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ABSTRACT
The advent of Healthcare 4.0 has heralded a disruptive change in
medical diagnostics, with Artificial Intelligence (AI) playing a cen-
tral role in improving diagnostic accuracy and treatment efficacy.
This work addresses the integration of AI into medical imaging,
specifically through the use of deep learning networks to analyze
and segment medical images with high precision. Our study builds
on the capabilities of U-Net-like models to address the challenges
of segmenting clinical targets of different sizes, such as cysts and
tumor masses, in medical images. We present a novel deep learn-
ing segmentation solution, Tandem (Tandem Analysis for Neural
Detection and Evaluation Model), which combines a segmentation
model with a classifier to produce a confidence map alongside the
model’s prediction. This approach aims to improve segmentation
accuracy by refining predictions and providing a mechanism to as-
sess the reliability of the model, especially when identifying smaller
clinically significant targets. We evaluate our method across various
imaging modalities, including 2D and 3D acquisitions. We focus
on detecting and segmenting kidney cysts associated with Auto-
somal Dominant Polycystic Kidney Disease (ADPKD) and tumor
masses. The practical effectiveness of Tandem is demonstrated by
the generation of reliable confidence maps that help clinicians make
informed diagnostic and treatment decisions. This study represents
a significant step towards precision medicine by improving the
diagnostic capabilities of AI-driven systems in medical imaging.

KEYWORDS
Medical image segmentation, small-objects detection, deep-learning
models confidence
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1 INTRODUCTION
In the healthcare 4.0 landscape, patient data has become an in-
valuable resource for clinicians seeking to make more accurate
diagnoses. The integration of Artificial Intelligence (AI) is at the
forefront of this revolution, significantly improving diagnostic pro-
cesses and therapeutic decisions. Among the different types of
data, neural networks have excelled in the field of medical image
analysis [9, 16, 18].

The ability of AI-driven systems to analyze vast amounts of im-
age data with high accuracy is transforming medical diagnostics.
These systems can recognize nuances in medical images that are
sometimes imperceptible to the human eye, enabling early and
accurate disease detection, which is critical for effective treatment.
The integration of AI into medical imaging goes beyond simple
analysis; it extends to the development of advanced Decision Sup-
port Systems (DSS) [17]. These systems provide clinicians with
invaluable insights and offer evidence-based recommendations that
aid both diagnosis and the selection of optimal treatment strategies.

The advancement of AI technologies and machine learning al-
gorithms and their integration into medical imaging and decision
support systems is ushering in a new era of precision medicine,
enabling more accurate diagnoses and treatments [11].

Furthermore, this technology has shown exceptional proficiency
in detecting complex medical conditions, such as cysts in tissues af-
fected byAutosomal Dominant Polycystic KidneyDisease (ADPKD),
as well as tumor masses. There are still challenges because these
objects come in a wide range of sizes, which makes it difficult for
neural networks. In this situation, small objects have little impact
on the traditional cost function used to train the models, which
makes them likely to ignore clinically significant objects.

Based on previous studies that have used U-Net-like models to
segment variable-sized clinical targets, we aim to enhance these
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models with an automatic confidence estimation tool. Our approach
involves a flexible architecture integrating prediction refinement
into deep segmentation models. This aims to reduce prediction
errors and assist clinicians by providing a mechanism to measure
the model’s confidence in its predictions, regardless of the size
of the objects being analyzed and across different regions of the
images.

In our study, we emphasize the limitation of the current solutions
by focusing on the segmentation of cysts engineered using cells
from ADPKD patients and the detection of tumor masses in liver
tissues. For the first target, we utilized a dataset from the Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, containing RGB
immunofluorescence images of human tubules engineered from
cyst-lining cells. This research builds upon the work of Monaco
et al. [7]. For the second target, we selected the well-known Liver
Tumor Segmentation Benchmark (LiTS) [2], which consists of CT
liver 3D images.

Summing up, this work aims to improve segmentation accuracy
for clinical objects by adapting deep learning segmentation solu-
tions to provide a size-invariant self-assessment of their predictions.
The main contributions of this study are summarized as follows:

• Introduction of a novel segmentation solution, Tandem (Tandem
Analysis forNeuralDetection and EvaluationModel), which
integrates a classifier with a segmentation model jointly
trained to produce a confidence map alongside the usual
model prediction.

• Evaluation of the proposed strategy on two different medical
image segmentation tasks involving 2D and 3D acquisitions.

• Practical evaluation of the Tandem procedure to generate a
reliable confidence map of the predictions to assist clinicians
in model evaluation.

2 RELATEDWORKS
The integration of AI in healthcare, particularly in medical image
analysis, is the subject of extensive research. In the context of
Healthcare 4.0, significant progress has been made in AI-driven
diagnostic tools that improve the accuracy and efficiency of medical
diagnoses. Several important studies have laid the foundation for
these developments, particularly in the context of medical image
segmentation and disease detection.

The use of AI in medical image analysis is well documented,
with neural networks playing a central role. Early work by LeCun
et al. [8] demonstrated the potential of convolutional neural net-
works (CNNs) in image classification tasks, which have since been
adapted for medical imaging. Studies have shown that AI systems
can accurately recognize and classify various medical conditions
from image data. For example, Esteva et al. [3] successfully applied
deep learning to dermatology and achieved the dermatologist-level
classification of skin cancer.

In the field of kidney diseases, particularly ADPKD, deep learn-
ing has been used for cyst detection and segmentation. The U-Net
architecture introduced by Ronneberger et al. [4] has become a
cornerstone of medical image segmentation due to its ability to
learn from relatively small datasets. As the number of U-Net-based
architectures grew on various applications, different studies pro-
posed comparisons of these new techniques to the kidney or cyst

segmentation task [5, 13, 20]. Most of the studies have concentrated
on segmenting the entire organ to measure the overall presence of
cysts. While this provides valuable information about the disease
state, it does not offer a complete picture of the situation, which
could be achieved by segmenting the cysts within the kidney tis-
sue itself. However, this approach presents challenges due to the
considerable variation in the size of these cysts. Recent advance-
ments have focused on enhancing the accuracy of segmenting small
and scattered medical targets. Monaco et al. [7] highlighted the
limitations of many U-Net variants in segmenting smaller cysts
in ADPKD and emphasized the necessity for new techniques to
address or at least quantify this issue. This issue has also been ad-
dressed in a recent study [12], where the researchers investigated
how this problem could impact the measurement of a treatment’s
effectiveness. They found that deep learning models showed sim-
ilar behaviour across various treatments. However, the issue still
persists.

In this context, Shirokikh et al. [14] investigated the performance
of various loss functions for detecting objects of different sizes in
the context of tumor detection on 3D CT images. To this end, they
introduced a loss reweighting technique applicable to numerous
loss function families to increase the penalty for errors on smaller
objects. However, this approach remains relatively unexplored in
the literature, where the problem is typically addressed through spe-
cific modifications to the model architecture [15, 21]. Other studies
have tackled the issue in liver tumor segmentation by using contour-
based loss functions to preserve segmentation boundaries [10], or
by managing heterogeneous image resolutions with a multi-branch
decoder [19].

Another critical aspect of AI in medical imaging is confidence
estimation, which deals with the reliability of AI predictions. Kohl
et al. [1] introduced a probabilistic U-Net, which provides segmen-
tation results and estimates the uncertainty of these predictions.
This approach is particularly useful in medical diagnostics, where
understanding the confidence level of detection can significantly
influence clinical decisions. However, the uncertainty generated by
the Probabilistic UNet is not always easy for clinicians to interpret,
making it less straightforward to apply in practical contexts to alert
them to possible local model failures. Our method aims to provide
more directly interpretable confidence scores, which can be more
immediately useful in clinical decision-making.

3 MATERIALS AND METHODS
To improve medical segmentation models and ensure reliable self-
evaluation of their predictions, we propose Tandem, an end-to-end
pipeline for enriching the output of a neural network tailored to
segmentation tasks. This is achieved by a self-evaluation head that
provides a confidence measure for different parts of the prediction.
Figure 1 illustrates the main components of our framework, which
include a segmentation neural network and a classifier to estimate
the error of the different parts of the original prediction. The key
concepts of this architecture are explained in more detail in the
following section.
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Figure 1: Pipeline diagram of Tandem

3.1 Tandem architecture
As previously mentioned, our approach uses classification to im-
prove segmentation results. Our pipeline is not architecture-specific,
so the two neural networks for segmentation and classification can
be selected according to the specific requirements of the use case.

Starting with an input image of size 𝐷 ×𝐻 ×𝑊 ×𝐶 (where 𝐷 is
included for 3D images, 𝐻 and𝑊 are the other spatial dimensions,
and 𝐶 is the number of channels), the first model S(·, 𝜃s) produces
a prediction with the same spatial dimensions and 𝐶′ channels,
representing the number of classes to segment.

The classifier C(·, 𝜃c) acts then as a sliding window, scanning
the segmentation prediction along with the associated input im-
age to detect inconsistencies. It refines the segmentation output by
merging its predictions, thus contributing to the final segmenta-
tion result. To scan the input image with the classifier, we divide
it into non-overlapping square patches of dimensions 𝑑 × ℎ × 𝑤

(where 𝑑 is included for 3D images) such that the dimensions along
each axis are divided evenly into the corresponding original image
dimensions.

The classifier’s input is a tensor of size𝑑×ℎ×𝑤×(𝐶+1), where the
channels consist of the original image channels concatenated with
the first step’s prediction. We refer to these 4-dimensional patches
as enriched patches. These enriched patches are then passed to the
classifier, which predicts a label for each patch, considering the
segmentation prediction. The classifier’s output is then a binary
prediction for each patch of the input image, which is compared
with a ground truth label according to the following rule:

• True: If either the prediction detects a target that is present
in the patch ground truth, or if the model finds no target and
there is indeed nothing in the ground truth.

• False: If the prediction detects a target that is not present in
the ground truth, or if the model fails to detect a target.

A target is marked as detected if the prediction patch has an
Intersection over Union (IoU) of at least 𝑡dt with the correspond-
ing ground truth patch. In our experiments, we set this threshold
to 0.4, but this value can be adjusted depending on the specific
requirements of the problem. To reduce the prediction noise, we
also introduced a size cutoff below which targets within the patch
are not considered. This means that any patch containing only tar-
gets with a total number of pixels below the cutoff value is treated

Prediction Ground TruthRGB image

Classification input Classification
Ground Truth

⊕�

p� p�

Figure 2: Visual representation of the generation process of
classifier inputs and ground truths.

as empty. Although this cutoff value can be arbitrarily small, we
found in our experiments that a well-chosen value helps the model
to focus on relevant targets, improving overall performance. The
ground truth labelling process used during training is illustrated in
Figure 2.

The overall model is finally trained on both tasks simultaneously.
Let 𝑥 represent the input image, 𝑦 the ground truth segmentation,
and 𝑦cl the classification ground truth based on the segmentation
prediction. The global loss function is defined as:

L = Ls (𝑦s, 𝑦) + 𝛼Lcl (𝑦cl, 𝑦cl)
𝑦s = S(𝑥, 𝜃s)
𝑦cl = C(p[𝑥 ⊕ 𝑦s], 𝜃c),

(1)

where p[·] denotes the operation of splitting the input into
patches and 𝛼 is a tunable coefficient balancing the contributions of
the two-loss components. Since the classification labels 𝑦cl depend
on the segmentation model’s predictions, the second term of the
loss can directly influence the first model, leveraging the additional
penalty for its errors. The two loss functions Ls and Lc can be any
losses typically used for segmentation and classification tasks.

Finally, this pipeline produces the first step of segmentation
prediction and the pathed correctness classification as output.

3.2 Dataset
We apply our framework to two datasets, encompassing 2D and 3D
medical images. The first dataset (recalled as ADPKD dataset from
now on), introduced by Monaco et al. in [12], is a collection of RGB
immunofluorescence images of human tubules engineered from
epithelial cyst-lining cells affected by ADPKD. Each image is paired
with a binary image indicating the shape and size of cysts within
the tissues. We adhered to the preprocessing methods described in
the paper. For simplicity, we divided the dataset into a fixed train-
validation-test split, ensuring that images from the same tubule
were kept separate as recommended by the authors. The dataset
providers committed to making it available to anyone upon request
for reproducibility.

The second dataset is the Liver Tumor Segmentation Benchmark
(LiTS) [2], which consists of 3D CT scans of liver tumors. For this
dataset, we followed the preprocessing steps proposed in [14]. Both
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datasets exhibit high variability in the size of detectable objects,
and each acquisition may contain many target objects.

3.3 Experimental Setup
ADPKD dataset. For the Tandem backbones, we used a U-Net++ as
the segmentation model and a ResNet18 as the classifier. The model
was trained for up to 30 epochs until convergence on the validation
set, using the Adam optimizer with a learning rate of 1 × 10−4,
tuned with a cosine annealing with a warm restart scheduler. The
loss function Ls combined binary cross-entropy (BCE) and Jaccard
loss, utilizing their inverse-weighted versions as proposed in [14] to
make the network focus more on small-sized targets. We employed
Binary Focal Loss with parameters 𝛼 = 0.1 and 𝛾 = 2 for the
classification component. These parameters were determined by a
grid search to correct the imbalance of labels in this subtask. The
patch size used for the classification inputs is 128 pixels. This value
was chosen to be large enough to capture larger cysts, but not too
large to be meaningful for smaller cysts.

LiTS Dataset. For this dataset, the tandem backbones consisted
of a 3D U-Net and a 3D ResNet18 [6]. The training pipeline for the
baseline model was inspired by [14]. Specifically, we trained the
models for 100 epochs using Focal Loss (𝛼 = 0.25, 𝛾 = 2) with an
inverse weight variation for Ls, and Focal Loss (𝛼 = 0.1, 𝛾 = 2)
for Lc. We employed the Adam optimizer with a learning rate of
1 × 10−4, which was reduced by 20% at epochs 50 and 80. The
classifier input patch size for this dataset is 32 pixels.

Following these setups, we trained the segmentation models in
their baseline and tandem fashions to compare the effects of our
method on segmentation performance. Then, we analyzed the classi-
fier’s performance to measure its strength in providing insights into
segmentation output errors. The following section presents the re-
sults, averaging over 5 repetitions to improve statistical significance.
All the experiments were conducted on a fixed train-validation-test
split as provided by the datasets authors.

All experiments were implemented using the PyTorch frame-
work on an Intel Core i9-10980XE CPU@ 3.00GHz and two NVIDIA
RTX A6000 GPUs. Each experiment took approximately 2 hours
for the ADPKD dataset and 12 hours for the LiTS dataset. We ob-
served no significant variation in the training time required for
baseline models and their tandem counterparts. The code used for
the experiments is available online 1.

4 RESULTS
Table 1 reports the segmentation performance comparison of the
models trained alone or within our pipeline for the two datasets.
The baseline models mentioned in each dataset’s respective papers
are compared with their Tandem-enhanced counterparts.

Tandem models generally improve recall (Re) and intersection
over union (IoU) across most size categories, with particular regard
on smaller sizes, with particularly notable enhancements for small
and medium-sized objects. In the ADPKD dataset, Tandem slightly
improves precision (Pr) for small objects (1.85% increase), performs
marginally worse for medium (3.53% decrease) and gets roughly
equivalent results for large objects compared to the Base model.
For recall, Tandem consistently improves performance for small
1https://github.com/simone7monaco/tantem-segmentation

(4.07% increase), medium (3.34% increase), and large objects (1.9%
increase). IoU results also indicate that Tandem outperforms the
Base model for small objects (5.78% increase), matches the Base
model for medium objects, and slightly improves for large objects
(1.03% increase).

In the LiTS dataset, Tandem shows better precision for small
(14.29% increase) and medium-sized objects (14.29% increase), but a
lower precision for large objects (10.05% decrease) than the Base
model. Recall improvements are significant for small (19.83% in-
crease), medium (7.91% increase), and large objects (3.58% increase)
in Tandem. IoU results are better for small (15.56% increase) and
medium-sized objects (14.21% increase), but slightly lower for large
objects (3.38% decrease) with Tandem than the Base model. Notably,
the performance on this dataset is significantly poorer than on the
previous one, particularly for small and medium targets, highlight-
ing the task’s increased complexity; while this dataset is commonly
used for liver detection benchmarks where models perform well,
few studies focus on tumor detection.

Overall, the Tandem model effectively enhances recall and IoU,
which are crucial for medical segmentation tasks, particularly for
smaller and medium-sized objects. However, there is a trade-off
with a slight reduction in precision for larger objects, suggesting a
need for further tuning or model adjustments to achieve optimal
performance across all size categories. Finally, considering seg-
mentation capability alone, it’s important to note that some of the
observed variations are relatively minor, indicating that the perfor-
mance of a network trained with the Tandem procedure is quite
comparable to one trained with a baseline approach. The crucial
distinction, however, is that the Tandem method not only avoids
performance degradation but also offers slight improvements, while
additionally providing a self-evaluation of the model predictions.
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Figure 3: P-R curves for the Tandem confidence maps both
on LiTS and ADPKD datasets.

To quantify the Tandem method’s capacity for providing reliable
confidence maps, Figure 3 displays the precision-recall curve of
the Tandem models on the classification subtask, categorized by
target sizes. This plot illustrates the tradeoff between the precision
and recall metrics on test patches as the classifier threshold varies
to determine whether a prediction is considered correct or wrong.
The dashed lines represent the ISO-F1 curves, indicating points on
the plane associated with specific F1 scores. Each patch is labelled
according to the size category of the object it contains, as per the
ground truth.
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Table 1: Segmentation results for dataset and target size

Pr Re IoU
Small Medium Large Small Medium Large Small Medium Large

cyst Base 0.485±0.056 0.764±0.046 0.799±0.023 0.664±0.109 0.748±0.049 0.685±0.017 0.381±0.022 0.605±0.013 0.584±0.011
Tandem 0.494±0.022 0.737±0.032 0.795±0.044 0.691±0.058 0.773±0.030 0.698±0.039 0.403±0.010 0.605±0.005 0.59±0.022

LiTS Base 0.049±0.011 0.224±0.016 0.537±0.042 0.363±0.052 0.556±0.030 0.781±0.035 0.045±0.010 0.190±0.010 0.467±0.035
Tandem 0.056±0.015 0.256±0.039 0.483±0.059 0.435±0.082 0.600±0.046 0.809±0.019 0.052±0.014 0.217±0.026 0.433±0.045

In the ADPKD dataset, themodel performs best formedium-sized
targets, followed closely by large and small sizes. The performance
across all three sizes is comparable, indicating that the confidence
maps generated by the Tandem method are stable and reliable re-
gardless of the detected cyst size. The three curves exhibit a slightly
horizontal orientation, with the medium-sized targets achieving
a maximum precision of 0.8 as they approach the best recall val-
ues. Large and small targets follow closely, reaching around 0.7
maximum precision. This horizontal orientation of the PR curves
suggests that the classifiermaintains relatively high precision across
a wide range of recall values, indicating a balanced performance
in detecting positive and negative instances. The high F1 values
achieved in these regions of the plot further underscore the overall
effectiveness of the classifier.

In the tumor dataset, the model shows the highest performance
for large-sized targets, with the corresponding PR curve positioned
at the top. This curve is not completely flat but slopes downward
slightly. When the F1 score reaches 0.8, the recall is approximately
0.9, and the precision is around 0.8. This indicates robust perfor-
mance for large tumors, maintaining a high balance between preci-
sion and recall, and effectively managing both true positive detec-
tions and minimizing false positives.

The PR curve for medium-sized targets is slightly lower and
exhibits a moderate increase. Although it does not achieve an F1
score of 0.8, it reaches its best performance with an F1 score above
0.6, with both precision and recall around 0.6 at the highest recall
values. This indicates a reasonable performance for medium-sized
tumors, but highlights that there is still room for improvement to
achieve higher precision and recall.

For small-sized targets, the PR curve shows a steep decline, with
the best performance, or "knee," occurring at an F1 score of about 0.5,
with recall at 0.5 and precision at 0.6. This suggests that detecting
small tumors remains a challenging task for the model, as indicated
by the lower F1 scores and the sharper drop in performance metrics.

Overall, the variations in performance across different target
sizes in the tumor dataset highlight the increased complexity of this
detection task. Despite these challenges, the high F1 scores achieved
in specific regions of the plot further reinforce the classifier’s overall
effectiveness.

5 CONCLUSIONS
The results presented in Section 4 and Table 1 clearly demonstrate
the effectiveness of the Tandem model in improving the precision,
recall, and IoU across different object sizes in the cyst and LiTS
datasets. The Tandem model shows improvements, particularly in
managing smaller and medium-sized targets, which are crucial for
medical segmentation tasks.

In terms of segmentation capability, while some variations are
relatively minor, the improvements in critical metrics such as recall
and IoU emphasize the practical benefits of our approach. Moreover,
the ability of the Tandemmodel to provide reliable confidence maps
as shown in Figure 3, particularly in differentiating between tumor
sizes in the LiTS dataset, adds a layer of validation to the model’s
predictive accuracy and reliability. Ultimately, this study showcases
the potential of the proposed model in enhancing medical image
analysis, providing valuable insights to physicians.
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