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Article

Shape Optimization of a Diffusive High-Pressure Turbine Vane
Using Machine Learning Tools
Rosario Nastasi, Giovanni Labrini, Simone Salvadori * and Daniela Anna Misul

Dipartimento Energia, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10124 Torino (TO), Italy;
rosario.nastasi@polito.it (R.N.); giovanni.labrini@polito.it (G.L.); daniela.misul@polito.it (D.A.M.)
* Correspondence: simone.salvadori@polito.it

Abstract: Machine learning tools represent a key methodology for the shape optimization of complex
geometries in the turbomachinery field. One of the current challenges is to redesign High-Pressure
Turbine (HPT) stages to couple them with innovative combustion technologies. In fact, recent devel-
opments in the gas turbine field have led to the introduction of pioneering solutions such as Rotating
Detonation Combustors (RDCs) aimed at improving the overall efficiency of the thermodynamic
cycle at low overall pressure ratios. In this study, a HPT vane equipped with diffusive endwalls is
optimized to allow for ingesting a high-subsonic flow (Ma = 0.6) delivered by a RDC. The main
purpose of this paper is to investigate the prediction ability of machine learning tools in case of
multiple input parameters and different objective functions. Moreover, the model predictions are
used to identify the optimal solutions in terms of vane efficiency and operating conditions. A new
solution that combines optimal vane efficiency with target values for both the exit flow angle and
the inlet Mach number is also presented. The impact of the newly designed geometrical features
on the development of secondary flows is analyzed through numerical simulations. The optimized
geometry achieved strong mitigation of the intensity of the secondary flows induced by the main flow
separation from the diffusive endwalls. As a consequence, the overall vane aerodynamic efficiency
increased with respect to the baseline design.

Keywords: turbomachinery; computational fluid dynamics; machine learning; artificial neural network;
random forest; aerodynamics; optimization; genetic algorithm; rotating detonation combustion

1. Introduction

Numerical optimization has been widely applied during the aerodynamic design
of High-Pressure Turbine (HPT) components. In this context, Machine Learning (ML)
tools play a key role in identifying complex relations between input variables and output
objectives [1], providing fast predictions after an adequate training phase. Several studies
proved that estimations from Computational Fluid Dynamics (CFD) can be used to collect
reliable data for training surrogate models [2–5]. Recent approaches suggest faster solutions
that merge the knowledge from an existing dataset of 2D simulations with high-fidelity 3D
CFD simulations [6], thus reducing the overall number of simulations required. Among
the machine learning tools, Artificial Neural Networks (ANN) are usually preferred for
their flexible architecture and wide versatility. In the aerodynamic optimization context,
Mengistu and Ghaly [7] used ANN as a surrogate model to optimize a transonic turbine
vane and a subsonic compressor rotor in terms of adiabatic efficiency and pressure loss coef-
ficient. Zhang et al. [8] instead predict the airfoil lift coefficient with a convolutional neural
network. Du et al. [9] proposed a deep-learning tool for performance prediction and turbine
blade profile design. This methodology uses a dual Convolutional Neural Network (CNN)
trained over Reynolds-Averaged Navier–Stokes (RANS) simulations to predict the physi-
cal field distribution based on design variables and recognize aerodynamic performance
parameters from physical field information. Random Forest (RF) models also represent
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a valid alternative to an ANN for regression problems, even if they are used more rarely.
However, Dasari et al. [10] proved that if RF undergoes proper hyperparameter tuning, it
can be used as a surrogate model to support design space exploration. Hyperparameter
optimization represents a fundamental step for both defining the ideal architecture of a
metamodel and calibrating the metamodel’s parameters based on the specific problem that
must be solved. Among the different techniques, Bergstra and Bengio [11] demonstrated
that random search can find models that are similar or even better than the one found by
grid search, within a small fraction of the computational time. Once trained and tuned,
surrogate machine learning models can strongly facilitate design optimization by reducing
the necessary prediction time of the desired output. Thanks to this property, metamodels
are often combined with evolutionary optimization algorithms such as genetic algorithms
to identify the maximum or the minimum within the design space. Genetic algorithms are
biologically inspired optimization methods that follow the principle of selection, crossover,
and mutation to find the best individual starting from a large initial population. Thanks to
these characteristics, they are widely recognized as excellent methods for hard optimiza-
tion problems [12]. This strategy is usually contrasted with gradient-based approaches
(i.e., adjoint methods), which use deterministic methods and exploit the information of
the gradient of the output parameter with respect to the input variables to produce a pro-
gressive increase in the objective function at each iteration of the process. Gradient-based
approaches have the advantage of converging within a limited number of iterations but
the optimization can easily stop in a local optimum if the initial solution is not chosen
carefully [13,14]. Apart from optimization purposes, a properly trained machine learning
model is able to provide fast and accurate predictions for any value of the input data within
the training design range, thus avoiding the computational effort of a traditional numerical
simulation used to predict the desired output.

Component interaction has always been a paramount topic in turbomachinery due to
the coupling between a reactive module and the HPT stage [15]. This is especially true in
Rotating Detonation Engines (RDE), where the unsteady supersonic combustion products
are entrained into the turbine vane, which is usually designed for a steady inflow. Therefore,
particular interest should be dedicated to the aerodynamic optimization of HPT vanes for
RDE) applications [16], as they are particularly subjected to strong spatial and temporal
variations of the inlet conditions. In this context, Liu et al. [17] studied two axial turbine
designs exposed to a pulsating inlet with an inlet Mach number of 0.3 and 0.6 through
Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations. They concluded that
the aerodynamic efficiency is significantly penalized for an inlet Mach number of 0.6 due
to the local flow separations induced by the endwall diffusion. Moreover, for constant
endwall shape the turbine results unstarted. As regards the total pressure damping, the
Ma = 0.6 solution provides better attenuation. A further optimization step was presented
by Grasa and Paniagua [18], who parametrized a diffusive vane in the high-subsonic regime
to reduce pressure loss and averaged pressure distortion. This analysis considers also three
different inlet angles to account for the effect of the vane incidence. Later, Gallis et al. [19]
proposed a parametric optimization for both the diffusive endwalls and the airfoil including
a flow control system through an array of cooling holes located upstream of the leading
edge. The effect of the flow control system was to mitigate the oscillating inflow and to
better guide the outflow for the subsequent rotor.

The current work proposes an efficient optimization process for designing an HPT
vane that operates at Ma1 = 0.6 using machine learning tools such as ANN and RF. The
original blade and diffusive endwall profiles are first parametrized using splines and control
points, then each parameter is varied within its design range to achieve new configurations.
Subsequently, the machine learning tools are trained on a Design Of Experiments (DOE)
composed of 885 samples selected through the Latin Hypercube Sampling (LHS) approach.
Each sample is tested with a RANS simulation aimed at calculating the vane efficiency,
the exit flow angle, and the inlet Mach number. Based on these outputs, the metamodel
hyperparameters are tuned with a Random Search (RS) approach to optimize the prediction
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accuracy. The ANN and the RF are then coupled with a genetic algorithm that identifies
the optimal solution. The effects of the optimized geometrical features on the internal flow
field are also extensively discussed.

2. Parametric Design and Data Collection

The vane profile that is used as a baseline case for the optimization is the one described
by Sieverding et al. [20] and analyzed by Denos et al. [21]. However, even though the
original vane by Sieverding et al. [20] was inserted into a straight annular channel, in the
present work the endwalls are diffusive to allow for a higher inlet Mach number value
of ≈0.6 with respect to the original working condition of ≈0.2. The nominal endwall
configuration considered in this activity is the one located at the center of the design space
described by Gallis et al. [19]. The baseline numerical domain is represented in Figure 1.

Figure 1. Baseline numerical domain.

The lateral view of the coupled geometry with the endwall and the vane is visible
in Figure 2, while the nominal profile is visible from the top of the channel in Figure 2b.
Both figures also show the control points of the splines used to create both the vane and
the diffusive endwall profiles. More specifically, black points are fixed, red points can only
translate in one direction (either horizontally or vertically), and blue points have 2 degrees
of freedom and can move both vertically and horizontally. For the sake of simplicity,
the endwall profile is considered symmetrical with respect to the mid-span, and the area
expansion is controlled by four control points whose positions are free to translate in the
Z-direction. The vane profile is deformed by four points on the suction side and three on
the pressure side, for an overall number of 14 variables including the stagger angle. The
blade profile is later closed using an elliptic curve at the leading edge and a circular arc
at the trailing edge, taking care of maintaining a continuous derivative of the curves in
the conjunction points. The above-mentioned parametrization was kept equal to the one
presented by Gallis et al. [19]. However, the number of samples in the DOE was increased
from ≈300 to ≈900 to improve the design space coverage.
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Figure 2. Baseline design: (a) endwall profile with control points, and (b) vane profile with
control points.

The sampling approach used to create the DOE is the Latin Hypercube Sampling
(LHS). LHS was originally proposed by McKay et al. [22] and is a nearly random statistical
instrument used to generate samples in case of a multi-dimensional design space. It consists
of dividing the range of variability of each design variable Xk into N sub-intervals of equal
marginal probability 1

N , and randomly sampling once from each sub-interval. In the
current work, the number of samples and the corresponding sub-intervals were selected to
be equal to N = 900 to obtain an extensive coverage of the entire design space. Out of the
900 samples, 885 design points successfully completed both the automatic meshing process
and the calculation, thus producing the overall dataset. The design space exploration for the
endwall and the vane profile is represented in Figure 3a,b. The aerodynamic performance of
each sample is compared with the one obtained for the baseline geometry that is composed
by the nominal airfoil [20] and by the symmetrical diffusive endwall profile located at the
center of the design space explored by Gallis et al. [19].

Figure 3. DOE: (a) Endwall profiles generated using LHS, and (b) Vane profiles generated using LHS.

3. Numerical Methodology

In the current work, the commercial solver ANSYS CFX™ (2022R1) is used to run the
RANS numerical analysis of the vane. The boundary conditions applied to the domain are
summarized in Table 1.
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Table 1. Boundary conditions.

Inlet total pressure 161,600 Pa
Inlet total temperature 440 K

Wall conditions Adiabatic (no-slip)

Periodic surfaces Angular periodicity

Outlet static pressure 83,289 Pa

It is important to stress that all the simulations are performed at an equal inlet total
pressure. As a consequence, the overall mass flow rate changes according to the variation
of the minimum throat area. This approach was chosen in order to control the inlet Mach
number with the mass flow rate since the objective of the study is to target Ma1 = 0.6.
CFD simulations are performed under steady-state conditions. The “high resolution”
scheme is adopted for advection and turbulence discretization, while the k-ω SST model is
used for turbulence closure. The solver uses a coupled pressure-based approach, and the
viscous work term is included in the calculation. The simulation of the baseline domain is
performed on an unstructured mesh with ≈2,000,000 tetrahedral elements (Figure 4a,b).
Furthermore, a detailed view of the 20 inflation layers that are used to keep y+ < 1 in
the wall regions is provided in Figure 4c. The mesh size was selected after the evaluation
of the Grid Convergence Index (GCI) [23]. This analysis was conducted by considering
the inlet mass flow rate, the inlet mass-weighted averaged Mach number, and the mass-
weighted averaged total pressure at the outlet of the vane for three different levels of
grid size. The refinement ratio between coarse (C), medium (M), and fine (F) mesh was
kept equal to ≈1.25. The results in Table 2 suggest that the medium refinement provides
mesh-independent results with an asymptotic range of convergence ≈ 1. Consequently, the
medium level of mesh was adopted for all the CFD simulations presented in this research
work. More details about the mesh sensitivity are described by Gallis et al. [19].

Table 2. Grid Convergence Index.

GCI (C-M) GCI (M-F) Asymptotic Range of Convergence

Ma1 1.4107% 0.92348% 1.029%
ṁ1 1.9418% 1.2732% 1.032%
P 0

2 0.064% 0.022% 1.064%

Figure 4. Mesh: (a) entire domain, (b) mid-span plane, and (c) Inflation layers.
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The convergence of the simulation is controlled through the maximum number of
iterations, which is set equal to 250. This approach ensures residual minimization in the
order of 10−6. Additionally, solution reports are used to check the stabilization of the
desired outputs during the simulation.

Concerning the numerical method, RANS-based simulations introduce the idea of
Reynolds-averaging to split an instantaneous quantity into the sum of a time-averaged and
a fluctuating term. The instantaneous velocity Ui is thus decomposed into a time-averaged
component Ūi and a time-varying component ui. According to this idea, the governing
Navier–Stokes equations can be reformulated as in Equation (1) for continuity, Equation (2)
for momentum, and Equation (3) for energy.

∂ρ

∂t
+

∂

∂xj

(
ρŪj

)
= 0 (1)

∂(ρŪi)

∂t
+

∂

∂xj

(
ρŪiŪj

)
= − ∂p

∂xi
+

∂

∂xj

(
τij − ρuiuj

)
+ SM (2)

∂(ρhtot)

∂t
− ∂p

∂t
+

∂

∂xj

(
ρŪjhtot

)
=

∂

∂xj

(
Λ

∂T
∂xj

− ρujh

)
+

∂

∂xj

[
Ūi
(
τij − ρuiuj

)]
+ SE (3)

The τij term in Equations (2) and (3) indicates the stress tensor and it is calculated
according to Equation (4), while SM indicates the momentum sources and ρ is the density.
The energy Equation (3) is instead formulated considering the total enthalpy htot, the energy
sources are accounted for by the term SE, and Λ indicates the thermal conductivity.

τij = µ

(
∂Ūi
∂xj

+
∂Ūj

∂xi
− 2

3
δij

∂Ūk
∂xk

)
(4)

The Reynolds stresses ρuiuj can be instead modeled thanks to the introduction of
an appropriate turbulence model, that closes the Reynolds-averaged equations. More
specifically, the k − ω SST model by Menter [24] introduces two transport equations for the
turbulent kinetic energy k (Equation (5)) and for the specific turbulent dissipation rate ω
(Equation (6)).

∂(ρk)
∂t

+
∂

∂xj

(
ρŪjk

)
=

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Pk − β′ρkω + Pkb (5)

∂(ρω)

∂t
+

∂

∂xj

(
ρŪjω

)
=

∂

∂xj

[(
µ +

µt

σk

)
∂ω

∂xj

]
+ α

ω

k
Pk − βρω2 + Pωb (6)

The term Pk in Equations (5) and (6) is the production rate of turbulence, while if
buoyancy model is enabled, Pkb and Pωb are the turbulence buoyancy terms. Additionally,
β′, α, β, σk, and σω are constants whose values can be found in the ANSYS CFX™ theory
guide [25]. The turbulent viscosity µt is computed from Equation (7) and contains the
blending function F2 (Equation (8)), where y is the distance to the nearest wall, ν is the
kinematic viscosity, S is an invariant measure of the strain rate, and a1 = 5/9.

µt =
ρa1k

max(a1ω, SF2)
(7)

F2 = tanh

max

(
2
√

k
β′ωy

,
500ν

y2ω

)2
 (8)

Once modeled, µt can be finally combined with the Reynolds stresses term using
Equation (9).
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−ρuiuj = µt

(
∂Ui
∂xj

+
∂Uj

∂xi

)
− 2

3
δij

(
ρk + µt

∂Uk
∂xk

)
(9)

Regarding the working fluid, air with an ideal gas hypothesis and constant specific
heat cP is assumed. The aerodynamic performance of the vane is estimated with the vane
adiabatic efficiency η in Equation (10), where P2 and P0

2 are the static and the total outlet
pressure, while P0

1 is the inlet total pressure and γ is the specific heat ratio.

η =

1 −
(

P2
P0

2

) γ−1
γ

1 −
(

P2
P0

1

) γ−1
γ

=
u2

2
u2

2,is
(10)

The efficiency equation can also be expressed by referring to the outlet real velocity
u2 and the outlet isentropic velocity u2,is. The efficiency alone gives only an index of the
aerodynamic performance of the vane, without caring about the operating conditions of
the machine. To overcome this issue, the Root Squared Index Θ was introduced:

Θ = 1 −

√√√√c1

(
Ma1 − Ma1,re f

Ma1,re f

)2

+ c2

(
η − ηre f

ηre f

)2

+ c3

(
α2 − α2,re f

α2,re f

)2

(11)

Equation (11) combines the deviation of the actual measurement with respect to the
reference values in terms of inlet Mach number Ma1, efficiency, and exit flow yaw angle α2.
More specifically, Ma1,re f = 0.6, ηre f = 1 and α2,re f = 73◦ is the nominal exit metal angle of
the vane. Each squared term in Equation (11) was then multiplied by a weight coefficient
c1,2,3 to ensure equal importance of each objective. Equation (10) for η and Equation (11)
for Θ are considered objective functions for two independent optimization processes. In
addition, the vane outlet conditions are estimated through the total pressure loss coefficient
Cp, which is calculated with Equation (12), where the outlet total and static pressure P0

2 and
P2 are both measured at an axial distance equal to the 30% of chord C downstream from
the vane trailing edge.

Cp =
P0

1 − P0
2

P0
2 − P2

(12)

Moreover, the Contraction Ratio (CR) is introduced during the post-processing step to
quantify the variation of the minimum cross-sectional area and it is defined in Equation (13),
where A1 is the inlet area, which is fixed, and Ath is the vane throat area that is calculated
from Equation (14).

CR =
A1

Ath
(13)

Ath =
ṁ
√

RT0
1

P0
1

√
γ
(

2
γ+1

) γ+1
γ−1

(14)

4. Machine Learning Approaches
4.1. Artificial Neural Network

ANN is the best-known among the different machine learning tools. The network
architecture comprises an input layer, one or more hidden layers, and an output layer.
Each layer is composed of neurons, that are activated through a specific activation function.
A neuron is a mathematical model where weights and biases are calibrated during the
training step to obtain the non-linear relationship between input variables and output
objectives. Weights are real numbers expressing the importance of the inputs to the output,
while biases represent a shift in the activation of a neuron that allows the model to capture
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features that are not directly connected to input variables. Each neuron thus processes the
input variables as expressed in Equation (15), where z is the weighted sum of the inputs
calculated over the total number of input variables Nvar, w if the weight and b the bias of
each input variable x.

z =
Nvar

∑
i=1

wixi + b (15)

The activation function f (z) is then used to decide whether that particular artificial
neuron will be activated [26] and also transforms the summed weighted into an output
that is transferred to the next hidden layer.

During the training phase, the optimizer minimizes the error between the predicted
and the actual outputs by tuning weights and biases. The model is tested on a valida-
tion dataset that estimates the network’s capability to generalize with data that are not
used to train the model. Thanks to the validation test set it is possible to investigate the
occurrence of the overfitting or underfitting phenomena. In the case of overfitting, the
model only memorizes the training data with limited generalizability. On the contrary,
the underfitting demonstrates that the model is too simple and cannot appropriately learn
data relationships [27]. The network hyperparameters must, therefore, be appropriately
calibrated to avoid these undesired conditions. The parameters selected in this work for
the model optimization are the following:

• The number of neurons in each hidden layer.
• The activation function:

– Hyperbolic tangent function (tanh):

f (z) =
ez − e−z

ez + e−z (16)

– Rectified Linear Units (ReLu):

f (z) = max(0, z) (17)

– Leaky Rectified Linear Units (Leaky ReLu):

f (z) = max(az, z) (18)

– Sigmoid:

f (z) =
1

1 + e−z (19)

Leaky Rectified Linear Units (Leaky ReLu) in Equation (18) is an improvement of
the ReLu (Equation (17)) since the latter can suffer from the so-called “dead neurons”
problem [28], which means that neurons with negative biases may never be activated.
In contrast, both the “tanh” and the Sigmoid functions, respectively, expressed with
Equation (16) and in Equation (19), suffer from the “saturation” problem in deep neural
network applications [29], when the gradient used to update weights back-propagates from
the output layer to the earlier ones.

• The loss function optimizer:

– Adam : it is an algorithm for first-order gradient-based optimization character-
ized by an adaptive moment estimation, introduced by Kingma and Ba [30]. This
method computes individual adaptive learning rates for different parameters
from estimates of the first and second moments of the gradients. During the
optimization process, weights are updated inversely proportional to the scaled
L2 norm of past gradients.

– Adamax: it is an extension of the Adam model where the update rule changes
and the L∞ norm of past gradients is used instead of the L2 norm.
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– Nadam: it combines the Adam optimization algorithm with the idea of Nesterov
Accelerated Gradient (NAG) [31].

– rmsprop: it uses an adaptive learning rate calculated through a moving average
of the squared gradient for each weight. In this way, the algorithm provides a
faster solution than the stochastic gradient descent approach.

• The dropout rate: it expresses the percentage of neurons that are randomly removed
from each layer of the network. In this way, the model becomes simpler and less prone
to overfitting [32].

• The L2 regularization coefficient: regularization is a strategy to prevent overfitting
through manipulation of the loss function. L2, also known as “Ridge regularization”,
adds a penalty factor to the loss function that is proportional to the squared magnitude
of the weight coefficient (Equation (20)). In this way, large coefficients (i.e., large
weights) are more penalized, and the influence of a single strong coefficient will be
spread across multiple weaker coefficients.

L̃(w) = L(w) + λ||w||2 (20)

In Equation (20), L̃ indicates the regularized loss function, L the original loss func-
tion, w the weights and λ the regularization coefficient that controls the strength of
the perturbation.

• The batch size: it indicates the number of sub-datasets that are used to train the model.

4.2. Random Forest

RF is a metamodel that fits several decision trees on the training datasets and aggre-
gates their prediction through an averaging procedure [33]. This approach was proposed
by Breiman [34] for classification and regression purposes and showed great potential in
the case of large numbers of design variables. Each tree in the forest is characterized by a
certain number of decision nodes, that split the data according to a proper decision criterion
using if/else conditions. The number of decision nodes is proportional to the depth of
the tree. Finally, as the maximum depth is reached, the last decision nodes split into the
leaf nodes, in which the decision about the class of the instances is made. In regression
problems, each decision corresponds to the comparison with a threshold. This condition
divides the data into two sub-groups, one greater and one less than the threshold, so the
higher the number of decision nodes, the greater the number of sub-ranges into which
the initial dataset will be divided. Although this process increases the model’s accuracy
during the training phase, it can be counterproductive to the ability to generalize during
the testing phase, as the model will be more prone to the overfitting phenomenon. In RF
applications, “Bootstrap” [35] is used as a resampling approach to reduce the generalization
error of the model. The predictive accuracy can be appropriately calibrated by tuning the
model hyperparameters:

• Number of estimators: the number of decision trees that create the forest.
• Maximum depth of the tree.
• Minimum sample split: the minimum number of samples required to split a

decision node.
• Minimum sample leaf: the minimum number of samples required to be at a leaf node.

The hyperparameter optimization is discussed in Section 4.4.

4.3. Performance Metrics and Loss Function

In the case of regression problems, the model accuracy is monitored by comparing
predictions with true values. This comparison can be easily accessed through the Mean
Squared Error (MSE) value defined in Equation (21) and the coefficient of determination
R2, calculated with Equation (22).
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MSE =
1
N

N

∑
j=1

(
yj − ŷj

)2 (21)

R2 = 1 −
∑N

j=1

(
ŷj − yj

)2

∑N
j=1

(
yj − yj

)2 (22)

In both equations, N represents the total number of samples, ŷ is the model prediction,
y is the true value and y is its mean value. During the training phase of the model, the
MSE is used as a loss function and it is minimized by the model optimizer.

4.4. Hyperparameters Optimization

The optimization of the hyperparameters represents a crucial step in obtaining a
reliable predictive model. As far as the ANN is concerned, the model architecture is
characterized by an input layer which manages 18 input variables, three hidden layers,
and an output layer for the single-objective function. The number of neurons for each
hidden layer is tuned using a random search approach. Overall, the hyperparameters
optimized through random search and their range of variability are summarized in the first
and second columns of Table 3, respectively.

Table 3. ANN hyperparameters.

Hyperparameter Range Optimal
Model (η)

Optimal
Model (Θ)

Number of neurons: first hidden layer 4–128 76 61
Number of neurons: second

hidden layer 4–128 81 88

Number of neurons: third hidden layer 4–128 69 47

λ (L2 regularization): first hidden layer 0–1 × 10−4 8.4 × 10−5 2.9 × 10−5

λ (L2 regularization): second
hidden layer 0–1 × 10−4 4.4 × 10−5 9.3 × 10−5

λ (L2 regularization): third hidden layer 0–1 × 10−4 1.3 × 10−5 5.1 × 10−5

Dropout rate: first hidden layer 0–30% 3% 0.6%
Dropout rate: second hidden layer 0–30% 12% 30%
Dropout rate: third hidden layer 0–30% 20% 17%

Batch size 8, 16, 32, 64 64 32

Activation function tanh, ReLu, Sigmoid,
Leaky ReLu Leaky ReLu Leaky ReLu

Optimizer Adam, rmsprop,
Adamax, Nadam Adamax Adamax

Random search is usually preferred over grid search in case of high-dimensional
problems, especially when many grid points are required to explore the search space
defined by the number of hyperparameters and their range of variability. Moreover, with
grid search all points are evenly distributed in the search space, which can produce weak
coverage in important sub-ranges and unnecessary coverage in areas of little interest. A
deep comparison between random search and grid search is provided by Bergstra and
Bengio [11]. In the current work, each combination of hyperparameters was tested using a
k-fold cross-validation with k = 5. The cross-validation step guarantees that the accuracy
of the metamodel is not affected by the train-test split. Finally, the random search approach
looks for the combination of hyperparameters that maximize the R2 coefficient on the test
set as an average of the k = 5 results. A total number of 500 combinations were tested,
resulting in 2500 training phases considering cross-validation too. The number of training
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epochs was kept equal to 2000 after making sure that it was a sufficient number for the loss
function to stabilize.

The random search approach provides the best values for the model hyperparameters,
which are summarized in the last column of Table 3. In both applications, Adamax is
preferred as the optimizer and Leaky ReLu as the activation function. The cross-validated
results of the best model, which are instead summarized in Table 4, demonstrate that the
model accuracy is not affected by the training-test split, as R2 ≈ 0.99 independently from
the k-fold index.

Table 4. Cross-validation of the optimal ANN model.

k-Fold k = 1 k = 2 k = 3 k = 4 k = 5

R2 (η) 0.988 0.989 0.991 0.988 0.982
R2 (Θ) 0.997 0.996 0.996 0.997 0.994

A similar approach was then applied to the RF model. The hyperparameters tuned
with random search are reported in the first column of Table 5, while the second column
indicates their range of variability. As can be seen from the cross-validated results in Table 6,
the RF model is not able to reach the same predicting performance as the ANN, and the
R2 coefficient significantly varies from 0.874 to 0.908 at different k-fold index. Due to this
lack of accuracy, the RF model was only used to predict η and thus did not undergo further
hyperparameters optimization for predicting Θ.

Table 5. RF hyperparameters.

Hyperparameter Range Optimal Model (η)

Number of decision trees 5–500 401

Maximum depth 1–20 16

Min samples split 2–10 3

Min samples leaf 1–6 2

Table 6. Cross-validation of the optimal RF model.

k-Fold k = 1 k = 2 k = 3 k = 4 k = 5

R2 0.906 0.874 0.889 0.908 0.884

5. Optimization

The first step of the optimization process consists of training each machine learning
model using the best hyperparameters identified during the random search process. This
step was performed using a 70%–15%–15% split for train, validation, and test. Starting from
the neural network models, the training history for the single and the combined objective
function are reported in Figure 5a and Figure 5b, respectively. These graphs show the
evolution of training and validation loss with training epochs. In both cases, the models
do not suffer from the overfitting phenomenon as the validation loss does not deviate
from the training one. Moreover, the MSE convergence is approached after approximately
1000 epochs.

More details about the generalization capability of the models can be appreciated by
looking at the parity plots in Figure 6a–f. The parity plot of each sub-dataset compares the
predictions with the true values, and predictions that perfectly match the true values lie
along the diagonal red line. Both the single and the combined objective function problems
in Figure 6a–c and in Figure 6d–f, respectively, show a narrow distribution of the samples
along the diagonal line. This results in a R2 ≈ 0.98 in all sub-dataset of the model used to
predict η and R2 ≈ 0.99 for the model used to predict Θ. Furthermore, a very important
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aspect is the ability to accurately predict the results at the extremes of the parity plot,
as these data points represent the area of greatest interest for identifying the minima or
maxima of the Objective Function (OF).

Figure 5. Optimal ANN models training history: (a) model used to optimize η, and (b) model used
to optimize Θ.

Figure 6. ANN Parity plots: (a) training (R2 = 0.98, OF = η), (b) validation (R2 = 0.98, OF = η),
(c) test (R2 = 0.98, OF = η), (d) training (R2 = 0.99, OF = Θ), (e) validation (R2 = 0.99, OF = Θ),
and (f) test (R2 = 0.99, OF = Θ).

Similar considerations can also be derived for the RF case. As discussed before, despite
the hyperparameter tuning, the optimal RF model does not achieve the same performance
as the neural network. The validation and test parity plots above all (Figure 7b,c) show a
more sparse distribution of points along the diagonal line, and the R2 index drops from
0.98 to 0.89 when the model needs to generalize on data that was not used for training.
This behavior confirms the cross-validated results reported in Table 6 and adds useful
information regarding the presence of overfitting in the RF model.

The lack of accuracy of the RF model can be likely attributable to insufficient data.
To prove this idea, the model was trained for an increasing number of samples, and the
evolution of the training and test R2 index shows a progressive improvement of the model
generalization ability with increasing data size (Figure 8). However, improvements for
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the numbers of samples greater than 600 are quite moderate and the model is not able to
achieve the same performance as the ANN, given the same number of samples.

Figure 7. RF Parity plots: (a) train (R2 = 0.98), (b) validation (R2 = 0.88), and (c) test (R2 = 0.89).

Figure 8. Optimal random forest model trained for different data size.

Once the optimal machine learning model was obtained, it was used to predict the
vane geometry that maximizes the single and the combined objective functions. However,
the optimization of Θ was conducted only for the ANN case, as the RF model proved
to perform worse for this kind of problem. The optimization process uses a genetic
algorithm implemented with the Python library PyGAD [36]. The genetic algorithm
starts with an initial population of 200 individuals that evolves through 350 consecutive
generations. Each individual is represented by a chromosome whose length (number of
genes) is proportional to the number of input variables. Performance is instead calculated
via a fitness function and the most qualified individuals are selected for mating at each
generation. The mating process consists of crossover and mutation. “Crossover” means that
the chromosomes are split and swapped between the two parents, while during “mutation”
some genes in the chromosome are replaced with random values to increase the disparity
between individuals. Eventually, an elitism mechanism is employed to preserve the best
10 individuals of each generation. In the current application, the size of the mating pool
was set equal to 120 parents, while 10% of the genes undergo mutation by replacement.
The crossover strategy is instead based on a “single-point” approach. Each individual in
the genetic algorithm evolution corresponds to a sample whose performance is predicted
by the machine learning model. Moreover, the same GA parameters are considered for
both the ANN and the RF to obtain their best predictions.

Figure 9a,b reproduces the objective function evolution with the generations, and
the optima are identified with a corresponding case ID for simplicity. OPT-1 and OPT-2
represent the optimal geometry predicted, respectively, by ANN and RF for η, while OPT-3
refers to the geometry optimized with ANN in terms of Θ. The plot underlines that most
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improvements are achieved within the first 100 generations. Subsequently, only slight
enhancements occur until the end of the evolutionary process. The evolution of the objective
function in Figure 9a shows a limit of the RF model in exceeding η = 0.9. This behavior can
be confirmed by the lack of accuracy of the model shown in the parity plot (Figure 7), as
predictions in the upper extreme of the plot underestimate the corresponding true values.

Figure 9. Evolution of the objective function with GA generations: (a) optimization of η, and
(b) optimization of Θ.

The optimized diffusive endwall and vane profiles found by the GA are shown in
Figure 10a,b. This graphical comparison reveals that ANN and RF predict the same optimal
geometry for maximizing η. Both OPT-1 and OPT-2 deviate significantly from the baseline
geometry, especially at the leading edge of the vane and at the endwall. The trailing edge
instead is almost identical to the original one. Minor differences emerge instead from the
comparison of OPT-1 and OPT-2 with OPT-3, visible only in the first portion of the suction
side up to Z/D = 1 and in the central zone of the pressure side.

Figure 10. Baseline and optimized geometries: (a) diffusive endwalls, and (b) vane profile.

The optimal geometries were then tested using RANS simulations to determine the
reliability of the predicted objectives and to investigate the impact of these geometrical
features on the physics of the problem. Results in terms of model predictions and CFD
validation are summarized in Table 7.

Regarding the vane efficiency, the prediction error of both OPT-1 and OPT-2 is close to
1%, confirming the two models’ great prediction accuracy. CFD validation demonstrated
that OPT-1 is the best solution for η optimization. Given the similarities between OPT-1
and OPT-2, only the first one was examined in depth through post-processing to study the
internal flow field. Both the solutions OPT-1 and OPT-3 reach the maximum result in terms
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of Θ. Moreover, using a combined objective function does not penalize the overall stator
efficiency, which is almost unchanged between OPT-1 and OPT-3.

Table 7. GA results and validation with CFD.

Case ID Model Prediction CFD Error

Baseline - - η = 0.879 -
- Θ = 0.932 -

OPT-1 ANN η = 0.919 η = 0.913 <1%
- Θ = 0.954 -

OPT-2 RF η = 0.900 η = 0.910 −1.1%
- Θ = 0.953 -

OPT-3 ANN - η = 0.912 -
Θ = 0.958 Θ = 0.954 <1%

6. CFD Results

In this section, the CFD simulations are post-processed to estimate the impact of the
optimized geometries on the internal flow field. The helicity maps in Figure 11a–f shows
the intensity of the secondary flows induced by the fluid separation from the walls. A
first Separation Bubble (SB) occurs as the endwall starts to diffuse. Subsequently, the
impingement with the leading edge produces the horseshoe vortex, which is split into
Pressure Side Horseshoe Leg (PSHL) and Suction Side Horseshoe Leg (SSHL). Due to the
pressure difference between the pressure and the suction side, the PSHL is rapidly pushed
toward the suction side of the adjacent airfoil.

In the baseline geometry (Figure 11a,d), the faster endwall diffusion intensifies the
magnitude of the PSHL. The latter subsequently merges with the horseshoe vortices creating
strong PSHL that push the SSHL to the upper and lower corners of the suction side of the
vane, as visible in Figure 11a. The optimized geometries OPT-1 and OPT-3 in Figure 11e,f
behave similarly to each other, and in both cases, the PSHL almost disappears. This
can be motivated by the smoother endwall diffusion and by the elongated vane profiles,
which minimize the local variation of the cross-sectional area. As a consequence, the
PSHL is attenuated and the SSHL results are bigger with respect to the baseline case.
Figure 11b,c shows that the secondary structures in the optimized geometries are closer to
the extremes in the span-wise direction, while the mid-span is almost not perturbated by
recirculation zones.

Figure 11. Helicity: (a) Baseline, (b) OPT-1, (c) OPT-3, (d) Baseline flow structures, (e) OPT-1 flow
structures, and (f) OPT-3 flow structures.
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These observations find consistency in the analysis of the outlet conditions, calculated
on a plane extracted at an axial distance equal to the 30% of C downstream from the vane
trailing edge. Here, the total pressure loss coefficient Cp in Figure 12 is plotted along
the span-wise position. For the baseline design, the upper and lower vortices merge at
the mid-span position creating a local peak in pressure loss. The optimized geometries
OPT-1 and OPT-2 are instead characterized by the presence of two independent vortices
at Span ≈ 0.2 and ≈0.7. Moreover, the exit flow yaw angle α2 in Figure 12b shows a
similar trend. The maximum flow deviation from α2,re f occurs at the mid-span position
∆α2,max = 8.6◦ for the baseline geometry while coinciding for OPT-1 and OPT-2 with a
peak of ∆α2,max = 5.2◦ located at the 70% of the span. The pitch angle δ is also reported in
Figure 12c to provide insight into the intensity of the vertical component of the velocity,
which can cause instability in the turbine. Fluctuations in δ are always lower than 1◦, and
once again the optimized geometries present a smoother profile with smaller deviations.
Finally, the Ma2 profile in Figure 12d confirms that the outlet plane of the baseline geometry
is strongly affected by secondary flows, which creates a local deceleration of the flow at the
mid-span position. Both OPT-1 and OPT-3 are instead characterized by an almost uniform
Ma2 profile.

Figure 12. Outlet conditions: (a) pressure loss coefficient, (b) outlet yaw angle, (c) outlet pitch angle,
and (d) outlet Mach number.

The inlet Mach number was found to be proportional to the overall mass flow rate,
which changes according to the variation in the minimum throat area. This aspect can be
quantified by introducing the contraction ratio CR, which is measured as the ratio between
the inlet and the throat area. The baseline geometry in Figure 13a ingests the inlet flow
rate at Ma1 ≈ 0.5 with a CR = 1.34. When Ma1 is considered within the objective function
(OPT-3 in Figure 13c), the CR reduces up to 1.21 and Ma1 = 0.58. In this context, solution
OPT-1 (Figure 13c) serves as a middle ground as it has Ma1 = 0.56 and CR = 1.23. The
isentropic Mach number in Figure 13d shows the occurrence of a shock at the 25% of the
span and 75% of the axial chord for the baseline geometry, which is a source of aerodynamic
losses. Moreover, the span-wise distribution of the load is not uniform. In the OPT-1 case
represented in Figure 13e instead, the load is evenly distributed over the span, as well as
occurs for OPT-3 in Figure 13e. The latter presents a stronger peak in terms of Mais at the
50% of the axial chord which coincides with the sudden curvature change in the suction
side that produces a local over-acceleration. Eventually, OPT-1 geometry in Figure 13e
shows a better load distribution and this is conformal with the higher vane efficiency
achieved by this geometry.

The pressure and velocity contour maps extracted at the mid-span are represented
in Figures 14a–c and 15a–c. Both figures confirm the behavior showed by the Mach
contours represented in Figure 13a–c, as the inlet flow initially decelerates, thus producing
a local increase in the static pressure and then accelerates for the presence of the airfoil.
Figure 15a–c represents a detailed view of the suction side in the 0.4 < Cax < 0.7 region,
where the changes in the curvature affect the flow field behavior. In fact, the OPT-3 solution
(Figure 15c) is influenced by the strong curvature variation occurring close to Z/C = 1,
which produces a local acceleration and a subsequent thickening of the boundary layer
in the downstream region, where the pressure gradient becomes adverse as reported in
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Figure 13f in the 0.5 < Cax < 0.7 region. This phenomenon is greatly mitigated in OPT-1
(Figure 15b), and almost absent in the baseline case (Figure 15a).

Figure 13. Mach contour: (a) baseline, (b) OPT-1, (c) OPT-3, (d) baseline isentropic Mach distribution,
(e) OPT-1 isentropic Mach distribution, and (f) OPT-3 isentropic Mach distribution.

Figure 14. Pressure contours at the mid-span: (a) baseline, (b) OPT-1, (c) OPT-3.

Figure 15. Velocity contours at the mid-span: (a) baseline, (b) OPT-1, (c) OPT-3.

7. Conclusions

The current framework focuses on the optimization of an HPT vane designed to ingest
an inlet gas flow rate at Ma = 0.6. The vane and the diffusive endwall profiles were first
parametrized with splines and then deformed by moving the position of the control points.
This method was used to generate 885 different samples using an LHS approach that was
tested through RANS CFD simulations. The aerodynamics of each sample was quantified
with the vane efficiency. Furthermore, the Root Square Index Θ was introduced to quantify
the impact of the new geometry on Ma1, α2, and η simultaneously. The overall dataset
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was then used to train an ANN and an RF model aimed at predicting η and Θ as objective
functions. Models were first tuned with a random search approach and then coupled with
a genetic algorithm to search for optimal solutions.

The ANN model proved superior to the RF in generalizing predictions from test data,
achieving R2

test = 0.98 and R2
test = 0.99 for the prediction of η and Θ, respectively, against

R2
test = 0.89 by RF. Moreover, the ANN model performance does not suffer from train-test

split dependency, since cross-validated results are independent from the k-fold index. In
the RF case, a significant dependency from data split can be noticed both during cross-
validation and when the model is trained for increasing data size. Regarding the machine
learning tools studied in this paper, it can be concluded that a properly tuned ANN does
not encounter difficulties in managing the relation between the objective functions and
the 18 input variables in their current range of variability. An increase in the design space
or in the number of variables could be considered for a future study, in order to increase
the complexity of the design and look elsewhere for a new optimum point. Since most of
the computational effort of the present work is represented by data collection from CFD
analysis, it is important to find a compromise between the predictive accuracy and the
computational time. Analyzing the results from the ANN and the RF models, it is possible
to conclude that the 885 samples are enough to achieve the desired level of prediction
accuracy for the ANN model (R2 ≈ 0.98–0.99). Moreover, the R2

test index for the RF model
is strongly affected by the dataset size for N < 600. For N > 600 a slight increase in R2

test is
still observed, so it is not suggested to use a restricted dataset.

The current optimal geometries predicted by the models were thus simulated through
CFD to verify the reliability of the predictions and to study the physics of the problem. The
results demonstrated the excellent accuracy of the models, with the predictions matching
the simulations within an error of approximately 1% for both ANN and RF. The major
sources of aerodynamic losses can be identified in the generation of separation bubbles
induced by the endwall diffusion angle, in the horseshoe structures created at the vane
leading edge, and in the presence of shocks after the vane throat area. The optimized
geometries in terms of η present strong mitigation of aerodynamic losses were obtained
through a smoother endwall diffusion and an elongated vane shape. The combination of
these geometrical features avoids sudden cross-sectional variation in the streamwise direc-
tion, preventing the flow separation from the diffusive endwalls. Similar considerations
can be also extended to OPT-3, as the position of the leading edge and the shape of the
endwalls coincide with OPT-1. However, OPT-3 achieves Ma1 ≈ 0.6 by slightly increasing
the vane throat area and thus the overall mass flow rate through the system.
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Abbreviations

RDC Rotating Detonation Combustor
HPT High Pressure Turbine
LHS Latin Hypercube Sampling
DOE Design Of Experiments
ANN Artificial Neural Network
RF Random Forest
GA Genetic Algorithm
OF Objective function
ReLu Rectified Linear Units
NAG Nesterov accelerated gradient
CR Contraction Ratio
SB Separation Bubble
PSHL Pressure Side Horseshoe Leg
SSHL Suction Side Horseshoe Leg
Nomenclature
N Number of samples
z Summed weighted of the input
w Weight
b Bias
x Input variable
L Loss function
L̃ Regularized loss function
y True value
ŷ Model prediction
ṁ Mass flow rate
T Temperature
P Pressure
h enthalpy
U mean velocity
u velocity fluctuation
k turbulent kinetic energy
SM momentum source term
SE energy source term
Pkb buoyancy term in turbulent kinetic energy transport equation
Pωb buoyancy term in turbulent dissipation rate transport equation
F2 SST blending function
A Area
Ma Mach number
R Gas constant
cP Specific heat at constant pressure
Cp Total pressure loss coefficient
X Lateral direction
Y Vertical direction
Z Axial direction
C Chord of the vane
k Cross validation fold index
Greek
η Vane efficiency
Θ Root Squared Index
α Vane exit yaw angle
δ Vane exit pitch angle
ρ density
µ dynamic viscosity
µt turbulent viscosity
ν kinematic viscosity
ω turbulent dissipation rate



Energies 2024, 17, 5642 20 of 21

Λ thermal conductivity
τij stress tensor
γ Specific heat ratio
λ L2 regularization coefficient
Subscripts
train Training dataset
test Test dataset
val Validation dataset
1 Inlet of the vane
2 Outlet of the vane
is Isentropic
ax Axial
th Throat
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