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THE UNCERTAINTY PRINCIPLE FOR THE SHORT-TIME
FOURIER TRANSFORM ON FINITE CYCLIC GROUPS:

CASES OF EQUALITY

FABIO NICOLA

Abstract. A well-known version of the uncertainty principle on the

cyclic group ZN states that for any couple of functions f, g ∈ `2(ZN ) \
{0}, the short-time Fourier transform Vgf has support of cardinality

at least N . This result can be regarded as a time-frequency version

of the celebrated Donoho-Stark uncertainty principle on ZN . Unlike

the Donoho-Stark principle, however, a complete identification of the

extremals is still missing. In this note we provide an answer to this

problem by proving that the support of Vgf has cardinality N if and only

if it is a coset of a subgroup of order N of ZN×ZN . Also, we completely

identify the corresponding extremal functions f, g. Besides translations

and modulations, the symmetries of the problem are encoded by certain

metaplectic operators associated with elements of SL(2,ZN/a), where a

is a divisor of N . Partial generalizations are given to finite Abelian

groups.

1. Introduction and discussion of the main result

For N ≥ 1 integer, consider the cyclic group ZN = Z/NZ, equipped with
the counting measure.

The celebrated Donoho-Stark uncertainty principle on ZN [10, 32] (see
also the seminal paper [7]) states that, for a function f ∈ `2(ZN) \ {0},

(1.1) |supp (f)| × |supp (f̂)| ≥ N,

where supp (f) = {j ∈ ZN : f(j) 6= 0}, f̂ denotes the Fourier transform
of f in ZN and |A| stands for the cardinality of a set A. Moreover, the
extremal functions f , for which equality occurs in (1.1), were identified in
[10] as characteristic functions of subgroups of ZN up to multiplication by
a constant, translation and modulation (see below for the relevant defini-
tions).

When N is prime, Terence Tao [39] then improved the above estimate as

|supp (f)|+ |supp (f̂)| ≥ N + 1.

Refinements and generalizations to finite Abelian groups have been exten-
sively studied [5, 6, 17, 18, 33, 35, 38]; see also [2, 34] for extensions to
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2 F. NICOLA

compact groups and [40] for an up-to-date and illuminating account (and
further generalizations).

Notice that the left-hand side of (1.1) represents the cardinality of the

support, in ZN × ZN , of the joint time-frequency distribution f ⊗ f̂ . Sim-
ilar uncertainty inequalities hold for other time-frequency distributions, in
particular for the short-time Fourier transform, which is a popular choice
in signal processing [31], harmonic analysis [19] and also mathematical
physics, where it is also known as coherent state transform [29]. To provide
its definition in the discrete setting we first introduce some notation (cf.
[14],[26]).

For j, k ∈ ZN we define the translation and modulation operators Tj and
Mk on `2(ZN), and the corresponding time-frequency shifts π(j, k) as

(1.2) Tjf(`) = f(`− j), Mkf(`) = e2πik`/Nf(`), π(j, k)f = MkTjf,

where ` ∈ ZN . For f, g ∈ `2(ZN), the short-time Fourier transform of f
with window g is the complex-valued function on ZN × ZN given by

Vgf(j, k) =
1√
N
〈f, π(j, k)g〉(1.3)

=
1√
N

∑
`∈ZN

e−2πik`/Nf(`)g(`− j) j, k ∈ ZN .

The following result [26] is the expected counterpart of (1.1) for the short-
time Fourier transform on ZN .

Theorem 1.1. If f, g ∈ `2(ZN) \ {0} then

(1.4) |supp (Vgf)| ≥ N.

This lower bound can be regarded as a discrete version of the so-called
weak uncertainty principle [20] for the short-time Fourier transform in Rd.
It should be emphasized, however, that (1.4) does not have an exact coun-
terpart in Rd, because in that setting Vgf cannot be fully concentrated on
a subset of finite measure of Rd × Rd (see e.g. [19]). Rather, one consid-
ers subsets where Vgf is, say, ε-concentrated [1, 3, 4, 9, 20, 36]; see also
[8, 12, 27, 28, 30] for some deep applications of this circle of ideas. The
corresponding sharp uncertainty principle, when the window g is a Gauss-
ian function, has recently been proved in [37], along with a complete study
of the cases of equality.

Now, despite the simplicity of the lower bound (1.4) and its formal sim-
ilarity with the Donoho-Stark inequality (1.1), a complete identification of
the functions f, g for which equality occurs in (1.4) is still missing, except
for an interesting special case studied in [16] (see below). In this note, par-
tially motivated by the above mentioned study of the analogous –at least
in spirit– issue in Rd [37], we address this problem and provide a complete
answer. In order to state our result, we define yet another family of unitary
operators defined on certain invariant subspaces of `2(ZN).
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Let a be a (positive) divisor of N and let f ∈ `2(ZN) be a function sup-
ported in the subgroup Ha := {ma : m = 0, . . . , N/a− 1} of ZN generated
by a. For p ∈ Z we define the pointwise multiplication by a discrete “virtual
chirp” Cp,a as

(1.5) Cp,af(`) = e
πi
N
p`2

a

(
1+N

a

)
f(`) ` ∈ ZN .

One can easily verify that this definition makes sense (in ZN), i.e. the func-
tion Cp,af is N -periodic, because of the above condition on the support of
f and the counterterm involving N/a (whereas the exponential function
alone is not well defined – hence the name “virtual”; see Figure 1 in Ap-
pendix). The reader acquainted with the theory of metaplectic operators
(see e.g. [13]) will notice that this is not a metaplectic operator on ZN (if
a > 1), but it is unitarily equivalent to a metaplectic operator on ZN/a,
via the natural identification of the linear subspace of `2(ZN) of functions
supported in Ha with `2(ZN/a); see (2.8) below. In any case, no knowledge
of the theory of metaplectic operators is needed to understand this paper.

The following result provides the desired indentification of the subsets of
ZN × ZN of smallest possibile cardinality where Vgf may be fully concen-
trated, with corresponding extremals f, g.

Let χA denote the characteristic function of a set A.

Theorem 1.2. Let f, g ∈ `2(ZN). The following statements are equivalent.

(a) |supp (Vgf)| = N .

(b) supp (Vgf) is a coset of a subgroup of ZN × ZN of order N .

(c) There exist a divisor b of N , p ∈ {0, . . . , b − 1}, λ, µ ∈ ZN × ZN ,
c1, c2 ∈ C \ {0} such that

g = c1π(λ)Cp,aχHa , f = c2π(µ)g,

where a = N/b and Ha ⊆ ZN is the subgroup generated by a.

It will follow from the proof that, with f, g as in Theorem 1.2 (c),

supp (Vgf) = µ+Hb,p,

(and |Vgf | is constant on its support), where (with a = N/b, as above)

(1.6) Hb,p := {(ma, nb+mp) : m = 0, . . . , b− 1, n = 0, . . . , a− 1},

i.e., the lattice generated by (a, p) and (0, b) in ZN × ZN . Indeed, it is
known that all the subgroups of order N of ZN × ZN have this form for
some divisor b of N and p ∈ {0, . . . , b− 1} (see e.g. [22]).

We will see that the operator Cp,a, p ∈ {0, . . . , N/a − 1}, is associ-
ated with the phase-space map Hb,0 → Hb,p, (ma, nb) 7→ (ma, nb + mp)
(m = 0, . . . , b − 1, n = 0, . . . , a − 1), in the sense that the intertwining
properties (2.6) and (2.7) below hold true. Notice that, however, this map
is not the restriction to Hb,0 of an element of SL(2,ZN) (a is not supposed
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to be a divisor of p in ZN), nor it is a group isomorphism (it is just a bijec-
tion). Indeed, as a metaplectic operator in ZN/a (via the above mentioned

identification), Cp,a is associated with the matrix

(
1 0
p 1

)
∈ SL(2,ZN/a)

(cf. [13] and (2.8) below).

The extremal functions f, g satisfying the additional condition |supp (f)|+
|supp (g)| ≥ N + 1 were already identified in [16, Theorem 3], and turn out
to be those in Theorem 1.2 (c) for b = N , therefore a = 1 (hence, in that
case the multiplication by a true chirp function appears – as opposed to the
genuinely virtual chirps that we alluded to above). The proof of Theorem
1.2 in full generality however will require a different approach, to take into
account more tightly of the symmetries of the problem – which correspond
to the operators appearing in Theorem 1.2 (c).

It is known that Theorem 1.1 generalizes to finite Abelian groups (see
[26, Proposition 4.1] and Section 4 below). The cases of equality seem
certainly worthy studying in that framework too, as well as for the other
discrete uncertainty principles appearing in [26]. While we postpone this
investigation to a future work, in Section 4 we briefly show that the im-
plication (a)=⇒(b) in Theorem 1.2 indeed generalizes (easily) to arbitrary
finite Abelian groups.

We conclude by observing that discrete uncertainty inequalities are of
great interest in compressed sensing and, more generally, in sparse signal
recovery [6, 26]. Moreover, subgroups (or structured subsets) S ⊂ ZN×ZN
play also an important role in the construction of orthonormal basis of
`2(ZN) of the type {π(j, k)g : (j, k) ∈ S}, for some g ∈ `2(ZN). This prob-
lem has a long tradition, for which we address to the recent contributions
[24, 41] (see also [11, 15, 21, 23]) and the references therein.

Briefly, this note is organized as follows. In Section 2 we recall some basic
formulas from time-frequency analysis on ZN , which will be needed to fully
exploit the symmetries of the problem. Section 3 is devoted to the proof
of Theorem 1.2. Finally in Section 4 we report on the very short proof
of Theorem 1.1, for the sake of completeness, and we discuss the above
mentioned partial generalisation of Theorem 1.2 to finite Abelian groups.

2. Notation and preliminary results

2.1. Notation. We denote by ZN = Z/NZ the cyclic group of order N ,
equipped with the counting measure. The inner product and corresponding
norm in `2(ZN) ≡ CN are denoted by 〈·, ·〉 and ‖ · ‖`2(ZN ) respectively. The
support of a function f ∈ `2(ZN) is denoted by supp (f) = {j ∈ ZN :
f(j) 6= 0}, and similarly for functions on ZN × ZN . We denote by |A| the
cardinality of a set A, and by χA its characteristic function.
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In the following b will always denote a (positive) divisor of N and a =
N/b. Ha stands for the subgroup of ZN generated by a, whereas Hb,p,
p ∈ {0, . . . , b− 1}, is the subgroup of order N of ZN ×ZN defined in (1.6).

We already defined in (1.2) the translation operators Tj, j ∈ ZN , the
modulation operators Mk, k ∈ ZN and the time-frequency shifts π(j, k) =
MkTj, as unitary operators on `2(ZN). We also defined the chirp operator
Cp,a in (1.5), as a unitary operator defined on the linear subspace of `2(ZN)
of functions supported in Ha. The short-time Fourier transform Vgf , for
f, g ∈ `2(ZN), was defined in (1.3).

2.2. Preliminaries from time-frequency analysis on ZN . We collect
here some elementary formulas that will be useful in the following. We
only sketch the proofs, or we omit them completely whenever they are
straightforward computations (for analogous results in Rd, see [19]).

In the following, f, g denote functions in `2(ZN).

First of all, we observe that the time-frequency shifts enjoy the commu-
tation relations

(2.1) π(j, k)π(j′, k′) = e2πi(kj
′−k′j)/Nπ(j′, k′)π(j, k)

for j, k, j′, k′ ∈ ZN .

The short-time Fourier transform Vgf(j, ·) can be regarded as the Fourier
transform on ZN of fTjg. Hence, applying the Plancherel theorem for the
Fourier transform one obtains at once the Parseval equality for the short-
time Fourier transform, which reads

(2.2) ‖Vgf‖`2(ZN×ZN ) = ‖f‖`2(ZN )‖g‖`2(ZN ).

We also have the following pointwise estimate

(2.3) |Vgf(j, k)| ≤ 1√
N
‖f‖`2(ZN )‖g‖`2(ZN ) j, k ∈ ZN ,

which is an immediate consequence of the Cauchy-Schwarz inequality.

The following covariance-type properties can be checked by direct com-
putation, using the definition of Vgf and (2.1):

(2.4) Vg(π(j, k)f)(j′, k′) = e2πi(k−k
′)j/NVgf(j′ − j, k′ − k)

and

(2.5) Vπ(j,k)g(π(j, k)f)(j′, k′) = e2πi(kj
′−k′j)/NVg(f)(j′, k′),

for j, k, j′, k′ ∈ ZN .

Similarly, if N = ab, we have the intertwining property (cf. (1.5))

(2.6) C−p,a π(ma, nb+mp) = eπipm
2(1+b)/bπ(ma, nb)C−p,a

for p ∈ {0, . . . , b− 1}, m ∈ {0, . . . , b− 1}, n ∈ {0, . . . , a− 1}. Equivalently,

(2.7) π(ma, nb+mp)Cp,a = eπipm
2(1+b)/bCp,a π(ma, nb).
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Unlike the previous formulas, (2.6) and (2.7) hold, however, only on the
subspace of `2(ZN) of functions supported in Ha, which indeed is an in-
variant subspace for all the operators appearing in (2.6) and (2.7) (when
a = 1, hence b = N , Cp,af is defined for every f ∈ `2(ZN) – in that case
Cp,a is a metaplectic operator on ZN [13], and (2.7) reduces to [13, Lemma
3.1 (iii)]; see also [25]).

Remark 2.1. More generally, let La ⊆ `2(ZN) be the subspace of functions
supported in Ha, and let Ua : La → `2(Zb) be given by Uaf(m) = f(ma),
m ∈ Zb (b = N/a). Then

(2.8) UaCp,aU−1a f(m) = eπipm
2(1+b)/bf(m) m ∈ Zb,

is a metaplectic operator on Zb, as defined in [13, Section 3 (iii)].

Remark 2.2. It is easy to see that f ∈ `2(ZN) is determined by Vff up to
multiplication by a complex number (of modulus 1 if ‖f‖`2(ZN ) is given, by
(2.2)); cf. [19, Section 4.2]. Indeed, from the definition of Vgf , using the
inversion formula for the discrete Fourier transform we obtain

1√
N

∑
k∈ZN

e2πikj
′/NVff(j, k) = f(j′)f(j′ − j) j, j′ ∈ ZN .

This already tells us that the support of f is determined from the function
Vff . Moreover, if f(j0) 6= 0, say, choosing j′ = j0 + j yields

f(j0 + j) =
1

f(j0)
√
N

∑
k∈ZN

e2πik(j0+j)/NVff(j, k) j ∈ ZN ,

which gives the claim.

3. Proof of Theorem 1.2

We can suppose that f and g are normalized in `2(ZN); hence ‖f‖`2(ZN ) =
‖g‖`2(ZN ) = 1.

(a) =⇒ (b)

It follows from (2.2) and (2.3) that, if |supp (Vgf)| = N , then

|〈f, π(λ)g〉| =
√
N |Vgf(λ)| = 1 λ ∈ supp (Vgf).

Hence,

(3.1) f = c(λ)π(λ)g λ ∈ supp (Vgf)

for some c(λ) ∈ C, |c(λ)| = 1. Applying the short-time Fourier transform
Vg to both sides of (3.1) and using (2.4) we obtain

|Vgf(µ)| = |Vgg(µ− λ)| λ ∈ supp (Vgf), µ ∈ ZN .

Hence

(3.2) supp (Vgf) = λ+ supp (Vgg) λ ∈ supp (Vgf).
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We claim that H := supp (Vgg) is a subgroup of ZN × ZN . Indeed, let
µ1, µ2 ∈ H. For any λ ∈ supp (Vgf) we can write µ1 = λ1−λ and µ2 = λ2−λ
for some λ1, λ2 ∈ supp (Vgf). Then µ1− µ2 = λ1− λ2 belongs to H thanks
to (3.2) (applied with λ2 in place of λ).

(b) =⇒ (c)

Suppose that supp (Vgf) = λ0 +H, where H is a subgroup of ZN×ZN of
orderN and λ0 ∈ ZN×ZN . Then |supp (Vgf)| = N and in particular we can
take for granted what we have just proved. Hence, since λ0 ∈ supp (Vgf),
from (3.2) we deduce that H = supp(Vgg). From the classification of the
subgroups of ZN × ZN (see e.g. [22, Theorem 1]) we see that there exist a
divisor b of N and p ∈ {0, . . . , b− 1} such that H = Hb,p as in (1.6), where
a = N/b.

By (3.1) we have

π(λ)g = c(λ, λ′)π(λ′)g λ, λ′ ∈ λ0 +Hb,p

for some factor |c(λ, λ′)| = 1, or equivalently, using (2.1),

(3.3) π(λ)g = c(λ)g λ ∈ Hb,p

with |c(λ)| = 1.

Applying this formula repeatedly with λ = (0, b) we see that

Mnbg = cng n ∈ Z

for some constant c ∈ C with ca = 1, hence c = e2πij0/a = e2πibj0/N for some
j0 ∈ {0, . . . , a− 1}. In particular for n = 1 we obtain

e2πib`/Ng(`) = e2πibj0/Ng(`) ` ∈ ZN ,

and therefore g is supported in the coset {j0 +ma : m = 0, . . . , b− 1}.
To reduce things to the case of a product-type subgroup of ZN ×ZN , we

introduce the function

(3.4) γ := C−p,aT−j0g.

Notice that T−j0g, and therefore γ, is supported in the subgroup Ha gen-
erated by a in ZN .

Applying the operator C−p,aT−j0 to both sides of (3.3) and using (2.1)
and (2.6) we obtain

π(λ)γ = c(λ)γ λ ∈ Hb,0

for a new constant c(λ) ∈ C, |c(λ)| = 1.

Applying the short-Fourier transform Vγ to both sides of this equality we
obtain

Vγγ(µ− λ) = Vγ(π(λ)γ)(µ) = c(λ)Vγγ(µ) λ, µ ∈ Hb,0,
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for the same constant c(λ) (which is therefore independent of µ), where the
first equality follows from (2.4) (the exponential factor appearing there is
= 1 because λ, µ ∈ Hb,0).

Applying repeatedly this formula with λ = (a, 0) or λ = (0, b) we obtain,
for m,n ∈ Z,

(3.5) Vγγ(−ma,−nb) = c(a, 0)mc(0, b)nVγγ(0) = c(a, 0)mc(0, b)n/
√
N,

because Vγγ(0) = ‖γ‖2`2(ZN )/
√
N = 1/

√
N . Moreover c(a, 0)b = 1 and

c(0, b)a = 1, namely there exist j1 ∈ {0, . . . , a− 1} and k1 ∈ {0, . . . , b− 1}
such that

(3.6) c(a, 0) = e2πik1/b = e2πik1a/N , c(0, b) = e2πij1/a = e2πij1b/N .

This also tells us that Vγγ(λ) = 0 for λ 6∈ Hb,0, because |Vγγ|2 = 1/N
on Hb,0 (by (3.5) and (3.6)), |Hb,0| = ab = N and ‖Vγγ‖`2(ZN×ZN ) =
‖γ‖2`2(ZN×ZN ) = 1 by (2.2). Hence supp (Vγγ) = Hb,0.

Summing up,

(3.7) Vγγ(j, k) =
1√
N
e−2πi(k1j+kj1)/NχHb,0(j, k)

for (j, k) ∈ ZN × ZN .

Now, to identify the function γ (up to a phase factor) we are going to
exhibit a function γ̃ such that Vγ̃ γ̃ = Vγγ; this will give γ̃ = cγ for some
|c| = 1 by Remark 2.2.

To this end, consider the subgroup Ha of ZN generated by a. An explicit
computation shows that

1

b
VχHaχHa =

1√
N
χHb,0 .

Hence setting

γ̃ =
1√
b
M−k1Tj1χHa

and using (2.5) we obtain

Vγ̃ γ̃(j, k) =
1√
N
e−2πi(k1j+kj1)/NχHb,0(j, k)

for (j, k) ∈ ZN × ZN . Hence Vγ̃ γ̃ = Vγγ by (3.7).

By Remark 2.2 we deduce that

γ =
c√
b
M−k1Tj1χHa

for some constant c ∈ C, |c| = 1. Moreover, since γ is supported in Ha we
have in fact j1 = 0. Coming back to the function g (cf. (3.4)) we obtain

C−p,aT−j0g =
c√
b
M−k1χHa
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and therefore, since Cp,a and Mk1 commute and using (2.1),

g =
c√
b
M−k1Tj0Cp,aχHa

for a new constant c ∈ C, |c| = 1.

By (3.1), also f has the desired form.

(c) =⇒ (a)

Let f, g be as in the statement (c). The computation of the support of

Vgf is straightforward. Indeed, let h := χHa/
√
b. We have already observed

that Vhh = χHb,0/
√
N . Moreover, for m ∈ {0, . . . , b−1}, n ∈ {0, . . . , a−1}

we have

VCp,ahCp,ah(ma, nb+mp) = 〈Cp,ah, π(ma, nb+mp)Cp,ah〉/
√
N

= c 〈Cp,ah,Cp,aπ(ma, nb)h〉/
√
N

= c Vhh(ma, nb) = c/
√
N

for some constant c, |c| = 1, where we used (2.7) and the fact that Cp,a is
unitary on the subspace of functions supported in Ha.

Since, by (2.2),

‖VCp,ahCp,ah‖`2(ZN×ZN ) = ‖Cp,ah‖2`2(ZN ) = ‖h‖2`2(ZN ) = 1,

we have supp (VCp,ahCp,ah) = Hb,p.

Using (2.5) we deduce that

supp (Vgg) = Hb,p

and by (2.4)

supp (Vgf) = µ+ supp (Vgg) = µ+Hb,p,

which has therefore cardinality N .

This concludes the proof of Theorem 1.2.

4. Concluding remarks

In this section we report on the short proof of Theorem 1.1, following
[26, Proposition 4.1]. We also discuss a partial generalization of Theorem
1.2 to the case of arbitrary finite Abelian groups.

4.1. Proof of Theorem 1.1. ([26, Proposition 4.1]) It follows from (2.3)
and (2.2) that, if S = supp (Vgf),

‖f‖2`2(ZN )‖g‖2`2(ZN ) =
∑

(j,k)∈S

|Vgf(j, k)|2 ≤ |S|
N
‖f‖2`2(ZN )‖g‖2`2(ZN )

so that |S| ≥ N if f, g 6= 0.
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4.2. Generalization to finite Abelian groups. The basic definitions
from time-frequency analysis on Rd have a natural counterpart on finite
Abelian groups (see e.g. [14, 26]).

In short, on a finite Abelian group A (equipped with the counting mea-
sure) one can define the translation operator Tj, j ∈ A, and modulation

operator Mk, k ∈ Â (the dual group), as well as the corresponding time-
frequency shifts π(j, k) as unitary operators on `2(A) by

Tjf(`) = f(`− j), Mkf(`) = e2πi〈k,`〉f(`), π(j, k)f = MkTjf, ` ∈ A,

where the map A 3 ` 7→ 〈k, `〉 denotes the additive character k ∈ Â (that
is a homomorphism A → R/Z) – so that e2πi〈k,`〉 is the corresponding
multiplicative character (a homomorphism A → T = {z ∈ C : |z| = 1} –
the circle group).

We then define the short-time Fourier transform as

Vgf(j, k) =
1√
|A|
〈f,MkTjg〉`2(A),

for g, f ∈ `2(A), (j, k) ∈ A×Â, and the properties (2.2) and (2.3) generalize
in the obvious way (cf. [14, 26]). Hence, also the above proof of Theorem
1.1 extends to the case of finite Abelian groups, as already observed in [26,
Proposition 4.1].

Similarly, one can easily check that the formulas (2.1) and (2.4) gener-
alize naturally, and also the proof of (a)=⇒(b) in Theorem 1.2 carries on
essentially without changes. Summing up, we have the following result.

Proposition 4.1. Let A be a finite Abelian group, and f, g ∈ `2(A) \ {0}.
Then |supp (Vgf)| ≥ |A|. If |supp (Vgf)| = |A| then supp (Vgf) is a coset

of a subgroup of A× Â of order N .
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Appendix
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π
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(
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))
for N = 20,

a = 2, p = 1 (` ∈ Z); cf. (1.5). Its restriction to 2Z (marked
in the figure above) is N -periodic.
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