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Abstract
Model Updating (MU) aims to estimate the unknown properties of a physical system of interest from experimental observa-
tions. In Finite Element (FE) models, these unknowns are the elements’ parameters. Typically, besides model calibration 
purposes, MU and FEMU procedures are employed for the Non-Destructive Evaluation (NDE) and damage assessment of 
structures. In this framework, damage can be located and quantified by updating the parameters related to stiffness. However, 
these procedures require the minimisation of a cost function, defined according to the difference between the model and the 
experimental data. Sophisticated FE models can generate expensive and non-convex cost functions, which minimization is a 
non-trivial task. To deal with this challenging optimization problem, this work makes use of a Bayesian sampling optimisation 
technique. This approach consists of generating a statistical surrogate model of the underlying cost function (in this case, 
a Gaussian Process is used) and applying an acquisition function that drives the intelligent selection of the next sampling 
point, considering both exploitation and exploration needs. This results in a very efficient yet very powerful optimization 
technique, necessitating of minimal sampling volume. The performance of this proposed scheme is then compared to three 
well-established global optimisation algorithms. This investigation is performed on numerical and experimental case studies 
based on the famous Mirandola bell tower.

Keywords  Bayesian optimisation · Bayesian expected improvement · Finite Element Model Updating · Bell Tower · 
Masonry structures

1  Introduction

Finite Element Model Updating (FEMU) refers to all strate-
gies and algorithms intended for the calibration of an exist-
ing FE model based on experimental evidence, especially 
vibration data [1]. Data used for such calibration or updating 
purposes can be acquired from occasional in situ surveys or 
by an embedded, permanent monitoring system. For the spe-
cific case considered here—and as very commonly used in 
real-life circumstances—modal parameters, extracted from 

acceleration time histories, are utilised. This is a well-known 
example of the indirect FEMU method [2], where the input 
parameters are varied to match the output results (natural 
frequencies and mode shapes). At its core, this represents 
an optimisation problem.

Therefore, the aim is to estimate the mechanical proper-
ties to be assigned to the numerical model, given its geom-
etry. Once calibrated, the FE model can be used in several 
ways. The most obvious application is for predictive analy-
sis, e.g., to estimate the remaining resilience of the struc-
ture in case of strong motions or other potentially dangerous 
events. If a predictive model was already available before a 
specific damaging event (e.g., a major earthquake), updat-
ing that FE model and comparing the estimated stiffnesses 
before and after the seism can be used for model-based 
Structural Health Monitoring (SHM) and damage assess-
ment [3, 4]. That allows not only basic damage detection 
but also specific advanced tasks such as damage locali-
sation and severity assessment. A third use is for hybrid 
simulations [5, 6]; in these applications, a target structure is 
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divided into experimental and numerical substructures, due 
to practical limitations or to save costs. FEMU allows one 
to match the response of the numerical components to their 
experimental counterparts. Finally, in the case of continu-
ously monitored structures and infrastructures, constantly 
re-updating a detailed Finite Element Model represents an 
enabling technology required for Digital Twins. This can 
serve the decision maker to evaluate the current and future 
structural situation of the assets under management. More 
details about the basic and general concepts of FEMU can 
be found in the works of Friswell and Mottershead—e.g., 
[7] and [8].

1.1 � Efficient Bayesian sampling for finite element 
model updating

Arguably, one of the major issues about the FEMU proce-
dure described so far is that the optimisation problem can 
become computationally expensive and very time-consum-
ing, especially when dealing with complex FE models.

On the one hand, numerical models are becoming more 
and more complex, and so very computationally demanding. 
The need for very efficient optimisation techniques suitable 
for potentially highly demanding tasks is therefore clear. 
Nonetheless, an optimisation algorithm should discern  the 
global minimum across the function domain, thereby cir-
cumventing the risk of encountering local minima. Unfortu-
nately, sampling efficiency and global search capabilities are 
somewhat conflicting goals. Consequently, global optimiza-
tion techniques that require high sampling volumes to search 
the space for the global optimum are frequently employed.

For these reasons, the approach proposed here employs 
Bayesian Sampling Optimisation [9] in the framework of 
FEMU. As will be described in detail in the Methodology 
section, Bayesian Sampling Optimisation (or simply Bayes-
ian Optimisation, BO, for short) uses the basics of Bayes’ 
Theorem to infer the best sampling strategy in the search 
domain. This greatly increases the computational efficiency 
of the procedure, vastly reducing the sampling volume 
required to attain a solution, especially when a larger number 
of parameters needs to be estimated at once, as in the case of 
damaged structures and infrastructures, where multiple areas 
can be affected by different levels of damage.

In common practice, also according to the visible crack 
pattern, the target system is divided into macro-areas, under 
the assumption that these substructures will have different 
mechanical properties [10]. In the most common case, the 
local parameters of these macro-areas (Young’s moduli, 
etc.) must be jointly estimated to match the global dynamic 
response of the structure. Hence, the dimensionality of 
the search space of the optimisation function, defined by 
these numerous parameters, easily ten or more [11]—can 
become very high. As a note, it is important to remark that 

this will be the intended use of the term ‘Bayesian’ in this 
work; other research works, for example [12–15], and Ref. 
[16] among many others, use the same adjective to refer to 
the estimated output. Instead, this paper focuses solely on 
Bayesian sampling and its effectiveness for the optimisa-
tion of expensive functions in search spaces characterized 
by high dimensionality.

1.2 � Applications of FEMU to historical architectural 
heritage and earthquake engineering.

The proposed Bayesian Optimization-based FEMU strategy 
is validated on a case study of interest for Structural Dynam-
ics purposes, the bell tower of the Santa Maria Maggiore 
Cathedral in Mirandola. This historical high-rise masonry 
building suffered extensive damage after the 2012 Emilia 
Earthquake and has been the subject of several research stud-
ies throughout the years—see e.g., [1]. Both numerically 
simulated and experimental data were employed, thereby 
allowing to benchmark the proposed approach with a known 
ground truth and in a controlled fashion.

Indeed, regarding this specific application, FEMU is 
especially important for Earthquake Engineering. After 
major seismic events, reliable and predictive FE models are 
required as soon as possible to design and evaluate tempo-
rary interventions that should be deployed in the immedi-
ate aftermath to secure the damaged structures. However, 
the calibration of such FE models is not trivial. This situa-
tion is relatively worse for masonry structures, where even 
the properties of the original (pristine) structure are more 
difficult to estimate than homogeneous materials such as 
structural steel. In architectural and cultural heritage (CH) 
sites, even the pre-earthquake material properties are often 
unknown due to the lack of historical records; yet they 
have notoriously low mechanical resistance, due to their 
centuries-old ageing. These aspects make these unique and 
irreplaceable structures strongly vulnerable. Among them, 
historical bell towers are at particular risk during seismic 
events, due to various factors such as their relative slen-
derness, several potential failure mechanisms, and building 
material (bricks and mortar) [17]. These further underscore 
the importance of implementing robust monitoring strategies 
to detect and track damage development in such structures 
[18].

Thus, FEMU represents a precious tool for CH. Moreo-
ver, even after the first phase of a post-earthquake emer-
gency, model updating is an important tool for vibration-
based continuous monitoring and/or periodic dynamic 
investigations [19]. In the short to medium term, seismic 
aftershocks can cause more damage than the main shock, as 
strong motions insist on accumulated damage; in the long 
run, the initial cracks can expose structural vulnerabilities 
to external environmental factors.
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Some noteworthy examples of FEMU applications can 
be found in [17, 20–23] and [24]. A broader, up-to-date 
review of Structural Health Monitoring (SHM) techniques 
successfully applied to CH structures is given by [25], while 
[26] specifically delves into the historical and contemporary 
advancements in SHM concerning the Garisenda tower in 
Bologna, Italy, a heritage structure similar in many aspects 
to the case study under examination. Similarly, Refs. [27] 
and [28] thoroughly analyses the Civic Tower of Ostra, Italy, 
and the Civic Clock tower of Rotella, respectively, using 
detailed numerical models and experimental data to assess 
the structural condition and establish standards for ongo-
ing maintenance, posing the accent on the use of Genetic 
Algorithms. The remainder of this paper is organised as fol-
lows. In Sect. 2, the theoretical background of Finite Ele-
ment Model Updating and Bayesian Sampling Optimisation 
are discussed in detail. In Sect. 3, the specific methodol-
ogy of the algorithm implemented for this research work 
is reported. The three optimisation algorithms used for the 
comparison of the results are also briefly recalled. Section 4 
describes the case study. Section 5 comments on the results, 
comparing the BO estimates with the three benchmark algo-
rithms and the findings retrieved from the published scien-
tific literature on the same case study. Finally, Sect. 6 con-
cludes this paper.

2 � Theoretical background

Parametric models (such as finite elements models) are 
described by a vector of model parameters � . Thus, being 
M the model operator, y = M(x,�) returns the output vector 
y for a given input vector x . For obvious reasons, in model 
updating, it is preferable to adopt outputs that are independ-
ent of the input and dependent on the model parameters 
only (such as modal features). According to this assumption, 
the x vector can be dropped, and the input–output relation-
ship is simply represented by y = M(�).

Finite elements model updating methods fall into two 
categories, direct methods and iterative methods (the latter 
also called deterministic). Direct methods try to improve 
observed data and computed data agreement by directly 
changing the mass and stiffness matrices; this leads to lit-
tle physical meaning (no correlation with physical model 
parameters), problems with elements connectivity, and fully 
populated stiffness matrices. For these reasons, they are sel-
dom used in common structural engineering applications. 
The iterative methods attempt to obtain results that fit the 
observations by iteratively changing the model parameters: 
this enables retaining good physical understanding of the 
model and doesn’t present the above-mentioned problems. 
The degree of correlation is determined by a penalty func-
tion (or cost function): optimising this function requires the 

problem to be solved iteratively, which means computing 
the output (i.e., performing a FE analysis) of the numerical 
model at each iteration. Hence, a higher computational cost 
is the major drawback of iterative methods.

Many FEMU methods have been proposed and success-
fully used: sensitivity-based methods, [29, 30], and [31]; 
eigenstructure-assignment methods, [32] and [33]; uncer-
tainty quantification methods [34]; sensitivity-independent 
iterative methods, [35]; and many more [36].

As described, model updating is an inverse problem, as it 
aims at inverting the relationship between model parameters 
and the model output to find the optimal set of parameters 
� that minimises the difference between computed data and 
measured data.

In this sense, model updating can be simply considered as 
the following constrained optimisation problem:

where �∗ is the set of optimal parameters, D is the parameter 
space, F is the cost function and f  is the measured data.

The whole process of solving F(M(�), f ) – the output of 
the numerical model “post-processed” in some way by a 
cost function – may be conceived as computing an unknown 
(non-linear) objective function of the model parameters � , 
which constitutes the sole input of the numerical model to 
be updated. Typically, this objective function is non-convex 
and expensive to evaluate. The output surface of the objec-
tive function lies in a d− dimensional space, where d is the 
number of parameters to be optimised. The sampling volume 
is exponential to d , thus posing an implicit restriction to the 
number of parameters that can be optimised.

Many optimisation algorithms have been developed in 
the last decades, each of them with its peculiar strengths 
and weaknesses. Among them, three of the better-known 
and most extensively used are Generalized pattern search 
(GPS) algorithms, Genetic Algorithms (GA), and simulated 
annealing (SA) algorithms.

In recent years, BO has proven itself to be a powerful 
strategy for finding the global minimum of non-linear func-
tions that are expensive to evaluate, non-convex and whose 
access to the derivatives is burdensome. Furthermore, 
Bayesian sampling optimisation techniques distinguish 
themselves as being among the most efficient approaches in 
terms of a number of objective evaluations [37–41].

The essence of the Bayesian approach lies in the reading 
of the optimisation problem given by the ‘Bayes’ Theorem’:

which mathematically states that the conditional probability 
of event M occurring given the event E is true is propor-
tional to the conditional probability of event E occurring 
if event M is true multiplied by the probability of M . Here, 

(1)�
∗ = argmin

θϵD
F(M(�), f ),

(2)P(M|E) ∝ P(E|M)P(M),
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P(M|E) is seen as the posterior probability of the model 
M given the evidence (or observations) E , P(E|M) as the 
likelihood of E given M and P(M) as the prior probability 
of the model M . Essentially, the prior, P(M) , represents the 
extant beliefs about the type of possible objective functions, 
eventually based on the observations already at disposal. The 
posterior P(M|E) , on the other hand, represents the updated 
beliefs about the objective function, given the new observa-
tions. The process basically aims at estimating the objective 
function by means of a statistical surrogate function, or sur-
rogate model.

Many stochastic regression models can be used as a sur-
rogate: the model must be able to describe a predictive dis-
tribution that represents the uncertainty in the reconstruction 
of the objective function, in practice by providing a mean 
and a variance.

To efficiently select the next sampling point, the proposed 
approach makes use of an acquisition function defined over 
the statistical moments of the posterior distribution given 
by the surrogate. The role of the acquisition function is 
crucial since it governs the trade-off between exploration 
(aptitude for a global search of the minimum) and exploita-
tion (aptitude for sampling regions where the function is 
expected to be low) of the optimisation process. Probabil-
ity of Improvement (PI), Expected Improvement (EI) and 
Upper Confidence Bound (UCB) are among the most used 
and most popular acquisition functions in Bayesian optimi-
sation applications.

2.1 � Finite element model updating

As mentioned, when iterative model updating methods are 
involved, the solution to the problem described by Eq. (1) 
entails the optimisation of a highly non-convex, high-dimen-
sional cost function. In this case, modal features have been 
chosen to evaluate the degree of correlation between experi-
mental and theoretical results, by employing both natural 
frequencies and associated mode shapes.

The selection of the parameters to be updated is a crucial 
step to reduce optimisation complexity, retain good physical 
understanding and ensure the well-posedness of the problem 
[42]. Generally, good practices to avoid ill-conditioning or 
ill-posedness are (1) choosing updating parameters that ade-
quately affect the model output and (2) reducing the number 
of parameters to limit the occurrence of under-determinacy 
issues in the updating problem [43]. The first task can be 
accomplished by using sensitivity-based methods to discard 
non-sensitive parameters, and the second by dividing the 
structure into sub-parts with the same material properties. 
Additionally, the richness and the nature of the measured 
data, in contrast to the degree of discretization of the finite 
element model, places a limit on the type and number of 

parameters that can be updated while retaining physical 
meaningfulness.

Various issues of ill-conditioning or rank-deficiency can 
arise in relation to the specific optimisation technique used. 
In the case of the BO approach, the rank of the covariance 
matrix of the Gaussian Process (i.e., kernel matrix) may be 
source of some concern. The matrix can become nearly sin-
gular if (i) the original function that is being optimised is 
so smooth and predictable that leads to a high correlation 
between sampling points, thereby generating columns of 
near-one values, and/or if (ii) the sampled points are very 
close one to another (which typically happens towards the 
end of the optimisation process), thereby generating several 
columns that are almost identical [44].

2.2 � Bayesian sampling optimisation algorithm

For highly non-convex cost functions and problems denoted 
by high dimensionality, traditional optimization algorithms 
may encounter difficulty in identifying the global optimum 
or fail to converge, even within the framework of well-posed 
problem sets. In this study, we undertake a comparison 
between the performance of the proposed Bayesian sampling 
optimization approach and the outcomes derived from the 
aforementioned three classical alternatives. These will be 
discussed later in a dedicated paragraph.

When dealing with expensive and non-convex functions 
to optimise, both efficiency (in terms of sampling) and 
global search capabilities are paramount. Indeed, several 
global optimisation techniques have been developed over 
the years, but very few perform well when the number of 
function evaluations is kept to a minimum. One way to deal 
with expensive functions is by using surrogate optimisa-
tion techniques. This approach consists in substituting the 
objective function with a fast surrogate model, which is then 
used to search for the optimum and speed up the optimisa-
tion process. Of course, the validity of the surrogate model, 
that is to say, its capability to represent the behaviour of the 
underlying objective function, is of uttermost importance 
to obtain good and reliable results. Unfortunately, when a 
linear regression of the form

is used to fit the data (where �(i) is the i-th sampled point out 
of a total of h , y

(
�(i)

)
 is the associated objective value, fh(�) 

is a function of �, �h are coefficients to be estimated, and �(i) 
are the independent errors, normally distributed), it is ardu-
ous to determine which functional form should be employed 
if none or scanty a priori information about the function 
of interest is available. As such, these strategies are often 
impracticable for model updating optimisation problems.

(3)y
(
�
(i)
)
=
∑
h

�hfh
(
�
(i)
)
+ �(i)(i = 1,… , n),
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The approach of Bayesian sampling optimisation consists 
of a change of paradigm. Instead of trying to minimise the 
error �(i) by selecting some functional form that aligns with the 
data, the focus is placed on modelling the error by means of a 
stochastic process, so that the surrogate model is of the form:

where � is the regression term (the functional form is just a 
constant), and the error term �

(
�(i)

)
 is a stochastic process 

with mean zero (in other words, a set of correlated random 
variables indexed by space). This change of perspective 
about the surrogate function is comprehensively described in 
one of the most interesting papers on modern Bayesian opti-
misation, [38], where the proposed method is called Efficient 
Global Optimisation, EGO. Besides modelling the surrogate 
as a stochastic process, the Bayesian sampling optimisation 
method makes use of an acquisition function to perform a 
utility-based selection of the points to be sampled. These 
(a stochastic predictive/surrogate model combined with the 
acquisition function) are in fact the two key elements of 
Bayesian optimisation.

BO has gained much attention in the last decades only. 
However, the first works on the topic have been published in 
the early 60s by [45]. After some developments by [46], who 
used Wiener processes, the concept of Bayesian optimisation 
using Gaussian Processes as the surrogate model was first 
used in the EGO formulation, combined with the expected 
improvement (EI) concept [47].

In the last years, several research works have proven the 
advantages of using Bayesian optimisation with expensive 
non-convex functions [48], making it a popular and well-
known global optimisation technique.

Fitting a surrogate model to the data requires carrying out 
an additional optimisation process for the determination of 
hyperparameters. Furthermore, the next point to be sampled 
is found by searching for the maximum of the acquisition 
function. Hence, the BO approach entails two secondary 
(arguably fast-computing) optimisation problems, to be 
solved at each iteration: this results in a somewhat fancy 
and potentially heavy algorithm, which is suitable only if 
the objective function is considerably expensive.

In the following, this notation is often used:

where D1∶t denotes the observations set, or sample, made 
of t observations in total. �i is the input point vector of the 
i-th observation. This vector, in other words, contains the 
updating parameters (in the input domain). The length of �i 
equals d , the dimensionality of the updating problem, i.e., 
the number of updating parameters. Finally, f

(
�1∶t

)
 , also 

abbreviated in �t , are the observed values of the objective 

(4)y
(
�
(i)
)
= � + �

(
�
(i)
)
(i = 1,… , n),

(5)D1∶t =
{
�1∶t, f

(
�1∶t

)}
,

function at �1∶t , i.e., the outputs of the cost function at each 
set of updating parameters �i.

While any probabilistic model can be adopted to 
describe the prior and the posterior, it should be (i) rela-
tively light and fast, to provide quick access to predictions 
and related uncertainties, (ii) able to adequately fit the 
objective function with a small number of observations, 
since sampling efficiency is pursued, and (iii) the con-
ditional variance must cancel if and only if the distance 
between an observation and the prediction point is zero, 
as this is one condition to ensure the convergence of the 
BO method [49].

Given these requisites, Gaussian Process priors are 
the chosen probabilistic model in the majority of modern 
Bayesian optimisation implementations. To mention some 
popular alternatives, [50] worked with random forests, 
[51] with deep neural networks, [52] made use of Bayes-
ian neural networks, while [53] used Mondrian trees. GPs 
are well-suited for model updating problems where the 
penalty function to be minimised is continuous.

Given a Gaussian Process (seen as a continuous collec-
tion of random variables, any finite number of which have 
consistent joint Gaussian distributions [54]), of the form:

where m(�) is the mean function, and k
(
�, �

′) is the covari-
ance function (which models the level of correlation between 
two observations, fi and fj , relatively to the distance between 
the points xi and xj ), the covariance can be computed for 
each pair of sampled points and conveniently arranged in 
matrix form:

Many covariance functions k
(
�, �

′) (or kernel functions) 
can be chosen, as decreasing functions of the distance 
between points xi and xj in the input space.

Considering the joint Gaussian distribution:

where f∗ is the objective output at �∗ , that is f∗ = f
(
�∗

)
 , and

the following predictive distribution can be derived—for a 
full analytical derivation, see [55]:

where:

(6)f (�) ∼ GP
(
m(�), k

(
�, �

�))
,

(7)� =

⎡⎢⎢⎣

k
�
�1, �1

�
… k

�
�1, �t

�
⋮ ⋱ ⋮

k
�
�t, �1

�
… k

�
�t, �t

�
⎤⎥⎥⎦
.

(8)
[
�1∶t

f∗

]
∼ N

(
0,

[
� �

�T k
(
�∗, �∗

)
])

,

(9)� =
[
k
(
�∗, �1

)
k
(
�∗, �2

)
⋯ k

(
�∗, �t

) ]
,

(10)P
(
f∗ ∣ D1∶t, �∗

)
= N

(
�t

(
�∗

)
, �2

t

(
�∗

))
,
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In the above set of equations, �t

(
�∗

)
 is the prediction over 

the objective function value at any chosen point �∗ , and �2
t

(
�∗

)
 

is the variance of the prediction at �∗ (the subscripts here 
denote that the prediction and its variance come from a GP 
trained with the D1∶t =

{
�1∶t, f

(
�1∶t

)}
 data sample).

To compute the prediction and the variance at �∗ from 
Eqs. (11) and (12) (by means of which exact inference is 
computed), it is necessary to invert the kernel matrix � . 
This operation has a computational complexity of O

(
N3

)
 , 

where N  is the size of the (square) kernel matrix (which 
equals the number of observations, t ). While this operation 
is relatively fast on its own, it can lead to computationally 
burdensome workflows as (i) the BO approach entails the 
maximisation of the acquisition function, a task that may 
require computing thousands of predictions (especially in 
high dimensional problems), and (ii) the number of observa-
tions keeps increasing (and so the size of � ) as the optimisa-
tion advances and new points are added to the observations 
set.

Therefore, when using Gaussian Processes, BO badly 
scales with the number of observations. One way to mitigate 
such a problem consists of limiting the number of observa-
tions used to fit the GP to a certain amount (e.g., defining an 
“active set” size of a few hundreds), by randomly choosing 
a new set of training points among the sample at each itera-
tion of the algorithm. Indeed, this practice is applied in the 
implementation used within this work, with an active set size 
of 300 being used.

The choice of the kernel function deeply affects the 
smoothness properties of a GP. This must be coherent with 
the features of the underlying objective function to obtain a 
quality surrogate model. Moreover, as each problem has its 
own specifics, the kernel function must be properly scaled. 
To this extent, the kernel functions are generalized by intro-
ducing hyperparameters. In the case of a squared exponen-
tial kernel function, this results in the equation:

where �f  is the vertical scale, which is the GP’s standard 
deviation (i.e., describes the vertical scaling of the GP’s var-
iance), and the hyperparameter � is the characteristic length 
scale, which defines how far apart the input points xi can be 
for the output to become uncorrelated. When dealing with 
anisotropic problems (as it is often the case with model 
updating), it is much more convenient to use separate length 
scales, one for each parameter. This is typically done with 

(11)�t

(
�∗

)
= �

T
�

−1
�1∶t

(12)
�2
t

(
�∗

)
= k

(
�∗, �∗

)
− �

T
�

−1
��2

t

(
�∗

)
= k

(
�∗, �∗

)
− �

T
�

−1
�.

(13)k
(
xi, xj

)
= �f exp

(
−

1

2�2
‖‖‖xi − xj

‖‖‖
2
)
,

automatic relevance determination kernels (ARD), that 
consists in using a vector of hyperparameters � , which size 
equals d.

In practical terms, when a specific length scale �l 
assumes a significantly higher value compared to other 
length scales, the kernel matrix becomes independent of 
the l-th parameter.

The optimal set of hyperparameters � is computed by 
maximisation of the marginal log-likelihood of the evi-
dence D1∶t =

{
�1∶t, f

(
�1∶t

)}
 given �:

where the �+ vector contains the length scales �1∶l plus the 
vertical scale, and the mean �0 (i.e., the constant regres-
sion term) of the GP (and therefore all the d + 2 hyperpa-
rameters), so that�+ ∶= (�1∶l,�0, �f ) . In the previous equa-
tion, the dependency on �+ is obviously found in the kernel 
matrix K.

By employing this approach, a sort of sensitivity analy-
sis of the parameters over the sampled points is performed. 
This built-in feature of the Bayesian optimisation tech-
nique is certainly useful for what concerns structural 
model updating problems, where the system sensitivity 
to the updating parameters is often dissimilar and usually 
unknown.

Four different ARD kernels will be employed, two of 
which are in the form of Matérn functions [56]. These 
functions are defined as

where � is a smoothness coefficient, while Γ(∙) and H�(∙) 
are the Gamma function and the Bessel function of order � , 
respectively. As the smoothness coefficient � tends towards 
infinite, the Matérn function reduces to the squared exponen-
tial function; when � tends towards zero, the Matérn func-
tion reduces to the unsquared exponential function. The four 
employed kernels are:

–	 an ARD unsquared exponential kernel:

–	 an ARD squared exponential kernel:

(14)
log(p(f 1∶t ∣ x1∶t,�
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1

2
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2
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–	 an ARD Matérn 3/2 kernel ( � =
3

2
):

–	 an ARD Matérn 5/2 kernel ( � =
5

2
):

The difference between the four kernel functions is visible 
in Fig. 1. The exponential kernel stands out due to its rapid 
decline in correlation as distance increases. Consequently, 
function samples drawn from a GP constructed with the 
exponential kernel exhibit notably rugged features, whereas 
those generated using Matérn 3/2, Matérn 5/2, and squared 
exponential kernel functions display increasingly smoother 
characteristics.

As mentioned already, two different approaches can 
be followed  to search for the optimum: the exploitative 
approach and the explorative approach. The automatic trade-
off between exploitation and exploration is taken care of by 
the acquisition function.

Typically, Bayesian Optimization has found its histori-
cal roots within the scientific literature as a methodology 
primarily designed for the maximization of objective func-
tions. Consequently, acquisition functions are conventionally 
formulated to yield high values in regions where the objec-
tive is deemed to exhibit a high value. Thus, when seeking 

(16.c)

k
�
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the minimum of a function f (x) , such in the case of model 
updating, it is sufficient to consider the equivalent problem:

The next point xt+1 that will be chosen for sampling is 
found by maximising the acquisition function a(x) according 
to the optimisation problem:

Four acquisition functions were tested on a prelaminar 
numerical case study, consisting of the updating of a simple 
2D shear-frame (see Fig. 2): Probability of Improvement 
(PI), Expected Improvement (EI), a modified version of 
Expected Improvement [57] and Upper Confidence Bound 
(UCB). Among these, UCB was selected for implementation 
in the Bayesian sampling algorithm used in this study, as it 
was found to strike the best balance between exploitation 
and exploration. In particular, UCB was found to be about 
40%, 20%, and 70% better than PI, EI, and EI (Bull) in terms 
of accuracy, respectively, given the same initial seed and the 
same total sampling volume.

Upper Confidence Bound (or Lower Confidence Bound, 
LCB, if minimisation is involved), first proposed by [58] in 
the “Sequential Design for Optimisation” algorithm (SDO), 
consists of a very simple yet very effective approach. The 
UCB function is defined as:

where � is typically a positive integer number, which con-
trols the bound width identified by the standard deviation 
�(�) and therefore the propensity of the algorithm to explore 
the search space. Often, � is taken equal to 2, so that the con-
fidence bound is about 95% (indeed, this is the value used in 
the following case-study).

The “intelligent” sampling performed by the BO 
approach when using UCB is displayed in Fig. 3. Here, a 
simple numerically-simulated updating problem consist-
ing of a 3-DOF shear-type system is considered. Levels 
are all denoted by the same stiffens k , while the lumped 
masses are m1 , m2 and m3 . The parameters being updated 
consist of the stiffness k and the mass m2 , which tar-
get values are known in advance (as well as the target 
response of the system). The associated 2D penalty func-
tion is sampled at 9 randomly chosen points, a Gaussian 
Process is fitted to the observations,and the UCB function 
is computed knowing �(�) and �(�) by means of Eqns. 
(11) and (12). The minimum according to the surrogate 
model and the acquisition function maximum (i.e., the 
succeeding sampling point) are visible. When using UCB 
(with � = 2 ), the choice of the next sampling point is 

(17)
argmaxxg(x)

g(x) = −f (x)

(18)xt+1 = argmaxxa
(
x|D1∶t

)

(19)UCB(�) = �(�) + ��(�)

Fig. 1   Correlation between observations xi and xj according to the 
four different kernel functions, plotted against the distance ( � = 0.25)
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heavily influenced by the high level of uncertainty in the 
predictions. The acquisition maximum is found in an area 
far from other observations, where uncertainty is very 
high, while the predicted objective is still reasonably low. 
Furthermore, a tendency to explore the optimization space 
at the early stages of the optimization procedure, when 
the number of observations is low and the uncertainty is 
high, followed by a gradually more exploitative behav-
iour as the overall uncertainty decreases, is a remarkable 
aspect of UCB functions for locating the global optimum, 
as both exploration and exploitation needs are upheld.

3 � Methodology

In this section, the implementation of the Bayesian 
optimisation algorithm strategy used in this study is 
described. For completeness, the main technical details 
about the optimisation techniques used for comparison 
are discussed as well. These algorithms are in fact very 
susceptible to specific implementation choices and ini-
tial parameters’ values, as the optimisation outcome is 
affected both in terms of sampling efficiency and accu-
racy. This is particularly true for Simulated Annealing 
and Genetic Algorithm.

3.1 � Bayesian optimisation: the proposed algorithm

Technical details about the implementation of the employed 
Bayesian sampling optimisation procedure are summarized 
as follows, according to the flowchart represented in Fig. 4.

(1)	 The optimisation procedure is initialized by comput-
ing the objective function at the seed points, which 
are randomly chosen within the optimisation domain, 
defined by the search bounds of each input parameter. 
The seed size should be sufficiently large to avoid over-
fitting when selecting the optimal set of kernel hyper-
parameters through log-likelihood maximisation. As a 
rule of thumb, [38] suggest setting the initial seed size 
at 10 ∙ d at least, where d is the number of dimensions 
of the optimisation problem (i.e., updating param-
eters). Indeed, this criterion will be followed for the 
presented case study.

(2)	 The fitting of the Gaussian Process (i.e., the surro-
gate model at iteration i ) occurs by maximising the 
marginal log-likelihood, which enables to select the 
optimal set of hyperparameters �+ . Moreover, a small 
amount of Gaussian noise �2 is added to the observa-
tions (such that the prior distribution has covariance K 
(x, x′;�) + �2I).

(3)	 To maximise the acquisition function, several thou-
sands of predictions �t

(
�∗

)
 are computed at points �∗ 

randomly chosen within the optimisation space. Then, 

Fig. 2   Comparative analysis of 
four distinct acquisition func-
tions. The plots illustrate the 
trajectory of the optimal objec-
tive function value throughout 
the optimization iterations for 
the updating of a basic 2D 
shear-frame
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some of the best points are further improved with local 
search (for this application, the “fmincon” MatLab® 
function is used), among which the best point is finally 
selected.

(4)	 The objective function is computed at the point cor-
responding to the acquisition function maximum.

By following this workflow, a newly fitted GP is used at 
each algorithm iteration. In fact, the objective function value 
computed at each i − th iteration is added to the set of obser-
vations at iteration i + 1 , which is then employed to train the 
GP used to model the objective function, by determining a 
new set of hyperparameters via log-likelihood maximisation.

Before starting the actual procedure (step (2)), the 
code is implemented to perform cross-validation tests to 
determine which configuration of the GP is most suitable 

for the specific updating problem, according to the fol-
lowing procedure. First, non-exhaustive cross-validation 
tests are performed to choose whether to log transform the 
input variables (i.e., updating parameters), as this is often 
found to improve the GP regression quality. To this extent, 
validation loss is computed for two GPs, one fitted using 
non-transformed variables, and the other fitted using log-
transformed variables. Secondly, after choosing whether 
to transform the input variables or not, the GP is fitted four 
different times using the four kernel functions previously 
introduced. Once more, cross-validation loss is computed 
to establish which kernel is the fittest for modelling the 
objective function. Once the input-variables transforma-
tion is established and the GP kernel chosen, the algorithm 
is actually initialized.

Fig. 3   The upper visualiza-
tion shows the GP mean (sur-
face in red), the nine observa-
tions f

1∶9 used for training, 
the model minimum (i.e., the 
believed lowest function value 
according to the GP), and the 
next sampling point selected by 
the UCB acquisition function. 
The lower depicts the acquisi-
tion function surface UCB(x) 
and the next chosen sampling 
point, which corresponds to the 
acquisition function maximum
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3.2 � Benchmark algorithms: GPS, SA, and GA

Generalized pattern search is a relatively simple traditional 
optimisation algorithm, while Simulated Annealing, the 
Genetic Algorithm and BO are generally considered to be 
“computational intelligence” optimisation techniques. All 
four algorithms have in common that no use of derivatives 

is made, hence the function is not required to be differ-
entiable. Besides, despite the different approaches and 
backgrounds, Simulated annealing, GA and Bayesian 
sampling optimisation techniques share many elements: 
all algorithms are designed to carry out a global search of 
the minimum, avoiding local minima; they are appropriate 
for non-linear and non-smooth functions; finally, the algo-
rithms are especially suitable for black-box models, where 
establishing in advance a functional form that effectively 
aligns with the data is often impossible. The key differ-
ence between the BO approach and the other techniques is 
that the former requires a much smaller sampling volume 
to achieve comparable optimization performance, greatly 
enhancing the computational efficiency when expensive 
cost functions are involved. Nonetheless, a greater sam-
pling efficiency comes at the expense of a more sophisti-
cated algorithm, that requires computationally intensive 
operations at each iteration. One shared drawback of GA, 
simulated annealing and Bayesian optimisation techniques 
is that these algorithms tend to give results close to the 
global minimum, although not very accurate. On the other 
hand, GPS can achieve high accuracy of solution.

The selection of parameters proves to be a critical aspect 
across all techniques. However, parameter selection for 
GPS, GA, and SA, as found by the authors, presents greater 
challenges compared to BO. The optimization performance 
exhibits heightened sensitivity to factors such as initial 
temperature, cooling schedule, and acceptance probability 
function for SA, crossover and mutation operators for GA 
and mesh shape and size in the case of GPS. On the con-
trary, while BO also demands user-defined parameters as 
described in Sect. 2.2—most notably, the kernel function—
these do not pose significant difficulty and demonstrate 
robust generalization within the optimization framework of 
model updating cost functions. Furthermore, kernel hyper-
parameters are automatically optimized through maximiza-
tion of the marginal log-likelihood, as already mentioned.

Reference can be made to [59] for a first implementation 
of a GPS algorithm, to [60] who initially proposed the GA 
algorithm, and to [61] for a first application of the SA con-
cept to optimisation problems.

Given the diverse nature of the optimisation techniques 
employed, it is essential to exercise particular care in select-
ing each algorithm's implementation strategy to ensure a fair 
comparison, necessary to evaluate the performance of the 
Bayesian sampling optimisation approach in model updat-
ing applications. In particular, GPS, SA and GA are allowed 
to sample the objective function 1000 times, while BO is 
stopped at 500 function evaluations. This is necessary since 
the former techniques typically need a much greater sam-
pling volume to achieve sufficient levels of accuracy.

The specific technical details of each alternative are 
briefly described as follows. The GPS algorithm used in 

Fig. 4   Bayesian sampling optimisation algorithm flowchart
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the case studies adheres to the standard procedure firstly 
introduced by Hooke & Jeeves and is set according to the 
following details:

(1)	 Input parameters are linearly scaled to the interval 
[0, 100] , according to the optimisation bounds: this is 
needed since the employed mesh size is equal in all 
dimensions.

(2)	 The mesh size is multiplied by a factor of 2 at every 
successful poll, and it is divided by the same factor 
after any unsuccessful poll.

(3)	 The algorithm stops if the maximum allowed number 
of objective function evaluations is reached.

Simulated annealing is implemented in its most common 
formulation as proposed by Kirkpatrick et al. Specifically, 
it is set according to the following strategy:

(1)	 Input parameters are linearly scaled to the interval [0, 1]
,

(2)	 The initial temperature T0 is set at 50.
(3)	 The temperature gradually decreases at each iteration 

according to the cooling schedule T = T0∕k , where k 
is a parameter equal to the iteration number.

(4)	 Each new sampled point, if its objective is higher than 
the current one, is accepted according to the acceptance 
function 1

1+exp
(

Δ

max(T)

) , where Δ is the difference between 

the objective values (at the incumbent point and the 
newly sampled one).

Finally, the Genetic Algorithm implementation used is 
based on the following principles:

(1)	 Compliance with optimisation bounds is enforced by 
ensuring each individual is generated within the con-
straints at each generation though proper crossover and 
mutation operators.

(2)	 The initial population, necessary to initialize the algo-
rithm, consists of points randomly chosen within the 
space defined by the optimisation bounds of each 
parameter. As the population size should increase 
accordingly to the number of dimensions, the initial 
population size was set to 200.

(3)	 The choice of parents is made according to their fitness 
value. In particular, the chances of breeding are higher 
for higher fitness values.

(4)	 The crossover fraction is set to 0.8.
(5)	 The elite size is set at 5% of the population size.
(6)	 The mutation fraction varies dynamically, according to 

the genetic diversity of each generation.

3.3 � The objective function

A well-known objective function is employed, based on the 
difference between the estimated and the actual values of 
natural frequencies and on the Modal Assurance Criterion—
MAC [62] between target and computed modes. This can be 
defined as follows:

where �targ∕id

i
 and �calc

i
 are respectively the i-th target (or 

identified) natural angular frequency and the i-th computed 
natural angular frequency out of the N modes used for updat-
ing, and MAC

(
�calc
i

,�
targ∕id

i

)
 is the MAC value relative to 

the i-th computed mode shape �calc
i

 and the i-th target (or 
identified) mode shape�targ∕id

i
 . This objective function 

includes both natural frequencies and mode shapes, with 
equal weights.

3.4 � Performance metrics

The root mean square relative error (RMSRE) is consid-
ered as a global metric for the accuracy of the optimisation 
procedure, both in the input domain (i.e., for each updating 
parameter) and in the output domain (i.e., for the natural 
frequencies and mode shapes). In this latter case, this is 
computed as:

where frel,i is the relative error of the i-th natural frequency, 
MACi is the MAC value of the i-th mode shape and n is the 
number of modes considered for updating. In the former 
case, for the parameters estimated in the input space, the 
RMSRE is instead given by:

where in this case Xrel,i is the relative error between the i-th 
updating parameter and its target value, and n is the number 
of updating parameters considered. Obviously, this calcula-
tion was only possible for the numerical dataset, were the 
inputs of the numerically-generated results are user-defined 
and thus known and comparable.

Finally, the total computational time is reported as 
well, specifically as a way to compare BO to the other 
algorithms—GPS, SA, and GA. This allows to prove the 

(20)

P =

N∑
i=1

||||||
�
targ∕id

i
− �calc

i

�
targ∕id

i

||||||
+

N∑
i=1

(
1 − diag

(
MAC

(
�calc
i

,�
targ∕id

i

)))

(21)

RMSREoutput =

√√√√1

n
⋅

n∑
i=1

Δf 2
rel,i

+
1

n
⋅

n∑
i=1

(
1 −MACi

)2

(22)RMSREinput =

√√√√1

n
⋅

n∑
i=1

ΔX2
rel,i



	 Journal of Civil Structural Health Monitoring

123

time-saving advantage of using a very efficient optimisation 
technique such as Bayesian sampling optimisation.

4 � The case study: the Mirandola Bell Tower

The proposed approach has been validated on a well-known 
CH case study, the Mirandola bell tower, resorting to data 
collected from on-site surveys [63, 64]. Indeed, historical 
CH structures require very specific monitoring and assess-
ment strategies; a complete overview can be found in [65].

Both experimental data and numerically-simulated data 
have been employed. This latter case is intended for assess-
ing the algorithm capabilities in a more controlled fashion. 
The experimental validation, on the other hand, proves its 
feasibility for data collected from operational (output-only) 
Ambient Vibration (AV) tests.

The masonry-made bell tower of the Santa Maria Mag-
giore Cathedral in Mirandola (Emilia-Romagna, Italy) is 
pictured in Fig. 5.a. For this application, model updating is 
used as a means of structural damage assessment, as men-
tioned in the Introduction. The results from this procedure, 
carried out through the use of a Bayesian sampling optimi-
sation approach, will be compared to the damage analysis 
of the bell tower structure conducted in [63]. The data ana-
lysed here originate from the same dataset, which will be 
discussed later.

The target structure represents an important piece of 
historical and cultural heritage. Built during the late four-
teenth century, it underwent several structural modifications 

throughout the centuries, especially in the seventeenth cen-
tury when the height of the original tower was tripled [66]; 
the existing portions were reinforced as well to withstand the 
additional weights. The octagonal stone roofing was finally 
added in the eighteenth century. From a geometric perspec-
tive, the tower has a square plan (5.90 × 5.90 m) for a total 
height of 48 m with four levels of openings (Fig. 5b).

Historically, the area of interest was only considered to 
be at modest seismic risk. However, two events linked to the 
2012 Emilia Earthquake (specifically on the 20th and 29th 
of May) caused significant damage to the tower, as detailed 
in [64]. The damage pattern influenced the FE modelling 
as well, as will be discussed in the next subsections. More 
details from the visual inspection and in-situ surveys can be 
found in [64] and [63].

4.1 � Acquisition setup

The dynamic testing discussed here was performed by the 
laboratory of Strength of Materials (LabSCo) of the IUAV 
(Istituto Universitario di Venezia) in August 2012 [64], con-
sidering the post-earthquake situation before the installa-
tion of the provisional safety interventions. An Operational 
Modal Analysis (OMA) was conducted, relying on the struc-
tural response from ambient vibrations to identify the modal 
properties of the target structure [67].

Eight uniaxial piezoelectric accelerometers (PCB Piezo-
tronics type 393C) were deployed as portrayed in Fig. 5.d, 
using metal bases to attach them to the masonry walls [1]. 
All recorded signals had a length of ∼ 300 s and a sampling 

Fig. 5   Pictures of the Santa Maria Maggiore Cathedral (a), the bell tower located on its south-east corner (b), the discretisation in five substruc-
tures (c), and the sensor layout with the location and orientation of the recording channels (d). Adapted from [63]
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frequency fs = 192 Hz: this was then reduced to 48 Hz in 
post-processing, focusing on the first eight modes, to expe-
dite the output-only identification procedure. This was done 
by employing the Stochastic Subspace Identification (SSI) 
algorithm [68] on the detrended and filtered data. However, 
only the first six modes (reported in Table 1) were employed 
as done in [63] since the 7th and the 8th ones were deemed 
as less reliable.

4.2 � Crack pattern and finite element model

The FE model (Fig. 6) was organised in substructures (i.e. 
macro-areas), following the structural partition of the tower 
structure and reflecting the strong localisation of damage. 
This macro-zoning procedure reflects what is generally done 
for similar structures after seismic damage—see the simi-
lar case of the Fossano bell tower in [69]. The rationale is 
to encompass areas that are expected to show similar and 
homogeneous mechanical properties.

In this case, the tower base (subsection 1, highlighted 
in red in Fig. 5.c), i.e., the portion from ground level (0.00 
m) to + 9.50 m, suffered minimal to no damage, as well as 
the tower top (subsection 4) and the belfry (subsection 5). 
These are highlighted respectively in yellow, between + 30.5 
m and + 37.5 m, and green, from + 37.5 m to + 48.0 m. The 
most severe and large damage portions were found in sub-
section 2 (dark orange, + 9.50 m to + 21.0 m) and subsec-
tion 3 (light orange, + 21.0 m to + 30.5 m). This latter floor 
represents a structural peculiarity of this case study, as it 
includes very large window openings on all façades. The 
reason is that the portion corresponds to the first belfry, 

Table 1   Identified natural frequencies (OMA)

Mode n Mode description f n[Hz]

1 First bending mode along the East–West direction 0.68
2 First bending mode along the North–South direc-

tion
0.72

3 First torsional mode 1.41
4 Second bending mode along the East–West direc-

tion
2.29

5 Second bending along the North–South direction 2.70
6 Second torsional mode 3.68

Fig. 6   Finite Element Model of the Mirandola bell tower. a The whole structure b detail of the linear springs elements (c) the idealized connec-
tions with the nearby buildings, shown in plan-view. Adapted from [63]



	 Journal of Civil Structural Health Monitoring

123

built before the addition of the second one on top of it. In 
any case, this layout is quite different from the most com-
mon cases where the opening size decreases moving from 
the tower bottom. This affects the local and global dynamic 
response of the whole structure [70]. In fact, during the 
seismic events of interest, this locally more flexible portion 
underwent a twisting rotation, which caused deep diagonal 
cracks to arise right below this order of openings, extend-
ing down to the (less wide) openings of the underlying level 
on all four sides. Importantly, the second and third portions 
were also the ones covered by the eight metal tie rods (four 
per portion) installed as provisional safety interventions.

As for the previous case study, the model was realized 
in ANSYS Mechanical APDL. SHELL181 elements were 
applied for all façades in all macro-areas, as well as for the 
stone roof and the masonry vaults at the basement level, for 
a total of 1897 elements. The interactions with the Cathedral 
of Santa Maria Maggiore and the rectory were modelled by 
104 COMBIN14 linear springs, distributed along the whole 
contact surface in correspondence to the apse arches, the 
nave walls, and the rectory wall on the East, West, and North 
side (Fig. 6b). That is intended to simulate the in-plane stiff-
ness of the attached masonry walls, thus removing these 
external elements and replacing their reaction forces with 
springs’ elastic forces, acting as boundary conditions as also 
suggested in [63].

The complete FE model consisted of 2052 nodes.

4.3 � Model updating setup

The following eleven parameters were considered for updat-
ing (see Table 2):

–	 E1,E2,E3,E4 : the Young’s modulus of the damaged 
masonry in the four sub-structures (according to Fig. 6).

–	 �mas : the Poisson’s ratio of the masonry, assumed as con-
stant everywhere.

–	 k1, k2, k3, k4, k5, k6 : the linear stiffness of the six distrib-
uted springs (used to model the connections with the 
nearby structures, see Fig. 6).

These parameters are exactly the same ones considered 
in [63], thus enabling a direct comparability of the results. 
No sensors were available on the belfry roof, therefore, for 
lack of reliable data, the 5th macro-area was not consid-
ered in the FE updating.

Table 2 shows these input-parameters and the assumed 
optimisation bounds. Notice that the optimisation range of 
the link-element parameters spans through several orders 
of magnitude, thus generating an extremely wide opti-
misation space. This reflects the high uncertainty about 
the boundary conditions, which might significantly affect 
the dynamic response of the structure. The optimisa-
tion bounds of the elasticity moduli consider the values 
suggested by literature and Italian regulations for brick 
masonry, while allowing to capture the level of damage 
suffered by the structure.

The (arbitrarily chosen) target input parameters and the 
related system-output parameters (in terms of frequency 
only) used for the numerically simulated data setup are 
reported in Table 3. System-output parameters used for 
updating the experimental data setup are the identified 
natural frequencies shown in Table 1 (and the related mode 
shapes).

Table 2   Parameters selected for updating and associated optimisation 
bounds

Updating parameters Lower bound Upper bound

E1 (GPa) 0.375 6
E2 (GPa) 0.375 6
E3 (GPa) 0.375 6
E4 (GPa) 0.375 6
k1 (kN/m) 1.00 1.00E + 07
k2 (kN/m) 1.00 1.00E + 07
k3 (kN/m) 1.00 1.00E + 07
k4 (kN/m) 1.00 1.00E + 07
k5 (kN/m) 1.00 1.00E + 07
k6 (kN/m) 1.00 1.00E + 07
ν (–) 0.40 0.50

Table 3   Target natural frequencies (generated by the set of target 
parameters)

Updating parameter Target value Mode n Freq.TARG​ (Hz)

E1 (GPa) 0.5 1 0.72
E2 (GPa) 1.5 2 0.74
E3 (GPa) 1 3 1.96
E4 (GPa) 4.5 4 2.77
k1 (kN/m) 4.10E + 03 5 2.96
k2 (kN/m) 2.00 6 4.57
k3 (kN/m) 1.60E + 03
k4 (kN/m) 6.30E + 02
k5 (kN/m) 1.50E + 06
k6 (kN/m) 1.00E + 02
ν (–) 0.45
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5 � Results

The results for BO and each benchmark optimisation 
algorithm are firstly presented for the numerical dataset, 
drawing considerations about accuracy and computational 
time. These are followed by the results of the experimental 
datasets, which allow to assess BO performance in a real 
application. Furthermore, concerning BO, the use of several 
kernels is investigated, and the benefits of accessing param-
eters length scales when using ARD kernel functions in the 
framework of model updating are highlighted.

5.1 � Numerically‑simulated data results

For the numerical case, the initial seed size is set to 220 
points (20 times the number of parameters being updated). A 
logarithmic transformation is employed on the input param-
eters, as it was observed to augment the quality of the GP 
regression. The choice of the kernel function is driven by a 
cross-validation test, since some kernels may happen to be 
more suitable at modelling the underlying objective func-
tion specific to this updating problem, resulting in surrogate 
models with enhanced validity. The outcome of a tenfold 
cross-validation test of four different Gaussian Processes, 
fitted using the ARD exponential, the ARD Matérn 3/2, the 
ARD Matérn 5/2 and the ARD squared exponential kernels 
are shown in Table 4. Whilst all kernel functions are seen to 
return reliable regression models, the ARD Matérn 5/2 ker-
nel is found to be the most suitable, returning excellent vali-
dation results. Fitting the GP to the initial seed also allows 
retrieving information on system sensitivity through the 
optimized hyperparameters of the selected ARD kernel 
(Table 5).

As expected, the eleven length scales differ by several 
orders of magnitude due to the anisotropy of the problem. 
The parameters which mostly affect the system response 
are the elasticity moduli: such behaviour is foreseeable, as 
material elasticity is usually blamed for significantly impact 
modal properties. However, kernel hyperparameters sug-
gest that the elasticity modulus of the fourth sub-structure 
has instead low sensitivity: this is likely due to the scarcity 
of sensors at that level of the building, which actually dis-
qualifies from capturing the necessary vibration information. 
Therefore, reliable estimations of E4 should not be expected, 

neither in the simulated-data setup, nor in the experimental 
one. The problem appears to be scarcely sensitive to changes 
in the Poisson’s ratio as well: this makes perfect sense as 
damping has only marginal effect on modal properties. For 
what concerns the springs, these are generally found to have 
lesser effects on the modal response compared to the elastic-
ity moduli of the first three sub-structures. In particular, as 
hyperparameters suggest, k5 and k6 are found to have lower 
impact on the system modal response, while k1 , k3 and k4 
feature higher sensitivity.

The Bayesian sampling optimisation is carried out using 
the upper confidence bound (UCB) acquisition function, 
which was generally found to be the most effective, as it 
provided a good balance between exploitation and explora-
tion. In Fig. 7 (at the top) it is clear how the first selected 
sampling point already represents a massive improvement 
over the best cost function value, suggesting that the Gauss-
ian Process is able to model the objective function impres-
sively well. As the GP is updated with newly sampled points, 
UCB steadily converges towards a minimum, gradually 
improving the accuracy of the optimisation solution. For 
additional clarity, the best-computed objective against the 
iteration number is shown at the bottom. The best-obtained 
objective is 0.0742, which is fairly close to zero, the (known) 
global optimum in the output space. Also, it is noticeable 
how BO struggles at further improving the result after 350 
iterations in this case.

The results relative to the output, that are the raw (best) 
cost function value and the estimated modal data, are 
shown in Table 6 for each optimisation technique. For all 
modes, the updated value and the target value are reported, 
as well as the relative error and the MAC value. Also, the 
RMSRE and the best achieved objective function value 
are reported for each algorithm. These results highlight 
how GPS, SA and GA fail at minimising the cost func-
tion under the proposed conditions: all algorithms, and 
especially SA, return objective values that are far from 

Table 4   The root mean square error (RMSE) is reported for each 
kernel, as the average of the validation losses obtained with tenfold 
cross-validation tests

ARD Exp ARD Matérn 
3/2

ARD Matérn 
5/2

ARD squared 
Exp

RMSE (–) 0.104 0.090 0.066 0.101

Table 5   Parameters' length-
scales (hyperparameters) 
obtained by maximisation of the 
marginal log-likelihood

Hyperparameter 
(–)

�(E
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zero. Bayesian optimisation, on the contrary, at only 500 
evaluations, achieves quite impressive results. The error 
about the frequencies is kept to a minimum (here, only 

the second mode is showing a higher divergence), and so 
is the error about the mode shapes. The relative errors 
are computed, for each n-th mode, as (fUPD

n
− f TAR

n
)∕f TAR

n
 , 

Fig. 7   Top: Bayesian optimisa-
tion progress over iterations 
for the numerical dataset. The 
objective value at the randomly 
sampled seed points is displayed 
in red, while the objective 
at points selected by UCB is 
displayed in blue. Bottom: best 
objective function value over 
iterations

Table 6   Optimisation results in the output space, obtained with GPS, Simulated annealing, Genetic Algorithm and Bayesian optimisation

Generalized pattern search
1000 fun. eval

Simulated annealing
1000 fun. eval

Mode n Freq.TARG​

(Hz)
Freq.UPD

(Hz)
Freq. err
(%)

MAC
(–)

Freq.UPD

(Hz)
Freq. err
(%)

MAC
(–)

1 0.72 0.74 3.17 0.86 0.70 -3.06 0.25
2 0.74 0.90 21.26 0.84 1.01 35.63 0.20
3 1.96 2.09 6.36 0.98 1.89 -3.54 0.99
4 2.77 2.47 -10.58 0.93 2.52 -8.75 0.02
5 2.96 2.96 0.26 0.35 3.01 1.76 0.41
6 4.57 4.24 -7.19 0.70 3.84 -15.86 0.23
RMSRE (%) 22.89 52.25
Best cost function value 0.9472 2.4817

Genetic Algorithm
1000 fun. eval

Bayesian optimisation
500 fun. eval

Mode n Freq.TARG​

(Hz)
Freq.UPD

(Hz)
Freq. err
(%)

MAC
(–)

Freq.UPD

(Hz)
Freq. err
(%)

MAC
(–)

1 0.72 0.56 -22.35 0.86 0.73 0.87 0.99
2 0.74 0.75 0.23 0.82 0.78 4.28 0.99
3 1.96 1.90 -2.99 0.98 1.96 -0.41 1.00
4 2.77 2.24 -18.92 0.99 2.82 1.89 0.99
5 2.96 2.90 -2.03 0.27 2.98 0.68 0.98
6 4.57 3.92 -14.15 0.80 4.62 1.26 0.99
RMSRE (%) 29.69 1.63
Best cost function value 0.9436 0.0742
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where fUPD
n

 is the updated value and f TAR
n

 is the corre-
sponding target.

The resulting updated parameters (that generate the 
updated modal features just discussed), are displayed 
in Table 7. The updated value, the target value and the 
RMSRE value (about the four elasticity moduli) are 
reported. Up to 1000 observations are used for the three 
former algorithms, while BO employs 500 observations 
only, leading to comparable total optimization times. 
Among all parameters, the most interesting are the elas-
ticity moduli of the four sub-structures as these param-
eters respond to the main goal of the updating problem, 
that is assessing the level of damage to the structure. 
The stiffnesses of the six springs are of secondary inter-
est since these are introduced in the updating procedure 
only due to unawareness of the degree of support pro-
vided by the adjacent architectonical elements as well as 
of their impact on the dynamic response of the building. 
Moreover, given their extremely wide optimisation range, 
identifying the right order of magnitude can already be 
considered a satisfactory result. In light of the above, GPS, 
SA and GA show quite poor results, failing to attain a 
good estimation of the first four parameters (and provid-
ing even worse estimations for the rest). On the contrary, 
Bayesian optimisation returns acceptable errors over the 
estimated values, showing good agreement with the first 
four in particular. Although a ~ 25% error in the elasticity 
moduli may appear significant, these results are in fact 
remarkable given the intricate nature of the optimization 
problem under consideration. Indeed, this level of preci-
sion allows for informed assessments regarding which por-
tions of the structure likely experienced the most damage 
and which sections remain structurally sound. The scale of 
the springs is in some cases recognized as well, except for 

k2 and k6 (and to a lower extent k1 andk4 ), suggesting once 
more that the algorithm could have run into a local mini-
mum. Potentially, had Bayesian optimisation been able to 
properly sort out the right scale of k2 andk6 , it would have 
then returned even better accuracy about the parameters 
of interest (i.e.,E1,E2 , E3 andE4).

In the damage assessment study of 2017, the updating 
procedure was carried out in batches: at first, the springs 
were calibrated while holding the elasticity moduli constant, 
afterwards, E1 , E2 , E3 and E4 were optimised using the link-
element stiffness values previously estimated. As traditional 
optimisation techniques were employed, this approach aimed 
at facilitating the optimisation procedure by lowering the 
dimensionality of the problem. Given the outcome of this 
numerical test, such an approach can be avoided when using 
BO, as this technique is powerful enough to allow consider-
ing all parameters at once, cutting off computational time 
and enhancing chances of ending up close enough to the 
global minimum.

The optimisation time employed by each algorithm 
is reported in Table 8. As the number of observations is 
relatively high, the secondary optimisation problems (i.e., 
the maximisation of the marginal log-likelihood and the 

Table 7   Optimisation results in 
the input space, obtained with 
GPS, SA, GA and BO

Parameters Target value Updating values

GPS
1000 obs

SA
1000 obs

GA
1000 obs

BO
500 obs

E1 (GPa) 0.50 0.83 0.38 0.37 0.63
E2 (GPa) 1.50 0.83 0.58 0.85 1.53
E3 (GPa) 1.00 2.63 5.54 2.01 0.82
E4 (GPa) 4.50 1.50 5.79 3.76 3.97
k1 (kN/m) 4.10E + 03 4.00E + 05 1.00E + 07 9.21E + 06 1.89E + 01
k2 (kN/m) 2.00 4.00E + 05 8.45E + 05 1.00 5.62E + 03
k3 (kN/m) 1.60E + 03 1.00 2.07E + 03 1.00 1.48E + 03
k4 (kN/m) 6.30E + 02 1.00 9.98E + 06 1.00 1.01E + 01
k5 (kN/m) 1.50E + 06 1.20E + 06 9.98E + 06 5.53E + 06 1.75E + 06
k6 (kN/m) 1.00E + 02 1.00E + 07 3.41E + 05 1.00 8.18E + 04
ν (–) 0.45 0.421 0.477 0.430 0.465
RMSRE (%) 96.31 229.62 72.67 16.79

Table 8   The table reports the elapsed optimisation time for each tech-
nique. The sampling volume comprises 500 observations for BO and 
1000 observations for GPS, SA, and GA. Minor variations in com-
putational time required to calculate the objective across algorithms 
stem from differences in computer-related computational perfor-
mance among different runs

GPS SA GA BO

Time for modelling and point selection (s) – – – 2672
Time for computation of the objective (s) 6097 6116 6083 3036
Total optimisation time (s) 6118 6213 6237 5708
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maximisation of the acquisition function) are relatively bur-
densome tasks, significantly extending the total optimisation 
time (Fig. 8). As computing a prediction has a computa-
tional complexity of O

(
N3

)
 , the modelling and point selec-

tion time gradually increases as the number of observations 
grows. These two tasks are crucial to obtain high sampling 
efficiency, which in turn allows for keeping the total num-
ber of observations to a minimum. In fact, with 500 itera-
tions only (actually, in this case, about 350 would have been 
sufficient to obtain the same final results), BO still enables 
saving some computational time when compared to other 
techniques, even if negatively affected by increasingly bur-
densome secondary optimization problems, while retaining 
far superior accuracy.

5.2 � Experimental data results

Differently from numerically simulated data, the experimen-
tal case study is affected by both the implicit limitations of 
the FE model and the measurement noise of the acquisitions. 
Thus, the minimum of the cost function is never found at 
zero when using real data, since significant misfit between 
experimental and computed modal properties will endure.

The same kernel and acquisition function of the numeri-
cal case are used, while the seed size is set to 250 points. 
For a given number of total observations (in this case 500), 
using larger seeds leads to shorter computational time (as 
the actual number of algorithm iterations is reduced, mean-
ing less time is spent on secondary optimisation problems), 
potentially improved surrogate quality, at the expense of 
reduced exploitation of the algorithm’s “intelligent” sam-
pling capabilities. In a way, we rely more on the surrogate 

represented by the GP and less on the point-selection process 
operated by the acquisition function.

Table 9 provides the length-scales obtained when fitting 
the GP to the new 250-point seed. As different observations 
are here employed, hyperparameters (only) marginally differ 
from the ones obtained for the numerically simulated data-
set. It is noticeable a substantial correlation between the two. 
As such, previous considerations about length scales apply 
in this case as well.

The results obtained through the optimisation process 
(shown in Fig. 9) reveal how in this case the optimiser can-
not be expected to converge at zero, since FE modelling 
deficiencies coupled with identified modal data inaccura-
cies lead to the ineluctable misfit between computed and 
measured modal response. For additional clarity, the best-
computed objective against the iteration number is shown 
as well. The value associated with the function minimum 
is 0.8343.

The results relative to the output, that are the raw (best) 
cost function value and the estimated modal data, are shown 
in Table 10, along with the modal parameters attained in the 
paper of reference. Once again, for each considered mode, 
the updated and the identified values are reported, as well as 
the relative error and the MAC value. Looking at the updated 
modal parameters, Bayesian optimisation gives results that 
are consistent with what was obtained in the 2017 study. 
Generally, natural frequencies obtained through the Bayes-
ian sampling optimisation show a good correlation with the 
identified ones. The modes that exhibit the highest amount 
of error are the third and the fifth: this was already the case 
in the former study. The MAC values of the first three modes 
suggest a good correlation with the identified mode shapes 
of the tower, while the last three denote some degree of 
incoherence (especially for the fifth and the sixth). This issue 
is in common with the study made in 2017, indicating some 
problems probably due to the quality of the measurements 
at the highest modes or the inadequacy of the FE model to 
capture the dynamic behaviour of the bell tower at higher 

Fig. 8   Total optimisation time of BO, as the sum of the objective 
evaluation time (the cumulative time employed for evaluating the 
objective function) and the modelling and point selection time (the 
cumulative time employed for maximising the marginal log-likeli-
hood and the acquisition function)

Table 9   Parameters' length 
scales obtained by maximising 
the marginal log-likelihood for 
the experimental dataset. GP 
fitted on 250 seed points

Parameter Length scale (–)

E1 2.69
E2 1.96
E3 16.19
E4 1.74E + 05
k1 76.69
k2 1.44E + 03
k3 40.14
k4 33.44
k5 3.73E + 05
k6 1.26E + 06
ν 23.31
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frequencies. Indeed, due to these reasons, fitting the system 
response with modal features beyond the third mode is often 
unpractical in many FEMU applications [71].

The results relative to the input space (i.e., the estimated 
parameters) are reported in Table 11, as the estimated value 
obtained through BO and the estimations of the former dam-
age assessment study. Focusing on the elasticity moduli of 
the four sub-structures, results stemming from the Bayesian 
sampling optimisation approach are mostly compliant with 
the former study, except for the elasticity modulus of the 
third sub-structure.

These findings can be used to assess the damage con-
dition of the bell tower. The low values obtained for the 
two lowest levels suggest that the bell tower has probably 
endured high levels of damage in these areas, which mostly 
affect the lower modes of the building. Concerning these 
two subparts, a slightly higher estimate of the second elas-
ticity modulus is the only marginal difference between the 

Fig. 9   Top: Bayesian optimisa-
tion progress over iterations for 
the experimental dataset. Once 
again, the objective value at 
the randomly sampled seed 
points is displayed in red, while 
the objective value at points 
selected by UCB is displayed 
in blue. Bottom: best objective 
function value over iterations

Table 10   Optimisation results 
in the output space, obtained 
with Bayesian optimisation. 
Results from 2017 are reported 
for reference. Also, the RMSRE 
is computed for both BO and 
the former paper

Bayesian optimisation (UCB) Original paper –Ref. (2017)

Mode n Freq.ID
(Hz)

Freq.UPD

(Hz)
Freq. error
(%)

MAC
(–)

Freq.UPD

(Hz)
Freq. error
(%)

MAC
(–)

1 0.68 0.67 1.75 0.98 0.68 0.20 0.98
2 0.72 0.71 1.17 0.96 0.69 3.80 0.98
3 1.41 1.64 16.22 0.87 1.73 18.30 0.91
4 2.29 2.28 0.46 0.78 2.33 1.60 0.68
5 2.70 2.43 9.97 0.48 2.42 11.80 0.66
6 3.68 3.79 2.99 0.59 3.80 3.30 0.35
RMSRE (%) 21.29 24.15

Table 11   Optimisation results in the input space, obtained with 
Bayesian optimisation

Bayesian optimisation Original paper [63]
Parameter Estimated value Estimated value

E1 (GPa) 0.726 0.508
E2 (GPa) 0.792 0.806
E3 (GPa) 1.908 0.850
E4 (GPa) 3.098 4.500
k1 (kN/m) 5.34 4.13E + 03
k2 (kN/m) 4.60E + 01 0.51
k3 (kN/m) 1.11E + 01 1.60E + 03
k4 (kN/m) 5.81 6.34E + 02
k5 (kN/m) 6.25E + 04 1.50E + 06
k6 (kN/m) 8.60 1.06E + 02
ν (–) 0.46 N.A
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two results. On the contrary, a substantial difference can be 
seen for the elasticity of the walls at the third level of the 
structure: the former study highlighted a much higher level 
of damage. Judging by the value estimated through BO, this 
specific part of the tower could have been either less dam-
aged by the seismic event, or originally characterized by 
walls built with stiffer and more qualitative material. This 
hypothesis is made more plausible by considering that the 
building, which construction started in the late fourteenth 
century, was severally altered in the seventeenth century, 
when the height of the bell tower was tripled and the origi-
nal structure reinforced [63]. Finally, the walls of the fourth 
level were found to be significantly stiffer than the rest of the 
structure. However, estimates of parameters concerning this 
level of the structure should not be considered as reliable for 
the reasons stated before (scarcity of sensors).

Regarding the springs elements which model the degree 
of constrain enforced by the adjacent structures, the results 
of the BO approach agree with the estimations of the for-
mer analysis, particularly for what concerns the value of k5 , 
which stands out in both cases with respect to the other link-
element parameters by a factor of 103 . The greater stiffness 
of the fifth spring element suggests that the architectonical 
element having the greatest impact on the dynamic response 
of the bell tower is the easternmost apse arch. All the other 
elements (particularly the ones modelled by k2 , k4 and k6 , 
hence the nave walls and the rectory wall) seem to provide 
little contrast to the motion of the bell tower when consider-
ing small-amplitude environmental vibrations.

6 � Conclusions

When expensive FE models are involved, the optimiza-
tion algorithm represents one of the most critical aspects 
of FEMU applications that make use of iterative methods. 
The optimisation technique is a key element of the updat-
ing procedure, as it should feature good sampling efficiency, 
global search attitudes and adequate accuracy to cope with 
non-convex and complex cost functions.

This research presented and validated a Bayesian sam-
pling optimisation (BO) approach for such a task, with 
an application to a real case study—the Mirandola bell 
tower—that represents an interesting example of post-
seismic assessment of a historical building of cultural and 
architectural relevance. Overall, the proposed procedure 
proved itself to be well-suited for this challenging task. 
Especially, BO outperformed the other well-established 
global optimisation techniques selected for the benchmark 
(namely Generalized Pattern Search, Simulated anneal-
ing and Genetic Algorithm), featuring far superior sam-
pling efficiency, greater accuracy, and better capabilities 

of finding the global function minimum, particularly as 
the dimensionality of the problem increases. Results were 
achieved with half of the objective function evaluations 
allowed for GPS, SA, and GA. This, practically, translates 
into shorter computational times and costs.

One major drawback of SA and GA is that both tech-
niques rely on large sampling volumes. Furthermore, these 
algorithms tend to provide results denoted by poor accu-
racy. The GPS algorithm, on the contrary, may exhibit 
scarce global search aptitudes, as it was either found con-
verging too quickly or failing at finding the global function 
optimum. The proposed BO algorithm is not affected by 
any of these drawbacks.

Regarding the implementation of the described tech-
nique, a logarithmic transformation of the input variables 
was found to improve the quality of the Gaussian Process 
regression, albeit marginally. Furthermore, this research 
revealed that all four investigated kernels can be success-
fully used, although the ARD Matérn 5/2 kernel provided 
the best results in terms of validation of the surrogate 
model for this specific case-study. When using automatic 
relevance determination (ARD) kernels, it is possible to 
retrieve hyperparameters (i.e., length scales) of the GP, 
gathering useful information about the problem sensitivity 
to each parameter. Additionally, ARD kernels automati-
cally discard irrelevant dimensions from the optimization 
procedure, making this approach well-suited for highly 
anisotropic problems. This sort of “built-in” sensitivity 
analysis is particularly advantageous in structural model 
updating applications, where information about the rel-
evance of parameters (often scarcely known in advance) 
can be considerably useful for a better understanding of 
the structural behaviour.
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