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Abstract. We discuss the statistical properties of a single-trajectory power spectral

density S(ω, T ) of an arbitrary real-valued centered Gaussian process X(t), where

ω is the angular frequency and T the observation time. We derive a double-sided

inequality for its noise-to-signal ratio and obtain the full probability density function

of S(ω, T ). Our findings imply that the fluctuations of S(ω, T ) exceed its average value

µ(ω, T ). This implies that using µ(ω, T ) to describe the behavior of these processes

can be problematic. We finally evaluate the typical behavior of S(ω, T ) and find that

it deviates markedly from the average µ(ω, T ) in most cases.

Keywords: Single-trajectory power spectral density, Gaussian stochastic processes,

Noise-to-signal ratio
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1. Introduction

The power spectral density (PSD) of a deterministic or stochastic process X(t) encodes

important information about its properties and is widely used in experimental, numerical

and theoretical analyses (see, e.g., refs. [1–4] and references therein). The single-

trajectory PSD S(ω, T ) is defined by

S(ω, T ) =
1

T

∣

∣

∣

∣

∫ T

0

dt eiωtX(t)

∣

∣

∣

∣

2

, (1)

where ω is the (angular) frequency and T the observation time. Usually, one averages

S(ω, T ) over an ensemble of trajectories and eventually takes the T → ∞ limit to get

µ(ω) = lim
T →∞

µ(ω, T ) , µ(ω, T ) = S(ω, T ) , (2)

where the overbar here and henceforth denotes the ensemble averaging. We emphasise

that µ(ω) in eq. (2)—an ensemble-averaged property taken in the limit T → ∞—is

conventionally referred to as the PSD and its calculation is the usual target of the

standard analyses of spectral properties of random processes.

Let us remark that the T → ∞ can be formally taken in mathematical expressions

but not in experimental or numerical analyses, and that therefore caution is required

when making comparisons with theoretical predictions. Moreover, for many non-

stationary stochastic processes the infinite-T limit of the expressions in eqs. (1) and

(2) does not exist, what requires either using some alternative definitions of power

spectral densities (see, e.g., [2,5]) or to confine oneself to the finite-T behaviour. Lastly,

it is not always possible to have a large enough statistical sample in order to reliably

perform the averaging.

Motivated by the latter circumstance, recent works [6–10] have concentrated on

stochastic properties of random variable S(ω, T ) defined in eq. (1). Indeed, it is

important to know how S(ω, T ) fluctuates from sample to sample, in order to estimate

how large a statistical sample should be to allow a reliable evaluation of µ(ω, T ) from

experimental or numerical analyses, especially in view of taking its large T limit.

It turns out that, for several centered Gaussian processes—standard Brownian

motion [6], fractional Brownian motion with Hurst index H [7], scaled Brownian

motion [8], diffusing diffusivity processes [9] and the Brownian gyrator model [10]—

the probability density function P (s) = P (S(ω, T ) = s) of the random variable S(ω, T )

is explicitly given, for arbitrary values of ω and T , by the universal form

P (s) =
1

N exp

(

− s

(2− γ2)µ(ω, T )

)

I0

(

√

γ2 − 1

2− γ2

s

µ(ω, T )

)

, (3)

where

N =
√

2− γ2µ(ω, T ) , (4)
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I0(z) is the modified Bessel function and γ is the “noise-to-signal” ratio, defined by

γ = γ(ω, T ) =

√

S2(ω, T )− µ2(ω, T )

µ(ω, T )
. (5)

This latter parameter, which is also called the coefficient of variation of the

distribution (3), is a measure of the relative weight of fluctuations of the finite-T PSD

around its mean value. Note that the form of eq. (3) requires γ to satisfy the double-

sided inequality

1 ≤ γ ≤
√
2 , (6)

which was directly verified in [6–10] for each particular case under study.

Because the inequality in eq. (6) and the distribution (3) appear to be valid for

rather diverse Gaussian stochastic processes, one can conjecture that they hold in general

for an arbitrary centered Gaussian process. In this paper we focus on this question and

present a formal proof that this is indeed the case.

In Section 2 we prove the crucial inequality (6) for an arbitrary Gaussian centered

process with arbitrary ω and T . Our proof is solely based on Wick’s theorem. In

Section 3 we take advantage of the Karhunen-Loeve decomposition of an arbitrary

Gaussian process to calculate the moment-generating function of S(ω, T ), from which

the general result in eq. (3) follows by the inversion of the Laplace transform. Section 4

is devoted to the analysis of the functional forms of P (s) in two limiting cases, and also

to a discussion of the typical behavior of S(ω, T ). We conclude with a brief summary

of our results in Sec. 5.

2. The noise-to-signal inequality

The second moment S2(ω, T ) of a single-trajectory PSD of a real-valued process X(t)

can be formally written down as

S2(ω, T ) =
1

T 2

∫ T

0

∫ T

0

∫ T

0

∫ T

0

dt1 dt2 dt3 dt4 X(t1)X(t2)X(t3)X(t4)

× cos(ω(t1 − t2)) cos(ω(t3 − t4)) .

(7)

According to Wick’s theorem, the four-time correlation function of the form

X(t1)X(t2)X(t3)X(t4) for an arbitrary centered Gaussian process naturally decomposes

as follows:

X(t1)X(t2)X(t3)X(t4) = X(t1)X(t2)X(t3)X(t4) +X(t1)X(t3)X(t2)X(t4)

+X(t1)X(t4)X(t2)X(t3) .
(8)

This implies that the expression (7) can be formally rewritten as

S2(ω, T ) = µ2(ω, T ) + 2Scc(ω, T )
2
+ 2Sss(ω, T )

2
+ 4Scs(f, T )

2
, (9)
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where we have used the shorthand notations

Scc(ω, T ) =
1

T

∫ T

0

∫ T

0

dt1 dt2 X(t1)X(t2) cos(ωt1) cos(ωt2) ,

Sss(ω, T ) =
1

T

∫ T

0

∫ T

0

dt1 dt2 X(t1)X(t2) sin(ωt1) sin(ωt2) ,

Scs(ω, T ) =
1

T

∫

T

0

∫

T

0

dt1 dt2 X(t1)X(t2) cos(ωt1) sin(ωt2)

=
1

T

∫

T

0

∫

T

0

dt1 dt2 X(t1)X(t2) sin(ωt1) cos(ωt2) .

(10)

Expression (9) implies that the variance varS(ω, T ) = S(ω, T )2 − S(ω, T )
2
of a

single-trajectory PSD obeys

varS(ω, T ) = 2Scc(ω, T )
2
+ 2Sss(ω, T )

2
+ 4Scs(ω, T )

2
. (11)

Our first goal is to prove that varS(ω, T ) ≥ µ2(ω, T ), i.e., that γ ≥ 1. To this end, we

notice that

µ(ω, T ) = Scc(ω, T ) + Sss(ω, T ) , (12)

and rewrite formally eq. (11) as

varS(ω, T ) = µ2(ω, T ) + ∆(ω, T ) , (13)

where

∆(ω, T ) =
(

Scc(ω, T )− Sss(ω, T )
)2

+ 4Scs(ω, T )
2
. (14)

The lower bound follows by merely noticing that ∆(ω, T ) > 0 for any ω and T . It

may be instructive to note that despite the simplicity of its derivation, this bound has

strong implications: namely, it shows that fluctuations of S(ω, T ) for arbitrary centered

Gaussian processes exceed generically the mean value µ(ω, T ). This implies that the

knowledge of µ(ω, T ) alone may not be sufficient to fully characterise the behaviour

of this random variable. It also implies that estimating µ(ω, T ) from numerical or

experimental data reliably well may require quite large statistical samples.

In order to prove the upper bound γ ≤
√
2, we have to show that ∆(ω, T ) ≤

µ2(ω, T ) or, equivalently, that

Ssc(ω, T )
2 ≤ Scc(ω, T )Sss(ω, T ) . (15)

We rewrite next the latter inequality in the explicit form
(

1

T

∫

T

0

dt1

∫

T

0

dt2 X(t1)X(t2) cos(ωt1) sin(ωt2)

)2

≤
(

1

T

∫ T

0

dt1

∫ T

0

dt2 X(t1)X(t2) cos(ωt1) cos(ωt2)

)

×
(

1

T

∫

T

0

dt1

∫

T

0

dt2 X(t1)X(t2) sin(ωt1) sin(ωt2)

)

,

(16)
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and take advantage of Mercer’s theorem [11, 12]. This theorem asserts that for an

arbitrary symmetric, continuous non-negative kernel function X(t1)X(t2) there exists

an orthonormal set of eigenfunctions ek(t) defined in [0, T ] with positive eigenvalues λk,

such that the covariance function X(t1)X(t2) can be expressed by

X(t1)X(t2) =

∞
∑

k=1

λk ek(t1) ek(t2) , (17)

and that this series converges absolutely and uniformly. The eigenvalues λk and

eigenfunctions ek(t) are generally found by solving the homogeneous Fredholm integral

equation of the second kind:‡
∫ T

0

dt1 X(t1)X(t2) ek(t1) = λk ek(t2) . (18)

We substitute the expansion (17) in the inequality (6) and introduce the notation

ck = ck(ω, T ) =

√

λk

T

∫ T

0

dt ek(t) cos(ωt) ,

sk = sk(ω, T ) =

√

λk

T

∫ T

0

dt ek(t) sin(ωt) .

(19)

We can then cast the upper bound in inequality (6) into the form

(

∞
∑

k=1

cksk

)2

≤
(

∞
∑

k=1

c2k

)(

∞
∑

k=1

s2k

)

, (20)

where the existence of the limits on the right- and left-hand-sides is ensured by the

absolute convergence of the expansion (17). Equation (20) is the standard Cauchy-

Schwarz inequality, which thus proves the upper bound on the coefficient of variation γ.

Note that the inequality becomes an identity for ω = 0 when both sides vanish.

3. The moment-generating function

In order to evaluate the probability distribution function of S(ω, T ), we consider the

moment-generating function Φκ of the single-trajectory PSD of an arbitrary real-valued,

centered Gaussian process X(t). This function is defined by

Φκ = exp (−κS(ω, T )) , κ ≥ 0 . (21)

‡ In particular, when X(t) is the standard Brownian motion, ek(t) ∝ sin((k − 1/2)πt/T ) and

λk = 1/(π2(k − 1/2)2). This corresponds to the celebrated Wiener representation of the BM. For

the FBM the eigenfunctions ek(t) are combinations of the sine and cosine functions as above, but the

eigenvalues λk are not simply multiples of π2 and are expressed through the zeros of the Bessel functions

JH(x) and J1−H(x) (see [13]).
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We rewrite eq. (1) in the form

S(ω, T ) =
1

T

∫

T

0

∫

T

0

dt1 dt2 X(t1)X(t2) cos (ω(t1 − t2))

=
1

T

∫

T

0

∫

T

0

dt1dt2 X(t1)X(t2)
(

cos(ωt1) cos(ωt2) + sin(ωt1) sin(ωt2)
)

=
1

T

(
∫ T

0

dt X(t) cos(ωt)

)2

+
1

T

(
∫ T

0

dt X(t) sin(ωt)

)2

.

(22)

The expression in the last line ensures that S(ω, T ) ≥ 0 for any ω and T .

We take advantage of the Karhunen-Loeve decomposition (see, e.g., [14]), according

to which any zero-mean square-integrable Gaussian stochastic process X(t), defined on

the interval [0, T ], admits the following representation:

X(t) =
∞
∑

k=1

Zkek(t) . (23)

Here ek(t) are the above defined orthonormal eigenfunctions and Zk are independent,

normally distributed random variables, with zero mean and variance λk. Substituting

(23) in eq. (22), we obtain

S(ω, T ) =

(

∞
∑

k=1

Zkck√
λk

)2

+

(

∞
∑

k=1

Zksk√
λk

)2

, (24)

where the ck and sk are defined in eqs. (19).

Further on, we use the identity

e−κY 2

=
1

2
√
πκ

∫

∞

−∞

dz e−z2/(4κ)+izY , (25)

which permits us to write down Φκ as the following two-fold integral:

Φκ =
1

4πκ

∫ ∞

−∞

∫ ∞

−∞

dz1 dz2 exp

(

−z21 + z22
4κ

)

exp

(

i

∞
∑

k=1

Zk√
λk

(

z1ck + z2sk

)

)

. (26)

The averaging can now be straightforwardly performed to give

Φκ =
1

4πκ

∫

∞

−∞

∫

∞

−∞

dz1 dz2 exp

(

−z21 + z22
4κ

− 1

2

∞
∑

k=1

(z1ck + z2sk)
2

)

=



1 + 2
∞
∑

k=1

(

c2k + s2k
)

κ + 4





∞
∑

k=1

∞
∑

p=1

c2ks
2
p −

(

∞
∑

k=1

cksk

)2


 κ2





−1/2

,

(27)

where the coefficient in front of κ2 is evidently positive, by virtue of eq. (20).
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The last step consists in identifying the coefficients in front of κ and κ2 in the last

line in eq. (27). Using eqs. (11) and (12), we readily obtain that

∞
∑

k=1

(

c2k + s2k
)

= µ(ω, T ) ,

4





∞
∑

k=1

∞
∑

p=1

c2ks
2
p −

(

∞
∑

k=1

cksk

)2


 = 2µ2(ω, T )− varS(ω, T )

=
(

2− γ2(ω, T )
)

µ2(ω, T ) .

(28)

By inverting the Laplace transform in eq. (27) we obtain eq. (3). We note moreover

that, similarly to the parental Gaussian process X(t), the probability density function

in eq. (3) is entirely defined by the first two moments of S(ω, T ).

4. Limiting cases and typical behaviour of the PSD

We consider here two limiting situations in which the functional form of the probability

density function in eq. (3) simplifies; namely, when γ → 1 (i.e., varS(ω, T ) → µ2(ω, T ))

or when γ →
√
2 (i.e., varS(ω, T ) → 2µ2(ω, T )). Note that, in general, the coefficient

of variation is an oscillating function of the frequency for fixed T , but attains a constant

value in the T → ∞ limit. In particular, we have γ → 1 in the limit T → ∞ for, e.g.,

the sub-diffusive fractional Brownian motion [7] or for the Brownian gyrator model [10].

In turn, γ →
√
2 holds in the same limit for the super-diffusive fractional Brownian

motion [7]. Moreover, γ =
√
2 holds as an identity for any T in any centered Gaussian

process when ω = 0, a relation that follows immediately from eqs. (13) and (14). Indeed,

S(ω = 0, T ) is equal to the squared area under the random Gaussian curve X(t), divided

by the observation time (see eq. (1)). The limiting forms of the probability density

function can be conveniently studied using the expression (27).

When γ = 1, the expression in the last line in eq. (27) becomes a full square, and

thus one has

Φκ =
1

1 + κµ(ω, T )
, (29)

implying that the probability density function is a simple exponential. This form has

been experimentally verified for the sub-diffusive fractional Brownian motion [7] and for

the Brownian gyrator model [10].

When γ =
√
2, the coefficient in front of κ2 in eq. (27) vanishes and the moment-

generating function becomes

Φκ =
1

√

1 + 2µ(ω, T )κ
, (30)
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which signifies that the probability density function converges to the χ2-distribution

with one degree of freedom, i.e.,

P (s) =
1

√

2πµ(ω, T )s
exp

(

− s

2µ(ω, T )

)

, s > 0. (31)

Note that for ω = 0, when the single-trajectory PSD defines the squared area under

random curve X(t), this result simply states that the area itself has a Gaussian

distribution, which is an a priori known result. The form in (31) has also been verified in

experimental analyses of fractional Brownian motion processes [7] and for the Brownian

gyrator model [10].

Since γ ≥ 1, the magnitude of fluctuations of S(ω, T ) exceeds generically its mean

value. In other words, the fluctuations of S(ω, T ) over different realizations of X(t)

are significant and µ(ω, T ) is most likely dominated by some atypical realisations of

the random process X(t). This means, in turn, that in order to correctly reproduce

the analytical predictions from numerics or experiments, the number of realizations of

the process has to be large enough in order to “catch” such rare trajectories. The

function in eq. (3) attains its maximal value at s = 0, so that we can expect that typical

trajectories most often yield a value of S(ω, T ) smaller than the average. In our case, we

estimate the typical value of S(ω, T ) as the exponential of the average of the logarithm

of S(ω, T ):

µtyp(ω, T ) = exp
[

lnS(ω, T )
]

. (32)

For the probability density function given in eq. (3) we can perform the corresponding

integral exactly, and obtain

ln

(

S(ω, T )

µ(ω, T )

)

= ln

(

1 +
√

2− γ2

2

)

− C , (33)

where C ≈ 0.577 is the Euler-Mascheroni constant. (Notice that the convergence of the

integral is guaranteed by the double-sided inequality (6).) Consequently, the typical

value of a single-trajectory PSD is given by

µtyp(ω, T ) = µ(ω, T ) e−C

(

1 +
√

2− γ2

2

)

. (34)

As intuitively expected, µtyp(ω, T ) is smaller than µ(ω, T ) and the difference between

them is more pronounced for γ close to
√
2 than for γ close to 1. Therefore, in order to

obtain reliable estimates of µ(ω, T ), statistical samples need to be larger in the former

than in the latter case.

5. Conclusions

Summarizing, we have analysed here the statistical properties of the fluctuations of a

single-trajectory power spectral density S(ω, T ) of centered Gaussian processes X(t),
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going beyond its first moment, which is the main focus of most analyses. We have

presented a formal proof of the statement that for an arbitrary Gaussian process the

noise-to-signal ratio γ, defined as the ratio of the standard deviation and the mean

value of S(ω, T ), obeys a double-sided inequality 1 ≤ γ ≤
√
2 for any ω and any T .

The bound γ > 1 implies that the magnitude of fluctuations generically exceeds the

mean value, meaning that the realisation-to-realisation fluctuations are very significant.

Using the Karhunen-Loeve decomposition of X(t), we evaluated the full probability

density function of S(ω, T ), which holds for arbitrary centered Gaussian processes and

for any value of the frequency and of the observation time. Finally, we have discussed

the typical behaviour of a single-trajectory power spectral density, which is most likely

to be observed for small statistical ensembles of trajectories.
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