
16 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Nonlocal Model for Contact Attraction and Repulsion in Heterogeneous Cell Populations / Painter, K. J.; Bloomfield, J.
M.; Sherratt, J. A.; Gerisch, A.. - In: BULLETIN OF MATHEMATICAL BIOLOGY. - ISSN 0092-8240. - 77:6(2015), pp.
1132-1165. [10.1007/s11538-015-0080-x]

Original

A Nonlocal Model for Contact Attraction and Repulsion in Heterogeneous Cell Populations

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/s11538-015-0080-x

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11538-015-0080-x

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971366 since: 2022-09-16T16:48:25Z

Springer



A nonlocal model for contact attraction and repulsion in

heterogeneous cell populations

K. J. Painter∗, J. M. Bloomfield∗, J. A. Sherratt∗, A. Gerisch†

July 9, 2015

Abstract

Instructing others to move is fundamental for many populations, whether animal

or cellular. In many instances, these commands are transmitted by contact, such that

an instruction is relayed directly (e.g. by touch) from signaller to receiver: for cells

this can occur via receptor-ligand mediated interactions at their membranes, poten-

tially at a distance if a cell extends long filopodia. Given that commands ranging from

attractive to repelling can be transmitted over variable distances and between cells of

the same (homotypic) or different (heterotypic) type, these mechanisms can clearly

have a significant impact on the organisation of a tissue. In this paper we extend a sys-

tem of nonlocal partial differential equations (integrodifferential equations) to provide

a general modelling framework to explore these processes, performing linear stability

and numerical analyses to reveal its capacity to trigger the self-organisation of tis-

sues. We demonstrate the potential of the framework via two illustrative applications:

the contact-mediated dispersal of neural crest populations and the self-organisation of

pigmentation patterns in zebrafish.

1 Introduction

Cells and organisms move through their environment according to a variety of internal and

external cues. Amongst these, responses due to direct contacts with others are particularly

crucial: for example, the membrane to membrane adhesion contacts formed between cells

generate movement forces [61], while an animal will frequently alter its motility according

to the touch or sight of others [66]. How these interactions feed into larger scale dynamics,
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such as the organisation of cell populations during development, the invasion of cancerous

cells into healthy tissue, or the formation of bird flocks are fundamental questions that

have generated significant theoretical interest.

To start, we briefly state our definition of direct contacts. Here we consider this as

some form of one to one contact between a signaller and a receiver: for example, for two

cells this could be a result of direct linking between molecules on adjacent membranes,

while for animals it could be through touch or visual contact. Indirect contacts, which we

do not explicitly consider here, are exemplified by the many to many contacts mediated

via the secretion of a diffusible chemoattractant in a population of bacteria. Our focus in

this paper will be on the impact of direct contacts on the movement and patterning of cell

populations, although we note that the generic nature of the model would easily allow its

adoption, for example, in modelling movement of animal populations.

In the context of cell populations, the capacity for direct contacts to dictate movement

and patterning has been revealed in various examples. The classic case is cell-cell adhesion

(e.g. [78]), in which the binding of adhesion molecules on adjacent cell membranes acts

to pull cells together into a cohesive tissue. In the “differential adhesion hypothesis”, it

is proposed that distinct adhesive properties in the different cell types of a heterogeneous

tissue can act to restructure populations into a characteristic pattern, the precise arrange-

ment varying according to the self-adhesion (adhesion between two cells of the same type)

and cross-adhesion (different type) strengths.

Cell contacts can also induce repulsion. Abercrombie [1] described a process of contact-

inhibited movement of fibroblast cells more than 60 years ago, a process since shown to

occur in neural crest cells, where contact with another cell induces a migrating neural crest

cell to arrest its migration and change direction [12]. Such signals have also been shown

to exist between cells of distinct types, such as the interactions between xanthophores

and melanophores in zebrafish pigmentation cells [45, 53, 86]. Less specifically, inhibition

of movement and the organisation of differing cell types within various tissues has been

found to be regulated by Ephrin signals, which are contact-dependent, and which can also

promote adhesion and hence attractive movement (for a review, see [65]).

Contact-dependent signalling in cells is typically mediated through a membrane-bound

signalling molecule on a signalling cell attaching to a receptor molecule on the membrane

of a target cell, such that the signal is communicated directly from one to another [3].

Activation of the receptor triggers a signalling cascade, which in turn leads to a response:

for example, if the instruction is to repel, the target cell does so in the direction inferred

from the signal. In other instances of contact-mediated signalling, information may pass

directly between cells via tunnels, such as gap or tight junctions [87].
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While a membrane to membrane interaction superficially suggests a short-range method

of communication, capable of only contacting neighbouring cells, the fact that certain cells

can extend long membrane protrusions – such as ligand/receptor carrying filopodia and

cytonemes – potentially confers a longer-range element. For example, cytonemes in the

imaginal disk of Drosophila are found to extend at least 100 µm from a cell membrane

[67], while filopodia can extend some ten times an average cell diameter in newt pigment

cells [83]. Recent findings suggest that these and other protrusions can transmit signals

directly to distant cells of the same or different type, via a signalling cell contacting a

receiving cell either at the bodies or tips of their respective protrusions (e.g. see the re-

views in [30, 41, 70]). In the more specific context of movement-based responses, in vitro

cultures of liver stellate and hepatocyte cells suggest a process in which the extensions

of stellate cells “pull” hepatocyte cells into forming aggregates, [32, 80]. Consequently,

it is probable that for certain cell populations both attracting and repelling signals can

be directly transmitted over different interaction ranges and across large regions of tissue

(Figure 1).

Individual-based (or agent-based) models (IBMs) offer a relatively straightforward path

to model the impact of direct contacts on movement: tracking individuals allows their

interactions to be easily incorporated. For example, a variety of IBM models have been

applied to test the differential adhesion hypothesis and to other instances of cell contact-

driven patterning. This includes discrete-lattice models based on the cellular Potts model

[29, 31], other discrete agent based and cellular automaton models (e.g. [2, 34]), and

off-lattice models such as modelling cells as deformable ellipsoids [60]. Pertinent to the

current study, [11, 74] explored cell sorting behaviour in an IBM, including both attracting

and repelling interactions and applying the results to pigmentation patterning in zebrafish.

IBM approaches have also been widely applied to study how contact-mediated interactions

can organise animal populations, for example to explore flocking and schooling behaviour

(e.g. [16]).

Perhaps the greatest drawback of IBMs lies in their resistance to analytical rigour:

apart from highly specific cases, it can be difficult to draw out general properties and

conclusions without recourse to extensive and time-consuming numerical simulation. Con-

tinuous partial differential equation (PDE) models, while lacking the finer-scale detail of

IBMs, profit from a larger repository of analytical tools and techniques, along with the

ability to efficiently simulate large cellular systems; yet, including the impact of a contact

dependent interaction in these models is nontrivial. Early attempts to incorporate cell-cell

adhesion utilised ideas based on surface tension [10] or non-linear diffusion [64] to model

restricted cell movement due to adhesion. Other approaches have explicitly included some
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form of nonlocal integral term to model the impact of contact-based interactions on move-

ment and pattern formation: early examples are the integro-partial differential equation

models developed in [20] to model contact-mediated cell alignment. Notably, solutions

to such nonlocal models can demonstrate a variety of desirable dynamical traits, such as

travelling waves and self-organisation. Consequently, representation via a nonlocal term

has been applied in numerous contexts including cell sorting [5, 28], chemotaxis [36, 54],

pattern formation during development [6, 32, 69] and cancer invasion [4, 14, 27, 39, 58, 72].

Mathematical challenges raised by these models have also been addressed, such as their

boundedness and existence properties [14, 18, 19, 72].

Continuous and nonlocal models have also been proposed for the self organisation of

animal populations, such as in swarming, flocking, and schooling phenomena [21–23, 44,

49, 82]. One such model has been used to study the effect of varying interaction ranges

on spatial organisation [81], revealing that in the case of potential motion and nonlocal

repulsion, a short range leads to a smoothing of the density profile whilst a larger range

leads to increased movement. Under attractive interactions, an increasing interaction

range leads to a decrease in the number but an increase in the size of individual aggregates.

In this paper we extend these ideas further to explore how direct contacts impact on

the dynamics of cell populations. We begin with a general nonlocal PDE model that

permits cells of homogeneous (one cell type) or heterogeneous (multiple cell types) tissues

to directly interact via attraction or repulsion over distinct spatial ranges. This general

model can easily be tailored to many of the above applications of nonlocal models, and

hence applied to investigate phenomena ranging from waves, as in cancer invasion, to

self organisation, such as cell sorting. A general linear stability and numerical analysis is

performed to uncover the rich dynamical properties. Further, we illustrate its relevance via

applications in classic examples of invasion and self-organisation: the impact of repelling

interactions on the dispersal of neural crest cells and the organisation of distinct pigment

cell types during zebrafish pigmentation patterning.

2 Model formulation

2.1 Homogeneous tissue: single population model

Generally, continuous models for cell/organism movement are either (i) proposed on phe-

nomenological grounds, using classical continuum-based arguments (e.g. see [51]), or (ii)

derived from an individual-based model for movement, under certain scaling arguments

(e.g. see [37]). While the latter approach has the advantage that macroscopic terms and

parameters can be traced to the underlying individual-based rules, we adopt here the for-
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Figure 1: Schematic showing the potential for distinct interactions and ranges between

various cell types. We consider two cell types (dark and light), each with distinct forms

of cell protrusions. In this theoretical model (a) dark cells communicate via tip to tip

protrusions, giving interaction range ξuu; (b) dark cells communicate to light cells via a

tip to body interaction, with range ξvu; (c) light cells cells communicate to each other via

a tip to tip interaction, with range ξvv; finally, (d) light cells communicate to dark cells

via tip to body, with corresponding range ξuv.
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mer method, employing a mass conservation approach to describe the evolving cell density

of a population u(x, t) at position x ∈ Rn and time t. However we note that various non-

local models of chemotaxis and adhesion, similar to the model derived below, have been

derived from an underlying discrete process, for example see [9, 15, 48].

Specifically we take
∂u

∂t
= −∇ · J + h(·) ,

where J represents the cell flux and h(·) is a function describing cell proliferation and

death. The flux describes the various factors leading to cell movement: here we suppose

attractive and/or repulsive interactions between cells, together with a random motility

component. We take the simplest assumption in that the latter is modelled via Fickian

diffusion, Jrandom = −D∇u where D is a constant cell diffusion coefficient, although we

acknowledge that nonlinear diffusion terms may be more appropriate in some contexts.

We assume the interaction between one cell and another generates either an attractive

or repulsive force, leading to their movement towards or away from each other. These

forces could be directly generated, as in the forces created through adhesion molecule

binding on adjacent cell membranes, or indirectly generated, for example the activation

of intracellular movement machinery due to the trigger presented by a signalling cell: in

the general model the precise mechanism is not important, we simply assume movement

is initiated when two cells are within range. Specifically, we assume the force created at

x due to signalling with cells at x + s is given by

f(x, s, t) =
s

|s|
Ω(|s| ; ξ, µ)g(u(x + s, t)).

In the above Ω : [0,∞) → R is the interaction function which dictates how the strength

of the force generated at x varies with distance to x + s, parametrised with respect to

the interaction range ξ and interaction strength µ; see below for further details. The

functional dependence on cell density at x + s, g(u(x + s, t)), simply assumes the force

exerted on cells at x varies according to the number of cells they can contact at x + s. We

sum all such forces through integrating over space to obtain the total force:

F(x, t) =

∫
Rn

s

|s|
Ω(|s| ; ξ, µ)g(u(x + s, t))ds .

Assuming that inertia is negligible and drag is proportional to velocity, we therefore obtain

the interaction-flux

Jinteraction(x, t) = u p(u)ω

∫
Rn

s

|s|
Ω(|s| ; ξ, µ)g(u(x + s, t))ds . (1)

Note that ω is a proportionality constant that depends on factors such as the viscosity

of the medium, while we also introduce a packing or volume-filling function, p(u), that
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acts to prevent unbounded cell densities: p is assumed to be a decreasing function of u,

reflecting decreased ability to move at higher densities. Incorporating (1) into the general

mass conservation equation, the one population model becomes

∂u

∂t
= ∇ ·

(
D∇u− uωp(u)

∫
Rn

s

|s|
Ω(|s| ; ξ, µ)g(u(x + s, t))ds

)
+ h(·) . (2)

The above equation clearly has great scope and to focus attention on the dynamics in-

duced by nonlocal signalling interactions we fix functions g, p and h at this point. For

g we take the simplest assumption that the force increases linearly with the cell density,

g(u(x + s, t)) = u(x + s, t), due to increased likelihood of forming an interaction at higher

cell densities; suitable nonlinear forms could also be selected. We take p(u) = 1− u/P as

a suitable packing function (e.g. see [56]), where P is a parameter describing the packing

density, and we adopt the standard form h(u) = ρu(1 − u/U) for cell kinetics, where ρ

is the proliferation rate and U is the carrying capacity. Note that packing density and

carrying capacity parameters are not necessarily the same: the former describes a density

at which movement has become negligible, while the latter describes the density for which

the net growth is zero. In particular, we assume here that the carrying capacity U ≤ P ,

i.e. movement can still continue until the tissue is ‘packed’, yet growth becomes restricted

at lower densities (e.g. due to nutrient depletion). Note also that it would be possible

to conceive a long-range dependent proliferation term, for example via a nonlocal form of

h(u): we do not consider this extension at present.

As stated above the function Ω(r) describes how the strength of the force varies with

the distance r from a cell and forms our focal point. Here we specifically set

Ω(r; ξ, µ) = µ
Ω̃ (r/ξ)

ξ

where Ω̃ : [0,∞)→ R is the normalised interaction function of r/ξ that satisfies∫ ∞
0

Ω̃(r/ξ)dr = ξ .

Hence the normalised interaction function is parametrised solely by ξ. In this formulation,

each cell transmits a total signal1 parametrised solely by the interaction strength parameter

µ, distributed over some region determined by Ω̃ and characterised solely by the signalling

range ξ.

The signalling range and strengths are expected to vary with cell type: for example,

whether direct membrane to membrane interactions or longer (e.g. filopodia, cytoneme)

1In fact the size of this total signal also varies with the space dimension n, since the integral of Ω̃ is

along a single ray but the cell signals along all rays. For simplicity we assume the parameter µ implicitly

incorporates this dimensional dependency – here we generally restrict to one dimension.
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protrusions form the primary mode of signalling. Note that for now we will exclusively

consider nonnegative functions for Ω̃ (i.e. Ω̃ : [0,∞) → R+). Consequently, it is the

sign of the interaction strength parameter that reflects whether a signalling interaction

is attracting (µ > 0) or repelling (µ < 0). Of course, this precludes that two cells may

attract or repel each other, according to their distance apart: such scenarios could easily

be modelled by lifting the restriction on Ω̃ being nonnegative.

A simple choice for Ω̃(r/ξ) would be a step function – uniform signalling within a cell’s

reach and zero outside – however, given the often dynamic and flexible shape of cells and

their protrusions, we would intuitively expect signalling to vary with distance from the

signalling cell. Here we explicitly consider the following three functions:

Ω̃ (r/ξ) =

{
1 if r

ξ ≤ 1

0 if r
ξ > 1

(O1); Ω̃ (r/ξ) = e
− r
ξ (O2); Ω̃ (r/ξ) = r

ξe
− 1

2
( r
ξ
)2

(O3).

In the above (O1) describes the simple uniform signalling stated above, and the signalling

range ξ describes the outermost reach. (O2) defines a simple exponential decrease in

signalling with distance from the cell, reflecting a decrease in the probability of creating

a contact with distance from a cell’s centre. The third proposal (O3) assumes that peak

signalling takes place some distance ξ from a cell’s centre (e.g. a point reflecting the

mean extent of cell protrusions from the centre) and away from there (in both directions)

decreases towards zero: its precise (and analytically convenient) form follows that chosen

in similar models by [21, 23, 49] in the context of animal swarming.

Therefore our one population model is given by

∂u

∂t
= ∇ ·

(
D∇u− uω(1− u/P )

µ

ξ

∫
Rn

s

|s|
Ω̃(|s| /ξ)u(x + s, t)ds

)
+ ρu(1− u/U) . (3)

where Ω̃ is given by one of the forms (O1)–(O3) above.

For initial conditions we simply state u(x, 0) = u0(x)(≥ 0,≤ P ), discussing specific

choices in applications below. Domain and boundary conditions generally require special

attention: for a bounded region of space, standard boundary conditions such as zero-flux

can certainly be specified, yet it also becomes necessary to modify the nonlocal term to

account for how points outside the domain should be accounted for. One possibility would

be to truncate the signalling function to zero for exterior points, assuming that there are

no cells in that region capable of providing a signal; of course, this would be a modelling

decision based on the applications under consideration. Given the primarily theoretical

nature of the present analysis, we will simply consider either an unbounded domain (for

analysis) or periodic boundary conditions (when it comes to numerics).
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2.1.1 Example application: cell invasion waves

Models similar to equation (3) have been studied in various contexts, including self-

organisation of a homogeneous cell population and wave invasion. For example, we trivially

note that when µ = 0, (3) reduces to Fisher’s equation and one therefore expects travelling

wave solutions. Consequently, models based around (3) have specifically been used to ex-

plore the dynamics of invading waves of cancer cell populations (e.g. see [27, 58, 72]), for

example, focussing on how cell-cell adhesion impacts on the rate and form of an invasion

wave. In Section 4 below we extend this further in a specific application of (3) to neural

crest invasion, exploring how a process of contact repulsion in a travelling wave of cells

alters their rate of invasion.

2.2 Heterogeneous tissues: multiple populations

We next generalise our model to examine signalling interactions between multiple popu-

lations. Specifically, for two populations u and v we consider a total of four interaction

terms: two homotypic terms for the interactions between cells of the same type (u to u or

v to v), and two heterotypic terms for the interactions between cells of distinct type (u to

v or v to u).

The interaction function Ωmn(r;µmn, ξmn) now defines the impact on cell type m

through contacts with cells of type n, parametrised according to the interaction strength

µmn and interaction range ξmn. We again assume that

Ωmn(r; ξmn, µmn) = µmn
Ω̃mn (r/ξmn)

ξmn

where Ω̃mn : [0,∞) → R is the function of r/ξmn that satisfies
∫∞
0 Ω̃mn(r/ξmn)dr = ξmn.

Extending (2) to two populations, our model is given by

ut = ∇ · ( Du∇u −uωp(u, v)
µuu
ξuu

∫
Rn

s

|s|
Ω̃uu (r/ξuu) guu(u(x + s, t))ds

−uωp(u, v)
µuv
ξuv

∫
Rn

s

|s|
Ω̃uv (r/ξuv) guv(v(x + s, t))ds ) + hu(u, v) (4)

vt = ∇ · ( Dv∇v −vωp(u, v)
µvv
ξvv

∫
Rn

s

|s|
Ω̃vv (r/ξvv) gvv(v(x + s, t))ds

−vωp(u, v)
µvu
ξvu

∫
Rn

s

|s|
Ω̃vu (r/ξvu) gvu(u(x + s, t))ds ) + hv(u, v) (5)

where Du and Dv are the (assumed constant) cell diffusion coefficients, ω is as above

and p(u, v) = p(u + v) is a packing function. Here we limit ourselves to the choice

p(u, v) = 1 − (u + v)/P , where P denotes the packing density parameter, although we
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note other decreasing forms could also be chosen (e.g. p(u, v) = exp(−(u + v)/P )), and

again we assume simple linearly increasing forms for the various functions gmn. We note

that the choice of constant diffusion coefficients represents a clear simplification when

packing-type behaviour is accounted for: for interacting cell populations, diffusive-based

movements can be considerably more complicated, for example driven by the multiple cell

density gradients (e.g. see [55, 57, 76]). Reducing to constants allows us to focus on the

crucial contribution from the nonlocal interaction terms.

Functions hu and hv describe the cell kinetics, although we will ignore these in the

analysis that follows (hu = hv = 0). Initially we set u(x, 0) = u0(x), v(x, 0) = v0(x), such

that 0 ≤ u0, v0, u0 + v0 ≤ P for all x. Domain and boundary conditions are considered as

given in the homogeneous tissue case.

2.2.1 Example application: cell sorting

A natural application of the above model is to the patterning and sorting of cell popula-

tions during embryonic development. In particular, in [5, 28] a particular formulation of

(4)–(5) was suggested to describe the differential-adhesion driven sorting of cell popula-

tions. Here, the generation of attractive forces via direct cell-cell binding imposes natural

restrictions, such as µmn ≥ 0 and symmetry of the heterotypic interaction terms. Despite

these restrictions, the model is capable of generating a diverse range of patterning, in-

cluding the various sorting patterns predicted by the differential adhesion hypothesis [78].

Under the more general scenario here, signals are transmitted uni-directionally and via

different modes of communication.

3 Pattern formation

Given the above mentioned relevance of models (3) and (4)–(5) to the self organisation

and sorting of populations, we begin with a general analysis into pattern formation, before

returning in Section 4 to some expository applications. We begin with the simpler situation

of a homogeneous tissue, exploring the necessary relationships between parameters such

as interaction range and strength for patterning to occur. The insights will be used to

guide explorations into the more intricate case of a heterogeneous tissue.
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3.1 Homogeneous tissue: one population

3.1.1 Linear stability analysis

For convenience we restrict to the one-dimensional case and nondimensionalise (3), scaling

via

û = u
P , x̂ = x

L , t̂ = D
L2 t , ξ̂ = ξ

L , µ̂ = ωµLP
D , ρ̂ = ρL2

D , Û = U
P .

In the above L represents a reference length scale, which relates dimensional and non-

dimensional values of the signalling range; this will be application-dependent. Note that

since U ≤ P , we have Û ≤ 1. We substitute the above forms into (3) and drop the “hats”

for notational simplicity to obtain

∂u

∂t
= uxx −

(
u(1− u)

µ

ξ

∫
R

s

|s|
Ω̃(|s| /ξ)u(x+ s, t)ds

)
x

+ ρu(1− u/U) . (6)

We note that for ρ > 0 we determine a (positive) uniform steady state 0 < U ≤ 1. When

ρ = 0 the uniform steady state will be determined by the average initial density (on an

infinite domain or with homogeneous boundary conditions), which we also take to be given

by U and will be in the range 0 < U ≤ 1 by the above specified initial conditions.

To explore stability of the steady state we set u(x, t) = U + ũ(x, t) in (6), where ũ

describes a small perturbation. We linearise and take the standard approach (for exam-

ple, see [51]) of looking for solutions of the form ũ ∼ eikx+λt where, for the unbounded

domain case here, k ∈ R. Here k denotes the wavenumber, with corresponding wavelength

= 2π/k. Note that a formal analysis under bounded domains would require care and

attention to any restrictions on k due to the stated boundary conditions. Straightforward

rearrangement yields

λ = −k2 + ikU(1− U)
µ

ξ

∫
R

sgn(σ)Ω̃(|σ| /ξ)e−ikσdσ − ρ .

In the above we have set σ = −s and taken sgn(.) to denote the sign function: the

integral therefore defines the (purely imaginary) Fourier transform of the odd function

sgn(σ)Ω̃(|σ| /ξ) and we let Γ be the odd function defined by∫
R

sgn(σ)Ω̃(|σ| /ξ)e−ikσdσ = −iξΓ(k, ξ) . (7)

A necessary condition for linear instability of the uniform steady state to spatially inho-

mogeneous perturbations is Re(λ) > 0 for some k > 0, i.e.

kU(1− U)µΓ(k, ξ) > k2 + ρ . (8)

Note that it is sufficient to restrict to k > 0 due to the even nature of kΓ.
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To explore this instability condition further we consider Γ for the three representative

functions Ω̃ given by (O1)–(O3), see Table 1 for details. We note that for each of these

functions, we have Γ ≥ 0 for k > 0 and Γ → 0 as k → ∞. Observe that Γ ≥ 0 for

k > 0 and 0 < U ≤ 1 implies that (8) is satisfied for some k > 0 if µ is sufficiently large

(positive), and thus instability is possible under these conditions. If, however, µ < 0 (i.e.

the repellent case) then (8) cannot hold for any k > 0.

For the analytically convenient case of (O2) we can perform an explicit analysis by

substituting the form for Γ given in Table 1 directly into equation (8), rearranging and

showing it holds for some k > 0 if and only if the following condition is satisfied:

µU(1− U) >

(
1 + ξ

√
ρ
)2

2ξ
. (9)

Note that in the specific case of zero cell proliferation, this reduces to 2ξµU(1 − U) > 1.

Representations of (9) for U = 0.5 and ρ = 0 or ρ = 1 are provided in Figure 2 (middle

plots).

Using the explicit condition (9) obtained for (O2) we can clearly see the requirement

of a sufficiently large and positive µ (attractive interactions), deduced in general above:

attraction generates the cohesion that pulls cells into aggregated groups. The dependence

on ξ, on the other hand, is more subtle. For ρ = 0 longer signalling ranges promote

instability and patterning. For ρ > 0, however, instabilities are optimised at a specific

signalling range, with smaller and larger ξ necessitating a larger value of µ to generate

patterning. Intuitively, for a small interaction range it is necessary to generate a strong

signal in order to pull enough cells together to create a cluster, while for large interaction

ranges the signal becomes dispersed over a wider field and the interaction strength must

also be that much larger to overcome the stabilising effects of proliferation.

Cases (O1) and (O3) are less amenable to a direct analysis, yet the form of Γ(k, ξ)

implies similar dependencies on ξ and µ, with small and larger ξ requiring larger µ to

generate patterning. Numerical calculations of the ξ − µ instability region (fixing U =

0.5, ρ = 1) demonstrate this similarity, see Figure 2.

We further consider the value km at which Reλ(k) reaches its maximum value, indicat-

ing the corresponding wavelength 2π/km using the colour code in Figure 2. This provides

an indication of the expected wavelength of patterns that emerge from perturbations of

the steady state and, hence, the (initial) spacing of aggregates. As intuition would predict,

we observe that the predicted wavelength increases with the signalling range.
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Figure 2: ξ − µ parameter regions for predicted patterning in the one-population model

under (left to right) different interaction functions (O1)-(O3) and (top row) ρ = 0 and

(bottom row) ρ = 1. In the regions where patterning is predicted, we also indicate the

expected spatial wavelength, colour-coded from patterns of zero wavelength (dark blue)

to wavelengths greater than 30 (dark red).

(O1) (O2) (O3)

Ω̃ (r/ξ) =

{
1 if r

ξ ≤ 1

0 if r
ξ > 1

e
− r
ξ r

ξe
− 1

2
( r
ξ
)2

Γ(k, ξ) = 21−cos(ξk)
ξk 2 kξ

1+k2ξ2

√
2πkξe−

k2ξ2

2

Table 1: Table showing the functions for Γ following the Fourier transform (7) for the

interaction functions (O1)-(O3).
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3.1.2 Numerical simulations

To investigate the form of the patterns we numerically solve the equations in 1D. Up until

now we have avoided the necessary specification of boundary conditions and modification

of the integral term for bounded domains: here, to limit any boundary effects we wrap the

interval [0, L] onto a circle by imposing periodic boundary conditions, with the integral

term itself also ‘wrapped’.

To solve the nonlocal PDEs we follow a Method of Lines approach, using the Matlab

inbuilt integrator “ode45” to solve the resulting system of time-dependent ODEs. Note

that the discretisation utilises a Fast Fourier Transform technique to calculate the integral:

full details of the numerical method itself are provided in [26, 28]. Exploiting the fact that

for all |s| > ξ all proposed forms for Ω̃ are either zero or decay rapidly to zero, we set∫
R

s

|s|
Ω̃(|s| /ξ)u(x+ s, t)ds ≈

∫ Nξ

−Nξ

s

|s|
Ω̃(|s| /ξ)u(x+ s, t)ds .

The above provides a close approximation for large enough N : in simulations, where

we have restricted to the forms (O1)-(O3), we use N = 10 and solution differences are

negligible for a larger N . We have further verified the accuracy of simulations via running

representative simulations with different absolute/relative error tolerances for the ODE

integrator and different spatial discretisations.

We begin by exploring pattern formation from quasi-uniform initial conditions2, de-

termining the impact of the interaction strength and range parameters on the form of the

developing pattern. We refer to the parameter space in Figure 2 as a guide.

Figure 3 (a-d) demonstrates patterning under zero proliferation (ρ = 0) and a fixed

interaction range ξ = 1. Patterning only develops when the interaction strength parameter

lies above the critical line indicated in Figure 2 and, in this instance, we observe the

formation of aggregations as seen in previous similar models (e.g. [5]). Attraction between

the aggregates leads to merging and a coarsening phenomenon, as previously reported (e.g.

[5]). Note that simulations here are of the nondimensional model: to provide a reference

point, we note that since ξ = 1, the length scale L is the dimensional interaction range.

Based on a cell diffusion coefficient in a range D ≈ 10−9 − 10−8 cm2/s and an interaction

range L = ξ ≈ 20µm (twice a “typical” cell diameter), t = 10 would therefore correspond

to somewhere in the range 1-10 hours. Therefore, aggregates are capable of becoming well

established within a few hours.

2In the numerics we initially we apply a small random perturbation to the uniform steady state value

at each spatial grid point: we set u(xi, 0) = U + ε(xi) for i = 1 . . . Nx, where Nx defines the number of

spatial grid points in the discretisation. ε(xi) is initially sampled randomly from a uniform distribution in

a range ±1%U and subsequently normalised to ensure 1
Nx

∑Nx
i=1 u(xi, 0) = U .
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Figure 3 (e-h) show corresponding pattern development when the interaction strength

parameter is fixed and the interaction range is increased: again, patterning requires a

certain minimum interaction range. Notably, the interaction range parameter has a strong

impact on the wavelength of the pattern.

Incorporating cell growth (ρ > 0) introduces additional dynamics, as illustrated in

Figure 4. While pattern formation and the merging of existing aggregates still occurs, we

now observe (for certain parameters) a renewal process, such that a new aggregate emerges

in the space between existing peaks: intuitively, while the merging of two aggregates is

driven by their mutual attraction the subsequent space created allows a new aggregate

to emerge, driven by cell proliferation. Note that this behaviour is highly reminiscent

of that reported in chemotaxis models, see [59] for further details. Finally we confirm

the earlier prediction of the linear stability analysis, in that only intermediate interaction

ranges promote patterning: high and low ξ result in a uniform distribution, see Figure 4

(e-h).

While the above numerics have been presented for the interaction function (O2), very

similar dynamics are observed with either (O1) or (O3) (although the exact parameters

necessary for patterning vary, cf. Figure 2). Consequently, hereafter we confine our study

to the form (O2).

3.2 Heterogeneous tissues: two populations

3.2.1 Linear stability analysis

The two population model provides a more formidable challenge, complicated by its large

parameter space: the interaction functions alone require 8 parameters. Again, we consider

an infinite one-dimensional domain and, to simplify the analysis further, we choose to

ignore cell kinetics (hu = hv = 0). We use the nondimensional scalings

û = u
P , v̂ = v

P , x̂ = x
L , t̂ = D

L2 t , ξ̂mn = ξmn
L , µ̂mn = ωµmnLP

Du
, D̂ = Dv

Du
,

where L is again a reference length scale. Substituting and dropping the “hats”, we find

ut = uxx − ( u(1− u− v) ( µuu
ξuu

∫
R

s
|s| Ω̃uu (s/ξuu)u(x+ s, t)ds

+µuv
ξuv

∫
R

s
|s| Ω̃uv (s/ξuv) v(x+ s, t)ds ) )x

vt = Dvxx − ( v(1− u− v) ( µvv
ξvv

∫
R

s
|s| Ω̃vv (s/ξvv) v(x+ s, t)ds

+µvu
ξvu

∫
R

s
|s| Ω̃vu (s/ξvu)u(x+ s, t)ds ) )x

(10)

In the absence of cell kinetics, uniform steady states for the above equations are de-

termined by the average initial densities, U and V , which, following the rescaling, satisfy
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Figure 3: Patterning for the one population model with interaction function (O2) under

(a-d) varying interaction strengths, and (e-h) varying interaction ranges. In each subplot,

we plot in the top panel the space (horizontal) – time (vertical) cell density map (black-red-

orange-yellow-white indicates the increasing cell density from 0 to 1), and in the bottom

panel the cell density profile at the fixed time t = 100. For these simulations there is no

cell growth, ρ = 0. For (a-d) we choose ξ = 1 and (a) µ = 1, (b) µ = 5, (c) µ = 10 and

(d) µ = 20; for (e-h) we choose µ = 5 and (a) ξ = 0.25, (b) ξ = 1, (c) ξ = 2 and (d) ξ = 4.

For simulations here we set U = 0.5. Numerical method as described in the text, with

2000 spatial grid points and error tolerances set at 10−6.
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Figure 4: Patterning for the one population model with interaction function (O2) under

(a-d) varying interaction strengths, and (e-h) varying interaction ranges. In each subplot,

we plot in the top panel the space (horizontal) – time (vertical) cell density map (colormap

details as in Figure 3), and in the bottom panel the cell density profile at the fixed time

t = 100. For these simulations we include logistic growth, ρ = 1. For (a-d) we choose

ξ = 1 and (a) µ = 5, (b) µ = 10, (c) µ = 20 and (d) µ = 50; for (e-h) we choose µ = 10

and (a) ξ = 0.25, (b) ξ = 1, (c) ξ = 2 and (d) ξ = 4. For simulations here we set

U = 0.5. Numerical method as described in the text, with 2000 spatial grid points and

error tolerances set at 10−6.
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Heterotypic

Attract-Attract Attract-Repel Repel-Repel

Attract-Attract X X X

Homotypic Attract-Repel X X X

Repel-Repel X × X

Table 2: Table indicating whether pattern formation is feasible in the two population

case (given suitable parameter values) for the given combinations of homotypic and het-

erotypic interactions. Notably, the only scenario in which patterning is not possible is

under repelling homotypic interactions combined with an attracting-repelling combina-

tion of heterotypic interactions.

0 ≤ U, V, U + V ≤ 1. We set u(x, t) = U + ũ(x, t) and v(x, t) = V + ṽ(x, t) (for small

perturbations ũ and ṽ), linearise and again look for solutions of the form ∼ eikx+λt to

obtain a dispersion relation of the form

λ2 + C(k)λ+D(k) = 0

where C and D are given by:

C(k) = k2(1 +D)− k(1− U − V ) (UµuuΓuu + V µvvΓvv) (11)

and
D(k) = Dk4 − k3(1− U − V )(DUµuuΓuu + V µvvΓvv)

+k2UV (1− U − V )2(µuuΓuuµvvΓvv − µuvΓuvµvuΓvu) .
(12)

In the above we have once again used the notation Γmn, where∫
R

sgn(σ)Ω̃mn(|σ| /ξmn)e−ikσdσ = −iξmnΓmn(k, ξmn) ,

for mn = uu, uv, vu, vv.

For instability we require Re(λ+) > 0, where λ+ = 0.5(−C +
√
C2 − 4D). Clearly this

can occur if and only if C < 0 or D < 0 for some positive k. A comprehensive analysis is a

formidable challenge, yet with 0 ≤ U+V ≤ 1 and assuming Γmn ≥ 0 for k > 0 (as for (O1)-

(O3)) we can make some general statements. The equation for C shows that an instability

is possible when at least one of the homotypic interactions is positive and sufficiently large,

i.e. at least one of the populations is self-attracting to a sufficiently strong extent. Yet

even if C ≥ 0, in particular when both homotypic interactions are negative, µuu, µvv ≤ 0,

we can still achieve instabilities through D < 0 given suitable heterotypic interactions.
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Specifically, given µuu, µvv ≤ 0, we require µuvµvu > 0 and sufficiently large to generate

an instability via D < 0: the two populations must either both attract or both repel each

other. Thus pattern formation can still occur in a system in which all interactions are

repelling.

Summarising, we find that some form of patterning is possible under almost any gen-

eralised set of interactions, given suitable parameter values: our analysis implies that it is

only when two repelling homotypic interactions are combined with one attractive and one

repelling heterotypic interaction that pattern formation (from an initially uniform state)

cannot occur. Table 2 summarises these general comments.

These principles can be shown more transparently through a specific analysis: there-

fore, we numerically calculate and plot parameter regions for patterning, along with the

expected pattern wavelengths, following fixation of many of the parameters. A variety of

such calculations are shown in Figure 5, where regions of patterning are coloured, with

the colourcode indicating the expected wavelength.

In Figure 5 (a) we vary the homotypic interaction parameters, fixing the heterotypic

(and other) parameters at positive values: i.e. the two populations attract each other.

In Figure 5 (a1) all interaction ranges are given the same value (ξmn = 1): patterning

covers most of the parameter space, with the strongly positive heterotypic interactions

capable of driving patterning even when the homotypic interactions are zero or slightly

negative. Strongly negative homotypic terms (i.e. self-repulsion) can lead to a loss of

patterning, with the desire of cells to move away from cells of their own type overcoming

the aggregating heterotypic attraction. Either increasing (Figure 5 (a2)) or decreasing

(Figure 5 (a3)) the homotypic interaction ranges have a slight impact on these parameter

regimes, while also altering the expected wavelength of patterning.

In Figure 5 (b) we turn our attention to the heterotypic interaction parameters, fixing

homotypic terms at negative values (i.e. self-repelling populations). In Figure 5 (b1), all

interaction ranges are given the same value (ξmn = 1) and, as expected from the earlier

analysis, patterning can only occur when the product of heterotypic strengths (µuvµvu) is

sufficiently large and positive: we can still expect patterning for all-repelling interactions,

provided the two populations repel each other more than they repel themselves. For

Figures 5 (b2) and 5 (b3) we respectively increase or decrease the heterotypic interaction

ranges: correspondingly, we observe either expanded or contracted parameter regions,

along with an overall increase or decrease of the expected patterning wavelengths.

Although the analysis primarily focuses on the interaction parameters, we briefly con-

sider how the sizes of the respective populations affect patterning in Figure 5 (c). In Figure

5 (c1), we consider an all-attracting scenario, such that all interaction strengths are set
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Figure 5: Parameter regimes for expected patterning in the two population case. In each

plot we vary the two indicated parameters over the axial ranges and calculate whether

patterns are expected to grow, along with the colour-coded expected wavelength. (a) Pat-

terning under varying homotypic interactions and fixed positive heterotypic interactions.

We fix µuv = µvu = 10, ξuv = ξvu = 1, U = V = 0.25 and D = 1 and vary µuu and

µvv for (a1) ξuu = ξvv = 1, (a2) ξuu = ξvv = 2 and (a3) ξuu = ξvv = 0.5. (b) Patterning

under varying heterotypic interactions and fixed negative homotypic interactions. We fix

µuu = µvv = −10, ξuu = ξvv = 1, U = V = 0.25 and D = 1 and vary µuv and µvu for (b1)

ξuv = ξvu = 1, (b2) ξuv = ξvu = 2 and (b3) ξuv = ξvu = 0.5. (c) Patterning under varying

initial cell densities. We fix parameters ξuu = ξvv = ξuv = ξvu = 1, µuv = µvu = 10, D = 1

and change the homotypic strengths from (c1) µuu = µvv = 10, (c2) µuu = µvv = 0, (c3)

µuu = µvv = −5. The black dots in (a1) and (b1) indicate the position in parameter space

for parameter values used in Figures 7 and 8.
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to be strongly attracting: µmn = 10, with ξmn = 1. Varying the population sizes U and

V between 0 and 1 (while ensuring U + V ≤ 1), we find patterning occurs over nearly all

(U, V ) combinations: only for U + V close to zero (too few cells to collectively aggregate)

or U + V close to one (tissue almost at maximum packing density) does patterning fail to

occur. Notably, patterning will also occur in the absence of one population, since the re-

maining population can aggregate via self-attraction. When homotypic terms are switched

off (µuu = µvv = 0) or made negative (µuu = µvv = −5), however, patterning becomes

increasingly restricted and requires both populations to be present (U, V > 0): here, pat-

terning is driven via the heterotypic interactions and, consequently, sufficient populations

of both cell types must be present to create an appropriately strong aggregating command.

Finally, we comment very briefly on the expected patterning wavelengths. Overall,

there is an unsurprising correlation between interactions ranges and expected pattern

wavelengths: i.e. larger (smaller) interaction ranges tend to promote larger (smaller)

wavelengths and wider (narrower) aggregates. Close to stability-instability boundaries,

there is a notable increasing of expected pattern wavelengths: intuitively, within these

regions there is a weak tendency to form aggregates and, consequently, cells must assemble

from a broad region of space.

3.2.2 Numerical simulations

The large parameter space precludes extensive numerical analyses for the two population

case and instead we will focus our attention on a few illustrative cases. We note that a

more detailed study, for differential-adhesion cell sorting, has been performed elsewhere

([5, 28]), revealing that a rich tapestry of patterning exists even within that more limited

context. The main focus of the current investigation will be to look beyond the natural

restrictions of differential adhesion: for example, repelling interactions and asymmetric

heterotypic terms.

To contain our preliminary study we immediately discard cell kinetics and further

restrict to the case U = V , such that there are equal numbers of the two cell types. We

also assume D = 1, meaning that the two cell populations have equal diffusivities, and we

use the same general forms for each of the interaction functions Ω̃ (using (O2)). We begin

by exploring the predictions of Table 2; thus we cycle through distinct combinations of

homotypic and heterotypic terms (Figure 6). Note that for the simulations here, we stop

at t = 100, corresponding to approximately 10-100 hours based on the discussion of time

scales in the one population case.

As expected, we find patterns for almost any parameter combination, except repelling

homotypic interactions coupled with opposing heterotypic terms. Patterns fall into two
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principal camps: mixed/partially-mixed aggregates composed of both cell populations

(e.g. as for all attractive interactions), or separated aggregates of distinct populations

(e.g. attractive homotypic/repelling heterotypic). The investigation here is relatively

crude, of course, and we would expect a refined investigation to yield more subtlety in

the pattern variation. For example, previous investigations [5, 28] into the differential

adhesion hypothesis (all non-negative interactions) reveal a variety of patterns (mixed,

encapsulated etc.) according to the precise values of the interaction strengths. We note

further that for opposing homotypic and opposing heterotypic, two different cases are

shown according to the configuration of the interactions.

To explore patterning further, as well as to investigate the time evolution of patterns,

we set up two “controls” and explore how the patterning structure is altered as one or

two key parameters are given freedom. Specifically, the control cases assume that the

two populations behave identically, in that they have the same signalling and response

characteristics but different “labels”; such as in an experiment where half of a homogeneous

population has been tagged with some identifying label. Hence, µuu = µvv = µuv = µvu ≡
µ, ξuu = ξvv = ξuv = ξvu ≡ ξ and (with D = 1) we can add the u− and v−equations in

(10) to give

wt = wxx −
(
w(1− w)

µ

ξ

∫
R

s

|s|
Ω̃(|s| /ξ)w(x+ s, t)ds

)
x

,

where w = u + v defines the total density. Hence, the total population density behaves

exactly as the one-population model considered earlier (excluding cell kinetics).

For the controls we consider the following two situations.

• Attracting populations, where we set µ > 0 and ξ > 0. The earlier linear stability

analysis predicts that patterning will occur for sufficiently large µξ: specifically, we

consider the point represented by the black dot in Figure 5 (a1). In this case, we

observe aggregates forming that contain a uniform mixture of the two cell types, c.f.

Figure 7 (a1/b1).

• Repelling populations, where we set µ < 0 and ξ > 0. The earlier linear stability

analysis predicts patterns do not emerge: specifically, we consider the point repre-

sented by the black dot in Figure 5 (b1). Here we observe a spatially uniform mixing,

c.f. Figure 8 (a1/b1).

Attracting control

We first consider a study in which the two heterotypic interaction strength parameters

are simultaneously decreased from positive to negative; note that since the homotypic
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Figure 6: Patterning in the two population model under different homotypic-heterotypic

combinations, as Table 2. In each subplot, we plot the cell densities for u (solid blue)

and v (dot-dash red) at t = 100. Each title indicates the nature of homotypic/heterotypic

interactions, with respect to the choices for (µuu, µvv) : (µuv, µvu). Specific values in each

row are: (top row, left) (10, 10) : (10, 10), (middle) (10, 10) : (10,−10), (right) (10, 10) :

(−10,−10); (middle row, left) (10,−10) : (10, 10), (middle top panel)(20,−10) : (10,−10),

(middle bottom panel)(20,−10) : (−10, 10), (right) (10,−10) : (−10,−10); (bottom row,

left) (−10,−10) : (20, 20), (middle) (−10,−10) : (10,−10), (right) (−10,−10) : (10,−10),

(−10,−10) : (−20,−20). Note that parameters for each case are chosen within the pattern-

ing regime, if applicable. Other parameters are set at ξmn = 1, D = 1 and U = V = 0.25.

Numerical simulations solved as described in the text, with 1000 spatial grid points and

error tolerances set at 10−6. Note that in all plots, the vertical axis scale ranges between

0 and 1.
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Figure 7: Patterning in the two population model as we perturb from the attracting

control. In each subplot, we plot in the top frame the total cell density w = u + v as a

position (horizontal) - time (vertical) density plot (colormap details as in Figure 3) and

in the bottom frame we plot the distinct cell densities for u (solid blue) and v (dot-dash

red) at t = 100. (a) We decrease heterotypic strengths such that (a1) µuv = µvu = 10,

(a2) µuv = µvu = 0, (a3) µuv = µvu = −10, and (a4) µuv = µvu = −20; other parameters

are set at µuu = µvv = 10, ξmn = 1, D = 1 and U = V = 0.25. (b) We decrease one of the

heterotypic strength parameters, such that (b1) µuv = 10, (b2) µuv = 0, (b3) µuv = −10,

and (b4) µuv = −50; other parameters are set at µuu = µvv = µvu = 10, ξmn = 1, D = 1

and U = V = 0.25. Numerical simulations solved as described in the text, with 2000

spatial grid points and error tolerances set at 10−6.
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parameters remain large and positive, the linear stability analysis will always predict

patterning in this scenario. Simulations are plotted in Figure 7 (a); note that the plot in

Figure 7 (a1) corresponds to the attracting control.

Decreasing µuv, µvu, we observe a loss of the mixed aggregates in the control case: For

µuv = µvu = 0, Figure 7 (a2), alternating aggregates of u and v form, each accumulating

via the self-attracting interactions, but separated by the tissue packing term. Note that

while they alternate, there is no apparent characteristic distance between aggregates of

separate type: sometimes they abut one another (e.g. as indicated by the *), while others

show greater spatial separation (indicated by the ◦). However, for µuv = µvu < 0 (Figure

7 (a3)-(a4)), an ordered structuring arises: heterotypic repulsion pushes the distinct peaks

away from each other, resulting in their regular patterning.

In the next study, Figure 7 (b), we examine the impact of reducing one parameter,

decreasing the interaction stength µuv (i.e. the impact of population v on the movement

of u) from attracting to repelling; again, Figure 7 (b1) corresponds to the control. Setting

µuv = 0 has relatively little impact on the form of the patterns, Figure 7 (b2), with mixed

(though not equally mixed) aggregates forming. However, setting µuv < 0 can have a

profound impact on patterning, with the potential to generate persistent spatio-temporal

patterning, see Figure 7 (b3)-(b4). While some stable aggregates form, the heterotypic

terms form a run and chase behaviour, with the u population ever attempting to evade

the chasing v population.

Repelling control

We next turn our attention to the repelling control, again focussing on the impact of

alterations to the heterotypic strength parameters. Figure 8 (a) shows the effects of

simultaneously altering the size of µuv and µvu, while keeping the homotypic interaction

strengths fixed (at µuu = µvv = −10). Figure 8 (a1) corresponds to the control scenario,

with the populations remaining homogeneously and uniformly mixed.

As expected from the earlier linear stability analysis, decreasing the sizes of the het-

erotypic interaction terms, such that cross-population repulsions become stronger than the

self-population repulsions, allows patterns to emerge, see Figure 8 (a2-a3): here, sorting

of the two populations occurs, with aggregates alternating between u and v populations.

Changing the heterotypic interactions to be strongly attracting also allows patterning, see

Figure 8 (a4), although now mixed aggregates occur containing equal proportions of the

two cell types. We next focus on a single heterotypic parameter (µuv), again varying over

negative and positive ranges. For µuv < µuu,vv,uv < 0 we can again generate patterns, via

the same mechanism described above, see Figure 8 (b2)-(b3). However, for µuv ≥ 0 we are
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Figure 8: Patterning in the two population model as we perturb from the repelling control.

In each subplot, we plot in the top frame the total cell density w = u + v as a position

(horizontal) - time (vertical) density plot (colormap details as in Figure 3) and in the

bottom frame we plot the distinct cell densities for u (solid blue) and v (dot-dash red)

at t = 100. (a) We vary heterotypic strengths such that (a1) µuv = µvu = −10, (a2)

µuv = µvu = −20, (a3) µuv = µvu = −50, and (a4) µuv = µvu = 20; other parameters

are set at µuu = µvv = −10, ξmn = 1, D = 1 and U = V = 0.25. (b) We vary just one

of the heterotypic strength parameters, such that (b1) µuv = −10, (b2) µuv = −40, (b3)

µuv = −100, and (b4) µuv = +50; other parameters are set at µuu = µvv = µvu = −10,

ξmn = 1, D = 1 and U = V = 0.25. Numerical simulations solved as described in the text,

with 2000 spatial grid points and error tolerances set at 10−6.
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unable to generate any patterning, seemingly confirming our earlier suggestion that only

in the case of one attracting heterotypic interaction and all other interactions repelling do

we fail to generate patterns, see Figure 8 (b4).

4 Applications

The above analysis has been exploratory in scope, with the main intention being to il-

lustrate potential dynamics of the model. We next show how the model can be adapted

to model specific biological processes: the intention is not to provide detailed modelling

studies, but rather to show the applicability of the model. Our two examples both de-

rive from embryonic development, yet their formulation would also be relevant to other

situations ranging from tumour growth to ecology. The first explores the capacity of

contact-inhibition induced repulsion to promote dispersal of cells from the neural crest,

while the second considers a classic example of pattern formation: the organisation of

pigmentation stripes in zebrafish.

4.1 Contact-inhibition induced invasion

Dispersal and invasion processes occur in numerous contexts. In ecosystems, invasion of an

alien species can have a devastating impact on native species [75], while the transformation

of tumorous cells into invasive forms can be a prelude to metastasis [68]. Positive examples

include the controlled recolonisation of wounded tissue by cells [73] or the dispersal of cells

from the neural crest during embryogenesis.

The neural crest is a transient and essential structure of embryonic vertebrates that

contributes various cell types to diverse adult tissues and organs, including the peripheral

nervous system, craniofacial skeleton and skin [43]. Arising in a compact strip of cells along

the roof of the neural tube (the developing central nervous system) and running from head

(anterior) to tail (posterior), neural crest populations are characterised by their migratory

characteristics: cells detach from the crest and migrate along defined pathways, predomi-

nantly dorsal (back) to ventral (front), to their eventual destination [79]. Spatio-temporal

coordination of this process is tightly controlled, with cells breaking their adhesive bonds,

peeling off from the neural crest and shifting into a migratory form, a process highly rem-

iniscent of the onset of cancer invasion and thereby providing a key comparative system.

Further, failure of a neural crest population to reach its final destination within appropri-

ate developmental timescales can lead to a wide range of birth defects, collectively termed

neurocristopathies [24]. It is important therefore to ask what the mechanisms and cues

are that allow movement out of the crest and subsequent guidance to their destinations.
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While a wide variety of mechanisms are likely to play a role in neural crest cell mi-

gration, including chemoattraction and chemorepulsion [79], here we explore the potential

contribution from contact-inhibition [12]. Studies in [12] revealed that the collision of

two migrating neural crest cells would result in a brief arrest in their movement before

migration renews, but now bearing in the opposite direction to their pre-collision trajec-

tory. Consequently, this contact-induced repulsion is believed to optimise the dispersion of

neural crest cells away from the neural crest, accelerating their invasion into non-invaded

regions.

4.1.1 Simple model for contact-inhibition repulsion

Here we model the impact of contact-induced homotypic repulsion on the effective dis-

persal of a homogeneous population. Specifically, we consider the one population model

(3), assuming that the neural crest cells migrate and proliferate. The latter is modelled

via the simple logistic term: obviously, proliferation of neural crest cells in vivo will be

significantly more complicated than that implied here, however our intention is to focus

on the role of contact-induced repulsion. In certain instances, such as pigment cell pre-

cursors migrating into the skin, invasion is predominantly restricted to a two-dimensional

field consisting of the anterior-posterior and dorsal-lateral axes. However the invasion

front appears relatively uniform across the former, and therefore we simplify into a one-

dimensional situation, x ∈ [−L,L] with periodic boundary conditions, such that x = 0

defines the dorsal-most and x = ±L the ventral-most points. Initially, we assume neural

crest cells are confined to their pre-dispersal position along the dorsal neural tube, setting

u(x, 0) =

{
u0 if |x| < x0

0 otherwise .

Given the tendency of neural crest cells to reverse migration on contact with each other,

we assume cell movement derives from random migration and a homotypic repulsion term,

taking µ < 0 for the interaction strength parameter. Other key parameters are the diffusion

coefficient D, the interaction range parameter ξ, cell proliferation rate ρ, tissue packing

capacity P and tissue carrying capacity U . Given the focus on the repulsion process, we

fix parameters D,P, ρ and U at specific values such that we can concentrate on the impact

of different signalling ranges and strengths on the invasion rate. Note that there is also

the proportionality constant parameter ω. However, and without loss of generality, we set

this at ω = 1, effectively absorbing it into the interaction strength parameter µ.

For the fixed parameters we take D = 3.6×10−4 mm2/hr, P = 104 cells/mm2, U = 103

cells/mm2 and ρ = 0.07/hr. We initially set x0 = 0.05 mm and u0 = U , such that the
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initial strip is 100 µm wide. We should stress that while these values are not rooted in

solid data, they are by no means unreasonable: for example the growth rate ρ corresponds

to a maximum cell doubling time of approximately 10 hours; the density P corresponds

to a tightly packed layer of cells of circa 10 µm diameter and we assume the saturating

density of the population is far from a packed layer. While changing these parameters will

alter specific rates of invasion, they do not impact on the general nature of the results.

Of course, successful neural crest dispersal in practice may be highly dependent on each

of these terms, along with other factors such as embryonic growth. Consequently a more

careful study in the context of a precise application (e.g. migration of pigment cells in

zebrafish) would require more careful parameter selection.

4.1.2 Numerical simulations of dispersal

Note that when µ = 0 (no contact repulsion) the model (2) simply reduces to Fisher’s

equation and, following initial dispersion, we expect solutions to evolve to a travelling wave

with invasion speed c = 2
√
ρD ≈ 0.01 mm/hr for the above parameter set. We solve the

full equations over a range of µ and ξ. Based on the cells in our nondescript population

having a diameter of approximately 10µm, we allow ξ to range between 0.01 and 0.1

mm: the lower value assumes contact-dependent interactions occur (approximately) at a

membrane-membrane level, while the latter suggests much longer interactions may come

into play. For neural crest cell populations either value of ξ is feasible: for example, in

the above cited studies cells are observed to collide against each other before repelling

[12], while reports of other migrating neural crest cells suggest longer-range (filopodia-

mediated) contacts may play a role [42]. For the interaction strength we have no firm

guidance, so we simply consider a range from 0 (no contact repulsion) to −0.001 (strong

contact repulsion).

In Figure 9 we plot the results of numerical simulations as we vary (a) the interaction

strength, and (b) the interaction range. Note that as we increase the magnitude of either

parameter we observe a significant increase in the invasion rate, suggesting that dispersal

of the population could be accelerated either via stronger repellent interactions, or via

increased interaction ranges. Notably, solutions appear to evolve to travelling wave profiles,

with a constant speed and shape.

To establish the dependence on (µ, ξ) more carefully, we measure the invasion depth

(Figure 9(c)). Specifically, we define this as the furthest point from x = 0 at which the

cell density has reached U/2 at t = 5 days following the initial dispersal. Clearly, the

results reinforce the above findings, with increases in both interaction range and repelling

strength leading to deeper invasion. Moreover, the dependence on ξ and µ appears to
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Figure 9: Numerical simulations of model for contact-repulsion mediated dispersal of

neural crest cells. (a) Invasion waves under increasing interaction strength. Cell population

invades left and right from their initial localisation (at x = 0). Time between each curve is 1

day and the outermost curve is 10 days following the initial dispersal. (a1) µ = −10−4, ξ =

0.01; (a2) µ = −3 × 10−4, ξ = 0.01; (a3) µ = −10−3, ξ = 0.01. (b) Invasion waves under

increasing interaction range, with plot details as in (a). (b1) µ = −10−4, ξ = 0.01; (b2)

µ = −10−4, ξ = 0.03; (b3) µ = −10−4, ξ = 0.1. All other parameters as stated in text. (c)

Invasion depth plotted for varying (µ, ξ), defined as the distance from the initial dispersion

site after 5 days. (d) Numerically calculated invasion wave speed, plotted as function of

|µξ|. Numerical simulations performed as described in the text, with an error tolerances

set at 10−6 and a spatial grid resultion ∆x = 0.002.
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be symmetrical, suggesting that the rate of invasion depends on the size of the product

µξ. To test this, we numerically calculate the travelling wave invasion speed for different

pairs (µ, ξ) yielding the same value for |µξ|, and over a range of |µξ| values. Plotting

the results (Figure 9(d)), the numerical simulations corroborate our hypothesis: invasion

speed appears to depend solely on |µξ| rather than a precise pair (µ, ξ). Note that these

results are all predicated on the choice µ < 0, since we are assuming a repulsive interaction.

Summarising, our results support that contact repulsion may be an important factor in

enhancing the invasion or dispersal of cells, such as neural crest populations ([12], see also

[79] and references therein). Our study has been intentionally brief and general in scope,

focussing on the combined actions of range and strength on the extent of invasion: while

the cells studied in [12] interact at relatively short distances, our results suggest that

if extended to cells communicating at distance via filopodia then invasion may become

significantly enhanced. Given the crucial need for neural crest cell populations to success-

fully disperse, or the pathological consequences of rapid cancer invasion, such mechanisms

clearly demand careful attention: for example, our simulations would suggest that inhibit-

ing long-range extensions could significantly limit the invasion process. Future extensions

could include a more focussed investigation based on the specific system in [12], thereby

allowing a more precise theoretical-experimental comparison to be made.

4.2 Zebrafish pigmentation patterning

We next consider an example featuring multiple cell types, and a case study of embryonic

self organisation: zebrafish (Danio rerio) pigmentation patterning. As their name suggests,

adult members of this species feature an alternating barcode pattern of blue/black stripes

and yellow/silver horizontal interstripes, see Figure 10(a). Closer inspection of these

patterns reveals a thin separation, such that stripes/interstripes are separated by a thin

strip with an absence of xanthophores and melanophores.

Fish (unlike mammals) possess multiple pigment cell types, or chromatophores, which

organise into various configurations: in the case of zebrafish, the black stripes are dom-

inated by black melanophores with yellowish xanthophores restricted to interstripes; a

third pigment cell type, iridophores, are organised in a more subtle manner, integrated

in different forms within both stripes and interstripes (e.g. [63]). Early attempts to ex-

plain zebrafish pigmentation borrowed heavily on the seminal theoretical ideas of Turing

[84], yet, despite an impressive capacity to replicate patterns (e.g. see [7]), attempts at

uncovering the chemical morphogens it is based on have, so far, proved fruitless. Expla-

nations have subsequently shifted to interactions between the principal chromatophores

(e.g. [45, 62]) and, given that melanophores and xanthophores are restricted to stripes
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and interstripes respectively, their interplay formed a natural focus for investigation.

Melanophores and xanthophores display various short range and long range interactions

(e.g. [35, 45, 53, 62, 86]). In particular, recent in vitro investigations suggest that xan-

thophores and melanophores act out a cat and mouse game, with xanthophores chasing

the escaping melanophores, leading to speculation that this interaction forms a core com-

ponent of the pattern generating mechanism [86]. In terms of the current model, this

would suggest melanophores are repelled by xanthophores and xanthophores are attracted

by melanophores.

In fact, adult pigmentation in wildtype zebrafish involves a significantly more com-

plicated set of interactions, with iridophore interactions also involved ([25, 63, 77]): for-

mulating and analysing a model to study this process in detail is far beyond the aims

of the current paper, where the primary intention is to demonstrate the scope of the

model. Yet, the fact that some mutants missing entire chromatophore classes can still

establish some form of pattern raises the question as to what interactions form a min-

imal set of pattern-generating interactions, or what is the core pattern-driving mecha-

nism? As a case in point, would the above described “run and chase” interaction between

melanophores and xanthophores be sufficient to engineer the adult pattern of alternating

melanophore/xanthophore bars?

The current model can easily be used to explore such questions, reinterpreting model

(4)-(5) in terms of melanophores (u-population) and xanthophores (v-population). To

describe the run and chase interaction, we would set:

• (RC1) xanthophores repel melanophores, i.e. µuv < 0;

• (RC2) melanophores attract xanthophores, i.e. µvu > 0.

We discuss homotypic interactions below; for other parameters we set ξuu = ξvv =

ξuv = ξvu = 0.1mm, based on an average melanophore/xanthophore diameter of 100µm,

Du = Dv = 0.1 mm2/day, and equal initial densities of melanophores and xanthophores,

such that the total density is 75% of the packing density. Note that altering these basic

parameters does not affect the overall conclusions below, but it will impact on the rate

and wavelength of any patterns that develop.

Excluding any homotypic interactions or cell kinetics, and adopting our earlier analy-

sis (section 3.2), our modelling suggests that the run and chase interactions, (RC1-RC2),

would be unable to spontaneously generate a pattern: in the absence of positive homo-

typic terms, opposing heterotypic interactions are unable to generate a pattern. Instead,

melanophores and xanthophores remain in a mixed and spatially uniform distribution, see

Figure 10 (b).
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Figure 10: (a) Adult zebrafish pigmentation patterning consists of alternating black/blue

stripes (melanophores and iridophores) and silver/yellow interstripes (xanthophores and

iridophores). Figure “Zebrafisch” by Azul - own work. Via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Zebrafisch.jpg. (b-c) The simple run-

chase interactions observed between melanophores and xanthophores in vitro are unable

to either (b) organise a pattern from an initial uniform mixed distribution or (c) maintain

an existing pattern of melanophore/xanthophore stripes. (d-f) A variety of homotypic in-

teractions including (d) positive homotypic interactions for the melanophores, (e) positive

homotypic interactions for the xanthophores, (f) positive homotypic interactions for both

populations.

If not capable of generating a pattern, could run and chase maintain a previously

formed pattern? We explore this by forcing the initial distribution into an alternating

pattern of melanophore and xanthophore bands, but we find that the run and chase

interactions (RC1–RC2) lead to dispersal of the bands and a return to the mixed uniform

distribution, Figure 10 (c).

Summarising, our model suggests that run and chase alone is unable to either organise

or maintain alternating melanophore/xanthophore bands. The same conclusion was drawn

from individual based modelling in [85]. What minimal additional interactions would be

sufficient? As suggested from the earlier analysis, a simple solution would be to add a

positive homotypic interaction in either or both the melanophore and xanthophore popu-

lations. We explore the impact of positive homotypic interactions in (i) the melanophore
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population, (ii) the xanthophore population, and (iii) both populations and examine which

would generate a pattern consistent with the adult zebrafish, Figure 10 (d-f).

While all three forms of added interaction certainly conspire to generate a pattern,

their capacity to replicate a zebrafish-type pattern differs. Under (i) positive homotypic

melanophore interactions, we simply observe the accumulation of melanophores and xan-

thophores into predominantly mixed aggregates: the xanthophores are pulled into the

melanophore aggregates, which are unable to escape. Positive interactions in both pop-

ulations (iii) create a more effective pattern, yet it is somewhat disordered in nature.

Moreover, this case corresponds to the scenario where highly dynamic spatio-temporal

patterning is possible, suggesting that it is a far from ‘robust’ pattern. Allowing homo-

typic interactions for the xanthophores, case (ii), creates a far more acceptable pattern:

xanthophore and melanophore aggregates are robustly separated and, moreover, a thin

strip separates the aggregates. Note that while including this homotypic interaction drives

the system into pattern formation, subsequently removing the repulsive interaction (RC1)

results in a loss of the zebrafish-type pattern (data not shown).

5 Discussion

In this article we have presented and explored a general model for contact-dependent

interactions within homogeneous (single cell type) and heterogeneous (multiple cell types)

tissues. Cell populations have been allowed to interact in diverse (from attracting to

repelling) ways, and over variable spatial ranges. The rich dynamical properties of the

model were studied through a combination of linear stability and numerical analyses, along

with illustrative applications to classic processes of embryonic organisation.

In previous work (e.g. [5, 28]), we formulated and analysed a nonlocal model for

adhesion-driven sorting of cell populations. The current work extends this framework,

generalising the interactions to include attractive and repelling signals and variable inter-

action ranges. Allowing repulsion can help create ordered, spatially-separated aggregates,

yet can also introduce dynamic spatio-temporal behaviour. This rich variety of behaviour

echoes behaviour found in heterogeneous chemotaxis systems, which also allow for var-

ious combinations of attracting and repelling interactions [55]. Unfortunately, the large

parameter space and complex nature of the underlying system of equations here precludes

the exhaustive and subtle analysis possible under more restricted scenarios, such as the

differential adhesion hypothesis: future investigations would benefit from focussing the

equations towards a specific experimental system, where a number of the interactions

are reasonably well characterised (such as zebrafish pigmentation patterning, as discussed
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below).

Given the flexibility of the models presented, there is clearly significant debate over

the choice of various terms: for example, the form of signalling interaction functions, the

positioning and form of any “volume-filling” type terms (such as inside or outside nonlocal

terms), the use of constant diffusion coefficients over non-linear forms, etc. Given the

phenomenological nature of the present study, our choices have mainly been driven by a

desire for simplicity: typically choosing linear forms and keeping the number of parameters

manageable, while retaining sufficient complexity to study relevant questions. The greater

insight into the underlying assumptions that is required by specific formulations could

be obtained via derivations from an underlying microscopic model; we note a number of

related models have been derived in this manner [9, 15, 48].

We tested the model via applications to specific systems: an example of a cell invasion

process, in a model of contact-induced dispersal of neural crest cells; and, an example of

pattern formation, for the sorting of zebrafish pigment cells into stripes. With respect to

the former we determined that contact-induced repulsion accelerates neural crest dispersal

and hence may be important for migration to be achieved within the correct developmental

timescales. Our results suggest that both interaction range and strength will be significant,

such that longer interaction ranges or stronger repulsion will enhance the rate of invasion.

Mathematically, determining the wavespeed dependence on these parameters is of clear

interest: our numerics imply dependence on the product, µξ. The standard approach for

calculating wavespeeds – linearising ahead of the wave – does not work here: the linearised

form of equation (3) is identical to that of Fisher’s equation, such that the interaction terms

disappear entirely. Hence, the wavespeed depends on nonlinear interactions behind the

wavefront: intuitively this makes sense, since the contact-based repulsion requires other

cells to impact on movement. A mathematical evaluation, however, remains an open

problem. A natural extension of the modelling here would be to apply the ideas to specific

examples of neural crest dispersal, such as dispersal of pigment cells, while also taking into

account other potentially crucial aspects (e.g. embryonic growth). Also, while the focus

here has been neural crest invasion, there are other natural applications where similar

mechanisms could apply, such as cancer or ecological invasion processes.

In the context of zebrafish pigmentation patterning, we showed how the model could

be used to test biological hypotheses for pattern formation: here, whether the run/chase

interactions observed between melanophores and xanthophores in vitro [86] are capable of

either generating or maintaining a striped pattern. The fact that our model suggests that

this is not the case highlights the importance of applying theoretical rigour to biological

hypotheses.
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Incorporating a homotypic attraction between xanthophores allowed a zebrafish-type

pattern to be “recovered”, yet it is highly debatable whether this occurs in practice: we

know of no evidence that would support such a mechanism. A more likely solution would

be to examine other potential interactions, such as interactions affecting cell division,

survival or differentiation, or by incorporating the impact of iridophore cells. In fact, recent

evidence suggests that iridophores play a major (possibly leading) role in the patterning

process [25, 63, 77]: therefore, a clear area for future modelling would be to extend the

framework to incorporate iridophores and their interactions.

Nonlocal models have been used to study spatiotemporal population dynamics since

the 1970s [17, 50], but the last few years have seen a huge increase in research on pattern

formation in such models. Some of this work concerns the differential adhesion hypoth-

esis, which is the direct antecedent of this paper. Another active research area concerns

spatiotemporal patterns in oscillatory systems with nonlocal terms [47, 52, 71]. But by far

the largest part of the recent literature concerns swarming in animal populations. We end

this paper with a brief discussion of the relationship between that work and ours. Any

meaningful review of research on swarming would require a dedicated paper and we do not

attempt it – as a good starting point the reader is referred to [40] and to the special journal

issue that this article introduces. The generic model for swarming is a version of (2), with

D = 0, p(.) ≡ 1 and h(.) ≡ 0 (e.g. [8]). The form of the kernel Ω(.) clearly plays a central

role in model predictions, but our kernels (O2) and (O3) are widely used in applications

to swarming; for detailed discussions of predictions from other kernels, see for example

[13, 33]. Also, although diffusion is omitted in most models for swarming, its inclusion has

been considered by some authors (e.g. [38, 82]). Therefore the essential difference between

our work on a single population (§3.1) and that in the swarming literature lies in our inclu-

sion of a packing function p(.) and (in some cases) of population growth h(.). The effects

of the latter term were explored in §3.1 (see Figures 3 and 4). The packing function reflects

the fact that we are considering direct contacts, so that availability of physical space is a

significant issue. By contrast, the interaction between individuals in swarms changes from

attractive to repulsive at a separation distance that is large compared to the length scale

of one animal. Of course the major difference between our work and that on swarming

is that much of our study concerns mixtures of two populations, a property fundamen-

tal in many areas of biology, especially developmental pattern formation. While we have

concentrated on cellular populations, we note that such mixtures may also be relevant in

certain types of swarming, such as the predator-prey interactions between different species

of schooling fish, such as the jack (Caranx ignobilis) and Hawaiin anchovy (Stolephorus

purpureus) [46]. Consequently, the present model may have interesting applications and
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extensions beyond its current motivation from the behaviours of cellular populations.

Direct cell-cell signalling played out over long distances are increasingly viewed as a

crucial property in both developing and formed tissues. The delicate nature of long cell

extensions such as filopodia and cytonemes has previously hindered their systematic in-

vestigation, yet technological advances are now providing new light to on their capacity

to direct cellular responses [30, 41, 70]. Models that can accommodate such phenom-

ena therefore provide a pathway towards understanding the potential dynamics in such

systems.
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