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Abstract: Market trends in the space sector suggest a notable increase in satellite operations and
market value for the coming decade. In parallel, there has been a shift in the industrial and academic
sectors from traditional Document-Based System Engineering to Model-based systems engineering
(MBSE) combined with Concurrent engineering (CE) practices. Due to growing demands, the drivers
behind this change have been the need for quicker and more cost-effective design processes. A key
challenge in this transition remains to determine how to effectively formalize and exchange data
during all design stages and across all discipline-specific tools; as representing systems through
models can be a complex endeavor. For instance, during the Preliminary design (PD) phase, the
integration of system models with external mathematical models for simulations, analyses, and
system budgeting is crucial. The introduction of CubeSats and their standard has partly addressed
the question of standardization and has aided in reducing overall development time and costs in the
space sector. Nevertheless, questions about how to successfully exchange data endure. This paper
focuses on formalizing a CubeSat model for use across various stages of the PD phase. The entire
process is conducted with the exclusive use of open-source tools, to facilitate the transparency of data
integration across the PD phases, and the overall life cycle of a CubeSat. The paper has two primary
outcomes: (i) developing a generic CubeSat model using Systems modeling language (SysML) that
includes data storage and visualization through the application of Unified modeling language (UML)
stereotypes, streamlining in parallel information exchange for integration with various simulation and
analysis tools; (ii) creating an end-to-end use case scenario within the Nanostar software suite (NSS),
an open-source framework designed to streamline data exchange across different software during
CE sessions. A case study from a theoretical academic space mission concept is presented as the
illustration of how to utilize the proposed formalization, and it serves as well as a preliminary
validation of the proposed formalization. The proposed formalization positions the CubeSat SysML
model as the central data source throughout the design process. It also supports automated trade-
off analyses by combining the benefits of SysML with effective data instantiating across all PD
study phases.

Keywords: preliminary design; CubeSat; systems engineering; concurrent design engineering;
model-based systems engineering; SysML; UML

1. Introduction

Since their introduction in the early 2000s, CubeSats [1] have revolutionized space
mission design. Their standardized design has enabled smaller nations and organizations
with limited resources to access space, making them a key research area and a new oppor-
tunity for both industry and academia [2]. The SMAD [3] provides a detailed history and
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highlights the significant changes brought by CubeSats, which include, e.g., a more cost-
effective and standardized platform, along with a standardized type of dispensers known
as the P-POD [4]; simpler and more streamlined design phases, resulting in significantly
fewer team members and reduced project timelines; and reliability (i.e., the measures of
how likely the system is to function without failure in operating conditions [5]) comparable
to that of larger satellite missions.

The “Space Economy Report 2023” [6] emphasizes a significant shift in the space industry
over the next decade, including a rise in satellite numbers and projected market growth to
approximately $737B. This trend aligns with the predictions of the "Nanosats Database" [7].
Industry demands faster space systems design, prompting a shift from Document-Based
System Engineering to Model-Based Systems Engineering (MBSE), “the formalized application
of modeling to support system requirements, design, analysis, verification, and validation activities
beginning in the conceptual design phase and continuing throughout development and later life cycle
phases” [8], in parallel with the further adoption of Concurrent Engineering (CE) methods.

In contrast to conventional sequential design processes, where specialists work inde-
pendently on their respective subsystem designs, CE is characterized by the simultaneous
collaboration of multiple engineers. Each engineer brings their specific expertise to the
table, distinguishing CE by its collaborative, integrated, and real-time approach [9,10].
Knoll et al. [11] identify key technical challenges in adopting Concurrent Engineering (CE)
methodologies, notably the necessity for robust integration among discipline-specific tools
and the comprehensive use of MBSE.

CE and MBSE approaches are gaining traction for their efficiency, accuracy, and
collaborative benefits in engineering, as per the International Council on Systems Engi-
neering (INCOSE) in its "Systems engineering Handbook" [12]; this view is also supported
by Henderson and Salado [13] and Syan and Menon [14]. As can be seen, the benefits
mentioned above correspond to needs expressed by the space sector, such as enhancing
how space systems are developed, and allowing real-time collaboration to expedite the
design, as per Knoll et al. [11].

INCOSE “Systems engineering (SE) Vision 2035" [15] foresees that the future of SE
heavily relies on MBSE, with advanced models and integrated simulations that enhance
system complexity management, efficiency, and reliability. By centralizing information
within a cohesive model, MBSE, when integrated with simulations, promotes a shared
and comprehensive understanding of complex systems. This approach aids in identifying
design limitations or incompatibilities, thereby preventing time and budget overruns,
particularly during the operational phase. The INCOSE “SE Handbook" [12] indicates that
this aspect grows increasingly important as system complexity rises.

However, the implementation of MBSE is faced with a set of challenges, including
data discontinuities across various design stages and a lack of reusable generic models, as
highlighted by Knoll et al. [11] and Salas Cordero et al. [16]. These challenges may impact
system models, simulation tools, and development cost reduction. An in-depth review of
such discrepancies in tools used to design and analyze complex systems in different design
phases is available to the reader in the work of Bajaj et al. [17].

Some works (e.g., Bajaj et al. [17] and Spangelo et al. [18]) present tools that partly
address these gaps as they were developed to facilitate integration between systems model-
ing language (SysML) models and specific simulation tools. Such tools, although offering
valuable insights towards the integration of SysML models and various simulation tools,
focus on proprietary software that not everyone has access to.

Scholz and Juang’s work [19] discusses the advantages of Open Design (In Scholz and
Juang [19], open Design is referred to as the combination of Open Source Software (OSS)
and Open Source Hardware (OSHW)) for sectors such as space mission design. Specifically,
for budget-constrained projects often seen in academic settings, this approach can enhance
data sharing among various entities, thereby fostering the development of more reliable,
cost-efficient, and innovative solutions. This is largely due to the extensive peer review that
is inherent in the open source community. Furthermore, adopting the open source model
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in CubeSat development within academia could simplify the design process. It enables
the reuse of ideas, software, and hardware, facilitating collaboration between different
groups. Project members can concentrate on distinct aspects of the same project without
the complications posed by confidentiality agreements [19].

The push for an open source software ecosystem has led to the development of
software frameworks such as the Nanostar software suite (NSS) v1.1 [20,21], which supports
a unified database across principal analysis software during the preliminary design (PD)
phase. However, the NSS lacks integration to modeling languages such as the unified
modeling language (UML) or the systems modeling language (SysML), a gap pointed
out in the studies by Salas Cordero et al. [16]. The work [16] highlights that using MBSE
can lead to streamlining the mapping of system element connections, which can enhance
change management, an aspect crucial throughout the entire life cycle of a product.

The work presented in this paper strives to pave the way toward closing the gap
between the expected benefits of implementing MBSE and CE approaches and their de-
ployment in an open source framework specifically applied towards the development of
CubeSats, answering two main research questions:

1. How to formalize the integration of MBSE tools and modeling languages with third-
party open source simulation tools for application throughout the entire PD phase?

2. How to formalize a CubeSat model that is general enough to be reusable across
different mission designs, yet detailed enough for a comprehensive representation of
the systems?

The research work presented in this paper is set within the context of the Nanostar
software suite (NSS) [16,20], also explored during a master’s thesis work [22]. This paper
aims to formalize a generalized SysML CubeSat model that has been enhanced through
the use of UML stereotypes for data characterization at any design stage and is capable of
being linked with any set of open source simulation tools, benefiting researchers, engineers,
and students in CubeSat development. The formalization aims to streamline the design
process and improve CubeSat mission PD, while procuring the reusability of the framework
throughout different CubeSat missions and issuing the need to reduce the fragmentation of
data and information in SE, thus posing the CubeSat model as the central source of truth
for data across all design stages. To the best of the authors’ current knowledge, there is no
open source framework able to address all the stated challenges and requirements in the
scope of this research work.

The proposed integration process (represented in Figure 1) enables seamless interaction
between the CubeSat model and simulation tools; and it is explained with greater detail
throughout the forthcoming sections. The proposed framework possesses the following
main three steps:

1. Data characterization within a CubeSat SysML model through UML stereotypes. This
includes the proposed generalization process for the operating modes (OMs) of a
spacecraft (S/C) as a way to obtain a generalized activity profile;

2. Generation of a model file parser for data extraction and generation of a software-
readable data structure;

3. Implementation of the newly generated data structure with any selected set of simula-
tion and analysis tools, e.g., the ones from the NSS constellation.

The novelty of this approach resides in its capability to include relevant design parameters
within a CubeSat model (step 1); information then is automatically extracted through a
dedicated parser (step 2) for simulation and analysis activities in third-party tools (step 3).
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Figure 1. Proposed Framework Formalization Steps.

This paper is organized as follows: Section 2 provides an overview of the principal
budgets and data required for PD phase studies, which are included in the proposed
CubeSat model formalization. Section 3 details the creation of a CubeSat SysML model
that is augmented with the help of UML stereotypes. This feature, thoroughly discussed
later, facilitates the integration of the model with diverse simulation and analysis tools. A
formalized approach for CubeSat OMs is also introduced, aimed at generating a general
activity profile (which delineates the variety of tasks or operations that the S/C is expected
to execute during its mission, encompassing the transitions between operation modes)
for mission analysis and simulation. Section 4 presents an end-to-end application of the
proposed formalization, serving as a proof of concept of the latter, by modeling a theoretical
space mission concept and the integration of such model with the NSS simulation tools.
Section 5 discusses the main results of this work and compares its main outcomes with
the current literature. Finally, the paper concludes by summarizing its main findings and
outlining potential directions for future research. Two Appendices are included at the
end of this work: Appendix A presents the main SysML and UML elements mentioned
within this paper for reference, while Appendix B presents the system-level block definition
diagram (BDD) of the presented case study for more detail.

2. CubeSat Preliminary Design

The CubeSat standard has revolutionized the space industry by its simplicity and
affordability, as highlighted in the SMAD [3]. This innovation has increased access to
space, allowing a wider range of institutions, including smaller academic and research
organizations, to participate in space exploration.

The preliminary design (PD) phase of a satellite, even for a compact CubeSat, requires
addressing multidisciplinary challenges. These include balancing technical constraints like
mass, volume, power, and data, each with distinct challenges and limitations. Additional
complexities such as communication budgets and mission-specific requirements add to the
design intricacies.

The work from Gateau et al. [21] provides a detailed examination of these challenges,
offering critical insights into the budgets and studies necessary to assess CubeSat mission
feasibility, summarized in Table 1.

• Mass Budget: Crucial for spacecraft engineering, the mass budget details total mass,
including structural elements, harnesses, and propellants. It also integrates margins
to handle uncertainties and changes across design and operational phases.

• Volume Budget: In S/C design, the volume budget specifies internal volume constraints
and ensures each component fits within these limits, including operational margins.

• Power Budget: Essential for mission viability, this budget calculates power needs
for all S/C components and generation capabilities, considering the impact of op-
erational orbit on eclipse durations. Power margins are managed to accommodate
energy fluctuations.

• Link Budget: Critical for mission communication, the link budget evaluates signal
strength, transmission losses, and antenna sensitivity. It considers factors like antenna
gain, travel distance, and atmospheric losses, ensuring reliable S/C communications.
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• Data Budget: This budget manages S/C data capabilities, estimating data generation,
processing, storage, and downlink needs based on mission duration and orbit. It
prioritizes data types and volumes to maximize mission value within resource limits.

• Other Budgets: For complex missions, additional analyses may include propellant,
radiation, and heat dissipation budgets, or focus on attitude and orbit control system
(AOCS) sizing and operational specifications.

• Margins: As per the European Space Agency (ESA)’s Margin Philosophy for Science
Assessment Studies [23], margins at system and component levels accommodate design
and operational variations, ensuring robust S/C functionality.

• Activity Profile: Outlines the S/C operations based on the concept of operations,
varying with mission objectives. This study develops a versatile activity profile for
various CubeSat configurations.

Table 1. Summary of principal budgets and data required for PD studies. Adapted from [21].

Budget Input Output

Mass Spacecraft (S/C) component masses S/C massMargins

Volume
S/C component allocated volume

S/C available volumeS/C total volume
Margins

Power

S/C component consumption
Activity profile Power consumption profile
Eclipses Required batteries
Solar cells and battery description Required solar cells
Margins

Link

Orbital parameters
Requirements (e.g., bit error rate (BER))
S/C communication system data Data flow
Losses Link Margins
GS or other S/C comm. sys. data
System margins

Data

Visibility windows
Activity profile Available data flow
List of ground stations Required on-board storage
Satellite inter-link

3. Data Characterization within a CubeSat SysML Model

This section delves into the information required to model a CubeSat when taking into
consideration its operating modes and how to characterize with a modeling language the
overall data required for simulations, analyses, and trade-offs.

3.1. Operating Mode Generalization

As discussed in the preceding sections, the development of comprehensive system
budgets often requires the identification of the S/C’s activity profile. This profile outlines
the range of operations or activities that the S/C should perform during its mission,
including transitions between operating modes. Derived from the concept of operations
(ConOps), the activity profile can vary significantly depending on the specific objectives
and design of the Spacecraft (S/C) and, thus, is typically tailored ad hoc for each mission.

To enhance the modeling abstraction capabilities of the proposed formalization, before
delving into data characterization within a CubeSat model, it is essential to explore methods
for generalizing the activity profile of a CubeSat. Consequently, this paper introduces a
generalized approach to define the operating modes of a CubeSat, drawing on common
attributes and criteria across various low Earth orbit (LEO) CubeSat concepts of operations.
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3.1.1. Existing Approaches to OM Identification

An SE framework for CubeSat design to define operating modes (OMs) and their
interdependencies can be found in Asundi and Fitz-Coy’s work [24]. They state that the
mission concept of operations (ConOps) is a crucial document for analyzing mission objec-
tives and operations. This framework identifies mission phases, their OMs—such as a safe
mode, a communication mode, or a mission operations mode—and transition conditions, by
defining the spacecraft’s activity profile. An example of ConOps is proposed in the National
Aeronautics and Space Administration (NASA) “Systems Engineering Handbook” [25], along
with the elements involved in its definition.

An abstracted sequence of operations (i.e., the tasks and functions that the S/C must
complete during its operative life) for CubeSats can also be defined [26], as many operations
are similar or closely related enough to allow standardization of the OMs and ConOps.

As outlined in Jain’s work [26], a standardized method of describing the operating
modes, at least in terms of control sequences and minimum requirements for each OM, can
be developed by analyzing the commonalities among different ConOps of LEO CubeSat
missions (e.g., SwampSat [24], Waydo et al. [27], M3 and APEX [28], VISORS [29], Cat-2 [30],
and DICE [31]).

Therefore, the rest of this section aims to formalize a general S/C’s activity profile. To
achieve this, it is possible to identify common characteristics among the ConOps and OMs
of several CubeSats in low Earth orbit (LEO) missions, through a process similar to Jain’s
work [26], as presented in the following.

3.1.2. Proposed OM Generalization

It is important to note that although comparing different missions, most of the analyzed
ConOps (e.g., Waydo et al. [27], Lightsey et al. [29], Fish et al. [31]) present similar OMs
and transition criteria.

In particular, it can be observed how the operating modes related to early orbit
phase (EOP) and off-nominal scenarios, such as detumbling, calibration, or safe modes, are
almost always considered in their missions’ ConOps, with various connotations. While
certainly critical from a design point of view, such OMs are not considered for the current
analysis. They represent non-nominal conditions and, as a result, have properties and
transition conditions that need to be studied in more detail to determine whether they
can be generalized, and if so, what would be the best manner to carry this out. The
operating modes relative to the operative phase of the S/Cs are the ones considered further
in this paper.

Some of the OMs usually present are a servicing mode and a communication mode,
which refer, respectively, to the cases during which the payload is active or a down-
link/uplink with a ground station (GS) is present. A central stand-by mode is often consid-
ered to reduce power consumption when, e.g., the payload is off or if no ground stations
are visible.

Some other OMs have been found throughout the literature, such as the following:
Carreno-Luengo et al. [30] discusses how some OM transitions can occur based on the state
of charge of the batteries, for example, during eclipse periods when no power from the solar
arrays is available. Morton and Withrow-Maser [28], conversely, consider the attainment
of a specific orbital configuration as a transition criterion between two OMs. The main
discrepancies between the various OMs can thus be reduced, at the level of detail desired,
to when a specific OM is activated and which subsystems are active in that mode. This can
be further simplified to the differences in average power consumption and data rate.

The proposed generalization offers a structured approach to defining any set of OMs,
integrating a range of parameters and sub-parameters that capture the essence of an S/C’s
operational scenario. Table 2 summarizes such generalization.

The following general transition criteria for the operating modes have been identified
among the most common present in the literature:
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• Presence of eclipse: CubeSats often switch to a low-power mode during eclipses to
conserve energy and minimize battery depth of discharge (DOD), as discussed in
Asundi and Fitz-Coy [24], Waydo et al. [27], and Carreno-Luengo et al. [30].

• Presence of GS or specific target in line of sight (LOS) with the S/C: Communications
with a Ground station (GS) to receive commands and downlink data are critical, as
highlighted, i.e., by Asundi and Fitz-Coy [24] and Fish et al. [31].

• S/C over specific Latitude/Longitude zone: For Earth observation missions, such as
those noted in Carreno-Luengo et al. [30], satellite payloads activate over targeted
areas to collect mission-specific data.

• S/C in specific true anomaly range: Missions may require system activation at certain
orbital positions for optimal operation, as explained in Lightsey et al. [29].

• Activation at a specific time: Determined by Kepler’s Equation, some missions plan
operations based on the time since periapsis to align with mission timelines, detailed
further in Fitzpatrick’s work [32].

The analysis of various ConOps, such as in Waydo et al. [27], shows the common use
of a central standby mode, activated when no specific operational conditions are met. To
generalize, a default mode check is essential, allowing one of the generalized OMs to become
active when other specific operating mode conditions are not triggered, making this the
central mode and thus ensuring continuous operation and readiness for mode transitions.

Table 2. Proposed operating mode generalization.

Parameter Unit Sub-Parameter Unit

A
ct

iv
at

io
n

C
ri

te
ri

a

S/C in eclipse

bool

n.a.

GS in LOS n.a.

S/C over Lat/Lon zone

Start Latitude

degStart Longitude
End Latitude
End Longitude

S/C in True Anomaly range Range Start degRange End

S/C in time interval Interval Start sInterval End

Default Mode check bool n.a.

Mode Priority int n.a.

V
ar

ia
bl

es

Power Consumption W n.a.

Transmitted data rate

kbit/s

n.a.

Produced data Housekeeping data kbit/sPayload/other data

M
et

ad
at

a Mode Name
str

n.a.

Mode ID n.a.

Post-processing information n.a. Color, . . . str

Considering each mission’s unique goals, it is crucial to allow users to set the priority
for each OM activation. By using a priority counter in each operating mode definition, the
models can dynamically adjust OM based on their priority levels, allowing higher priority
modes to override lower ones, thus adapting to varying mission scenarios.

Key distinctions between OM influence system budgets (Table 1) and include vari-
ations in power consumption, data transmission rates, and data quantities. Accurately
defining these differences is vital for modeling the CubeSat’s operational dynamics and
resource needs across different OMs.
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Introducing metadata for each OM, such as mode ID, name, and post-processing
colors for visualization, enhances simulation clarity and usability. These metadata facilitate
better distinction and interpretation in analyses and presentations, offering clearer insights
into the CubeSat’s operational profile.

By employing this general model in dedicated data structures, it becomes feasible to
simulate a wide range of mission scenarios. This flexibility is invaluable in testing and
refining various ConOps and operational strategies, making it a versatile tool in S/C design
and mission planning. Such a comprehensive model not only aids in theoretical planning
but also has practical implications, significantly enhancing the efficiency and effectiveness
of mission simulations.

3.2. Data Characterization through UML Stereotypes

The proposed formalization employs unified modeling language (UML) stereotypes to
specify the attributes of blocks within systems modeling language (SysML) block definition
diagrams (BDD) (see Figure 2). For the formalization, stereotypes were implemented as
extensions to the UML Class metaclass. By extending this metaclass, any SysML block
that a stereotype is applied to inherits the attributes of that stereotype, as detailed in
Appendix A. This approach not only enriches the detail and functionality of the blocks but
also streamlines the modeling process by leveraging inherited characteristics.

Below, the revised set of stereotypes is introduced, and they are SystemComp; Sys-
temMain; Battery and SolarArray; Transmitter and Receiver; Orbit and PropagationLosses;
GroundStation; and last but not least, Operating Mode. These enhance the characteriza-
tion of parameters within the CubeSat SysML model. Adding these stereotypes expands
the model’s functionality, without compromising its ability to represent the logical and
functional behaviors of the elements.

«metaclass»
Class

«stereotype»
SystemComp

+ mass: kg
+ powerConsStb: W
+ powerConsOn: W
+ powerConsPeak: W
+ compID: str
+ compName: str
+ manifacturer: str
+ margin: floatPercent

«stereotype»
SystemMain

+ modeIsStb: OMlist
+ modeIsOn: OMlist
+ modeIsPeak: OMlist
+ computeMass: bool
+ computeCons: bool
+ volume: m3

«stereotype»
Battery

+ capacity: Wh

«stereotype»
SolarArrays

+ producedPower: W

«stereotype»
Receiver

+ gain: dB
+ etaRx: float
+ lossPoint: dB
+ lossCable: dB
+ lossConnector: dB
+ noiseTemp: K

«stereotype»
Transmitter

+ power: W
+ gain: dB
+ lossCable: dB
+ lossConnector: dB
+ lossFeeder: dB
+ lossPoint: dB
+ lossMisc: dB
+ freq: Hz
+ dataRate: kbits
+ reqBER: float
+ modulation: str
+ sysMargin: dB

pkg «profile» Systems

Figure 2. System UML stereotypes definition.

3.2.1. SystemComp

SystemComp establishes the core stereotype for a physical component of the S/C,
capturing key metrics such as the system’s mass, power usage, and applicable margins,
along with essential metadata like ID, name, and manufacturer for tracking components.

To further tailor the model, power usage attributes are segmented into powerConsIsStb,
powerConsIsOn, and powerConsIsPeak, corresponding to stand-by, on, and peak power con-
sumption statuses of each subsystem and component, respectively.

A table detailing the attributes linked with this stereotype is presented in Table 3,
while Figure 2 illustrates their UML definition.

As depicted in Figure 2, additional stereotypes further delineate SystemComp: Sys-
temMain, Battery, SolarArray, Transmitter, and Receiver. The applicable margins follow
the ESA “Margin philosophy for science assessment studies” [23], which requires that they are
considered at both component and system levels. As a result, they are included in the
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SystemComp stereotype, causing them to also be inherited by the stereotypes derived from
it, including the SystemMain stereotype that is discussed below.

Table 3. SystemComp stereotype attributes.

Attribute ValueType Scope

mass kg Define component’s/system’s mass
powerConsStb W Power consumption while in Stand-by mode
powerConsOn W Power consumption while in On mode
powerConsPeak W Power consumption while in Peak mode
compID str Component’s/system’s reference ID
compName str Component’s/system’s name
manifacturer str Component’s/system’s manufacturer
margin float % * Applicable margin to power consumption and mass

* float %: margins are expressed as decimals, so that 0 ≤ margin ≤ 1.

3.2.2. SystemMain

This stereotype can be used to define primary sub-systems of the S/C (e.g., electri-
cal power system (EPS), propulsion system, payload, etc.). Beyond the attributes from
SystemComp, it includes the list of OMs in which the system can operate for each power
consumption status (stand-by, on, or peak consumption statuses have been considered for
an active component), the system volume, and two Boolean flags for data extraction and
analyses. Moreover, the computeMass and computeCons attributes help indicate whether
simulation tools should account for the masses and power consumption of the system’s
sub-components: if all components of a system are available and their respective masses
(or consumption) are specified, such masses (or consumption) can be aggregated to de-
termine the total mass (or consumption) of the system. This scenario is applicable when
computeMass (or computeCons) is set to True. If, conversely, only a systemMain block has
been defined (e.g., an AOCS without a detailed BDD for systemComps like sensors, actua-
tors, etc.), but it is still needed to perform analyses, computeMass can be set to False. In
this case, the software is told to use the mass specified for the block with the systemMain
stereotype applied without searching for the masses of individual systemComps.

These are introduced to aid the database creation even in the early design stages when
the full system architecture is still being defined. Table 4 lists the additional attributes
introduced by the SystemMain stereotype.

Table 4. SystemMain stereotype additional attributes.

Attribute ValueType Scope

modeIsStb OM List * List of OMs in which the system is in Stand-by mode
modeIsOn OM List * List of OMs in which the system is in On mode
modeIsPeak OM List * List of OMs in which the system is in Peak mode
computeMass bool Specify if computing components’ mass or not
computeCons str Specify if computing components’ consumption or not
volume m3 System’s external volume

* OM List: [OM1 name, OM2 name, . . . ].

3.2.3. Battery and SolarArray

Battery and SolarArray stereotypes encompass the battery’s capacity and the power
generated by solar arrays, in addition to the attributes introduced by SystemComp.

3.2.4. Transmitter and Receiver

These stereotypes define crucial variables for the communication system elements
affecting the link budget, such as transmitter and receiver antenna gain and power, various
sources of signal losses, and transmitted data rate. Their attributes are summarized in
Table 5.
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Table 5. Receiver and transmitter stereotype additional attributes.

Attribute ValueType Scope

Receiver

gain dB Receiver antenna gain
etaRx float Receiver efficiency
lossCable dB Signal losses due to cables length
lossConnector dB Signal losses due to connectors
lossPoint dB Signal losses due to pointing mismatch
noiseTemp K System noise temperature

Transmitter

power W Transmitter antenna power
gain dB Transmitter antenna gain
lossCable dB Signal losses due to cables length
lossConnector dB Signal losses due to connectors
lossFeeder dB Signal losses inside the feeder
lossPoint dB Signal losses due to pointing mismatch
lossMisc dB Other Signal losses
freq Hz Transmitted signal frequency
dataRate kbit/s Transmitter data rate
reqBER float Required bit error ratio
modulation str Modulation type name
sysMargin dB Margin applied to the transmitted signal

3.2.5. Orbit and PropagationLosses

The Orbit and PropagationLosses stereotypes specify the required properties for
orbital and link budget analyses, as shown in Figure 3 and summarized in Table 6.

Table 6. Orbit and PropagationLosses stereotypes attributes.

Attribute ValueType Scope

Orbit

SMA km Semi-major axis
ECC float Eccentricity
INC deg Inclination
RAAN deg Right ascension of ascending node
AOP deg Argument of periapsis
startTA deg Starting true anomaly
startEpoch epochFormat * Initial simulation epoch

PropagationLosses

lossPol dB Signal losses due to polarization
lossAtm dB Signal losses due to atmosphere
lossScin dB Signal losses due to scintillation
lossRain dB Signal losses due to rain
lossCloud dB Signal losses due to clouds presence
lossSnowIce dB Signal losses due to snow and ice
lossMisc dB Other signal losses

* epochFormat: “YYYY, MM, DD, hh, mm, ss”.
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«metaclass»
Class

«stereotype»
PropagationLosses

+ lossPol: dB
+ lossAtm: dB
+ lossScin: dB
+ lossRain: dB
+ lossCloud: dB
+ lossSnowIce: dB
+ lossMisc: dB

«stereotype»
Orbit

+ SMA: km
+ ECC: real
+ INC: deg
+ RAAN: deg
+ AOP: deg
+ startTA: deg
+ startEpoch: epochFormat

pkg «profile» Orbit

Figure 3. Orbit and Propagation Losses UML stereotypes definition.

3.2.6. GroundStation

The GroundStation stereotype enables the definition of all relevant data for identifying
ground stations, including position, altitude, and antenna data. This stereotype’s definition
is presented in Figure 4, while Table 7 summarizes the introduced parameters.

Table 7. GroundStation stereotype attributes.

Attribute ValueType Scope

altitude m GS altitude
minElevation deg Min. angle between S/C LOS and GS horizon line
Lat deg GS latitude
Lon deg GS longitude
powerTx W GS transmitter gain
lineLossTx dB GS transmitter signal losses due to line length
lossConnectorTx dB GS transmitter signal losses due to connectors
gainTx dB GS transmitter gain
lossPointRx dB GS signal losses due to pointing mismatch
freq Hz Transmitted signal from GS frequency
dataRateTx kbit/s GS transmitter data rate
reqBER float Required bit error ratio
modulation str Modulation type name
sysMargin dB Margin applied to the transmitted signal
etaRx float GS receiver efficiency
diameterRx m GS receiver antenna diameter
LNAGain dB GS receiver low noise amplifier gain
noiseTempRx K GS receiver system noise temperature
lossCableRx dB GS receiver signal losses due to cable length
lossConnectorRx dB GS receiver signal losses due to connectors

«metaclass»
Class

«stereotype»
GroundStation

+ altitude: m
+ minElevation: deg
+ Lat: deg
+ Lon: deg
+ powerTx: W
+ lineLossTx: dB
+ lossConnectorTx: dB
+ gainTx: dB
+ lossPointRx: dB
+ freq: Hz
+ dataRateTx: kbits
+ reqBER: float
+ modulation: str
+ sysMargin: dB
+ etaRx: float
+ diameterRx: m
+ LNAGain: dB
+ noiseTempRx: K
+ lossCableRx: dB
+ lossConnectorRx: dB

pkg «profile» Ground Station

Figure 4. Ground station UML stereotype.
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3.2.7. OperatingMode

The OperatingMode stereotype is essential for replicating the operating mode general-
ization presented in Table 2. This stereotype is closely tied to the systems’ definitions, as
the power consumption of each OM is calculated based on the power consumption of each
subsystem or, optionally, cascaded from the individual components of each subsystem.

Three attributes have been added to the SystemMain stereotype to denote the OMs
during which a particular system is in standby, on, or peak mode: modeIsStb, modeIsOn,
and modeIsPeak. These enable the simulation tools to associate the power consumption
of a specified system (being this either stand-by, on or peak for each mode) with the total
consumption of each operating mode.

Moreover, an isDefault Boolean attribute is present in the OperatingMode stereotype,
allowing the definition of an active OM (isDefault = True) when no activation criteria
are satisfied.

This stereotype is shown in Figure 5 and its attributes summarized in Table 8.

Table 8. OperatingMode stereotype attributes.

Attribute ValueType Scope

modeName str OM name
modeID int OM unique ID
postProColor str OM color for post-processing
priority int Priority order for OM activation criterion check
isEclipse bool Is the OM active in eclipse?
isOnTarget bool Is the OM active while over GS?
isOnZone bool Is the OM active over a Lat/Lon zone?
zoneLatStart deg Zone initial Latitude
zoneLatEnd deg Zone ending Latitude
zoneLonStart deg Zone initial Longitude
zoneLonEnd deg Zone ending Longitude
isInRange bool Is the OM active while in a true anomaly range?
rangeStart deg True anomaly range start
rangeEnd deg True anomaly range end
isInInterval bool Is the OM active while in a time interval?
intervalStart s Seconds after periapsis transition
intervalEnd s Seconds after periapsis transition
TCRate kbit/s OM telecommand data rate
TMRate kbit/s OM telemetry data rate
powerCons W OM total power consumption
isDefault bool Is the OM the default OM?

«metaclass»
Class

«stereotype»
OperatingMode

+ modeName: str
+ modeID: int
+ postProColor: str
+ priority: int
+ isEclipse: bool
+ isOnTarget: bool
+ isOnZone: bool
+ zoneLatStart: deg
+ zoneLatEnd:  deg
+ zoneLonStart: deg
+ zoneLonEnd: deg
+ isInRange: bool
+ rangeStart: deg
+ rangeEnd: deg
+ isInInterval: bool
+ intervalStart: sec
+ intervalEnd: sec
+ TCRate: kbit/sec
+ TMRate: kbit/sec
+ powerCons: W
+ isDefault: bool

pkg «profile» Operating Mode

Figure 5. Operating mode UML stereotype.
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3.2.8. Stereotype Illustrative Example: Payload Block Definition Diagram

The previous subsection presented how the necessary stereotypes were defined for
the proposed formalization. This section showcases how the stereotypes can be utilized
in a model using BDDs. Figure 6 shows an early design phase of a global navigation
satellite system (GNSS) payload—from a case study presented more in detail later in this
work—and its BDD utilizing the aforementioned stereotypes.

«block, systemMain»
Payload

parts
+ cmcu: CMCU[1]
+ afs: AFS[2]

SystemMain
computeMass = "True"
computeCons = "False"
margin = "0.05"
compName = "GNSSPayload"
powerConsStb = "84"
powerConsOn = "105"
powerConsPeak = "105"
modeIsStb = "[Stand-by, Phasing]"
modeIsOn = "[Servicing]"
modeIsPeak = "[]"
mass = "0"

«block, systemComp»
AFS

parts
+ rafs: RAFS[1]
+ phm: PHMmini[1]

SystemComp
mass = "0"

«block, systemComp»
RAFS

SystemComp
mass = "3.3"
margin = "0.05"

«block, systemComp»
PHMmini

SystemComp
mass = "12"
margin = "0.05"

«block, systemComp»
CMCU

SystemComp
mass = "5.2"
margin = "0.05"

+cmcu 1

+afs

2

+phm 1

+rafs 1

bdd [TWC] Payload

Figure 6. Payload BDD example.

It is composed of a SystemMain block—the payload—and a set of SystemComp blocks,
connected through Composite Associations (for more information about UML and SysML ele-
ments, including the above-mentioned Composite Associations, please refer to Appendix A).
Thus, it is possible to understand how the payload is composed of a clock monitoring and
control unit (CMCU) and an atomic frequency standard (AFS), with the latter additionally
composed of a passive hydrogen maser (PHM) and a rubidium atomic frequency standard
(RAFS).

The computeCons and computeMass attributes from the SystemMain stereotype facili-
tate data extraction at any design stage, especially when detailing individual components
of a system is not feasible, as happens in this case. The example above illustrates that
while the masses of the components are defined, the computeMass variable is set to True,
indicating that the mass of the payload is derived from the masses of its components.
The same happens for the mass of the AFS block, composed of two other blocks (PHM
and RAFS).

It can be noted how the masses of both payload and AFS are initialized at a null value,
which is overwritten during the data extraction with the sum of the respective components.

Meanwhile, the computeCons variable is appropriately set to False, as the power
consumption of various components is not yet specified. However, this does not hinder
future interactions with simulation tools, as the overall payload’s power consumption is
defined at the systemMain level.

As discussed in the preceding sections, the SystemMain stereotype enables also the
definition of various power consumption statuses (stand-by, on, peak), to be associated
with relevant OMs. In the example above, the payload is in stand-by—thus consuming
84 W—during a stand-by OM and a phasing OM, while it is on—consuming 105 W—during
a servicing OM. Should there be other OMs for the represented mission, it is implied from
this BDD that the payload will be off.

As per ESA “Margin philosophy for science assessment studies” [23], a 5% margin in this
case is applied at both the component and system levels.

The proposed framework considers redundancies and inheritance of characteristics
when the sub-levels of the description required are not available at a certain point in the
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design of the system. As can be seen in Figure 6, the proposed formalization accounts
for component redundancies (for instance, in the case of the AFS block) by noting the
multiplicity (i.e., the number near the arrowhead of each composite association, also present
in the parts section of the block) of each composite association in the BDD.

3.3. Model Parser

Most of the open-source modeling tools (e.g., Capella [33], Papyrus [34], Gaphor [35])
store their models in .xml format [36]. This is a common file format for storing and
transmitting data structures with a pre-defined set of rules.

Understanding the unique rules and structures of model files enables the creation
of simple Python libraries for data extraction and manipulation of .xml files. The for-
malization proposed is beneficial as it leverages common attributes among SysML blocks
with similar stereotypes, promoting uniformity in the model files. The connections among
stereotypes, their attributes, and the associated blocks can be exploited for developing a
parser that converts all the data included within the SysML model into a software-readable
data structure.

Therefore, with prior knowledge of the stereotypes and attributes within a model, and
once its file structure is known, extracting all the necessary data for simulation and analysis
activities becomes feasible, independently from the variety and number of blocks in the
model. Starting with the stereotype definitions, all the necessary properties for simulations
and system budget generation are derived through cascading cross-references within the
file structure.

In Pons et al. [37], it is shown how the formats between tools are not by default
interchangeable. Hence, although the formalization is tool-independent, a thorough under-
standing of each tool’s model file structure is crucial for the development of a dedicated
model file parser. While the format of model files is consistent across different modeling
tools, the method of recording information in these files varies by tool. Therefore, this paper
focuses on a parser for models created with Gaphor that uses the proposed stereotypes.

The parsing process can also be reversed to enable automatic updates to model files
following analysis or optimization activities. This approach confirms the role of the model
as the central source of data throughout all project stages, seamlessly integrating design
modifications without manual intervention.

Other relevant outputs from the parsing process include, e.g., utilizing tools like the
Graphviz library [38], enabling the automatic creation of a dependency graph (presented
later in this work), which visually maps out the interrelationships among model elements
and their attributes, clarifying how changes to one variable may impact the entire model.

This automated workflow increases precision and efficiency, ensuring that any adjust-
ments or improvements from analysis or optimization are systematically and accurately
reflected in the model. This not only maintains the model’s accuracy and relevance but
also supports a more agile and responsive design process, allowing changes to be quickly
incorporated and available for further iterations or evaluations.

Once the stereotypes necessary for characterizing the S/C and mission elements have
been defined, they can be reused for describing other missions, varying only by the data
entered within a model. Hence, the parser itself, being developed to work with the proposed
set of stereotypes, is reusable with any model compliant with the proposed formalization.

The source code of the parser developed within the context of work is available
in a public repository available at https://gitlab.isae-supaero.fr/preliminary-design/
mbse-cubesat-sysml (accessed on 27 February 2024) under GPLv3 (https://www.gnu.
org/licenses/gpl-3.0.html (accessed on 1 March 2024)) License).

4. Use Case Application

This section presents an application of the proposed formalization using a SysML
model enhanced with UML stereotypes and linked to simulation tools from the Nanostar
software suite (NSS) constellation [20,21]. The chosen case study is the “The White Compass

https://gitlab.isae-supaero.fr/preliminary-design/mbse-cubesat-sysml
https://gitlab.isae-supaero.fr/preliminary-design/mbse-cubesat-sysml
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html
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(TWC)” mission, a theoretical academic concept developed during the “Space Mission
and Systems Design” course at Politecnico di Torino. The TWC mission aims to deliver
GNSS services across the Arctic region using a constellation of 12 small satellites in two
high elliptical Molniya-like orbits (for more on elliptical orbits, see R. Fitzpatrick’s “An
introduction to Celestial Mechanics”, pp. 46–52 [32]).

The core of each TWC S/C is detailed in a comprehensive SysML block definition dia-
gram. Each BDD, such as the one illustrated in Figure A4, applies specific UML stereotypes
that are essential for defining each system and component of the S/C, accurately aligning
with the mission’s objectives. Additionally, the SysML model for the TWC mission includes
detailed, system-specific BDDs, orbit characterizations, ground stations, operating modes,
and requirements. The full extent description of the mission and diagrams can be found
in the project’s public repository. These elements provide a holistic view of the mission,
covering the S/C, its operational environment, and mission-critical parameters.

The summary of the main parameters included within the model to obtain a power
budget and a data budget is reported in Table 9. The full data set is present in the work’s
public repository.

Table 9. Simulation data summary.

Parameter Value [Unit] Parameter Value [Unit]

Orbit EPS

AOP 270.0 [deg] Battery capacity 1036.8 [Wh]
ECC 0.55 [-] * Solar array power 2021.0 [W]
INC 63.4 [deg] Stand-by OM consumption ** 251 [W]
RAAN 0.0 [deg] Phasing OM consumption ** 582 [W]
SMA 16,500.0 [km] Servicing OM consumption ** 397 [W]

Transmitter Receiver

ηRX 0.95 [-] Data Rate 13.0 [kbit/s]
Gain 40.0 [dB] Frequency 2.0 [GHz]
LNA Gain 0.0 [dB] Gain 45.0 [dB]
Cable losses 0.0 [dB] Cable losses 0.0 [dB]
Connector losses 0.0 [dB] Feeder losses 0.0 [dB]
Pointing losses 0.0 [dB] Pointing losses 0.0 [dB]
Noise Temperature 500.0 [K] Power 35.0 [W]

Required BER 10.5 [-]

Ground Station

LNA Gain 7.82 [dB] Cable losses RX 0.0 [dB]
Latitude 67.9 [deg] Connector losses RX 0.0 [dB]
Longitude 21.0 [deg] Connector losses TX 0.0 [dB]
Altitude 402.0 [m] Pointing losses RX 0.0 [dB]
Data Rate TX 10.0 [kbit/s] Minimum Elevation 5.0 [deg]
Diameter RX 15.0 [m] Frequency 2.0 [GHz]
ηRX 0.95 [-] Noise Temperature RX 515.0 [K]
Line losses TX 4.7 [dB] Power TX 177.8 [W]
Gain TX 46.8 [dB] Required BER 10.5 [-]

* Because of limitations within the simulation tools used, the ECC has been considered null. ** Breakdown of
active systems for each OM is detailed in Figure A4.

After characterizing the S/C model, the next step is to extract the pertinent data from
the model file. The parser primarily targets blocks with applied stereotypes. This targeted
approach boosts the flexibility and broad applicability of the SysML model, ensuring that
only essential data are extracted for data structure creation. This adaptability is particularly
valuable, enabling the model to represent any system at any design stage, as long as the
required stereotypes are implemented.

Finally, once the database is established, it is possible to engage in analysis and
simulations using NSS tools (e.g., to generate the desired system budgets, as shown in
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Figure 7) or other preferred simulation platforms. This phase is augmented by the capability
to modify the model files directly from the Python scripts, enabling dynamic updates and
adjustments to the model based on database inputs.

50,000 100,000 150,000 200,000 250,000

50,000 100,000 150,000 200,000 250,000

50,000 100,000 150,000 200,000 250,000

(a)

50,000 100,000 150,000 200,000 250,000

50,000 100,000 150,000 200,000 250,000

(b)
Figure 7. TWC output power and data budgets. (a) TWC power budget. (b) TWC data budget.

The entire process, once the stereotypes are defined within the model for the charac-
terization of all relevant design parameters, is continued by means of the dedicated parser.
It links the model to the chosen set of simulation tools by extracting the relevant data from
the model files and generating a software-readable database.

The parser allows the parsing process to be inverted to facilitate automatic updates to
model files after analysis or optimization tasks. This method establishes the model as the
center reference for data across all project phases, effortlessly incorporating design changes
without the need for manual intervention. In other words, the model is seen as the single
source of truth.

A supplementary result of the parsing process is a requirements list (an excerpt is
shown in Figure 8). This is possible due to the nature of the requirement element in SysML
as it is a stereotype and thus manipulable by the model parser through the same logic used
for the stereotypes introduced by the proposed formalization. This feature is especially
valuable for modeling tools lacking the functionality to export requirement diagrams as tables,
or when the specific formatting of such tables is desired.

REQ. ID
REQ.
NAME

REQ. TEXT

R-FUN-EPS-001 EPS-001
The electrical power system shall provide and
regolate sufficient power to all other subsystems'
components in each mission phase

R-FUN-EPS-002 EPS-002
The electrical power system shall provide the
correct voltage to satellite's systems

R-FUN-EPS-003 EPS-003
The electrical power system shall ensure that the
maximum power produced is within the safe
operating limits to prevent any harmful effects

R-FUN-EPS-004 EPS-004
The batteries' functioning design shall guarantee
an optimal efficiency during operational life

R-FUN-EPS-005 EPS-005
The solar panels shall generate at least 1.6 kW
including margin

R-FUN-EPS-006 EPS-006
Solar panels shall perform sun tracking with an
accuracy of ±5% of full step.

R-FUN-EPS-007 EPS-007
The batteries' Depth-of-Discarge (DoD) shall be
less than 50% during operational life

R-FUN-EPS-008 EPS-008 The batteries' voltage shall be 28±2 V
R-FUN-EPS-009 EPS-009 The batteries shall have a capacity of 2 kWh

R-FUN-EPS-010 EPS-010
The batteries shall have a minimum lifetime of 6
years

Figure 8. Example of requirement list output.

Another product of the parsing process is the dependency graph, illustrated in Figure 9.
For clarity, only connections related to the modeled TWC payload are shown (see Figure 6).
A complete relationship graph featuring all model elements is available in the project’s
public repository.
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In the SysML model, establishing associations or other connections is essential for defin-
ing the relationships between different blocks. For instance, in the case of the SystemComp
and SystemMain blocks shown in Figure 9, these connections facilitate the cascading of
critical properties like power consumption and mass from the component level to the
main system block. Additionally, the operating modes are linked to the SystemMain blocks
through attributes such as modeIsStb, modeIsOn, and modeIsPeak.

Systems Components

AFS

RAFS

PHMmini

CMCU

Main Systems

Payload

Operating Modes

Stand-by

Servicing

mass

mass

margin mass

margin mass

margin mass

margin

powerConsOn

powerConsPeak

powerConsStbmodeIsOn

powerCons

modeIsPeak

modeIsStb

powerCons

TCRate

TMRate

isDefault

isEclipse

TCRate

TMRate

isDefault

isOnTarget

Figure 9. Example of payload relationship graph. Connections are derived from the BDD in Figure 6.

Exploiting dependencies is crucial for effectively leveraging the SysML model in the
design process. By extracting data for the database, it becomes feasible to generate a
relationship graph. This graph is populated by all blocks to which a stereotype has been
applied. This graph provides a comprehensive visual overview of the dependencies and
interactions among various elements within the model. Such a graph can offer more clear
insights as to how modifications in one part of the system could affect others, by enabling
more strategic and informed decision-making throughout the design phase.

When considering the entire CubeSat model, this method could allow for the inclu-
sion of other vital systems, such as ground stations or the S/C’s communication system,
revealing all critical relationships for data and link budget analysis. Moreover, adding
elements like solar arrays, batteries, and an EPS, along with orbital parameters, would help
visualize all interrelationships crucial to a power budget. Such an extensible relationship
graph would present a holistic view of the system, underscoring the complex web of
dependencies defining the S/C’s elements and the ramifications of changing one variable
on the overall design.
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5. Discussion

As mentioned, the preliminary design of a CubeSat involves extensive multidisci-
plinary efforts and complexity. Despite the increasing use of advanced SE approaches such
as MBSE and CE, the fragmentation in data storage and transmission continues to be a
significant challenge for the SE sector [8,15]. These challenges, in fact, hinder the seamless
flow of information across different stages of CubeSat development, impacting efficiency
and integration. Therefore, the approach proposed in this paper addresses the issues
regarding a seamless flow of information. This issue was identified as well as a primary
challenge in the adoption of CE methodologies in Knoll et al. [11]. The need for a robust
integration among various discipline-specific tools and the comprehensive application of
MBSE is clear.

There are many inconsistencies regarding the interoperability of tools. For a detailed
analysis of the inconsistencies throughout tools used for designing and analyzing complex
systems at different design phases, readers can refer to Bajaj et al. [17]. This study highlights
the following two main gaps in particular:

• Gap 1: The lack of model-based continuity in design and simulation activities across
mission stages due to the use of different tools in initial versus later phases, leading to
inconsistencies.

• Gap 2: The lack of continuity between design and simulation models within each
design phase, particularly between conceptual designs and mathematical models in
the early stages.

Therefore, this study introduced a formalized CubeSat SysML model enhanced with
UML stereotypes for data characterization, designed with flexibility and compatibility
across various simulation tools in mind, demonstrating its utility and flexibility within the
space system domain. The proposed framework is summarized in Figure 10.

CubeSat Model

Requirements Architecture
Model Read & Edit

Eng.
Team

Modeling
methodology

Modeling tool

Model parserDesign
parameters

OMs
characterisation Simulation and

analysis tools

System budgets

Reports

Other outputs

UML Stereotypes

Design
parametersOMs model

Model file

Database

Figure 10. Data flow scheme of an application of the proposed formalization.

The diagram uses color-coded blocks to illustrate input/output relationships, follow-
ing the order of the arrows. Blocks sharing the same color convey the same information
and serve as either inputs (if preceding an arrow) or outputs (if following an arrow) of a
specific step within the proposed formalization. More specifically,

• Red: data that are required for analyses and simulation activities, to be included
within the S/C model.

• Green: baseline framework and model prior to the application of the proposed formalization.
• Yellow: set of stereotypes to be included within the model for “red” data characterization.
• Blue: newly developed model parser for data extraction and outputs (e.g., software-

readable data structure, requirements lists, dependency graphs).
• Purple: set of simulation and analysis tools to be linked with the model, which require

the “red” data, and outputs.
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The double coloring of the specific blocks describes the various information carried out
by each of them. Specifically, the design parameters—in red—are represented in the model—
and thus in the model file—through the proposed set of stereotypes. This information is
then extracted through the parser and transferred to the newly-generated database, which
is linked to the desired set of simulation and analysis tools.

The uniqueness of the presented formalization is that it offers the academic and open
source community an open source framework specifically tailored to the preliminary design
of CubeSats, addressing the fragmentation in data storage and allowing data transmission
and simulations to be executed at any design stage.

The innovation of the proposed formalization with respect to other works in the
literature is its language and tool agnosticism. Being developed with an arbitrary set of
open source modeling and simulation tools, it can be tailored to the needs of those that
want to apply it with their preferred solutions. As a drawback, the current state-of-the-art
model parser does not allow data to be automatically extracted from models developed
with tools other than Gaphor without modifying the source code.

Moreover, in contrast to what has been found in the literature, where models are mostly
used as a connection point between databases and external software, the proposed model
formalization serves as a central data reference throughout the preliminary design (PD)
phases, integrating seamlessly with open source tools, including, in this work, the Nanostar
software suite (NSS). This integration enabled the generation of power and data budgets
for the TWC theoretical mission, showcasing the model’s practical applicability. The use of
UML stereotypes provided a consistent structure for the model files, enhancing precision
and efficiency in data extraction and manipulation. The capability for data extraction and
translation in a software-readable data structure, coupled with automatic model updates
after analyses and optimizations, minimized manual intervention, supporting a dynamic
and responsive design process.

Given the aforementioned strengths and broad applicability with any set of open
source software and modeling tools, the authors envision the formalization of the proposed
framework to be used, for example, in academic and budget-constrained environments,
as a support for systems engineers and the entire development team, for all stages of PD.
The further application of real-time versioning and cloud storage could be also beneficial
for CE practices, posing once more the proposed model as the pivotal point of the entire
design process.

However, the development of the proposed CubeSat SysML model formalization
and its integration with open-source tools for PD involved several limitations and design
decisions, and assumptions (detailed in the next paragraphs). These aspects are essential
for understanding the scope, applicability, and potential areas for improvement of the
proposed formalization.

One significant limitation encountered, as anticipated, was the modeling-tool-specific
nature of the parser. The parser was tailored specifically for models created with Gaphor,
because of the nature of the model files to be parsed. As highlighted in Pons et al. [37],
the format in which the models are saved actually makes them not fully interoperable
with other modeling tools than the ones they were created in. This restricts the immediate
applicability of the parser to models created using other SysML tools. Gaphor was chosen
due to its open-source nature and compatibility with the proposed UML stereotypes.
However, in order to enhance usability across different platforms, future versions of the
parser shall consider broader compatibility across tools.

Another limitation is the focus on low Earth orbit (LEO) missions, which formed
the basis of the generalization of operating modes (OMs) and the formalized approach.
This focus excludes non-nominal conditions such as detumbling, calibration, or safe modes.
LEO missions were chosen due to their commonality and relevance in current CubeSat
applications. Extending this framework to other mission types and non-nominal conditions
remains a key area for future research. Additionally, the formalized approach did not
fully incorporate OMs related to the early orbit phase (EOP) and off-nominal scenarios.
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The complexity and variability of these conditions were deemed beyond the scope of the
presented framework, and a detailed study and potential inclusion of these scenarios could
provide a more comprehensive model.

Balancing the creation of a generic framework with the need to address specific mission
requirements posed challenges. A generic framework was prioritized to ensure broad
applicability, with the understanding that specific mission requirements would necessitate
further customization. This design decision supports reusability but may require additional
adjustments for highly specialized missions.

Several key design decisions were made to address these limitations and guide the
development process. The use of UML stereotypes was implemented to enrich the detail
and functionality of SysML blocks, driven by the need to standardize data characterization
and facilitate seamless integration with simulation tools. UML stereotypes allow for a
structured approach to data characterization, ensuring consistency and enabling automated
data extraction and manipulation.

The CubeSat SysML model was designed to act as a central data reference throughout
all PD phases. Positioning the model as the single source of truth ensures coherence and
accuracy across all design stages, supporting efficient updates and modifications. The
exclusive use of open source tools, including the NSS, was another fundamental design
choice. Open source tools promote transparency, accessibility, and collaboration, aligning
with the academic and budget-constrained contexts in which CubeSats are often developed.

The generalization of OMs aimed to standardize the activity profiles for CubeSats by
identifying common attributes and criteria across various missions. This design decision
supports the creation of versatile and reusable models that can be adapted to different
mission scenarios.

The future work may focus on expanding the tool compatibility by developing parsers
compatible with multiple SysML tools to enhance the framework’s versatility. Extending
the OM generalization to include non-nominal conditions and other mission types beyond
LEO is also crucial. Enhancing the model to accommodate more complex sub-systems such
as AOCS and propulsion, enabling comprehensive analyses like Delta-V and propellant
budgets, should provide significant advancements in the preliminary design.

6. Conclusions and Future Perspectives

This paper introduced a formalized general CubeSat SysML model, enhanced with
UML stereotypes for data characterization. This model has been proposed to serve as the
central data reference throughout all PD phase stages, acting as the primary design interface.

The innovation of this work stands in the flexibility of its application within the space
systems domain. A CubeSat SysML model can be created with any tool, with the condition
that this tool can define any diagram or element as long as the proposed set of UML
stereotypes are applied, without affecting integration with simulation tools. Moreover,
once the proposed set of stereotypes are integrated within the model, it becomes possible
to reuse them for different designs by only varying the introduced data.

Another result is the generalization of operating modes for CubeSats, identifying com-
mon attributes and transition criteria among various LEO CubeSats concepts of operations.
This allows for different mission scenarios to be defined by just modifying OM attributes,
implemented in any data format.

The use of UML stereotypes identifies common structures within the model files,
enabling the extraction of key data for integration with any preferred set of simulation
tools. Dependency graphs generated from this data extraction process visually depict the
impact of design changes, aiding trade-off studies during the PD phase.

Additionally, creating a specialized parser for the model files allows for automatic
updates to the model itself, such as after a simulation or parameter optimization phases.

A proof of concept is presented with the SysML model of the TWC mission, integrated
with the NSS mission analysis tools via a dedicated parser, successfully generating power
and data budgets.
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The source codes and associated documentation are available in a public repository at
https://gitlab.isae-supaero.fr/preliminary-design/mbse-cubesat-sysml (accessed on 27
February 2024), under GPLv3 (https://www.gnu.org/licenses/gpl-3.0.html) (accessed on
1 March 2024) License.

Future works, mentioned as well in the previous discussion section in more detail,
could address approximations by the NSS tools and limitations of the OM generaliza-
tion for low Earth orbit (LEO) and early orbit phase (EOP). Moreover, a more thorough
characterization of complex systems, i.e., AOCS or propulsion systems, could allow the
generation of budgets such as Delta-V budgets and propellant budgets, as well as the
representation of all S/C element dependencies through a comprehensive dependency
graph. An interface to allow user(s) to choose what outputs to generate from the parser
could be explored. Expanding these aspects would allow for modeling a broader range
of missions and integrating more complex scenarios, potentially also incorporating other
database formats like SQL.
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DOD Depth of discharge
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ESA European Space Agency
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LEO Low Earth orbit
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OSS Open source software
PD Preliminary design
PHM Passive hydrogen maser
RAFS Rubidium atomic frequency standard
S/C Spacecraft
SE Systems engineering
SysML Systems modeling language
TWC The White Compass
UML Unified modeling language

Appendix A. SysML and UML Core Elements

Unified modeling language (UML) [39], originating in the late 1980s/early 1990s,
quickly became a leading software development modeling language [40]. Systems modeling
language (SysML) [41], developed in the early 2000s by Object management group (OMG),
International Council on Systems Engineering (INCOSE), and other partners, is a UML
specialization for SE applications. A comprehensive description of SE practices with SysML
is provided in Weilkiens [40].

Key elements of UML and SysML, essential for understanding this work, include
the following:

Classes

Central to object-oriented modeling, the classes represent both the structure and be-
havior of objects with shared characteristics. Defined by attributes (structure) and operations
(behavior), the classes are showcased in class diagrams. They represent code elements and
real-life objects at varying levels of detail.

Person

+ name: String
+ age: Int

+ walk()
+ eat()

john:Person

name="John"
age=30

class Class Person and person object

Figure A1. Example of UML class and object with inherited attributes and operations.

Attributes

Attributes specify the properties of a model, inherited by classes, including visibility,
name, type, and multiplicity (number of instances per class).

Associations

These indicate relationships between two classes, with variations like aggregation
association (whole-part hierarchy) and composition association (whole-part hierarchy where
parts are inseparable from the whole).

Generalizations

These establish hierarchies between a specialized subclass and a general superclass,
where the subclass is a specific version of the superclass (e.g., subclasses like cat, dog, and
horse, with animal as the superclass).
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Animal

Cat Dog Horse

class Animal

Figure A2. Example of UML generalization.

Stereotypes

Stereotypes extend pre-existing model elements with additional properties and/or
operations, using the keyword «metaclass» to denote the base element.

«stereotype»
Person

+ height: cm
+ name: String
+ age: Int

«metaclass»
Class

class Stereotype Person

(a)

«person»
Paula

height = 180
name = "Paula"
age = 30

class Person

«person»
John

height = 175
name = "John"
age = 25

(b)
Figure A3. UML stereotype examples. (a) Stereotype definition example. (b) Stereotype application
example.

Blocks and Block Definition Diagrams

In SysML, UML classes are referred to as blocks, and UML class diagrams are renamed
Block Definition Diagrams (BDDs). SysML broadens the application of UML classes beyond
software, facilitating system structure representation across various disciplines.

Requirements and Requirement Diagrams

Unique to SysML, requirements define system compliance conditions, represented in
requirement diagrams.

Value Types, Units, and Dimensions

A value type is a specialized UML data type comprising a unit and dimension. Units
specify physical units, while dimensions define their quantities.

Stereotypes applied to UML

Elements like requirements and blocks in SysML were derived by applying stereotypes
to existing UML elements, like the class.

The extensive application of UML stereotypes will be a critical aspect of this work.
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Appendix B. TWC System-Level BDD

«block, systemMain»
Structure

(from 3.3 Structure)

SystemMain

mass = "86.6"
margin = "0.1"
computeMass = "False"
computeCons = "False"

«block, systemMain»
TCS

(from 3.5 TCS)

parts

+ heaters: Heaters[1]
+ sensors: Thermal Sensors[1]
+ passiveCtrl: Passive Control[1]

SystemMain

mass = "10.0"
margin = "0.05"
powerConsStb = "0.0"
powerConsOn = "50.0"
powerConsPeak = "125.0"
modeIsOn = "[Stand-by]"
modeIsStb = "[Servicing, Phasing]"
modeIsPeak = "[]"
computeMass = "False"
computeCons = "False"

«block, systemMain»
Communication System

(from 3.4 Communication System)

parts

+ sModem: S band modem[1]
+ tx: S band TX[1]
+ filter: Filter[2]
+ rx: S band RX[1]
+ sAntenna: S band antenna[2]

SystemMain

mass = "13.0"
margin = "0.05"
powerConsStb = "0.0"
powerConsOn = "131.0"
powerConsPeak = "175.0"
modeIsStb = "[Stand-by]"
modeIsOn = "[Phasing]"
modeIsPeak = "[Servicing]"
computeMass = "False"
computeCons = "False"

«block, systemMain»
OBC

(from 3.7 OBC)

parts

SystemMain

powerConsStb = "35.0"
powerConsOn = "35.0"
powerConsPeak = "35.0"
modeIsStb = "[]"
modeIsOn = "[Stand-by, Servicing, Phasing]"
modeIsPeak = "[]"
computeMass = "False"
computeCons = "False"
mass = "15.0"
margin = "0.1"

«block, systemMain»
AOCS

(from 3.6 AOCS)

parts

SystemMain

mass = "6.5"
margin = "0.05"
powerConsStb = "10.0"
powerConsOn = "72.0"
powerConsPeak = "331.0"
modeIsStb = "[]"
modeIsOn = "[Stand-by, Servicing, Phasing]"
modeIsPeak = "[]"
computeMass = "False"
computeCons = "False"

EPSBDD

«block»
Platform

parts

+ tcs: TCS[1]
+ com_sys: Communication System[1]
+ structure: Structure[1]
+ prop_sys: Propulsion System[1]
+ eps: EPS[1]
+ aocs: AOCS[1]
+ obc: OBC[1]

«block, systemMain»
Payload

(from 3.8 Payload)

parts

+ cmcu: CMCU[1]
+ afs: AFS[2]

SystemMain

computeMass = "True"
computeCons = "False"
margin = "0.05"
compName = "GNSSPayload"
powerConsStb = "84.0"
powerConsOn = "105.0"
powerConsPeak = "105.0"
modeIsStb = "[Stand-by, Phasing]"
modeIsOn = "[Servicing]"
mass = "39.469500000000004"
modeIsPeak = "[]"

«block»
TWC-x S/C

parts

+ payload: Payload[1]
+ platform: Platform[1]

«block, systemMain»
Propulsion System

(from 3.2 Propulsion System)

parts

+ thruster: Thruster[2]
+ ppu: PPU[1]
+ fms: FMS[1]
+ tank: Fuel Tank[2]

SystemMain

modeIsStb = "[Stand-by, Servicing]"
modeIsOn = "[Phasing]"
modeIsPeak = "[]"
mass = "90.5"
powerConsStb = "0.0"
powerConsOn = "250.0"
powerConsPeak = "0.0"
margin = "0.15"
computeMass = "False"
computeCons = "False"

«block, systemMain»
EPS

(from 3.1 EPS)

parts

+ pcu: PCU[1]
+ bus: Bus12V[1]
+ array: SolarArray[2]
+ battery: Battery[2]
+ shunt: ShuntRegulator[1]
+ dcdc: DC/DC Converter[4]
+ lcl: LCL[5]
+ bus: Bus5V[1]
+ bus: Bus3.3V[1]
+ bus: Bus50V[1]
+ bus: Bus28V[1]

SystemMain

mass = "120.0"
margin = "0.05"
powerConsStb = "10.0"
powerConsOn = "10.0"
powerConsPeak = "10.0"
modeIsOn = "[Stand-by, Servicing, Phasing]"
computeMass = "False"
computeCons = "False"
modeIsStb = "[]"
modeIsPeak = "[]"

PropulsionSystemBDD

PayloadBDD

CommSysBDD

TCSBDD

+ structure 1 + com_sys 1 + aocs 1 + obc 1+ tcs 1

+ payload

1

+ platform

1

+ prop_sys 1

+ eps 1

Figure A4. TWC system-level Block definition diagram implemented in SysML.
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