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Semi-Supervised Novelty Detection for Precise Ultra-Wideband Error
Signal Prediction

Umberto Albertin1, Alessandro Navone1, Mauro Martini1 and Marcello Chiaberge1

Abstract— Ultra-Wideband (UWB) technology is an emerging
low-cost solution for localization in a generic environment.
However, UWB signal can be affected by signal reflections and
non-line-of-sight (NLoS) conditions between anchors; hence,
in a broader sense, the specific geometry of the environment
and the disposition of obstructing elements in the map may
drastically hinder the reliability of UWB for precise robot
localization. This work aims to mitigate this problem by
learning a map-specific characterization of the UWB quality
signal with a fingerprint semi-supervised novelty detection
methodology. An unsupervised autoencoder neural network is
trained on nominal UWB map conditions, and then it is used
to predict errors derived from the introduction of perturbing
novelties in the environment. This work poses a step change
in the understanding of UWB localization and its reliability in
evolving environmental conditions. The resulting performance
of the proposed method is proved by fine-grained experiments
obtained with a visual tracking ground truth.

I. INTRODUCTION

Service mobile robots are rapidly emerging as the new
frontier of automation in our daily life activities, from do-
mestic and health assistance [1], [2] to precision agriculture
[3], [4] and inspection [5]. Localization technologies are
the primary asset to enhance the future development and
reliability of autonomous mobile robots [6]. Wheel odometry
and visual odometry are standard methods that have been
widely investigated in the last decade, although struggling
when dealing with long paths and poor repetitive features
[7], [8], [9].

Among localization technologies, Ultra-Wideband (UWB)
has recently emerged as a promising low-cost candidate
to localize mobile robots and devices in GPS-denied envi-
ronments [10]. UWB technology operates by transmitting
extremely short-duration pulses, allowing for precise time-
of-arrival estimations and, thus, highly accurate distance
measurements. However, despite its potential, UWB is still
affected by primary sources of uncertainty as the Non-Line
of Sight (NLoS) propagation condition and multipath reflec-
tions, as shown in Fig 1, which can significantly degrade the
localization accuracy. These phenomena occur when the sig-
nal cannot travel directly from the transmitter to the receiver
or when it bounces off surfaces, respectively. This leads
to a biased distance estimation between devices, hindering
the possibility of performing autonomous navigation tasks.
Moreover, the continuous changes in the environment where

*This publication is part of the project PNRR-NGEU which has received
funding from the MUR – DM 351/2022

1 Department of Electronics and Telecommunications, Politecnico di
Torino, 10129, Torino, Italy. {firstname.lastname}@polito.it

Reflection

Blockage

Attenuation

Multipath
propagation

LOS

Fig. 1. UWB signal attenuation types depending on the obstacles within
and around the environment. A novel method for UWB Error Prediction with
Semi-Supervised Novelty Detection (EPSNoDe) is proposed to identify the
map areas where the dynamic nature of the environment may affect the
UWB signal.

the robot operates increase the difficulty of identifying areas
where the UWB localization system’s reliability can drop.

A. Related works

Several studies have attempted to address these issues.
For instance, machine learning and deep learning techniques
have been proposed to identify and mitigate NLoS con-
ditions, framing the problem as both a classification and
a regression task [11], [12]. Others have explored using
additional information, such as inertial measurements [13]
or map knowledge [14], to improve UWB-based localiza-
tion. In some cases, the position of a receiver was directly
estimated from raw data without the necessity to identify a-
priori NLoS conditions. The aforementioned techniques have
demonstrated a high accuracy even in complex environments,
where it is not always possible to guarantee a Line of Sight
(LoS) condition [15]. Despite these efforts, a comprehensive
solution that can effectively handle real-world environments’
diverse and dynamic nature is still lacking.

In this work, we focus on the central role of the environ-
ment on the overall performance of the UWB, considering
the dynamic nature of UWB error strictly coupled with
the introduction of anomalies in the map. To this aim,
novelty detection is a set of machine learning techniques
capable of identifying new or unknown patterns in data
distribution starting from nominal learned data [16]. In the
context of UWB signals, novelty detection can identify



NLoS and multipath conditions as novel situations, as well
as significative changes in the environment, providing the
necessary position-specific uncertainty information for a re-
liable localization. Autoencoders are frequently employed
in novelty detection applications due to their ability to
acquire a condensed representation of data [17][18]. Within
the Ultra-Wideband (UWB) technology, autoencoders find
applications in several domains, such as signal reliability
estimation and correction. Variational autoencoders have
effectively assigned anomaly scores to the channels of
Time-of-Flight (ToF)-based systems. This showcases notable
generalization capabilities, permitting the incorporation of
the anomaly scores into an Extended Kalman Filter-based
position tracking system [19]. Furthermore, autoencoders
have been leveraged to enhance the precision of ranging
measurements, particularly in the context of localization [20].

B. Contributions

In this research, we proposed a semi-supervised novelty
detection methodology to precisely characterize UWB error
within a specific environment. Our approach integrates the
novelty detection framework with deep learning, opting for
unsupervised autoencoders as the underlying neural network
architecture. This investigation focuses on discerning how
subtle environmental alterations can contribute to a degrada-
tion of UWB signal quality, identifying where in the scene
the signal is abnormal.

Delineating nominal environmental conditions is consid-
ered an indirect introduction of human supervision into the
data handling process. Therefore, we classify our proposed
methodology as semi-supervised. A comprehensive experi-
mental campaign has been executed to meticulously gather
fine-grained measurements of UWB signals alongside ground
truth position data for testing purposes, facilitated by a Vicon
motion capture system. By leveraging the advantages of
novelty identification with autoencoders, this work sheds new
light on the reliability of UWB-based localization, consider-
ing a general characterization of environmental changes.

II. METHODOLOGY

For the development of this work, we considered an
environment with fixed UWB anchors and a moving tag. A
dataset is then collected to gather a database wherein UWB-
specific signal characteristics are systematically recorded at
predetermined reference points in the environment. This rep-
resents the so-called offline phase. The development of the
localization algorithm is framed as a mathematical function.
This consists of minimizing the localization error through
an optimization process to identify a reference point given
a set of signal characteristics during the online phase. This
localization algorithm, employed in wireless technologies,
is commonly called the fingerprint technique. This tech-
nique, valid in static environments, is strongly influenced by
changes in the environment, which affect the characteristics
of the signal. The novel method proposed in this work aims
to identify when the signal is no longer reliable by employing
deep learning-based novelty identification techniques. We

refer to the methodology proposed as UWB Error Prediction
with Semi-Supervised Novelty Detection (EPSNoDe).

A. Novelty Identification

In our paper, novelty detection has a crucial role in
warning zone identification, recognizing areas where the lo-
calization signal appears to be degraded due to environmental
conditions. The novelty detection framework is characterized
by a training process exclusively involving nominal data.
Since the model must recognize changes in the data during
the inference phase, these alterations should not be included
in the training phase. This approach intentionally induces
overfitting in the model, rendering it specific to the training
data while compromising its generalization capabilities.

Since the fingerprint approach is employed, the novelty
framework is consistently trained with similar features for
each position in the grid map. The core of this study focuses
on identifying environmental changes using UWB signals.
The model assimilates the signal pattern as a function of the
robot’s position in the grid map, identifying if and where a
new pattern emerges. Introducing an obstacle in the environ-
ment induces UWB reflections and NLoS conditions, causing
a distorted signal compared to the original. Consequently,
the model detects this distortion, indicating a novelty in the
specific position where the altered signal is detected.

The novelty identification models use a reconstruction
error to understand if the signal’s features are new with
respect to the training ones. In this paper, two errors are
computed for detecting the novelty: the first one is related
to a single UWB anchor by computing a difference between
the real features and the reconstructed ones, as reported in
the following equation:

e = |ŷ − y| (1)

where e represents the error, ŷ represents the predicted
sample, and y represents the real one. The second error is
computed by using the errors of ith anchors and summing
them as a multidimensional distance, as reported in the
following equation:

etotal =
√

e21 + e22 + ...+ e2n (2)

where etotal is the total error computed for a single pre-
diction, ei is the error of the ith anchor prediction computed
by using Eq. 1, and n is the total number of anchors used
for the robot’s localization.

B. Neural Network Architecture

The architecture considered for the purpose outlined in
this paper is an autoencoder. Autoencoders are powerful
tools for semi-supervised learning, showing the ability to
learn compact and meaningful representations of input data
[21]. Their structure comprises two main components: the
encoder and the decoder. The encoder transforms high-
dimensional input data into a latent space, usually character-
ized by a lower dimensionality, capturing essential features.
Subsequently, the decoder reconstructs the original input
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Fig. 2. Architecture of the proposed UWB EPSNoDe model - It consists
of an overcomplete autoencoder (N < NE1 < NE2 and ND1 > N ). The
legend illustrates all the layer types. The input dimension varies according
to the input type (i.e. CIRs and/or ranges, depending on the adopted model).

from this condensed representation. Formally, let X ∈ Rn

represent the input data, where n denotes the dimensionality
of each sample. The autoencoder comprises the encoder,
fenc : Rn → Rp, and the decoder fdec : Rp → Rn.
This facilitates the transformation of input data into a la-
tent space h = fenc(x) and a subsequent reconstruction
Xrecon = fdec(h). Extending the autoencoder paradigm,
overcomplete autoencoders deliberately operate with a latent
space of higher dimensionality (p > n). This intentional
over-parametrization in overcomplete autoencoders allows
capturing a richer set of features [22].

In this work, an overcomplete autoencoder architecture is
employed, as shown in Fig. 2. The encoder stage consists in
three dense layers with dimensions N , NE1 and NE2, where
N = n, NE2 = p and N < NE1 < NE2. The three layers’
activation functions consist of ReLU functions. Subsequently,
the decoder consists of two layers with dimensions ND1 and
N , where ND1 > N , restoring the initial dimension. The
first decoder layer utilizes a ReLU activation function. In
contrast, the second layer employs a Leaky ReLU activation,
introducing a slight negative slope to handle potential dead
neurons and enhance the robustness of the model. The
overall architecture is trained to employ a Mean Squared
Error (MSE) loss function. Nonetheless, different UWB data
selection and pre-processing strategies are explored to extract
relevant information from the sensor raw data: EPSNoDeRNG

configuration considers only the anchors’ ranges as input
for the network; EPSNoDeMA incorporates both the anchors’
ranges and the first 6 peaks of the Moving Average applied to
the Channel Input Response (CIR) signal of the UWB; lastly,
EPSNoDePCA incorporates the anchors’ ranges and a CIR
signal reduced by applying a Principal Component Analysis
(PCA) to the signal itself.

C. Position-specific Error Prediction

The final stage of the framework involves identifying un-
reliable zones of the grid map for UWB localization through
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Fig. 3. Sketch of the environment used to test the algorithm. Three
scenarios of novelty can be identified: A, B, C.

the utilization of output data predicted by the EPSNoDe
model. The reconstruction errors computed are used as key
indicators to identify if a specific grid point is anomalous
with respect to the initial environment. Detecting an anomaly
in a grid zone implies the possibility of an environmental
change occurring in proximity to the point itself. A possible
example of the usage of the error could be to impose a
threshold, giving a warning when this threshold is exceeded.
In that position, the autonomous robot recognizes that the
localization algorithm is influenced, prompting the potential
implementation of strategies in subsequent steps to enhance
localization precision using UWB. These strategies (e.g.,
error mitigation or compensation) and the selection of a
possible error threshold are out of the scope of this paper.

III. TESTS AND RESULTS

Several experiments are conducted to evaluate the pro-
posed framework’s performance and functionality.

A. Experimental Setup

The environment used for the framework performance
evaluation is an office room at the PIC4SeR center. This
room is characterized by several desks, chairs, and wardrobes
placed around it. A sub-environment is obtained in a free
rectangle in this room, where the robot can move. The
planned path is a rectangular grid with a 50 cm mesh
size along x and y directions. Three different experimental
scenarios are considered, as shown in Fig. 3. In Case A,
a metal plate is positioned beside the top-right corner of
the grid map. In Case B, the same scenario with a wooden
bridge and a metal plate placed in the top-right corner
creates NLoS conditions at several points of the grid map.
The last condition, Case C, shows two obstacles placed
within the grid map. In all the experiments, the rest of the
environment has been left unchanged. Four distinct datasets,
encompassing clear and perturbed scenarios, are gathered
throughout the experiment phase. The obstacles added to



Fig. 4. The total error is computed for each test conducted. Each row
corresponds to the architecture type applied to the dataset, and each column
corresponds to the dataset type employed in the test. EPSNoDeRNG uses
only ranging distances, EPSNoDeMA involves the Moving Average of the
CIR along with the ranging distances, and EPSNoDePCA involves the
application of Principal Component Analysis to the CIR along with the
ranging distances.

each environment are higher than the robot, thereby estab-
lishing NLoS conditions by obstructing anchors in certain
grid sections during the measurement phase.

B. Experiments and Results

An extensive experimental session is carried out to demon-
strate the effectiveness of the method in characterizing the
quality of the UWB signal in the environment. Moreover, we
investigate the role of UWB data selection in the learning
process. More precisely, we defined three different pre-
processing operations for the proposed autoencoder architec-
ture described in II-B. Each network configuration is tested
on scenarios A, B, and C, and the results obtained are shown
in Fig. 4. Each quadrant shows the total error computed for
the related position, where a bright quadrant indicates a high
error.

The first model analyzed is the EPSNoDeRNG which specif-
ically detects novelty based only on ranging distances. In
this scenario, the model employs the minimum number of
features compared to other models. Using four anchors, the
features are limited to four, corresponding to the ranging
values of each anchor. As it can be noticed, the model detects
the presence of the obstacles in both Case B and C, where the
obstacles are positioned within the map. The obstacle in Case
A is less visible using only ranging distance, possibly owing
to the persistent LoS conditions throughout the measurement
phase. By exclusively considering ranging distance, potential
reflections of the CIR are neglected in the analysis. On the
opposite side, the EPSNoDePCA model exhibits a contrasting
performance: in this instance, a more extensive set of features
is considered compared to other studies. The original CIR
comprises 152 samples multiplied by the number of anchors,

Fig. 5. 3D plot obtained using EPSNoDeMA architecture in case B with
the obstacle placed within the grid map in the top-right corner. The graph
shows the total error computed applying Eq. 2 for each map grid point. The
highest errors are detected on the top-right corner of the map where the
bars are higher.

resulting in 608 features for our case with 4 anchors. The
PCA model used reduces the feature dimension, retaining
90% of the variance of the initial data, reducing the features
to only 68 elements. Adding the four UWB ranges to the
array results in 72 features as input for the framework. Due to
this elevated number of features, this architecture encounters
some difficulties in learning the patterns for each point of the
grid map. The results obtained exhibit a considerable level
of uncertainty in the overall map.

The most promising outcomes in this study are associated
with the EPSNoDeRNG and EPSNoDeMA where a two-period
moving average is applied to each anchor’s CIR to filter the
raw signal and its reflections. In the EPSNoDeMA approach,
the framework considers the first six peaks of the CIR, along
with the ranging distances, as inputs.

The obstacles in cases B and C are clearly visible on the
map. Case A related to the obstacle beside the map, is harder
to recognize. Only the EPSNoDeMA detects some novelties
in the top row of the map. These distinctive elements are
solely recognized due to the reflections of the UWB signal
interacting with the obstacle beside the map. Incorporating
the first six peaks of the CIR into the range distances,
significant signal reflections are integrated and detected as
novelties. A detailed visualization is carried out for the
EPSNoDeMA applied to case B to better understand how the
framework behaves for the warning zone identification. Fig.
5 shows the total error resulting from applying Eq. 2.

The plot shows the framework’s difficulty in reconstruct-
ing the nominal input values when close to the perturbation
due to the untrained data (e.g. high error). In case B,
the novelty is located in the top-right corner of the map.
This obstacle introduces an alternation of LoS and NLoS
conditions during the UWB measurements. As evident, the



Fig. 6. Comparison between the normal CIR and the anomalous one, with
both curves obtained at the same grid point. The observed discrepancies are
attributed to reflections originating from a new object near that grid point.

discrepancy appears near the perturbation and along the top
line of the grid map. This behavior is closely tied to the
reflections induced by the metal plates introduced in the
environment, altering the ToF of the UWB signal. When
considering the first 6 peaks of the CIR (EPSNoDeMA), the
reflections become more prominent, facilitating the frame-
work’s detection of the novelty.

A clearer explanation of the previously mentioned point
is presented in Fig. 6, which displays both the normal and
anomalous CIR. Notably, the two signals look completely
different from each other due to reflections caused by the
new obstacle. Trained exclusively with nominal CIR signals,
the model fails to reconstruct the anomalous one, leading to
an output range that diverges from the real one, contributing
to the global error depicted in Fig. 5.

Another intriguing aspect of this generative framework is
the ability to identify the anchor which mainly contributes
to the total error. The representation of the error for each
anchor is shown in Fig. 7. In this instance, the error for
each anchor is computed using Eq. 1, which is the relative
difference between the real and the predicted range. Notably,
the top-right and bottom-left anchors significantly contribute
to the total error, as shown in the heat map, suggesting the
presence of an obstacle between them. By examining the
anomaly grid zone, it is possible to assume that the obstacle
is located in the top-right corner.

Finally, the results shown in Fig. 4 are obtained by trying
several hyperparameter combinations to find the best opti-
mization for the related network. This optimization involves
varying the values of neurons, batch size, and learning
rate to achieve optimal performance for each model. The
combinations considered are summarized in Table I.

The conducted tests involved also varying the number of
training samples to explore potential limitations arising from
insufficient data. Cases A and B utilize five datasets to train
the model, whereas Case C employs only two. As depicted
in Fig. 4, the framework demonstrates the ability to detect

Fig. 7. The heat maps are obtained by applying Equation 1 for each anchor.
The novelty is placed on the top-right corner of the map. The highest errors
are detected from the top-right and bottom-left anchors of the map.

TABLE I
HYPERPARAMETERS COMBINATIONS EXAMINED FOR MODEL

OPTIMIZATION.

Architecture E1,D1 Neuron E2 Neuron Batch Size Learning Rate

EPSNoDeRNG
5,15,
20

20,30,
40 16,32,64 0.001,0.01

EPSNoDeMA
50,55,60

65,70
70,75,80

85,90 16,32,64 0.001,0.01

EPSNoDePCA
120,125,130

135,140
145,150,155

160,165 16,32,64 0.001,0.01

novelties in the environment even with only two datasets
being used for training. On the other hand, increasing the
number of datasets used for the training also enhances the
reliability of novelty detection due to a higher overfit of the
normal environment. The best hyperparameters combinations
for each model are shown in Table II.

C. Error Density Quantitative Evaluation

In the last step, a similarity metric is employed to enhance
the visualization of the fit of each model to the ground truth,
in order to have a single value able to measure it. To this
end, the heat maps are transformed into Probability Den-
sity Functions (PDF) using the Kernel Density Estimation
(KDE) method. Subsequently, the Kullback-Leibler (KL)
Divergence is employed to quantify the similarity between
the predicted PDF and the ground truth. The KL divergence
has the following shape:

DKL(P ||Q) =
∑
x∈X

p(x) · log(p(x)
q(x)

) (3)

where p and q are the two PDFs to compare. KL
divergence is always non-negative, hence it can assume
DKL(P ||Q) ≥ 0. The results obtained by applying KL
divergence metric are reported in Table III.

Notably, the model that fits better is the EPSNoDeRNG,
which uses only ranging distances to detect novelties. On the
other hand, the EPSNoDeMA shows interesting results in both



TABLE II
BEST MODELS FOUND AFTER THE HYPERPARAMETERS EVALUATION.

Architecture E1,D1 Neuron E2 Neuron Batch Size Learning Rate

EPSNoDeRNG 15 30 32 0.001
EPSNoDeMA 70 90 64 0.001
EPSNoDePCA 120 165 32 0.001

TABLE III
KL DIVERGENCES COMPUTED FOR EACH MODEL, COMPARING THE

PREDICTED HEAT MAP’S PDF WITH THE GROUND TRUTH’S PDF.

Architecture Case A Case B Case C

EPSNoDeRNG 0.15 0.19 0.14
EPSNoDeMA 0.50 0.46 0.31
EPSNoDePCA 0.83 1.36 2.15

the metric table and heat map. While it may not offer the best
match with the ground truth, it shows well where the novelty
is detected in the environment, providing insights into spe-
cific areas of change. Hence, EPSNoDeRNG can be effectively
used to mitigate localization errors, while the EPSNoDeMA

to detect subtle environment changes. EPSNoDePCA shows
the worst behavior compared to the others, indicating the
inadequacy of the network architecture for this input type.

IV. CONCLUSIONS
We believe that our work will contribute to the ongoing

efforts to realize the full potential of UWB technology. The
objective of this study consists of advancing our understand-
ing of the application of UWB signals in autonomous robot
localization. Instead of correcting the robot’s localization
error through mitigation or compensation techniques, this
paper focuses on mapping a specific environment to detect
changes in UWB reliability within it. Future works will see
the integration of the proposed method in robot localization
and navigation tasks. The UWB error information provided
by our solution can serve as sensor fusion prior knowledge
or as a navigation cost term. Further investigations will be
directed toward developing different approaches for detecting
novelty; one example is the use of Normalizing Flow models,
which distinguish themselves from Autoencoders by em-
ploying density distribution estimation for input generation,
thereby facilitating the computation of the reconstruction
error.
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