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Learning to Prevent Grasp Failure with Soft Hands: From
Online Prediction to Dual-Arm Grasp Recovery

Giuseppe Averta,* Federica Barontini, Irene Valdambrini, Paolo Cheli, Davide Bacciu,
and Matteo Bianchi

1. Introduction

In recent years, the introduction of soft ele-
ments in robotic hands demonstrated to be
an asset to easily provide capabilities never
seen with rigid components.[1,2] The intel-
ligence, directly embedded into the
mechanics, enables to fold the fingers
around the object in a natural fashion,
and to gently adapt the shape of the hand
when interacting with the environment.
This characteristic comes with the addi-
tional benefit that potential uncertainties
in local relative placement between the
end-effector and the object are compen-
sated by the compliance of the hand,
thus relaxing constraints in robot
planning.[3–6]

However, this increased dexterity is also
responsible for a reduced amount of infor-
mation that the regulator may feedback to
close a control loop. Indeed, because of the
difficulties in defining accurate models of
hands,[7] of the hand–object interaction
when softness is involved,[8] and to the

intrinsic uncertainties that elastic components produce in the
measurements,[9] it is in general not straightforward to use
sensing techniques originally developed for rigid end effectors
(e.g., rigid force sensors at the fingertips, encoder[10]), and to
implement model-based feedback solutions that can react to
unexpected situations.[11] Indeed, although the increased
performances in terms of grasp success that characterize
the usage of soft grippers, objects picking and grasping may still
fail in many cases. In those events, it is important to have a
system able to predict, within a reasonable time horizon, when
a grasped object is going to slide w.r.t. the hand, and would prob-
ably fall, and eventually trigger a suitable corrective action
(Figure 1).

To solve this problem, one of the most common approaches
relies on the direct measure of contact forces, usually relying on
force/torque sensors at the joints or at the fingertip level.[12–16]

However, these approaches are typically hardly feasible in
practice, given the large cost of the hardware and the complexity
of the sensing setup—which introduces significant computa-
tional effort—and are not suitable in general for continuum soft
hands, where the shape and the mechanical response of the
fingertip may be significantly different than rigid or articulated
soft hands.
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Soft hands allow to simplify the grasp planning to achieve a successful grasp,
thanks to their intrinsic adaptability. At the same time, their usage poses new
challenges, related to the adoption of classical sensing techniques originally
developed for rigid end defectors, which provide fundamental information,
such as to detect object slippage. Under this regard, model-based approaches
for the processing of the gathered information are hard to use, due to the
difficulties in modeling hand–object interaction when softness is involved. To
overcome these limitations, in this article, we proposed to combine distributed
tactile sensing and machine learning (recurrent neural network) to detect
sliding conditions for a soft robotic hand mounted on a robotic manipulator,
targeting the prediction of the grasp failure event and the direction of sliding.
The outcomes of these predictions allow for an online triggering of a com-
pensatory action performed with a second robotic arm–hand system, to prevent
the failure. Despite the fact that the network is trained only with spherical and
cylindrical objects, we demonstrate high generalization capabilities of our
framework, achieving a correct prediction of the failure direction in 75% of
cases, and a 85% of successful regrasps, for a selection of 12 objects
of common use.
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As an alternative to force sensing, the community is recently
exploring the usage of other sensory sources, such as audio
signals,[17] inertial sensing,[18] video streams,[19] and tactile
sensors,[20,21] and infer contact forces through algorithms.
However, little has been done so far to exploit such sensory infor-
mation to predict when a grasp is going to fail, and to trigger
reactive recovery primitives.

Recently, we proposed to exploit inertial sensing (accelerations
and angular velocities) to feed a deep neural network which was
able to accurately classify offline if the stream of data were
associated to a grasp failure, and even predict online its
occurrence.[22] More specifically, in the study by Arapi
et al.,[22] we demonstrated that inertial measurement units
(IMUs)—placed at the fingers level—are capable to record the
vibrations caused by the sliding of grasped objects, and a deep
architecture, trained to detect the occurrence of these conditions,
can be used to predict when a grasp is going to fail.

In this article, we build upon our preliminary work and further
extend our deep learning framework for grasp failure prediction.
More specifically, however, in previous experiments, failures
were caused by a rope which mechanically constrained the maxi-
mum distance between the grasped object and the table, result-
ing in an abrupt and nonecological failure condition, in this
work, we completely redesigned the experimental part, generat-
ing failures as a consequence of a variable weight added to the

object. Furthermore, a robotic arm was used to execute the reach-
and-grasp task, in both success and failure cases, thus removing
potential artifacts introduced by the manual handling of the
robotic hand as done in the study by Arapi et al.[22] Another sig-
nificant contribution of this work with respect to the study by
Arapi et al.[22] is that we now target not only the prediction of
the failure event, but also the identification of the specific direc-
tion of slippage. This will enable the triggering of reactive regrasp
primitives carried out by a second manipulator that can exploit
the information of the direction of slippage to firmly secure
the grasp.

In this work, we collected a grand total of 1800 independent
trials. Of these, 56% was used to train the neural architecture,
24% for its validation and the remaining 20% for testing.
Extensive research was carried out to identify the optimal recur-
rent neural architecture to use, aiming at maximizing the predic-
tion accuracy over a dataset of testing trials, whereas minimizing
the footprint of the network. With respect to the study by Arapi
et al.,[22] where a convolutional neural network (CNN) was com-
bined with a long short-termmemory (two layers of 128 neurons)
to perform the prediction, we removed the CNN for feature
extraction and implemented a recurrent neural network (RNN)
architecture based on gated recurrent units (GRUs)[23] (one layer
of 128 neurons). Finally, we also developed a completely new
online feedback system, which takes as input the inference of
the proposed RNN (in terms of prediction of the sliding event
as well as its direction, i.e., top and lateral) and selects a reactive
regrasping primitive, performed by a second robotic arm–hand
system (see Figure 2), that ultimately manages to firmly secure
the grasp. Despite the fact that the network was trained only with
spherical and cylindrical objects, we demonstrate high generali-
zation capabilities of our framework, achieving a correct predic-
tion of the failure direction in 75% of cases (�2 s in advance), and
a 85% of successful regrasps, for a selection of 12 objects of
common use.

2. Experimental Section

As introduced in the previous section, the goal of this work is to
develop a closed-loop framework able to predict online if an
object, grasped by a soft robotic hand, is sliding (and along which
direction) and will likely drop. Such information is used to feed a
reactive controller that triggers a regrasping primitive which, in
turn, firmly stabilizes the grasp. As a test bench, we used two
Franka Emika Panda manipulators[24], both endowed with two
Pisa/IIT soft hands[25] as end effectors. To collect data for
RNN training, we used a 3D-printed object, composed by a inter-
changeable handle and a support where one or more masses
were placed to modify the weight of the object. We considered
two different shapes of handles, a sphere and a cylinder, which
forced the shape of the hand in two different configurations.
These were presented to the robot (i.e., one robotic arm and hand
system) with two roughness level, one smooth and one covered
with sandpaper (400 Grit). The handle was grasped following two
main approaches: top grasp, i.e., with the palm parallel to the
horizontal plane, and lateral grasp, i.e., with the palm parallel
to a vertical plane. For each of these grasp approaches, we further
considered two potential failures types: central slippage, i.e.,

Figure 1. A Franka Emika Panda robotic arm integrated with a soft hand
equipped with IMU sensors is used to reach and grasp a generic object.
A sliding event is detected by processing the IMU information with a RNN,
triggering a reactive regrasping primitive with a second arm–hand system,
to firmly hold the object.
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when the object slips along the long fingers, and lateral slippage,
i.e., when failure is caused by a relative motion perpendicular to
the long fingers (examples are shown in Figure 3a,b). Of note, to
avoid that the network could identify failures only along the direc-
tion of the gravity, we included slippage data where the object
was pulled off the soft hand along a direction perpendicular
to the gravity itself, by a second robotic arm–hand system
(i.e., Franka Emika Panda equipped with a soft hand) (see
e.g., Figure 3a right, b left, 4b).

The position and orientation of hand and object during experi-
ments were continuously tracked through a 3D motion tracking
system (Optitrack Flex 13, NaturalPoint Inc., Corvallis, Oregon,
USA, refresh rate 120Hz). The robotic hand that performed the
reach to grasp task was endowed with a soft glove, on which we
mounted 17 IMUs, one for each phalanx, fastened on the back of
the hand as in the study by Arapi et al.[22] Four IMUs were
attached to the thumb, and three to each long finger. One addi-
tional sensor was placed on the hand dorsum, close to the wrist,
for reference (see Figure 3c). Considering all the combinations
discussed earlier, we performed a grand total of 1800 indepen-
dent acquisitions, of which one-third was composed of successful
grasps, one-third of central slippage, and one-third of lateral
slippage. For each of these classes, we randomized the shape
of the handle, the roughness level and the type of grasping
approach (top versus lateral), making sure that the different
parameters were represented in a balanced manner. A random
weight, ranging between 200 and 700 g, was added to the object.
For each trial, we recorded synchronously the stream of IMUs
readings, the position of optical markers attached to hand and
object, the encoder of the hand (which measures the degree
of closure) and the robot joint positions, all with a refresh rate
of 70 Hz.

For each trial, then, we segmented the portion of data
we intended to use as input for the neural architecture.
More specifically, we identified as initial frame of the sequence
the instant in which the arm start lifting the object. The final

frame, instead, is identified as the one in which the distance
between hand and object increases by 5mm w.r.t. the previous
values (i.e., the object is dropped). Finally, zero-padding was
added at the beginning of each sample, to homogenize the trials
length.

Once the dataset was built, to teach the network to recognize
the event in advance, we removed from the dataset the final block
of the signal, corresponding to a time slot immediately before the
object drop. This has the twofold purpose of 1) removing high
peaks in the signal stream caused by the drop of the object
and 2) learning to recognize small oscillations that are character-
istics of failure events in the first frames of sliding, rather than
larger oscillations evident in the final portion of the signal
(see Figure 5). We tested three different levels of anticipation,
corresponding to 1, 2, and 3 s before the actual drop, shown
in Figure 5 with a blue, green, and red dashed lines, respectively.
Hereinafter, we will refer to the parameter quantifying this antic-
ipation as Δ.

Data were then randomized and splitted in three groups: 20%
was devoted to testing and the remaining was further divided in
30% for validation and 70% for training.

The neural architecture we selected is based on gated recur-
rent units (GRU),[23] which are neurons with a feedback channel,
which enables to store, and learn from, the history of a time
series. Training was carried out using ADAM optimizer and
Cross Entropy as loss function. Early stopping and dropout were
also used to prevent overfitting. We tested different combination
of hyperparameters, resulting in three different architectures
that demonstrated the highest validation accuracy and the mini-
mum footprint of the network (to minimize inference time), one
for each Δ value considered. This is motivated by the fact that the
larger is the model the larger is the time to perform inference.
Among these, we selected for the implementation the network
trained with Δ¼ 2 s, because this provided a time horizon suffi-
ciently large to eventually plan a recovery action, while keeping
high accuracy values over validation data.

Figure 2. General scheme of the proposed closed loop framework. A bimanual robotic system, composed by two Franka Emika Panda Robots, endowed
with two Pisa/IIT soft hands, is used as test bench. IMUs are fastened on the back of the fingers of the hand used to reach and grasp the object. A RNN
architecture is used to continuously detect, on-line and with an inference rate of 5 Hz, the occurrence of a sliding event, and the direction of the relative
motion. This information is then fed back to the controller to trigger a reactive regrasping primitive, which depends on the output of the RNN and on the
current status of the first manipulator.
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To develop an online implementation of reactive primitives
triggered by the output of our grasp failure predictor, we built
a first-in-first-out (FIFO) pile structure with a fixed size equal
to the one used at training time, and containing fresh data com-
ing from inertial sensors. During the execution of the online
framework, the pile will always contain the last N readings com-
ing from IMUs, where N is the number of time frames of acquis-
itions used during training (after prepadding). At startup, the pile
is initialized as a zero matrix. Because with the architecture, we
selected for implementation (Δ¼ 2 s) we observed an average
inference time of �0.15 s, we implemented two ROS nodes,

the first, running at 70 Hz, where data were read from the
IMU glove and collected into a dynamic array, and a second
one, running at 5 Hz, where the block of data collected by the
first node was inserted in the FIFO pile, removing the exceeding
samples from the top of the pile (i.e., the oldest samples).
Data contained in the pile were then provided as input to the
RNN. When the predicted value is constant for at least five
consecutive inference rounds, and the classified entry is a lateral
or a central slippage, then this signal is used to trigger the reac-
tive behavior of the secondmanipulator. Note that five represents
a trade-off between promptness of response for the controller
and number of false positives and was manually and heuristically
tuned.

To test our methods, we implemented two parametric reactive
primitives for the secondary robot, one appropriate for the central
slippage and one for the lateral slippage (i.e., the two failure clas-
ses considered in this work). More specifically, we programmed
the first primitive (i.e., for central slippage) as a linear interpola-
tion between the initial robot configuration and the Cartesian
position of the first end effector. The orientation of the second
hand is imposed to be with the palm upward (see Figure 6a).
The estimation of Cartesian forces provided by the second
manipulator is continuously read and fed back to the controller,
in such a way that when the module of the readings overcome a
certain threshold (2 N) we assume that the robot is in contact
with the object and we stop the execution of the primitive.
In case of lateral slippage, the second robot is programmed to
reach via a linear interpolation the position of the first end effec-
tor. The orientation, instead, is rotated along the direction of the
long fingers in such a way that the angle between the horizontal
plane and the plane of the palm is 45� (see Figure 6b). Also in this
case, we command as reference the position of the first end effec-
tor, and exploit the estimation of contact forces to identify the
contact.

We tested our online framework with two additional experi-
ments. First, we replicated the failures with the same setup used
for data collection. Twenty trials were performed for each of the
three classes, considering randomly one of the handles of
Figure 3. We then considered a selection of 12 objects of com-
mon use, of which ten are extracted from the Yale-CMU-Berkeley
(YCB) dataset[27] and two are l-shaped objects with smooth and
rough surfaces (see Figure 7). This selection was made with the
purpose of forcing different types of power grasps, such as power
circular, power prismatic, palm circular, and palm prismatic (for
terminology, we refer to the study by Arapi et al.[28]). We made
sure that the objects’ weight was in the range between 200 and
700 g, by adding external weight when necessary. For each of
these objects, we used the grasping strategy afforded by the
object. Indeed, as hypothesized in the study by Gibson,[29] the
geometry of an object suggests one (or more) preferable grasping
approaches, which we attempted to respect. For this reasons, tall
objects, such as standing bottles, were grasped using a lateral
grasp, whereas short ones were grasped using a top grasp.
Of note, the bottle was presented in both the standing and
lying down configuration. We repeated the grasp of each
object ten times, forcing its ecological failure by regulating the
strength of the hand closure,[25] achieving a grand total of
130 samples.

Figure 3. Pictures of the experimental framework used for data collection.
Two different handles (light gray in the figures) were used: a sphere (as in
the right of panels A and B) and a cylinder (left of panel A and B). Handles
were used with and without a sandpaper coverage to modify the rough-
ness. Panel A shows the two hand configurations that we implemented to
replicate central slippage. Panel B shows the two hand configurations for
lateral slippage. In both panels, also the gravity vector is reported, to show
that not all failures occur along the gravity direction. The object was
endowed with two supports for the markers of the 3D motion tracking
system (one on the right and one on the left) designed with the shape
of a star to always ensure visibility of at least four markers as in the study
by Verta et al.[26] The variable weight (in the range 200–700 g) was attached
to the handle (dark gray in the figures). Panel C reports a picture of the
IMU glove we mounted on the soft hand to continuously collect inertial
measurements from each hand phalanx.
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3. Results

As already mentioned in the previous section, we tested our
framework in two different ways. First, we validated the network

by assessing the prediction accuracy over a pool of test data not
used during training and validation, consisting of 360 indepen-
dent samples of three classes: successful grasp, central slippage,
and lateral slippage. Then, we implemented our network in an

Figure 4. Two examples of failures events executed during data collection. a) Lateral slippage with a spherical smooth handle. b) Lateral slippage with a
rough cylindrical handle, caused by the second robot.

Figure 5. Stream of raw accelerometers (top row) and gyroscopes (bottom row) during a) a failed grasp and b) a successful grasp. Colored dashed lines
identify the initial frame of the block of signal that is removed from data before training, corresponding to 1 s (blue), 2 s (green), and 3 s (red). We refer to
this quantity as Δ.
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on-line integrated framework of failure prediction and reactive
regrasp. We tested this implementation over a selection of 12
objects of common use extracted from the YCB dataset.[27]

3.1. Validation of the Neural Architecture

Considering an anticipation time Δ of 1, 2, and 3 s, we converged
to three optimized architectures, all based on GRU neurons.
The optimal architecture with Δ ¼ 1 is composed by two layers
of 64 neurons and was trained with a dropout of 0.3. This net-
work demonstrated a validation accuracy of 0.93� 0.003 over ten
different rounds of training (all starting from a random seed).
For Δ ¼ 2, the optimal selection converged to a single layer of
128 neurons trained with a dropout of 0.5, achieving a validation
accuracy of 0.91� 0.01 over ten different rounds of training
(all starting from a random seed). Finally, withΔ¼ 3 s, the model
consisted of two layers of 64 neurons, trained with a dropout of
0.3, yielding a validation accuracy of 0.87� 0.02 over ten
different rounds of training (all starting from a random seed).
After validation, we quantified the accuracy of prediction also

over fresh data, not used during the training phase. This new
dataset consisted of 360 samples, 120 for each class.
Confusion matrices of the classification for different values of
Δ are shown in Figure 8. We obtained an overall test accuracy
of 87%, 84%, and 76% for Δ¼ 1 s, 2 s, and 3 s respectively.

3.2. Validation of the Online-Integrated Framework

We decided to consider for the online implementation the archi-
tecture trained with Δ¼ 2 s, because this represents an appropri-
ate trade-off between satisfactory prediction performances and
capabilities of detecting small oscillations that are present in
the early stages of sliding (minimizing the network footprint).
As introduced in Experimental Section, we performed two differ-
ent experiments to test the capabilities of our framework in the
online predict-and-regrasp task. The first one consisted in repli-
cating the experimental setup already used to collect the training
data. In this case, with a pile that continuously (with a refresh rate
of 5 Hz) updates the stream of data given as input to the neural
architecture, we obtained a correct classification in �78% of

Figure 6. Regrasp primitives considered for a) top grasps and b) lateral grasps.

Figure 7. Objects of common use selected for the experiments: a sauce bottle, an apple, a tennis ball, a squeeze tube, a mug, a box, a saucepan, a water
bottle, a food box, a shampoo bottle, a rough l-shape, a smooth l-shape. We increased the weight of some of these objects by adding external weight
(as done during experiments for dataset collection) to match the range between 200 and 700 g.
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Figure 8. Confusion matrices referred to failure classification over test data for a) Δ¼1 s, b) Δ¼2 s, and c) Δ¼3 s. Values are in percentage versus the
total number of entries of each class. On the rows the real class, on the columns the predicted class. Cells are color-coded: black stands for 100%, white
stands for 0%.

Figure 9. Four examples of our framework while the occurrence and the direction of a failure was correctly predicted and a reactive primitive successfully
prevented the drop of the object. From top to bottom, a shampoo bottle, an apple, a squeeze tube, and a sauce bottle.
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cases, of which �87% resulted in a successful robot regrasp.
However, a correct prediction of the failure does not necessarily
match with a successful regrasp, because after triggering the
reactive primitive the robot could spend a certain amount of time
to plan and execute the trajectory (�1.5 s). For this reason, in
certain cases, especially with very smooth objects, the total suc-
cess rate of the regrasp could be lower, and it is more appropriate
to report on the number of successful regrasps over the ones cor-
rectly predicted. Indeed, in this first experiment we had that for
occurrences of central slippage we were able to successfully pre-
vent the failure in 80% of cases, whereas the performances
increased to 94% for lateral slippage. This is caused by the fact
that in the first case the time of sliding is shorter, on average,
than the second one. We further validated our framework by per-
forming a second experiment with 12 objects, of which ten are
extracted from the YCB dataset[27] (see Figure 7, snapshot of the
experiments are reported in Figure 9). Also in this case, we veri-
fied the prediction and classification accuracy and then quanti-
fied the success rate of the failure prevention over the cases
in which we were able to successfully predict the failure. Over
a grand total of 130 experiments, we achieved a classification
accuracy of 75% and, for the cases in which the type of failure
was predicted correctly, we successfully prevented the failure
with our reactive primitive in 85% of cases. Of note, we observed
marked differences across objects. More specifically, very smooth
and spherical objects, such as the wooden apple in our pool of
objects, although easily classified by our neural architecture (with
a correct classification in 80% of cases), was successfully
regrasped in the 25% of cases of correct classification only.
Others, instead, such as the mug, the saucepan, the tennis ball,
the squeeze tube and the launch box, were successfully regrasped
in all the cases in which the neural architecture was able to cor-
rectly predict the failure.

4. Discussions and Conclusions

With this article, we demonstrated the feasibility, and provided
an implementation of a neural architecture that can predict—up
to 87% with test data—the occurrence and the direction of grasp
failure, considering accelerations and angular velocities collected
from a soft robotic hand (mounted on a robotic manipulator and
equipped with an IMU glove) that autonomously grasp an object.
We implemented our framework relying on a GRU architecture,
a widely popular and consolidated RNN. Our implementation
enables the triggering of reactive primitives, performed by a sec-
ond robotic arm–hand system, achieving a correct prediction
(�2 s in advance) of the failure occurrence and its directions
in 75% of cases, and—when correctly classified—firmly secure
the grasp with a recovery action, with a success rate of 85%.
These results refer to an experiment conducted with a pool of
objects of common use, which were never used during the train-
ing phase, whereas the performances using the same experimen-
tal setup of the training phase were 78% and 87%, respectively.
Note that these results come from a combination of different fac-
tors, such as the smoothness of the object and the upper bound
of the velocity of the manipulator. Of note, our implementation is
completely online, from inference to motion execution, with an
average inference time of 0.15 s and an average time required to

complete the reactive behavior of 1.5 s. We noticed that certain
objects, such as the wooden apple in our second experiments,
were particularly harsh for our framework. Indeed, while the slid-
ing was correctly predicted and classified in the 80% of cases, the
failure was extremely quick and resulted in a successful regrasp
for the 25% of cases only. This is mainly related to the control of
the hand itself and we believe that the extension of our reactive
behavior to other regrasping primitives may improve these
performances.

To improve the prediction accuracy, on one side, and the
regrasp success on the other side, our future work will focus,
on one side, on the investigation of the usage of other tactile sen-
sors, such as the Tactip,[20] to gather a larger amount of informa-
tion during the grasp, which could improve the accuracy of our
prediction. On the other side, we will consider the use of neural
architecture search (NAS) techniques to optimize the design of
the neural network. Furthermore, we will also consider the usage
of supplementary sensing sources, as for example cameras. In
this way, sensor fusion could be exploited to feed with a more
complete source of information the neural architecture and to
improve the overall failure prediction accuracy. However, it is
also worth mentioning that such an improvement would come
with a significant increase in the dimensionality of raw data,
resulting in higher complexity of the mechatronic system and
in a larger footprint of the neural architecture. For this reason,
we believe that a trade-off must be reached, depending on the
resources available for a given application. For example, for fully
autonomous robots, which should process the whole information
with on-board electronics (possibly on the edge), one could use a
minimalistic tactile sensing as the one used in this article to min-
imize the footprint of the network, whereas for industrial scenar-
ios, it may be feasible to have more complex systems. At the same
time, we are planning to further expand the pool of reactive prim-
itives considered, including also single-arm actions, such as end
effector reorientation and hand squeezing force regulation.
To this aim, additional sources of information, as for example
a vision layer, will be evaluated, which will help in discriminating
which strategy could be the more appropriate for the specific
case.

Ultimately, we believe that our work may represent a valuable
contribution toward the development of intelligent manipulators,
capable of identifying online whether a task is performed
correctly, eventually triggering reactive behaviors to adapt the
execution of the action to the expected goal.[18] This will help
in developing grasp planning that minimize the force exerted
during the object grasps, and demanding to the prediction–
regrasping component the correction of a possible failure.
This, together with the intrinsic adaptability of the soft hands,
could offer a viable solutions for the grasping of fragile and
delicate objects.
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