities are small (the Euler rates coincide with the rotational velocities 

in the body frame). 

 The equilibrium control input and state vectors are (u�
∗ , u�

∗ , u�
∗ , u�

∗ ) = (mg, 0,0,0) and 

(x�, x�, x�, x�, x�, x�, x�, x�, x�, x��, x��, x��) = (0,0,0,0,0,0,0,0,0,0,0,0), respectively. 

 All terms of order higher than one are neglected. 

2.2. System Control 

If considering the linearized model in equations from (20) to (25) in the Laplace 

variable domain formulation, it is straightforward that the system is unstable due to the 

presence of poles in the origin. Additionally, the inputs U�, U� and U� directly affect the 

quadrotor’s attitude, while U� directly affects the altitude dynamics. Figure 3 shows the 

proposed control system’s architecture, decoupled in two parts: the inner loop performs 

attitude stabilization, while the outer loop is responsible for altitude control and reference 

attitude computation, given a 3D trajectory to be followed. Each control input signal Ui is 

saturated before being given to the plant, i.e., the quadcopter. The lower and upper 

saturation bounds are U�
�� and U�

��, respectively. The propellers’ capacity is assumed to 

be such that the absolute value of the saturated total lift force U�
��� is equal to 3 mg. Anal-

ogously, an absolute value of 1.5 mg refers to U�
��� and U�

���, while an absolute value 

equal to mgL refers to U�
���. 
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Figure 3. Overview of the proposed control system’s architecture. 

The inner loop is intended to be sufficiently faster than the outer loop so that the 

UAV’s attitude can be effectively stabilized. Additionally, the state variables are assumed 

to be perfectly known to the controllers at each sampling instant. On the other hand, it is 

well known that the accuracy of position estimates may not be high enough to implement 

position-based trajectory controllers in many real-world applications. Consequently, the 

outer loop is intended to ensure tracking of velocity references. 

As far as the inner loop is concerned, the choice of the best control law derives from 

a comparative evaluation of different linear and nonlinear controllers designed for 

attitude stabilization: PID, LQR, FL, SM and MPC. Both the tracking error and the 

controller command effort related to each controller are taken into account by means of 

the sum of the L2 norms of state and controller command input signals. Each attitude 

stabilization controller is designed with simplified models but is applied to the complete 

nonlinear attitude system expressed by Equations (12) to (17) for the sake of the 

evaluation. Instead, the outer loop implements a dynamic inversion and PID-based 

velocity controller. 

2.2.1. Inner Loop—PID Control 

This follows the linearized attitude dynamical system expressed by equations from 

(23) to (25) in state space form, with � = (ϕ, θ, ψ, ϕ�, θ�, ψ�) and � = (U�, U�, U�). Three 

independent Proportional–Integral–Derivative controllers are designed with the aim of 

stabilizing the linearized system in hovering. 

�
�̇ = A� + B�
� = C� + D�

 � (26)

A =

⎝

⎜⎜
⎛

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0⎠

⎟⎟
⎞

 , B =

⎝

⎜
⎜
⎜
⎛

0 0 0
0 0 0
0 0 0

LI�
�� 0 0

0 LI�
�� 0

0 0 I�
��⎠

⎟
⎟
⎟
⎞

 , C =

⎝

⎜⎜
⎛

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0⎠

⎟⎟
⎞

 , D =  �
0 0 0
0 0 0
0 0 0

�  

A classical formulation of the PID control law applied to the quadrotor stabilization 

problem in the time domain is presented in Equation (27). The three control parameters 

(K�
� ,K�

�,K�
� ) of each control command are set in order to stabilize the model in (26) for the 

hovering equilibrium point. Refer to [25] for the theoretical foundations of PID control 

and further details. 
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u�(t) = u��
�

− K�
�

�y�(t) − y��
�

� − K�
�

� �y�(t) − y��
�

�dt
�

�

− K�
�

�ẏ�(t) − ẏ��
�

� , u�� =  y�� = (0,0,0) , p = 1,2,3  (27)

2.2.2. Inner Loop—LQR Control 

The linearized attitude dynamical model in (26) is exploited to design the LQR-based 

attitude stabilizer. LQR controllers are based on optimization (minimization) of the sum 

of the weighted energies (L2 norms) of the state and the control command, with the 

constraints that the system dynamics are respected. According to the Linear–Quadratic 

Regulator method, since the linearized system is completely controllable, i.e., the 

controllability matrix has full rank, it is possible to define the following feedback control 

action, 

�(t) = −K�(t)  (28)

K = R��B�P  (29)

A�P + Q + PA − PBR��B�P = 0  (30)

Q =

⎝

⎜
⎜
⎛

q� 0 0 0 0 0
0 q� 0 0 0 0
0 0 q� 0 0 0
0 0 0 q� 0 0
0 0 0 0 q� 0
0 0 0 0 0 q�⎠

⎟
⎟
⎞

 , R = �

r� 0 0
0 r� 0
0 0 r�

�  (31)

where K denotes the feedback control gain, Q and R are diagonal fixed weight matrices 

for the weighted L2 norms of � and �, respectively. The dynamics of the closed-loop 

system depend on the relative values of the control parameters: q� , r� . P  can be 

computed by solving the Algebraic Riccati Equation formulated in Equation (30). Refer to 

[26] for the theoretical foundations of LQR control and further details. 

2.2.3. Inner Loop—Feedback Linearization Control 

This follows the attitude dynamical system exploited for the design of the feedback 

linearization-based attitude controller, with � = (ϕ, θ, ψ, ϕ�, θ�, ψ�) and � = (U�, U�, U�). 

ẋ� = x��� , p = 1,2,3 (32)

ẋ� =
I� − I�

I�
x�x� −

I�

I�
x�f(�) −

1

I�
K�

�x� +
1

I�
Lu� (33)

ẋ� =
I� − I�

I�
x�x� −

I�

I�
x�f(�) −

1

I�
K�

�x� +
1

I�
Lu� (34)

ẋ� =
I� − I�

I�
x�x� −

1

I�
K�

�x� +
1

I�
u�  (35)

Coincidence between Euler rates and angular velocities is assumed for the attitude 

controller’s design. The FL control law aims at linearizing the system with the term f�
�  

and controlling it with a new control input term, u�
∗, which is intended as the sum of a 

proportional gain with respect to the Euler angles’ errors and a derivative term, 

proportional to the Euler rates. Refer to [27] for the theoretical foundations of FL control 

and further details. Each control input is defined as follows. 

u� = f�
� + u�

∗ =
I�

L
�−

I� − I�

I�
x�x� +

I�

I�
x�f(�) +

1

I�
K�

�x� + D�x� + P��x����
− x��� (36)

u� = f�
� + u�

∗ =
I�

L
�−

I� − I�

I�
x�x� +

I�

I�
x�f(�) +

1

I�
K�

�x� + D�x� + P��x����
− x���  (37)
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u� = f�
� + u�

∗ = I� �−
I� − I�

I�
x�x� +

1

I�
K�

�x� + D�x� + P��x����
− x���  (38)

The closed-loop attitude dynamical subsystem becomes linear and decoupled, the 

dynamics of the system can be adjusted by tuning the pairs (D�,P�). This follows the closed-

loop attitude dynamics of the controlled system. 

ẋ� = x��� , p = 1,2,3  (39)

ẋ� = D�x� + P��x����
− x��  (40)

ẋ� = D�x� + P��x����
− x��  (41)

ẋ� = D�x� + P��x����
− x��  (42)

2.2.4. Inner Loop—Sliding Mode Control 

The nonlinear attitude dynamical model in equations from (32) to (35) is exploited to 

design the sliding mode-based attitude stabilizer. The SM control method aims at the 

convergence of the state vector to another one, called the “sliding surface”, which 

corresponds to an exponential achievement of the desired dynamical behavior of the 

system. The control input is the sum of two terms: a continuous term and a discontinuous 

one. The former is a continuous function of the state variables and the reference, uc, that 

makes the “sliding surface”, s, an invariant set. The discontinuous term, ud, is added to 

achieve convergence to the “sliding surface”. s is intended as a PD “sliding surface” with 

respect to the Euler angles and Euler rates tracking errors. Refer to [28,29] for the 

theoretical foundations of SM control and further details. 

u� = u�
� + u�

�  , i = 1,2,3  (43)

u�
� = K��sign(s�) = K��sign �x������

− x��� + β��x����
− x��� ~ K��

s�

�s�
� + a

 , i = 1,2,3  
(44)

u�
� =

I�

L
�−

I� − I�

I�
x�x� +

I�

I�
x�f(�) +

1

I�
K�

�x� + ẋ����
+ β��x����

− x���  (45)

u�
� =

I�

L
�−

I� − I�

I�
x�x� +

I�

I�
x�f(�) +

1

I�
K�

�x� + ẋ����
+ β��x����

− x���  (46)

u�
� = I� �−

I� − I�

I�
x�x� +

1

I�
K�

�x� + ẋ����
+ β��x����

− x���  (47)

The sign (·) function in the discontinuous part of the control action is approximated 

with a smooth function (with a small value of a) to avoid chattering, i.e., oscillations, 

when the state approaches the “sliding surface”. The closed-loop attitude dynamics of the 

system can be adjusted by tuning the control parameters: a, K�� , β�. This follows the 

closed-loop attitude dynamics of the controlled system. 

ẋ� = x��� , p = 1,2,3 (48)

ẋ� = ẋ����
+ β��x����

− x�� + K��

x����
− x� + β��x����

− x��

�( x����
− x� + β��x����

− x��)�  +  a

 
(49)

ẋ� = ẋ����
+ β��x����

− x�� + K��

x����
− x� + β��x����

− x��

�( x����
− x� + β��x����

− x��)�  +  a

 
(50)
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ẋ� = ẋ����
+ β��x����

− x�� + K��

x����
− x� + β��x����

− x��

�( x����
− x� + β��x����

− x��)�  +  a

 
(51)

2.2.5. Inner Loop—Model Predictive Control 

The state space form of the nonlinear attitude dynamical model in equations from 

(32) to (35) is exploited to design the model predictive attitude stabilizer. The MPC 

method is based on two phases: prediction and optimization. A prediction of the model’s 

states,  ��, is made over a certain prediction horizon, T�, by integration of the model 

itself. An optimal control input u is chosen to bring the predicted state to the reference r. 

The optimization problem formalized in (52) is solved to compute �∗(t → t + T� ) =

�U�(t → t + T�), U�(t → t + T�), U�(t → t + T�)� 

�∗(Ϻ) = arg min J(�(Ϻ)) , subject to:  (52)

J��(Ϻ)� = � �����
� (Ϻ)Q����(Ϻ) + ��(Ϻ)R�(Ϻ)� d

����

�

Ϻ + ����
� (t + T�)Q����(t + T�) , 

����(Ϻ) = �(Ϻ) − ��(Ϻ) ,  

Q =

⎝

⎜
⎜
⎛

q� 0 0 0 0 0
0 q� 0 0 0 0
0 0 q� 0 0 0
0 0 0 q� 0 0
0 0 0 0 q� 0
0 0 0 0 0 q�⎠

⎟
⎟
⎞

 , R = �

r� 0 0
0 r� 0
0 0 r�

� , P =

⎝

⎜
⎜
⎛

p� 0 0 0 0 0
0 p� 0 0 0 0
0 0 p� 0 0 0
0 0 0 p� 0 0
0 0 0 0 p� 0
0 0 0 0 0 p�⎠

⎟
⎟
⎞

 ,  

�̇�(Ϻ) = f ���(Ϻ), �(Ϻ)� ,  ��(Ϻ) = �(Ϻ) ,  

�(Ϻ) ⋴ [���, ���] , Ϻ = [tàt + T�]  

where ��� and ��� denote the lower and upper bounds of the optimal control input �∗, 

which would be subject to saturation anyway, ���� is the predicted state’s error vector, 

Q, R  and P  denote diagonal matrices that contain the cost function J��(Ϻ)� weight 

factors. The receding horizon strategy is applied to the aforementioned formulation of the 

problem at each time T�. T� denotes the sampling time. A constant input parametrization 

is chosen such that �∗(t → t + T� ) = �∗(T� ) . q� , r� , p� , T� , T�  and T�  represent the 

control parameters. Refer to [30] for the theoretical foundations of MPC and further 

details. 

2.2.6. Outer Loop 

A simplified translational dynamical model is reported in state space form, with � =
(x�, x�, x�, x�, x�, x�) = (X�, Y�, Z�, ϕ, θ, ψ) and u = U�. 

ẋ� = −
1

m
�s��

s��
+ c��

s��
c��

�u  (53)

ẋ� = −
1

m
�s��

s��
c��

− s��
c��

�u  (54)

ẋ� = g −
1

m
c��

c��
u  (55)

The aim of the outer loop controller is to control the quadcopter’s altitude and to 

compute the reference Euler angles to be tracked by the inner loop controller. The outer 

loop controller is divided into two parts: the first part implements three PID controllers 
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that compute the reference linear accelerations from the linear velocity errors, the second 

part performs a dynamics inversion of the system in equations from (53) to (55), with the 

assumption that ψ��� = 0, for the computation of the reference pitch and roll angles, θ��� 

and ϕ���, respectively, and the total lift force, u. 

ẋ���
�(t) = −K�

�
�x�(t) − x���

�
(t)� − K�

�
� �x�(t) − x���

�
(t)�dt

�

�

− K�
�

�x�(t) − x���
�

(t)� , p = 1,2,3  (56)

β = −sign�ẋ���
�� �1 + �

g − ẋ���
�

ẋ���
� �

�

�

�
�
�

  (57)

x���
� = arcsin �

Bm

u
�  (58)

x���
� = arcsin(β)  (59)

x���
� = 0  (60)

u = m�
(ẋ���

�)�

β�
+ (ẋ���

�)�  (61)

Equations from (56) to (61) express the full outer loop trajectory controller. The 

control parameters (K�
� ,K�

� ,K�
� ) can be set in order to ensure satisfactory dynamics for 

different 3D complex trajectories of reference, expressed by the signals x���
� (t). In order to 

avoid numerical problems, ẋ���
� is forced to have a lower bound different from zero in 

absolute value. A similar approach is proposed in [11]. 

2.2.7. Trajectory Generator 

The ascent helix and the complex ascent helix are examples of relatively hard 

trajectories for quadcopters. They are considered as a benchmark for demonstrating the 

complete control system’s capability of executing complex trajectories. The ascent helix 

and the complex ascent helix are expressed as follows, 

Ẋ���
�

(t) = −f�
� sin(f�

�t) , Ẋ���
�

(t) = −f�
� sin(f�

�t) − 2 f�
� sin(f�

�t) cos(f�
�t)  (62)

Ẏ���
�

(t) = f�
� cos�f�

�t� , Ẏ���
�

(t) = f�
� cos�f�

�t� + 2 f�
� cos�f�

�t� sin�f�
�t� (63)

Ż���
�

(t) = Ż���
�

(t) = a  (64)

where superscripts 1 and 2 indicates the ascent helix and complex ascent helix trajectories, 

respectively. t  is the simulation time, f�, f�  denotes the frequency of the signal 

components on the plane OXY and a denotes the climb velocity. The equations from (62) 

to (64) represent the derivation with respect to t of reference trajectories designed in 

space and time, expressed by the position variables X���(t), Y���(t), Z���(t). 

2.3. Simulation Setting 

The whole control architecture is implemented in the MATLAB/Simulink® software 

environment, mainly by means of MATLAB function blocks. Table 1 shows the simulation 

parameters, while the control parameter settings of all the proposed attitude stabilizers 

are reported in Table 2. All the values are expressed according to the International System 

of Units.  
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Table 1. Simulation parameters. 

Simulation Parameter Type Parameter Value 

UAV 

m 0.60 kg 
g 9.81 m·s�� 
b 3.60·10�� kg·m 
d 1.60·10�� kg·m� 
I� 5.20·10�� kg·m� 
I� 5.20·10�� kg·m� 
I� 9.40·10�� kg·m� 
I� 4.20·10�� kg·m� 
L 0.20 m 

K�
� 0.15 kg·m�·s�� 

K�
� 0.15 kg·s�� 

Saturation 

[U�
��,U�

��] [−17, 17] N 

[U�
��,U�

��] [−9, 9] N 

[U�
��,U�

��] [−9, 9] N 

[U�
��,U�

��] [−1.2, 1.2] N·m 

Trajectory Generator 

f�
�=f�

� 1 s�� 

a −1 m·s�� 

f�
�=f�

�  1 s�� 

Outer Loop Controller 

K�
� = K�

� = K�
�  8 

K�
� = K�

� = K�
� 8.5 

K�
� = K�

� = K�
�  0.01 

Derivative Filter Coefficient 100 

Table 2. Attitude stabilization controllers’ parameters. 

Inner Loop Controller Control Parameter Value 

PID 

K�
� = K�

� = K�
�  0.56 

K�
� = K�

� = K�
� 0.28 

K�
� = K�

� = K�
�  0.23 

Derivative Filter Coefficient 49.74 

LQR 
[q�, q�, q�, q�, q�, q�] [0,0,0,1,1,1] 

r� = r� = r� 0.0001 

FL 

[D�, P�] [−120,38] 

[D�, P�] [−120,38] 

[D�, P�] [−50,20] 

SM 

[K��,β�] [0.2,20] 

[K��,β�] [0.2,20] 

[K��,β�] [0.05,5] 

a 0.1 

MPC 

T� 0.01 s  

T� 0.1 s 

T� 0.05 s 

[q�, q�, q�, q�, q�, q�] [10,10,1,0,0,0] 

r� = r� = r� 0.0001  

[p�, p�, p�, p�, p�, p�] [1,1,1,0,0,0] 
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3. Simulation Results 

3.1. Inner Loop 

All the attitude stabilizers proposed in Sections 2.2.1–2.2.5 are shown to be able to 

stabilize the nonlinear quadrotor attitude model, expressed by Equations (12)–(17), yet at 

different performance levels. All the simulations are performed considering the same 

initial condition for the plant, with the quadrotor having initial roll, pitch and yaw angles 

of 20° and initial roll, pitch and yaw rates of 10 rad/s. The gyroscopic effect is part of the 

nonlinear attitude dynamical system and is computed assuming a constant total lift force 

equal to the quadcopter’s weight in Equation (19). Figures 4–8 show the Euler angles 

signals of the PID, LQR, FL, SMC and MPC-based attitude stabilizers, respectively. 

 

Figure 4. Euler angles signals [ϕ(t), ϑ(t), ψ(t)] of the controlled attitude system (blue): PID-based 

Attitude Stabilizer (red). 

 

Figure 5. Euler angles signals [ϕ(t), ϑ(t), ψ(t)] of the controlled attitude system (blue): LQR-based 

Attitude Stabilizer (red). 
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Figure 6. Euler angles signals [ϕ(t), ϑ(t), ψ(t)] of the controlled attitude system (blue): FL-based 

Attitude Stabilizer (red). 

 

Figure 7. Euler angles signals [ϕ(t), ϑ(t), ψ(t)] of the controlled attitude system (blue): SMC-based 

Attitude Stabilizer (red). 
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Figure 8. Euler angles signals [ϕ(t), ϑ(t), ψ(t)] of the controlled attitude system (blue): MPC-based 

Attitude Stabilizer (red). 

The three pairs of proportional, integral and derivative gains of the PID-based 

attitude controller are tuned exploiting the automatic tuning library in MATLAB applied 

to the linearized system in (26), considering the control input saturation, to achieve a fast 

(rise time of ~1 s) and robust step response. As shown in Figure 4, the Euler angles 

dynamics relative to the PID-based stabilizer are much slower with respect to all the 

others, meaning that PID control is effective but requires extensive gain tuning and is not 

robust to model uncertainties, as the performances significantly decrease when the 

controller is applied to the nonlinear attitude system. As far as the classical PID control 

approach is concerned, which is the approach adopted in this work, a systematic 

procedure exists for tuning the controller’s gains; however, a highly time-consuming 

offline gains optimization is required when dealing with nonlinear systems, as for 

quadrotor UAVs. The amount of computation related to the online optimization of the 

MPC-based attitude stabilizer is such that the optimal solution is computed, on average, 

within 0.01 s. A control horizon T� = 0.05s is chosen in order to guarantee the optimal 

controller command at each step. A trial-and-error tuning procedure is adopted for the 

choice of the control parameters of the other attitude stabilizers, which show faster 

dynamics and greater robustness to model uncertainties. The sum of the L2 norms of the 

Euler angles’ tracking error signals, L2x, is chosen as the approximative evaluation 

parameter of the controllers’ tracking performance. Analogously, the sum of the L2 norms 

of the controller command signals, L2u, represents the approximative evaluation 

parameter of the expected command activity of an on-board hardware implementation of 

the controller. Since the L2 norm of a signal represents the “energy” associated with the 

signal itself, it can be considered as an approximative quantitative estimation of both the 

overall tracking error and the controller command effort. Table 3 shows the controllers’ 

evaluation parameters referring to the attitude stabilization simulations presented in this 

section. 

Table 3. Evaluation parameters: sum of L2 norms of the controller commands signals, L2u, and sum 

of L2 norms of the Euler angles error signals, L2x. 

Attitude Stabilizer. L2u L2x 

PID 1.60 1.40 

LQR 4.53 0.41 

FL 5.6 0.64 

SMC 4.35 0.36 
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MPC 3.70 0.65 

The proposed attitude stabilizers are ranked from best to worse as SMC, LQR, FL, 

MPC, PID for L2x and as PID, MPC, SMC, LQR, FL for L2u. Considering the attitude 

controllers that lead to the fastest dynamics (SMC, LQR and FL), the choice of the inner 

loop control law derives from a trade-off between tracking performances and controller 

command effort, since the battery consumption, being related to the forces and moments 

required to act on the quadcopter platform, is a key limitation factor when dealing with 

multirotor UAVs executing medium-to-long range missions. The SMC-based attitude 

stabilizer is the most promising one, having minimum L2x, intermediate L2u and ensuring 

fast dynamics to the controlled variables. Besides the norm evaluation, the FL-based 

controller yields to bigger peaks in the controlled signals. It is worth noting that ad-hoc 

simulation campaigns may be designed in order to tune the control parameters of each 

attitude stabilizer such that the system achieves a reference dynamic response. This could 

enhance performance, but the inherent features of each control approach would not 

change, as well as the highlighted differences among the methods. 

3.2. Closed-Loop System 

The complete controlled quadrotor system is proven to be able to execute complex 

3D trajectories, defined by Equations (62)–(64). Both an ascent helix (trajectory 1) and a 

more complex ascent helix (trajectory 2) are simulated. The signals related to the 

controlled variables are shown in Figure 9 for trajectory 1, Figure 10 shows the 

corresponding quadcopter’s 3D trajectory, Figure 11 shows the control command signals 

required for executing trajectory 1. The Euler Angles signals related to trajectory 1 are 

shown in Figure 12. The signals related to the controlled variables are shown in Figure 13 

for trajectory 2, Figure 14 shows the corresponding quadcopter’s 3D trajectory, Figure 15 

shows the control command signals required for executing trajectory 2. The Euler Angles 

signals related to trajectory 2 are shown in Figure 16. Considering that either PID control 

is a model-free approach with an easy gain tuning procedure, or the outer loop controller 

is intended to ensure a much slower dynamic response with respect to the inner loop 

controller (order of a few seconds), a PID controller in the outer loop is sufficient to ensure 

a satisfactory dynamic response. The tracking performances are satisfactory for either the 

sinusoidal-based or the unitary step reference velocity signals, as shown in Figures 9 and 

13, which spatially derive in the helicoidal maneuvers shown in Figures 10 and 14. Due to 

the inherent characteristics of PID control, a relatively small delay between the sinusoidal-

based reference velocity signal and the actual quadcopter velocity is inevitable. That is 

reflected also in a smaller, yet present, delay in the tracking of the consequent sinusoidal-

based Euler angles signals, as shown in Figures 12 and 16. Overall, the proposed 

architecture can effectively control the quadcopter during complex maneuvers without 

exceeding the saturation limits, as shown by the signals of the controller commands in 

Figures 11 and 15. 
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Figure 9. Velocity signals [X`(t), Y`(t), Z`(t)] of the controlled quadrotor system (blue) and reference 

velocity signals of trajectory 1 (red). 

 

Figure 10. 3D view of trajectory 1: position trajectory of the controlled quadrotor system. 

 

Figure 11. Control input signals [u�(t), u�(t), u�(t), u�(t)] of the controlled quadrotor system execut-

ing trajectory 1. 



Appl. Sci. 2023, 13, 3464 18 of 22 
 

 

Figure 12. Euler angles signals [ϕ(t), ϑ(t), ψ(t)] of the controlled quadrotor system (blue) and 

reference attitude signals for trajectory 1 (red). 

 

Figure 13. Velocity signals [�`(t), Y`(t), Z`(t)] of the controlled quadrotor system (blue) and reference 

velocity signals of trajectory 2 (red). 

 

Figure 14. 3D view of trajectory 2: position trajectory of the controlled quadrotor system. 
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Figure 15. Control input signals [ u�(t), u�(t), u�(t), u�(t) ] of the controlled quadrotor system 

executing trajectory 2. 

 

Figure 16. Euler angles signals [ϕ(t), ϑ(t), ψ(t)] of the controlled quadrotor system (blue) and 

reference attitude signals for trajectory 2 (red). 

4. Conclusions 

In this paper, a control system architecture for 3D trajectory tracking is implemented 

and simulated in MATLAB/Simulink® for a micro-quadrotor UAV. The highly nonlinear, 

coupled, unstable and underactuated plant system, i.e., the quadrotor, is modelled with 

the Newton–Euler formalism. The control architecture is intended to stabilize the 

quadrotor attitude dynamics, which is fully actuated with a sufficiently fast inner loop 

controller, and to track velocity references in the outer loop. A comparative study of well-

known linear and nonlinear model-free and model-based control laws applied to the 

attitude stabilization problem is proposed: PID, LQR, FL, SMC and MPC attitude 

stabilization laws are designed and implemented. The choice of the inner loop controller 

derives from either the fast dynamics requirement of the inner loop or an L2 norm-based 

approximative evaluation of both tracking error and controller command signals since the 

relatively poor battery autonomy is still one of the main limitations for the deployment of 

multirotor UAVs in medium-to-long range missions. The reference attitude signals for the 

inner loop controller are derived from a simplified translational dynamics inversion 
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performed in an outer loop controller, which is also responsible for altitude control. In the 

outer loop, the dynamics inversion is combined with three independent PID controllers, 

while the Sliding Mode attitude stabilizer is implemented in the inner loop. A velocity 

trajectory generator and a control input saturation block complete the proposed control 

architecture. The controlled closed-loop quadrotor system is proven to be able to execute 

complex 3D trajectories, such as ascent helixes. Consistent with the aim of this work, the 

main summarizing considerations are reported in Table 4 in order to highlight the main 

observations drawn from the study and provide guidelines for further research in this 

field. 

Future research directions will include the realization of other comparative studies 

for control of quadrotor UAVs, considering external disturbances, e.g., the wind, and 

parametric uncertainties, e.g., variable payloads. 

Table 4. Summarizing table of considerations drawn from the study. The number of diamonds is 

proportional to the “suitability of the method to UAV control”. 

Control Method Advantages Disadvantages 
Overall Suitability 

to UAV Control 

PID 

 Systematic gain tuning method 

for linear systems 

 Possible zero steady state error 

 Model free 

 No constraints handling 

 Poor robustness 

 No multiple inputs and 

multiple outputs handling 

 Extensive offline gain  

optimization 

◊ 

LQR 

 Possible handling of multiple 

inputs and multiple outputs 

 Possible handling of 

performance and command effort 

 Fast dynamics 

 May fail to overcome 

steady-state error 
◊◊◊ 

FL 
 Systematic cancellation of  

nonlinearities 

 No constraints handling 

 Poor robustness 

 Model in affine form only 

◊◊ 

SMC 

 Robustness 

 Fast dynamics 

 Good performances with highly 

nonlinear systems 

 Chattering may cause  

instability 
◊◊◊◊ 

MPC 

 Possible handling of multiple 

inputs and multiple outputs 

 Possible handling of 

performance and command effort 

 Possible handling of input and 

output constraints 

 Slow dynamics ◊◊ 
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