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Energy-maximising model predictive
control for a multi degree-of-freedom
pendulum-based wave energy system
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∗ Marine Offshore Renewable Energy Lab, Mechanical and Aerospace
Engineering Department, Politecnico di Torino, Turin, Italy (email:

guglielmo.papini@polito.it)

Abstract: Renewable energy sources can be a solution for the recent pollution increasing
scenario and the need for diversification of the energy market. Among such alternative sources,
wave energy represents a viable solution, due to the its high power density and accessibility.
Nonetheless, wave energy is still in phase of development, and a key stepping stone towards
commercialisation is strongly linked to the availability of optimal control strategies for maximum
energy harvesting. With its ability to handle system constraints and optimise power absorption
directly, model predictive control (MPC) has gained popularity within the WEC community as
a potential solution for the corresponding energy-maximising problem. In this study, an MPC
strategy is developed for real-time control of the so-called PeWEC energy harvesting system,
providing also a solution for the wave excitation estimation and forecasting problem, inherently
required by the MPC controller to achieve optimal performance. Improved computational
requirements are obtained via definition of a reduced control-oriented model, describing the
dynamics of the system in a compact form. The performance of the proposed strategy is
illustrated via a comprehensive numerical appraisal.

Keywords: Wave Energy Converter, Optimal Control, Model Predictive Control, Wave
Estimation, Wave Prediction, Model Reduction

1. INTRODUCTION

The recent rise of fossil fuel costs and the increase of
carbon dioxide emissions are pushing research towards
efficient use of alternative energy sources. Among possible
alternatives, ocean wave energy has shown great potential
thanks to the excellent power density in ocean sea states,
and the massive spread of the primary source (Mattiazzo,
2019). Although wave energy represents a viable solution
for lowering greenhouse emissions, it is still in develop-
ment, requiring a number of steps in order to allow effec-
tive commercialisation of wave energy converters (WECs)
(Ruehl and Bull, 2012). As of today, production, installa-
tion and maintenance costs, are hindering the possibility
of large-scale production. A fundamental pathway towards
reducing wave energy production costs resides in so-called
energy-maximising optimal control strategies (Ringwood
et al., 2014), capable of maximising resource conversion,
while respecting the intrinsic physical constraints charac-
terising both the device, and the power take-off (PTO)
actuator components.

Led by those considerations, one of the most appealing
strategies is model predictive control (MPC), being able
to provide optimal control actions and explicitly handling
imposed constraints on the system to avoid potential dam-
age on any sensible device components, while maximising
energy harvesting (Faedo et al., 2017; Cretel et al., 2011;
Mayne et al., 2000).

Successful implementation of MPC controllers within the
WEC application requires knowledge of the device dy-
namics to optimise the corresponding control action over
a given (user-defined) prediction horizon. Nonetheless,
accurate prediction of the WEC motion depends upon
knowledge of the so-called wave excitation force, i.e. the
force exerted on the device by virtue of the incoming wave
field. Given its unmeasurable nature (Peña-Sanchez et al.,
2020b), suitable unkown-input estimation and prediction
algorithms must be employed to compute instantaneous
and future values of such external excitation, respectively
(see e.g. Fusco and Ringwood (2010); Peña-Sanchez et al.
(2020a)).

The resulting control loop, composed of the interconnec-
tion between controller, and wave excitation estimator
and forecaster, is intended to be applied in real-time,
and standard hydrodynamic modelling can lead to high
computational complexity for the resulting system (Li and
Belmont, 2014). As such, it is often desired to define a
suitable control-oriented model, capable of representing
the main device dynamics in a simplified form, facilitating
real-time implementation of the numerical optimisation
routines required for the effective implementation of MPC
algorithms.

This study presents a computationally efficient MPC for-
mulation, with specific application to the so-called Pendu-
lumWave Energy Converter (PeWEC) device (Pozzi et al.,
2017), described in detail within Section 2. In particular,
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inspired by recent advances in impedance-matching for
WEC systems (Faedo et al., 2022b), a control-oriented
model is defined, describing the dynamics involved within
the MPC process in a simplified form, allowing for real-
time implementation of the composite control loop.

The remainder of this article is structured as follows.
Section 2 provides an account of the considered control-
oriented WEC dynamics. Section 3 introduces the adopted
control strategy, including MPC controller, prediction, and
estimation of external forces. Section 4 offers a numerical
appraisal of the proposed strategy, while Section 4 dis-
cusses the main conclusions of this study.

2. CONTROL-ORIENTED SYSTEM MODEL

The pitching device adopted in this study is the so-called
PeWEC device (Pozzi et al., 2017), and is schematically
depicted in Fig. 1. This offshore WEC exploits the relative
motion between the hull and the internal pendulum to
extract power about the PTO hinge axis, namely ε.

Fig. 1. PeWEC device schematic representation

This system can be reasonably described in terms of 4
degrees-of-freedom (DoFs), namely x (surge), z (heave),
δ (roll), and ε (PTO axis). Following linear potential
flow theory, the WEC system can be described in terms
of a multiple-input multiple-output (MIMO) linear time-
invariant (LTI) operator G : C → C4×4, s 7→ G(s), with
inputs defined by the forces applied on each correspond-
ing DoF, and outputs defined in terms of the velocities
associated with each mode of motion, i.e. {vx, vz, vδ, vε}.
In particular, the first three DoFs are affected by a cor-
responding wave excitation force {fx, fz, fδ}, arising as a
consequence of the action of the incoming wave field on the
hull. In contrast, the PTO axis ε is only (directly) affected
by the control torque u, which is, effectively, the variable
to be optimally designed via appropriate optimal control
technology. To be precise, the control problem for wave
energy power extraction aims at computing the optimal
control torque u to maximise energy extraction at the PTO
axis over a given time-horizon T ∈ R+. Noting that the
(instantaneous) absorbed power is given by Pabs = −uvε,
the objective is to design u such that the map

J(u) = − 1

T

∫
Ξ

u(τ)vε(τ)dτ, (1)

with Ξ = [0, T ] ⊂ R+ is maximised.

Given the nature of the control objective (1), and based
upon recent results on impedance-matching for multi-DoF
WEC systems (Faedo et al., 2022b), it is not necessary
to consider each ‘mode’ described by G(s) to solve for
the maximiser of (1), since the optimal control conditions
for underactuated systems (i.e. devices which can directly
absorb energy from a limited number of the available
modes of motion), can be described in terms of the
dynamics associated to the controlled DoFs, subject to
a particular external perturbation. For the PeWEC case,
we are hence interested in the map u 7→ ε, which can be
described (in the Laplace domain) as 1

Vε = [Gx Gz Gδ Gε]

Fx

Fz

Fδ

U

 , (2)

with Gε,Gx,Gy and Gδ the mappings describing the ‘con-
tribution’ of each corresponding DoF to the PTO axis
output vε. Note that equation (2) can be equivalently
expressed as

Vε = Gε[F̃e + U ] (3)

with the map

F̃e =
Gx

Gε
Fx +

Gz

Gε
Fz +

Gδ

Gε
Fδ, (4)

the so-called total wave excitation force (see Faedo
et al. (2022b)). Via realisation, one can derive a time-
domain equivalent of equation (3) in terms of a stable,
strictly proper, minimum-phase, single-input single-output
(SISO), finite-dimensional state-space model. The discrete
time representation of system Gε can be written in state
space form as:

Gε ≡
{
x(k + 1) = Ax(k) +B[f̃e(k) + u(k)],

vε(k) = Cx(k),
(5)

where the mapping between continuous and discrete do-
main is expressed through t = kTs, with Ts sampling time,
and x(k) ∈ R32. Note that the relatively high dimension,
required to represent (5), arises from parameterisation of
particular hydrodynamic effects, i.e. so-called radiation
forces ((Cummins, 1962)).

It is stressed that the modelling approach chosen in this
paper differ from standard MPC formulations provided
in the literature of WEC control (see, e.g. Pozzi et al.
(2017)). In particular, the control-oriented model, con-
sidered herein, is of a SISO nature (instead of MIMO),
and ‘condenses’ the effect of the (multiple) wave excita-

tion forces {fx, fy, fδ} into a single ‘disturbance’ f̃e. This
has a significant impact on the design and computational
requirements associated to both estimation and forecaster
algorithms required by the MPC controller, as detailed
throughout Section 3.

3. CONTROL ARCHITECTURE

3.1 Model predictive Control

MPC resolves the optimisation problem, with objective
function (1), directly over the selected horizon, finding

1 From now on, we omit the dependence on s when clear from the
context.

Preprints, IFAC CAMS 2022
Kgs. Lyngby, Denmark. September 14-16, 2022

436



an optimal control sequence. Then, in a receding-horizon
fashion, only the first element of the optimised solution is
applied to the system, and the entire procedure is repeated
each sampling instant (Li and Belmont, 2014). In order to
manage the energy associated with the optimal control
action, it is convenient to introduce an additional term in
the objective function (1), weighted in terms of a design
parameter r ∈ R+ (see Eq. 6). Furthermore, aiming at
adding a soft constraint on the maximum PTO angular
velocity vε, a quadratic term, weighted adequately via
q ∈ R+ is also considered, i.e. the map (1) is modified
as

J(u) =
1

T

∫
Ξ

u(τ)vε(τ) + ru(τ)2 + qvε(τ)
2dτ, (6)

where note that the sign of J(u) (as originally written
in (1)) has been changed without any loss of generality,
and simply to consider the (more standard) minimisation
convention, rather than its maximisation counterpart.

The design stage for r and q is crucial: the lower are
their absolute values, the higher is the implicit weight on
the power production term (i.e. the higher will be energy
harvest). Notwithstanding, r must be chosen considering
the minimum value for achieving convexity of the function,
avoiding possible numerical errors and allowing the solver
to achieve in time the solution (for real time purposes
it depends on the available hardware). The weight q is
selected to be small, since for the application it is only
necessary to limit the maximum value of the PTO axis via
explicit hard constraints.

Regarding hard constraints, a saturation limit on vε is
imposed to avoid high loads on PTO bearings, and a
saturation limit on the maximal control torque u reflects
the actuation limit of the system. Given the objective func-
tion and defined set of constraints, the energy-maximising
optimisation problem can be written as

uopt = argmin
u

J(u),

subject to:

PeWEC dynamics in (5)

|vε| < vmax, |u| < umax, ∀t ∈ Ξ.

(7)

Following (Li and Belmont (2014)), at a given instant

k, defining U j
i := [u(k + i), u(k + i + 1), ..., u(k + j)]T ,

W j
i := [f̃e(k+i), f̃e(k+i+1), ..., f̃e(k+j)]T and considering

the control input array UN
0 and the wave excitation force

array WN−1
0 , the optimal control problem in (7) can

be rewritten in terms of a quadratic programming (QP)
problem in standard form, i.e.

UN
0 opt = argmin

Uk
0

1

2
(UN

0 )TH(UN
0 ) + FUN

0 ,

subject to:

AconU
N
0 ≤ b,

(8)

where

H = ΦU +ΦT
U + 2R+ 2ΦT

UQΦU

F = (Λ + 2ΦT
UQΛ)x(k) + (ΦW + 2ΦT

UQΦW )WN−1
0 ,

(9)

with

Λ =


C
CA
CA2

...
CAN

 ,

ΦU =


0

−CB 0
−CAB −CB 0

...
...

. . .
. . .

−CAN−1B −CAN−2B . . . −CB 0

 ,

ΦW =


0

CB 0
CAB CB 0

...
...

. . .
. . .

CAN−1B CAN−2B . . . CB

 ,

(10)

and

Acon =

 I
−I
ΦU

−ΦU

 , b =


Umax

Umax

Vmax − Λx(k)− ΦWWN−1
0

Vmax + Λx(k) + ΦWWN−1
0

 ,

R = rIN+1, Q = qIN+1,

Umax = 1N+1,1umax, Vmax = 1N+1,1vmax

(11)

and the matrix 1i,j ∈ Ri×j is a matrix with all its entries
equal to one, while IN+1 ∈ RN+1×N+1 is the identity
matrix of sizeN+1, withN the discrete prediction horizon
(T = NTs).

A critical aspect resides in the class (i.e. properties) of
the cost function (8): Typically, the power maximisation
application leads to an intrinsically non-convex formu-
lation under zero-order hold discretisation of the WEC
dynamics (Faedo et al. (2017)). Nonetheless, convexity
can be restored via appropriate selection of r (see e.g.
Li and Belmont (2014)). A schematical representation of
the considered control strategy is presented in Fig. 2. The

Fig. 2. Control loop architecture

reason behind the choice to feedback only the velocity vε
at the PTO shaft, is discussed in the following sections.

3.2 Model Reduction

One of the main reasons to include weight r in the cost
function is related to the non-convexity issue. Non-convex
optimization supposes underlying global solvers that do
not support real-time implementation features (due to the
time taking computational burden), while convex solvers
(Wright, 1996) have shown their effectiveness for real-time
purposes in many application fields.
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Model reduction (MR) techniques (Moore, 1981) further
assist in moving the corresponding QP problem in this
fast optimization direction. In particular, MR for linear
systems exploits internal properties of the corresponding
model to find a representative approximation of lower or-
der (dimension). This computational lightness also opens
the possibility of enlarging the MPC prediction horizon,
which is a necessary condition to approach optimal per-
formance with given stability guarantees (Mayne et al.
(2000)). Within this study, MR via balanced truncation
(see Safonov and Chiang (1989)) has been considered to
further reduce the model presented in (5), aiming at im-
proving the real-time capabilities of the proposed strategy.

In Fig. 3 it is shown the frequency response comparison of
the original PeWECmodel (red), as in (5), and the reduced
model by balanced truncation (yellow). It is worth noticing

Fig. 3. Frequency response of the original model (red) and
the reduced order model (yellow)

how both systems present virtually identical input-output
responses, having the original PeWEC system a dimension
of 32, against the significantly reduced number of 5 states
after applying MR.

3.3 Prediction

One of the most critical aspects of MPC applied to wave
energy conversion is the necessity to predict the wave
excitation force over the prediction horizon accurately.

At each sample time, the optimization performed in Eq. 7
presumes full knowledge of the system dynamics, which are
strongly influenced by the instantaneous value of the total
excitation force in (5), which is not available in practice.
As such, forecasting model must be employed in order to
predict its future behaviour.

An Auto-Regressive model (AR), as considerd in (Peña-
Sanchez et al., 2020a) is employed within this study. The

model assumes that the total wave force f̃e at a given time
instant k is a linear combination of its past values. So, the
p-step ahead prediction is:

f̂e(k + p) =

n∑
i=1

aif̂e(k + p− i) (12)

where n is the model order, and the parameters ai are
computed each 1 [s] through minimisation of the one-step
prediction error, on refreshed sets of wave data of length
M :

JLS =

M∑
k=n+1

(
fe(k)− f̂e(k)

)
. (13)

New data are produced recursively from predicted data.

3.4 Estimation

Every prediction algorithm requires a set (at least unitary)
of data to train its parameters and produce a forecast.
Training sets are filled with instantaneous values of wave
excitation force, either collected directly from pressure
probes installed on the WEC hull, or indirectly with es-
timators. Since pressure probes are practically impossible
to use in real applications (due to the fact that separating
the wave excitation from the device motion within the
corresponding pressure field is technically unfeasible), a
number of unknown-input estimation techniques have been
developed in literature (Peña-Sanchez et al., 2020b). This
study exploits a recent innovative approach (Faedo et al.
(2022a)), which treats the input estimation problem in
terms of a classical tracking control loop.

Suppose vm is the measured velocity of the controlled
PeWEC DoF, and consider the model Gε, associated with
such a mode of motion. Via solution of a velocity tracking
objective,

lim
t→∞

∥vm − vε∥ = 0, (14)

facilitated by a control signal uest, is straightforward to
show that uest can be used to compute an approximation
of the total wave force component f̃e, i.e.

f̃e ≃ −u+ uest. (15)

To achieve (14), we note that, as discussed in Section 2,
the transfer function Gε of the controlled DoF is stable,
strictly proper, and minimum phase. Such properties al-
lows for direct consideration of the so-called Youla param-
eterisation for the design of the control law uest in (15).

In particular, we design a (SISO) controller K : C → C,
in terms of a corresponding Youla parameter Q(s) (Youla
et al., 1976), i.e.

K(s) =
Q(s)

1−Gε(s)Q(s)
. (16)

If Q(s) is proper and stable, the closed-loop resulting from
the controller K(s) is stable. Based on the principle of
plant inversion, and given the aformentioned properties
associated with Gε, Q(s) is chosen as the filtered inverse
response of the plant, i.e.

Q(s) =
Fq(s)

Gε(s)
Fq(s) =

ω
nq
c

(s+ ωc)nq
, (17)

where Fq is a low-pass shaping filter, with nq = 2 and
ωc = 30 [rad/s]. An overview of the estimator loop can be
appreciated in Fig. 4. Note that, via the definition of the
‘condensed’ map f̃e in (5), the estimator problem solved
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herein is of a SISO nature, and a single estimated signal
is required to solve the MPC optimization procedure.

Fig. 4. Employed estimator architecture.

3.5 A note on estimator-forecaster interconnection

Since, within real-time applications, the MPC optimizer
can potentially fail to find a definitive solution if the num-
ber of iterations is restricted to alleviate computational
demand, we suggest adding a suitable random white noise
characterisation to the prediction training data set. This
technique is used to inform the AR on the potential exis-
tence of high frequency components (induced by potential
‘jumps’ between non-converged control solutions, hence
preventing an undesired output from the forecaster model.

4. RESULTS

In this section, the results of the proposed control loop
are presented, together with a detailed account on the
choice of controller, estimator, and forecaster parameters.
The simulations have been performed within irregular
wave scenarios, selected from the Mediterranean spot of
Pantelleria. From now on, figures refer to simulations
considering waves with a significant wave height Hs = 3
[m], and energetic period Te = 6 [s]. Every wave is tested
for t = 600 [s], a significant time length to produce
statistically consistent performance results.

For this PeWEC application case, the MPC prediction
horizon Tp is set to 100 steps (5 [s] sampled at 20 [Hz]),
the control action is computed every 50 [ms], and the cost
function parameters in Eq. 6 {q, r} are set to q = 10−9,
r = 10−6, aiming to maximise power extraction, while
keeping a convex objective J . The AR model order is
selected as n = 40, and trained on 20 [s] of past wave
estimated values.

In the following, we report and discuss estimation, pre-
diction and power extraction results, obtained with the
proposed controller architecture. To begin with, note that,
as can be appreciated from Fig. 5, the proposed estimation
strategy can provide an accurate account of the total
excitation force f̃e, with a maximum measured delay of
0.1 [s], and a maximum amplitude normalised root mean
square error of 3.6%.

Fig. 6 shows instead the prediction performance of the AR
model at simulation time t = 314 [s], proving the effective-
ness of the algorithm in forecasting the true shape of the
excitation force (which influences directly the quality of
the algorithm optimality performance).

Fig. 5. Sample of the force produced by the total wave ex-
citation force f̃e on the PTO (red), and the estimated
signal (yellow).

Fig. 6. Wave prediction at t = 314 [s] simulation time. In
red the exact incoming wave, in yellow the instanta-
neous AR prediction fed to the MPC

To provide a fair comparison in terms of energy-maximising
performance, let us introduce the well-known and standard
reactive proportional-integral control law:

Tcont = −kcε− cε̇ (18)

in which the set of parameters {kc, c} ⊂ R+ are chosen
via exhaustive parametric simulations. To highlight the
ability of the MPC control strategy to keep the variables of
interest within the constraint limits (ε̇max = 1.2217 rad/s
ans umax = 1140 kNm, Fig 7 shows the PTO velocity
vε = ε̇ obtained with c and kc parameters which maximize
the power production neglecting explicit limitations on ε
and u magnitude (for this particular wave realisation),
and the velocity obtained with the optimal model-based
control. It can be easily recognised how the MPC manages
to keep the imposed constraints on the velocity ε̇, while
reactive control oversteps imposed limits. This constraint
overcoming in the real application is directly implies PTO
system malfunction.

Differently, Fig. 8 shows the power extraction comparison
between c and kc parameters capable of maximising en-
ergy production while keeping between given bounds the
constrained variables (only for this particular wave realiza-
tion), and the MPC power extraction capacity. The MPC
controller outperforms the reactive controller in (18) in
terms of power extraction, while keeping the corresponding
constraints on the ε̇ variable.
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Fig. 7. PTO velocity ε̇ in case of MPC control (red)
and optimal reactive control (yellow). In black, the
constraint limits set on ε̇

Fig. 8. Produced Power. In red, the MPC control strategy,
in yellow the c-k control capable to respect given
constraints

5. CONCLUSIONS

This study implements a MPC control strategy for the
multi-DoF PeWEC offshore wave energy harvester. To-
gether with the control algorithm itself, we develop a
suitable (total) wave force estimator and corresponding
predictor, assessing the interconnected control loop, with
the MPC designed based upon a specific SISO control-
oriented reduced model. This paper also discusses central
issues of MPC implementation for WECs, including e.g.
convexity of the cost function, and suitable tuning of the
associated estimator and AR parameters.

Finally, we show the potential of the proposed strategy in
maximising power extraction for the specific device (the
result can be easily extended for underactuated multi DoF
systems), while keeping the variables of interest within
prescribed constraint bounds, being able to outperform
well-established WEC control architectures.
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