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Summary 
 
 
 
 

Interfaces or “joints”, which are unavoidable in design and development of 
mechanical equipment, play a significant role in the behavior of the whole assembly. 
To some extent, the effect of the interfaces can be studied introducing the two 
contact parameters known as “contact stiffness” and “equivalent damping”. 

 The normal contact stiffness (acting along the interface normal) and the 
tangential contact stiffness (acting on the interface plane) behave nonlinearly and 
depend on the condition of the contact surfaces. Moreover, if the contact surfaces 
undergo a relative displacement the interface dissipates the energy of friction. This 
energy dissipation results in additional damping of the structure. From a mechanical 
point of view joints affect i) the static behavior of the assembly, ii) the dynamic 
behavior and iii) the local stress at the interfaces. 

Joints affect the static behavior of the whole structure in terms of displacements 
and static strength. Furthermore, they change the dynamic behavior of the structure 
in terms of resonance frequency and peak amplitude. Uncertainties on the value of 
the contact parameters make the dynamic performance of the structure less 
predictable than desired. 

This thesis focuses on the contact characteristics of the blade root joints 
subjected to the dry friction damping under periodic excitation. The numerical 
method and experimental procedure are combined to trace the contact behavior in 
the nonlinear vibration conditions. In the experimental procedure, a novel excitation 
method alongside the accurate measurements is used to determine the frequencies 
of the blade under different axial loads. In numerical simulations, the local behavior 
of contact areas is investigated using the reduction method as a reliable and fast 
solver. Subsequently, by using both experimental measurements and numerical 
outcomes in a developed code, the global stiffness matrix is calculated. This leads 
to finding the normal and tangential stiffness in the contact areas of a dovetail blade 
root joints. The results indicate that the proposed method can provide an accurate 
quantitative assessment for the investigation of the dynamic response of the joints 
by focusing on the contact areas.
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Chapter 1 

 
 
 

Introduction 
 

 
 
 

1.1 Introduction to Contact Mechanics 
 
Contact problems are central to Solid Mechanics because contact is the principal 

method of applying loads to a deformable body and the resulting stress 
concentration is often the most critical point in the body. Contact at the blade-to-
disk interface is a typical problem that can be studied using contact mechanics 
principles.  

Contact is characterized by unilateral inequalities, describing the physical 
impossibility of tensile load tractions and material interpenetration. Furthermore, 
inequalities and non-linearity are introduced when friction laws are taken into 
account. Historically the work of Hertz might be thought of as the birth of the study 
of elastic contact and it still provides a better benchmark for different numerical 
methods. 

In general two different kinds of contact can result, depending on the geometry 
of contacting bodies. First, when two convex bodies are pressed together contact is 
initially made at a point (or line in the case of plane problems), and as the applied 
load is increased the contact path grows. Such contacts are said incomplete, for 
example, the contact of a sphere on a plane. They have the characteristic that the 
contact pressure falls to zero continuously at the edge of the contact. A further 
division of classification of incomplete contacts is possible: if the contact size is 
small in comparison with the deformed part of the body (and providing at the other 
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extreme that the contact is not too sharp) the bodies being loaded may be represented 
by half planes or spaces. This means that the formulation of the elasticity problems 
may be appropriate to a semi-infinite body, which greatly simplifies the calculation. 
Problems, where the size of the contact patch is small in comparison with the bodies’ 
surface radius of curvature, and which therefore permit the half-plane 
approximation to be used, are said to be non-conformal. 

The second kind of contact occurs when the size of the contact is independent 
of the contact force. In this case, the contact pressure distribution is singular at the 
edge of the contact. Such contacts are said completely. 

 

1.2 General background of blade contacts 
 

The mechanical design of the bladed rotors in aeronautical turbines needs 
particular attention to verifying the structural integrity for High Cycle Fatigue 
conditions. For this purpose, the components' behavior prediction due to vibration 
is an important step. This objective is achieved through numerical simulations, 
which require dynamic models as accurate as possible. 

As the bladed rotors are made up of many components, they typically have a 
high-density modal which means many resonant frequencies close to each other. 
Furthermore, the variability of the operating conditions of aircraft engines implies a 
broad spectrum of excitation dynamics due to aerodynamic forces. Such aspects 
make a dynamic behavior infeasible in which all possible resonance conditions are 
avoided. For this reason, it is necessary to control the vibration amplitude through 
the present damping in the system. The primary damping sources can be 
summarized as the material's damping, aerodynamic damping, and friction in the 
contact interfaces. The latter provides the main contribution of energy dissipation. 
As it is accessible to realize, it is the most frequent passive damping method of 
vibration amplitudes in aeronautical turbines. 

Usually, the dynamic of the bladed disk is considered linear, so the structure 
interaction is directly linked to the natural frequencies and normal mode shapes of 
the system. However, structural designers of aircraft engines have introduced 
nonlinearities in the bladed disk structure in terms of joints that act also as damping 
systems to reduce peak stress values during the vibratory phenomenon caused by 
the external excitation forces. These damping systems are usually jointed 
geometrically optimized to produce friction forces to dissipate energy increasing the 
strength and life of the blade against High Cycle Fatigue failure.  

The major sources of friction damping (Figure 1.1) in the bladed disk turbine 
are attributable to the contact between adjacent blades connected by interference at 
the tip (shrouds - Figure 1.1a), mid-span airfoil (snubber – Figure 1.1b), under 
platform dampers (Figure 1.1c) and the bladed disk interfaces (blade root joint - 
Figure 1.1d). The last joint is practically always included in the bladed disk design 
while the other types of joint may not be present. 

 
 



- 14 - 
 

 
Figure 1.1: Common types of friction joints: (a) shrouds, (b) snubber, (c) under platform 

damper and (d) root joints 
 

As these friction contacts limit the vibrations due to the excitation forces, they 
can be used to suppress the unstable flutter vibrations to produce a periodic motion 
called Limit Cycle Oscillations (LCO). In this condition, the amplitude and the 
frequency of the LCO are determined by the equilibrium between the energy 
introduced in the system by the flow (blue dashed curve) and the energy dissipated 
by the friction contacts (red solid curve) as shown in Figure 1.2. 

 
Figure 1.2: Possible energy balance between the energy introduced by 

aerodynamics (blue dashed curve) and dissipative energy by friction (red solid 
curve) 

 
The balance between the aerodynamic and dissipated energies provides in 

general three solutions: the solution 1 is the trivial solution where there is no 
exchange of energy because there is no vibration; besides, this is an unstable 
solution because any small perturbation of the system moves the system away from 
1 and towards solution 2. Solution 2 is the stable solution of the system and it will 
be called the LCO solution; in fact, any perturbation from 2 limited between solution 
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1 and solution 3 does not change the final equilibrium ‘2’. Solution 3 is unstable and 
represents the stable limit of the system because any perturbations bigger than this 
limit produce ineffective damped and uncontrolled self-excited vibrations. 

An intrinsic problem with the Figure 1.1d type of damping lies in the nonlinear 
nature of the contact behavior, which makes numerical simulations complex and 
computationally expensive. The force exchanged in the interfaces cannot be linearly 
approximated since they are dependent on displacement, which is affected by the 
state of contact: complete adhesion, micro-slip, macro-slip, or separation. The 
contact condition also depends on materials, roughness and geometry of the contact, 
preload forces normal to surfaces, and vibration amplitudes. In the case of disc-
blade joints, the boundary conditions are defined by the subjected centrifugal force 
and vibration amplitude caused by aerodynamic forces, as shown in Figure 1.3. 

 
 

Figure 1.3: Dovetail joint under examination, boundary conditions 
 

Commercial finite element codes allow the simulation of such nonlinearity only 
through the direct temporal integration of the equations of motion. This method 
takes time and very high computing costs. Therefore, a solution adopted by the 
industry is the use of linear dynamic models, with the complete and constant 
adhesion of the contact interfaces. In such models, damping is relative viscous of 
the order of ζ = 2·10−3 [1] to consider the material, aerodynamic and friction 
damping. This method implies errors in estimating stresses due to vibrations that are 
not always acceptable. The nonlinearity of contacts introduces variations in 
resonance frequencies and vibration amplitudes that are not negligible. Therefore, 
intense research was carried out to develop contact models and efficient solution 
methods for nonlinear equations of motion. 
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1.3 Contact Models 
 

The contact models entail generating a model that predicts the contact behavior 
as a function of some input parameters. Here, a summary of different contact states 
is described as an introduction to the research. 

The contacts have 3 possible states: micro-sliding (or “micro-slip”), macro-
sliding (or "gross-slip") and separation (or "lift-off"). Complete adhesion of the 
contact is an extreme case of the micro-slip condition. In detail, the micro-slip is 
defined as the partial sliding of the regions at the edge of the contact. As normal 
preload decreases or the amplitude of tangential vibration increases, the sliding 
propagates within the contact region until the total sliding of the entire interface 
occurs, which means gross-slip. Fully stuck is also a very important state which can 
be included in the contact models, however in this study, the model focus on the 
other states to investigate the stiffness. 

During vibrations, the saturation effect of the tangential force due to sliding, 
which refers to Coulomb's law T ≤ μN0, causes the states alternation of micro- slip 
and gross-slip. T represents shear force, μ is the friction coefficient and N0 is the 
contact pressure between surfaces. The law states that for two dry solid surfaces 
sliding against one another, the magnitude of the kinetic friction exerted through the 
surface is independent of the magnitude of the velocity (i.e., the speed) of the 
slipping of the surfaces against each other.   It forms a hysteresis loop between the 
tangential contact force and relative displacement of interface surfaces. An example 
of a hysteresis loop of the tangential contact force (T) is shown in Figure 1.3 in 
which kt is the tangential stiffness, x0 is the relative displacement of interface 
surfaces and xcr is relative displacement when sliding occurs. 

 
Figure 1.3: Example of a hysteresis loop of the tangential contact force 
 
From the hysteresis cycle, an equivalent stiffness and damping can be extracted. 

The stiffness keq is interpreted as the overall slope of the cycle. At the same time, 
the damping ceq is associated with the energy dissipated by the non-conservative 
friction force, which concerns the area of the cycle. These are shown in Figure 1.4. 
These parameters depend on the vibration amplitude A, preload N0, material, and 
contact geometry. 
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Figure 1.4: keq and ceq of a 1 D.O.F. system, SHBM method [2] 

 

1.3.1 Effective parameters 
  

Many lumped-parameter models have been developed for point-to-point 
contacts in finite element simulation codes [2-7]. 
Griffin [2] proposed a 1D tangential relative displacement model and preload 
normal constant N0, as shown in Figure 1.5. T is the tangential force, μ refers to 
friction coefficient and w is the displacement. 
 

 
 
Yang et al. [3] have extended the 1D model to the case of normal variable 

preload. Schwingshackl and Petrov [4] later adopted a model to develop the 
elements contact. Stanbridge and Ewins [5] and Menq and Yang [6] defined a model 
with normal preload constant and relative two-dimensional tangential displacement. 
Yang and Menq [7] studied the 2D model with normal variable preload. 

 
 

 
Figure 1.5: Lumped Parameter Contact Models [7] 

 
Three parameters must be defined to use these models: friction coefficient μ, 

normal stiffness kn, and tangential stiffness kt. Many experimental activities have 
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been carried out for the characterization of these parameters. However, the 
infeasibility of a complete experimental description due to the extreme variability 
in materials, operating conditions (such as loads and temperatures), and contact 
geometries have conducted research towards developing analytical models for the 
definition of such parameters. 
 

1.3.2 Elastic continuum theory 
 

The developed analytical models are based on continuous mechanics principles 
of contact. Sliding contacts between spherical surfaces were studied by Mindlin et 
al. in [8], where analytical expressions of the hysteresis cycle for this type of contact 
have been found. The sliding contacts between compliant surfaces were examined 
by Lavella et al. [9] by using a test bench. He developed the hysteresis cycles, the 
friction coefficient and the tangential stiffness of contact by varying normal load 
and excitation frequency. In terms of vibrations of bladed discs, Mindlin's theory 
has been applied in [10], [11] to predict the behavior of platform dampers with 
spherical contacts. Shtayerman [12] analyzed two-dimensional contact between 
conformal surfaces - typical of disc-blade joints – and obtained the contact behavior 
results in a flat indenter with rounded edges, pressed onto a flat half-space as shown 
in Figure 1.6. 

 
Figure 1.6: Model of the flat indenter pressed on the flat half-space [13] 

 
Ciavarella [14] used these results to extend the discussion of two-dimensional 

contact behavior. In [1], Allara applied the theory of three-dimensional Boussinesq-
Cerruti of pressure and shear distributions to obtain the displacements of this model. 
He proposed a method for defining the hysteresis loop for this type of contact and 
explained a numerical-analytical procedure for calculating contact parameters. 
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1.4 Numerical simulation methods 
 
The contact models mentioned above are used in computational codes specially 

developed to solve nonlinear equations of motion with more efficient time integration 
methods in commercial software.  

To compute the forced response in the frequency domain, a widely adopted 
technique is Harmonic Balance Method (HBM) proposed by Cardona et al. [15] and 
applied in [15]-[21]. It is one of the most popular methods to find periodic steady-state 
responses of nonlinear differential equations. The standard HBM as a popular method, 
approximates the periodic solution in the frequency domain. Local nonlinearities 
cannot be evaluated directly in the frequency domain. The standard HBM performs an 
inverse Fourier transformation and then calculates the nonlinear force in the time 
domain and the Fourier coefficients of the nonlinear force. Zucca et al. [19, 20] have 
subsequently demonstrated the simultaneous calculation of static components is 
possible dynamic of contact forces. To calculate the non-periodic responses, such as 
free decay and transients in general, Gastaldi [22] proposed temporal integration 
techniques. In this research, nonlinearities of contact are obtained through the temporal 
sequence of linear systems, i.e., by approximating the nonlinear system of equations 
with a piecewise linear system. 
 

1.5 Experimental validations 
 

The need to validate such solution methods, contact models, and theoretical 
estimates of parameters pushed the research towards two experimental procedures. In 
dynamic micro-scale tests, the local behavior of contacts is studied by measuring forces 
and displacements. Therefore, the contact parameters, including stiffness keq and 
damping ceq equivalent, can be obtained from the hysteresis cycle. 
In the dynamic macro-scale tests, the global behavior of the bodies is analyzed. It is done 
by measuring forced response in the frequency domain or free decay in the time domain 
as the boundary conditions vary compared with those obtained from numerical 
simulations.  
 

1.5.1 Micro-scale measurements 
 

Mindlin et al. [23] first analyzed sliding contacts between spherical surfaces and 
measured convex surfaces' hysteresis loops. Johnson [24] measured the hysteresis static 
and dynamic of steel balls pressed on flat surfaces. Goodman and Brown [25] examined 
steel spheres oscillating between two parallel planes in compression. Filippi et al. have 
measured the friction coefficient, hysteresis cycles, the tangential contact stiffness at 
room temperature [26], and high temperature for spherical surfaces in contact with flat 
surfaces [27]. The sliding contacts between compliant surfaces were examined by Botto 
et al. [9]. They created a test bench capable of ensuring flat contact despite the wear of 
surfaces and measured the hysteresis cycles, friction coefficient, and the tangential 
stiffness of contact for various normal load and excitation frequencies. Ewins et al. in 
[16] and [21] measured the friction coefficient and tangential stiffness for a plane 
contact for different materials and load conditions. 
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1.5.2 Macro-scale measurements 

 
Goodman and Klumpp conducted the first experimental analyses of contacts 

sliding effect on global dynamic behavior in turbine rotors [28]. They measured the 
hysteresis cycles for disc-blade joints subjected to a uniform compression load. In this 
study, the importance of friction damping and its dependence on normal load has been 
well demonstrated. 

In [1], Allara has designed a test bench to study the behavior of disc blade joints 
dovetail as the centrifugal load, and the vibration amplitude vary. In such work, a beam 
with dovetail joints was fixed. It was subjected to traction and vibration with 
electromagnetic exciters while the response measured during the free decay of 
oscillations. The obtained signals were analyzed with suitable methods to derive the 
frequency and damping of the nonlinear system as a function of load and vibration 
amplitude.  
The same test bench of [1] was used in [13] to measure the forced response in the 
frequency domain. It was necessary to validate the codes based on the Harmonic Balance 
Method. 

Dynamic tests similar to those presented in [1] were carried out in [29]. In [30] the 
behavior of a cantilever beam fixed at one end with a disc-blade joint. Screws provide 
a preload normal to contact. The system is placed on an oscillating platform. 
Various joint geometries are tested. In [31] the same method is applied to palettes to study 
the distribution of tension and notch effect in the blade attachments. In [32], the global 
dynamic behavior of a vane is measured at the same time in contact with under-platform 
dampers and the local behavior of contacts to relate the performance curves of these 
dampers (macro-scale) with the contact characteristics keq, ceq (micro-scale). 
 

1.6 Thesis objectives and outline 
 
The work presented in this thesis has been developed in an industrial context that 

is represented by GE Avio Aero. In particular, it aimed at developing a method for the 
calculation of the non-linear aeroelastic behavior of a bladed disk in the presence of 
friction contacts at a blade root joint. 

The present work belongs to the macro-scale category of experimental validations 
through measurements of dynamic responses of a dovetail type of blade root joints. As 
referred in previous studies, the importance of friction damping and its dependence on 
normal load has been demonstrated, however the effect of amplitude and validation of 
numerical method didn’t considered [30]. Furthermore the novelty of the present works 
is developing a contact model which is confirmed by both experimental and numerical 
methods. To put in a nutshell, the main objectives of this thesis are described below: 
1. Deepen understanding of the dynamic performance of a specific type of joint by 
measuring the frequency and damping of a blade simulacrum as a function of centrifugal 
force and vibration amplitude fn = fn (Fcentr, A) η = η (Fcentr, A); 
2. Provide a database of measurements during free decay oscillations to validate new 
methods of nonlinear temporal integration such as those proposed in [22]; 
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3. Obtain normal and tangential contact stiffness from macroscopic measurements, which 
can be used in contact models of numerical simulations and validate the theoretical 
estimates of these parameters proposed in [13] 
 

 

1.6.1 Thesis Structure 
 
In this section, a general view of the thesis structure is presented to introduce the 

contents of the current research activity. 
In Figure 1.7 the flowchart of the thesis is shown. It presents how the combination 

of dynamic tests which is the experimental section and numerical simulation leads to 
develop a contact model to identify the stiffness value in contact region. Then, the 
theoretical evaluation is also considered and the results are presented. 

 
 
 

 
 

Figure 1.7: Flowchart of the thesis 

 
1.6.1.1 Dynamic tests 

 
As the measurements on an actual bladed disk have many difficulties, Allara 

developed a simplified dynamic system to simulate the centrifugal force on the blade 
[1]. The test bench to carry out the experimental procedure in this research has been 
described in detail in his research work [1]. It includes a beam fixed at the ends with 
dovetail joints and subjected to traction force. Furthermore, an electro-mechanical 
exciter (shaker) is used to apply vibration on the blade and measure the velocities of 
some points using a laser device. 
Two types of measurements were made to examine the first and second mode shapes of 
the blade. Each measurement provided the response of the blade during the free decay 
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oscillations. An oscillatory excitation with a frequency close to the natural frequencies of 
the blade has been applied. This response was obtained by measuring the speed v(t) of the 
antinode of the model in question. Each measurement was carried out for a given tensile 
force value. The free-response measurements were processed with the FREEVIB method 
proposed by Feldman in [33-34] to analyze nonlinear systems. The natural frequency and 
the damping (loss factor η) in the function of vibration amplitude A have been measured. 
 
1.6.1.2 Numerical Simulations 

 
The following procedure was followed to find the stiffness values: 

1. The model of blade and beam supports (slots) were discretized using the finite element 
method in ANSYS ®, paying particular attention to the coincidence of nodes in the contact 
interfaces. 
2. Nonlinear static analyzes were carried out in ANSYS® on the blade for different axial 
forces to obtain the stiffening effect of this force on the stiffness matrix of the simulacrum. 
3. Model degrees of freedom were reduced in ANSYS® with component mode synthesis 
technique, presented by Craig-Bampton [35]. Then the mass and stiffness matrices of the 
reduced model were imported in the MATLAB®. The master nodes used for the reduction 
are related to contacts and further nodes necessary for displaying the modes. 
4. The reduced models of beam and supports were assembled in MATLAB® by 
introducing linear contact elements, i.e., that do not implement sliding state or contact 
separation. The parameters of these elements are the stiffness values which is the object 
of the present research. 
5. A MATLAB® code has been developed to search for stiffness values for each tensile 
force. Such code compares the frequencies of the first and second flexural modes of the 
Finite Element Method (FEM) model with the corresponding frequencies obtained from 
the analysis of measurements. This comparison is made in the range of axial forces of 
traction and amplitudes of vibration in which complete adhesion of the contacts was found 
(no micro slip), which implies the system’s linearity. 
 
 
1.6.1.3 Theoretical estimate of stiffness values kn, kt 
 

The contact stiffness kn, kt were calculated using the theoretical model of indenter 
rounded edges pressed onto a flat surface, proposed in [13]. Then theoretical values 
were compared with those obtained from the numerical-experimental procedure.  

In following chapters, the above mentioned are described in detail. In chapter 2, 
the experimental procedure and dynamic tests are discussed. It includes how the test 
rig works, excitation method using shaker, required measurements and operation 
procedure. In chapter 3, the experimental analysis is described which includes signal 
analysis using Freevib method, analysis of the measurements and estimation error. 
Numerical simulation is explained in chapter 4. Contact stiffness model which is 
developed using the combination of experimental and numerical investigation is 
described in chapter 5. Theoretical estimate of contact stiffness is described in chapter 
6 and in chapter 7 described the conclusion. 
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Chapter 2 
 
Dynamic tests 
 

In this chapter the dynamic tests procedure is described in detail. The blade with 
dovetail joints and testing machine is introduced, then the dynamic excitation system 
and operation procedure is described. 

 

2.1 Test rig 
 

In order to study the dynamic behavior of the blade root joints, it is necessary to 
investigate the response by considering the variation of the centrifugal force and 
vibration amplitude. Due to the difficulties to measure the real bladed disk response, 
where spin is necessary to pull the blades, a simplified dynamic system was designed. 
The test bench has already been designed and used by Allara to investigate the 
damping effects of blade root joints [1]. The objectives of the system are: 

 

 to vibrate a dynamic system similar to a blade that is fixed to its disk using 
dovetail joints with the same geometry as the actual joints; 

 to recreate at the joint interfaces the same stress and strain fields that would 
be found on the real joint of a rotating bladed disk; 

 to investigate the dynamic behavior under different vibration amplitudes 
and different pulling loads at the joint, with loads equal to the centrifugal 
forces that would be pulling the blade for different rotational speeds of the 
disks; 

 to avoid the introduction of any other source of damping other than 
material damping, viscous damping due to the atmosphere, and the 
damping due to the joint under investigation. 
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In [1], the idea of simulating a centrifugal force on a pallet through a loading system 
is excluded, as it may introduce additional damping. The solution implemented in this 
study is to analyze the dynamic behavior of a beam supported by dovetail shape joints at 
both ends and pulled at one end, as shown in Figure 2.1. Furthermore, a novel excitation 
method using a shaker is introduced in this research study. 
 

 
Figure 2.1: The blade with dovetail shape at the end subjected to contact areas 

 
The main differences between the dynamic behavior of an actual blade and the body 

under examination are as below: 

 a real blade has one joint and its modal shapes are approximately like those 
of a cantilever beam, while the simplified system under test here is similar 
to a fixed-fixed beam. 

 the cross-section of the body is rectangular (26mm×10mm) and constant 
along the entire axis of the beam, unlike an actual blade 

 the centrifugal force on the actual blade is maximum at the root and 
decreases towards the tip while the body under examination has constant 
normal stress along the longitudinal axis. However, as the energy 
dissipated by joints depends on the force on the cross-section in the 
vicinity of the joint itself, the beam of this test bench dissipates the same 
energy as the same force acting on the blade attachment 

 
The test bench consists of five subsystems, as shown in Figure 2.2, including: 

1. The support and traction system of the beam designed in [1], as Figures 2.2a, 2.2b. 
This system has two crosspieces, one of which is fixed - solid to support (dovetail type). 
The other is mobile, solid to keep the other end of the beam. The latter crossbar is 
connected to a hydraulic actuator that allows traction of the beam. 
2. Dynamic excitation system, consisting of a signal generator, a signal amplifier, and 
electrodynamic exciter (shaker), as shown in Figure 2.2b. 
3. The vibration speed measurement system consists of a laser interferometer and its 
control tool, as shown in Figure 2.2b. 
4. Traction force measurement system, consisting of two independent subsystems to 
double-check the measurements. The first subsystem includes a pressure gauge that 
provides pressure inside the hydraulic actuator. The second subsystem consists of strain 
gauges placed on the beam and their data acquisition system, indicated with H.B.M. in 
the diagram of Figure 2.3. 
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5. Data collection and acquisition system, consisting of BNC cables, to carry the signals 
speed and deformation analogs from the BNC connection block and the data acquisition 
located inside the NI PXIe 1073 Chassis. 
 

  
       (a) Beam and supports                                     (b) Shaker, Laser, Support structure 

Figure 2.2: Test bench configuration 
 

 
Figure 2.3: Diagram of the Test Bench 
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2.1.1 Support and traction structure of the sample 
 

The operating scheme of the support structure, designed in [1], is similar to the 
machine for the tensile testing of specimens. The beam (Figure. 2.4 (a)) has dovetail-type 
ends which simulate bladed disk turbine rotors attachments. 
Supports are integral with the crosspieces (b) and (c). The crosspiece (c) is fixed, while 
(b) is movable along the longitudinal axis of the beam. This last crosspiece is connected 
to a hydraulic actuator (e) and a manual screw actuator operated by the lever (d). The 
hydraulic actuator (e) provides the traction load, and a valve (h) allows the retention of 
this load for the whole duration of the test. The pressure is managed by the hand pump (f) 
and can be viewed in the pressure gauge (g). At the end of the test, it is necessary to open 
the valve (h) to cancel the difference pressure inside the actuator (e). 
 

 
 

Figure 2.4: Test machine including the supports and traction structure 
 

2.1.2 Dynamic excitation system 
 
The dynamic excitation on the blade is achieved through the TIRA electrodynamic 

shaker S514. It is controlled in current through the TIRA BAA amplifier 500, which 
amplifies the signal coming from the NI-PXI 5412 signal generator, managed by a 
developed "fGen" software, which allows the import of a generic input signal in text 
format. 
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2.1.3 Input signal 
 

In the present work, the free decay response of the beam associated with specific 
modes is investigated. For this purpose, the input Sin signal shown in Figure 2.5 is created 
using a MATLAB® code. 

 
 

Figure 2.5: Input signal for the shaker 
 
The input signal in Figure 2.5 refers to the shaker tip position at every moment. To 

investigate the free-response, the blade should be excited with frequencies close to the 
modal ones (c-d), then detach the shaker tip instantly from the oscillatory blade (d). It is 
necessary to provide an initial static preload (a-b) greater than the vibration amplitude to 
avoid detachment of the tip during the excitation,  
The response measurement of the beam during the free decay vibrations was carried out 
in the time interval in which the stinger was detached entirely from the beam. In the final 
step (e-f), the tip of the shaker is returned to the initial position. 
 
2.1.4 Shaker 
 

The shaker has been rigidly fixed by screws to a technical bench. The tip of the shaker 
was placed on aluminum support integral with the beam, on which it was made a non-
passing conical notch for housing the tip, necessary to avoid the tangential sliding during 
the excitation phase of the blade simulacrum. It is shown in Figure 2.6. 
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Figure 2.6: Shaker detail of its tip 

 
2.1.5 Laser pointer for vibration speed measurement 
 

As shown in Figure 2.7, the Polytec OFV-525 laser interferometer was used to 
measure the vibration speed of specific points on the beam. In detail, the laser is set to the 
points that are expected to have the first and second bending modes. 
 

 
Figure 2.7: A laser pointer and speed measurement points 

 

 
2.1.6 Traction Force Measurement System 
 

The traction force was measured by two independent subsystems as described below. 
 
Pressure gauge 

 
The first subsystem consists of the Enerpac GP-10S pressure gauge, visible in Figure 

2.4(g). It provides the pressure difference inside the hydraulic actuator. Using the 
effective piston area from the technical specifications, the pulling force is calculated as 
below: 
    F = Acyl.P   where Acyl = 17.9mm2 
The instrument's accuracy is equal to δpp= 1% at full scale 700 bar pressure. 
 
Strain gauges 
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The second subsystem consists of Wheatstone bridge strain gauges according to the 
Figure 2.8(a) for measuring the axial deformation of the beam. 

 
F = A · σ = A · Eε  
A = 26mm × 10mm 
E = 210GPa (SAE1040 steel) 

 
The adopted instrumentation is shown in Figure 2.8(b) as below. 
 

(a) Strain Gauges                           (b) QuantumXMX410B DAQ 
Figure 2.8: Strain measurement system 

 

2.2 Operating procedure 
 

Two groups of measurements, including first and second bending modes, were made. 
Each measurement provided the free response of the blade with a frequency close to that 
of the modal form under analysis. Furthermore, the measurements were carried out for a 
given tensile force value, used as a parameter of the present experiment. 

 
2.2.1 Free Vibration Response Test 
 

In the other part of the experimental activities the natural frequency measurement 
was investigated to adjust the numerical and experimental parameters and investigations 
close to each other as much as possible. 

Many techniques can be used to identify and/or confirm a high vibration level caused 
by a resonance frequency. Impact test: one of the most commonly used methods for 
measuring a system’s natural frequency is to strike it with a mass and measure the 
response. This method is effective because the impact inputs a small amount of force in 
the equipment over a large frequency range. 

To this purpose, the free-free condition for the dovetail dummy blade including an 
attached accelerometer was considered. The selected point should be far from the nodes 
of different mode shapes. This is shown in Figure 2.9 
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Figure 2.9: Dovetail dummy blade on free-free conditions, accelerator attached 
The modulus of elasticity and the density according to the real weight and volume of 

blade should be also modified. Table2.1 shows the modified values that are considered 
for further numerical investigations. 

 
Table 2.1: Modification of Material Characteristics 

Material Characteristics Primary consideration Modified values for Numerical analysis 

Modulus of Elasticity(N/m2)  200e9 200.3 e9 

Density(kg/m2) 7850 7592 

 
The numerical method was also used to obtain the natural frequencies in free-free 

conditions. The mode shapes are shown in Figure 2.10. 
 

 
Figure 2.10: Natural frequencies in three modes 

 
Natural frequencies obtained from both numerical and experimental procedures are 

shown in table2.2. 
 

Table 2.2: Comparison of Natural frequencies 

Natural frequencies Dovetail, Free/free conditions 

Experimental  460 1286 2539 

Numerical Coarse mesh 459.9 1287.7 2556.6 

Refine mesh 459.3 1281.8 2527 
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Chapter 3 
 
Experimental Analysis 

 
In this chapter the experimental analysis is described using the experimental 

measurements. In the first step signal analysis procedure is introduced, then the modal 
parameters are identified. Then analysis of the measurements is described for the first and 
second bending modes. 

 
Identification of damping of nonlinear structures with small damping is rather 

difficult, both for experimental techniques and identification methods. All practical 
engineering structures most likely have non-linear behavior to some extent, which is 
caused by one or several factors. 

The first step of dynamic experimental analysis was to utilize simple procedure to 
establish if the tested system was linear or not and if the degree of linearity depended on 
two parameters: excitation level and centrifugal force, as expected. In these preliminary 
tests only a qualitatively estimation of nonlinear damping is possible. Methods employed 
are based on the fact that many of the properties which hold for linear system or structures 
break down for nonlinear. 

 

3.1 Signal Analysis 
 
The speed signal v(t) for different values of the axial loads has been measured for the 

first and second flexural modes during the experimental procedure. Using these data, the 
dependency of natural frequency and damping to the axial load and vibration amplitude 
can be investigated, i.e., fn = fn (A, Fax) η = η (A,Fax) 
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3.1.1 Extraction of the free decay v(t) signal 
 
The first step is selecting the proper range of data which obtained during the 

experiment. As mentioned, the excitation procedure includes different stages. It is 
necessary to focus on the start point of detachment of the shaker tip from the vibration 
blade for free decay vibration. An example of a velocity signal obtained from the test 
bench is shown in Figure 3.1. 

 

Figure 3.1: Example of v(t) signal obtained from the test bench 
 
Therefore, to get the proper range for further analysis, the recorded data in the time 

frame after the instant detachment of the shaker tip to 1/1000 of the initial envelope’s 
width is selected. An example of such selection criteria is shown in Figure 3.2. 

 
Figure 3.2: Example of a signal restricted to the free decay range 

 

3.2 Identification of modal parameters 
 
This section used the theory of analytical signals and the Hilbert transform to identify 

the nonlinear dependence of the natural frequency, fn, and damping, η, on the vibration 
amplitude. The method that was followed is the "FREEVIB" proposed by Feldman in [3] 
for nonlinear systems [3] and applied to linear systems in [4]. This method effectively 
identifies nonlinearities in the stiffness and damping characteristics of a vibration system. 
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The method is based on input and output time-domain measurements, and their Hilbert 
transforms. It defines the instantaneous modal parameters of a system under a slow or a 
very fast swept frequency test. The Hilbert Transform approach is suitable for any 
vibration system and does not require prior knowledge of the signal or of the system 
parameters. Such nonparametric identification will determine the amplitude and 
frequency dependencies and the initial nonlinear restoring and damping forces. This 
method was also used in the research work of Allara, Filippi, and Gola [1]. 
 

 
3.2.1 FREEVIB method 

 
According to analytical signal theory a real signal y (t) can be represented as: 
 

𝑌(𝑡) = 𝑦(𝑡) + 𝑖𝑦෤(𝑡) = 𝐴(𝑡). 𝑒ି௜ఝ(௧)  with   𝐴ଶ = 𝑦ଶ + 𝑦෤ଶ    tanϕ =
௬෤

௬
  (3.1) 

 
where 𝑦෤(𝑡) is the Hilbert transform of the original signal: 
 

𝑦෤(𝑡) = 𝐻[𝑦(𝑡)] =
ଵ

గ௧
× 𝑦(𝑡) =

ଵ

గ
∫

௬(௧)

௧ିఛ
𝑑𝜏

ାஶ

ିஶ
     (3.2) 

 
and A(t), 𝜑(t) are respectively instantaneous Amplitude (or "Envelope") and 
instantaneous Phase, functions at real time values. The main sources of damping of the 
blade simulacrum are structural damping and friction damping in the dovetail joint. Both 
types of damping can be assumed independent of frequency, as stated in [1] for friction 
damping and in [5] for structural damping. The hysteretic damping model presented by 
Kelvin [5], was then used to represent the damping: 
 
𝑚𝑦̈ = −𝑑. 𝐻[𝑦(𝑡)] + 𝑘. 𝑦(𝑡) = 0                     (3.3)  
 
Multiplying (3.3) by i and applying the Hilbert transform 𝐻[ . ] = . ̃ to both sides: 
 

൛𝑖. 𝑚𝑦෤̈ +𝑖. 𝑑. 𝑦 + 𝑖. 𝑘. 𝑦෤ = 0                                                                          (3.4) 

 
By using the transform properties: 
 

𝐻ൣ𝐻[𝑦]൧ = −𝑦𝐻[
ௗ௬

ௗ௧
] =

ௗு[௬]

ௗ௧
       (3.5) 

 
Then, by adding the two equations, we obtain: 
 
𝑚(𝑦̈ + 𝑖𝑦෤̈) + 𝑖𝑑(𝑦 + 𝑖𝑦෤) + 𝑘(𝑦 + 𝑖𝑦෤) =0     (3.6) 
Or 
m𝑌̈ + idY + kY = 0 
Defining 

𝜔௡
ଶ =

௞

௠
         𝜂 =

ௗ

௞
  Loss Factor        

 
the equation becomes:  
 
𝑌̈ + 𝜔௡

ଶ(1 + 𝑖𝜂)𝑌 = 0        (3.7) 
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Once the model is defined, the analytical signal is derived as described in [3]: 
 
𝑌 = 𝑦(𝑡) + 𝑖𝑦෤(𝑡) = 𝐴(𝑡). 𝑒௜ఝ(௧) 

𝑌̇ =
ௗ(஺(௧).௘೔ക(೟))

ௗ௧
 = 𝐴̇ 𝑒௜ఝ + 𝑖𝐴𝜔 𝑒௜ఝ = 𝑌[

஺̇

஺
+ 𝑖𝜔]    (3.8) 

𝑌̈ = 𝑌[
஺̈

஺
− 𝜔ଶ + 𝑖2𝜔

஺̇

஺
+ 𝑖𝜔̇] 

 

Substituting 
௒̈

௒
 in the equation (3.8) of the model and dividing by Y: 

 
஺̈

஺
− 𝜔ଶ + 𝑖2𝜔

஺̇

஺
+ 𝑖𝜔̇ + 𝜔௡

ଶ(1 + 𝑖𝜂)=0      (3.9) 

 
Thus, two equations are obtained, one for the real part and the other for the imaginary 
part, as below: 
 

ቐ

஺̈

஺
− 𝜔ଶ + 𝜔௡

ଶ = 0

2𝜔
஺̇

஺
+ 𝜔̇ + 𝜔௡

ଶ𝜂 = 0
        (3.10) 

 
So the frequency and damping can be obtained as below: 
 

ቐ
𝜔௡

ଶ = 𝜔ଶ −
஺̈

஺

𝜂 = −
ଵ

ఠ೙
మ (2𝜔

஺̇

஺
+ 𝜔̇)

        (3.11) 

 
All the parameters on the second side of the above equation are the values related to 

the signal that depends on time. The vibration amplitude of the free decay is also a one-
to-one function of time A = A (t). So, the nonlinear relationship of modal parameters, 
which depends on time, can be graphically determined. An example is shown in Figure 
3.3 and Figure 3.4. 
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Figure 3.3: Example of the envelope, natural frequency, and damping in case of P=30bar 

 
 

Figure 3.4: Example of nonlinear dependence fn (A) and η (A) obtained with the FREEVIB method 
 

To obtain the second side quantities of the equation (3.11) which the parameters 
depends modal, the expressions can be written as a function of  

𝑦, 𝑦̇, 𝑦̈             𝑦෤, 𝑦෤,̇  𝑦෤̈ 
from the equations (3.10) 
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𝑌̇ = 𝑦̇ + 𝑖𝑦෤̇ =  𝑌 ቈ
𝐴̇

𝐴
+ 𝑖𝜔቉ =  (𝑦 + 𝑖𝑦෤) ቈ

𝐴̇

𝐴
+ 𝑖𝜔቉ = ቆ

𝐴̇

𝐴
𝑦 − 𝜔𝑦෤ቇ +  ቆ

𝐴̇

𝐴
𝑦෤ + 𝜔𝑦ቇ 

 
From which 
 

  (3.12) 
 
and similarly by the third equation (3.10) 
 

 
From which 
 

(3.13) 
 

In the case in question, the speed v(t) = 𝑦̇ is known, while the displacement y and the 

acceleration 𝑦̈ are obtained by integration and numerical differentiation. The signals 𝑦෤, 𝑦෤̇, 

𝑦෤̈ are obtained by applying the Hilbert numerical transform to y, 𝑦̇, 𝑦̈, respectively. 
The codes that used to apply the Hilbert transform, differentiate, and integrate the 

signals provided in [2,3] by Feldman himself, author of the FREEVIB method. In detail, 
the differentiation and Hilbert transformation are implemented via Parks-McClellan 
filters applied within a zero-phase filtering procedure. The integration is implemented 
with the trapezoids method, and any constant component is subtracted from the result, 
extracted with a medium filter. 
 

3.3 Modelling of the code with 1 D.O.F. model 
 

The nonlinearity behavior of this research case is due to the friction in contacts 
between the blade root and the support slots. For this reason, as shown in Figure 3.5, a 
simple model with one degree of freedom has been chosen with the same type of 
nonlinearity to validate the code that implements the FREEVIB method. 
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Figure 3.5: Model 1 D.O.F. with sliding contact for FREEVIB validation 

 
3.3.1 Sliding contact pattern 
 

The "spring-slider" contact model developed and applied by many authors [21], [22], 
[23], [24]. Its simplest formulation includes a constant normal preload force N0, a 
tangential stiffness kt, and a coefficient of friction μ, as shown in Figure 3.5. 
The displacement of the single degree of freedom is indicated by x and the relative sliding 
by w. The tangential force at the contact T varies according to the state of the contact 
(adhesion or sliding): 
 

𝑇(𝑡) = ቊ
𝑘௧. ൫𝑥(𝑡) − 𝑤(𝑡)൯

𝜇. 𝑁଴ . 𝑠𝑖𝑔𝑛(𝑤̇)
 

Stick                                                                 (3.14) 
Slip 

 
where the contact states are defined as: 
 

ቄ
𝑤̇ = 0      0
𝑥̇ = 𝑤̇ ≠ 0

 Stick 
Slip 

The following criteria dictate the transition from one contact state to another, which 
is analyzed in detail in [21]: 
The transition occurs from stick to slip when |T| = μ.N0 and from slip to stick when 𝑤̇ = 0 
 
3.3.2 Method of temporal integration 
 

 In the Newmark method, for the time integration of the equilibrium equations of the 
system: 

𝑀𝑞̈௡ାଵ + 𝐶𝑞̇௡ାଵ + 𝐾𝑞௡ାଵ +  𝐹௖(𝑞௡ାଵ, 𝑞̇௡ାଵ) = 𝐹௘     (3.15) 
 
This method adopted, in which it is assumed: 
 

ቐ

𝑞̇
𝑛+1

=  𝑞̇
𝑛

+ ∆𝑡𝑞̈𝛾                                 𝑤𝑖𝑡ℎ  𝑞̈𝛾  = (1 − 𝛾)𝑞̈𝑛 + 𝛾𝑞̈௡ାଵ              0 ≤ 𝛾 ≤ 1

𝑞𝑛+1 = 𝑞̇
𝑛+1

+  ∆𝑡∆𝑡𝑞̇𝑛 +
∆𝑡ଶ

2
𝑞̈𝛽        𝑤𝑖𝑡ℎ  𝑞̈𝛽  = (1 − 2𝛽)𝑞̈𝑛 + 2𝛽𝑞̈௡ାଵ      0 ≤ 2𝛽 ≤ 1
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For each nth time step of amplitude Δt, the following system of equations in the 
unknown qn+1 is obtained: 
 
Mf(qn+1)+Cg(qn+1)+Kqn+1+Fc(qn+1, g(qn+1)) = Fe    (3.16) 

 

For the parameters γ, β the values were chosen: γ = 1/2 and β = 1/4, which guarantee 
unconditional stability of the method and the lack of numerical damping, as stated in [27] 
and [28]. The range of Δt was chosen in such a way to ensure convergence of the method 
ωΔt <2 as referred to in [27], 
 

∆𝑡 = 0.02
2

𝑚𝑎𝑥{𝜔௡ௌ௧௜௖௞}
 

 
The system of equations must be solved iteratively at each integration step due to the 
nonlinearity introduced by the contact force Fc. This force is managed with the method 
set out below. 
 
3.3.3 State Contact and the relevant contact force 
 

The state of the contact at each time step and the consequent tangential force is 
determined using the Forecast-Correction method used in [23], [24], [28] as shown in 
Figure 3.6: 

1. PREDICTOR STEP: it is assumed that at the (n + 1)th step, the contact is in stick: 

   (3.17) 
 
The solution using the Newmark method is 𝑥௡ାଵ

௣
= 𝑞௡ାଵ

௣ . 
 

2. CORRECTOR STEP: the validity of the assumption on the status of the contact is 
verified: 
If 
|𝑇௣| < 𝜇𝑁଴ then, contact in stick, 𝑥௡ାଵ = 𝑥௡ାଵ

௣  
 
Else 
 

Contact in slipቊ
𝑇௡ାଵ = 𝜇𝑁଴. 𝑠𝑖𝑔𝑛(𝑇௣)

𝑤௡ାଵ = 𝑥௡ − ೙்శభ

௞೟

 

 

𝑥௡ାଵ recalculated with Newmark with true 𝑇௡ାଵ 
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Figure 3.6. Predictor-Corrector scheme 

 
 
3.4 Comparison between the theoretical modal parameters and 
FREEVIB method 
 

The developed FREEVIB version in this work can only be applied to frequency-
independent dampings, such as structural and friction damping systems. The one-degree-
of-freedom model used for code validation should therefore have structural (and non-
viscous) damping in addition to sliding contact. However, the temporal integration of 
systems containing the structural damping of the Kelvin model requires particular 
methods to obtain a stable solution, such as the integration back in time for the modal 
coordinates associated with unstable poles, presented in [5]. Structural and viscous 
damping has the following equivalence for linear systems: 

𝜂 = 2𝜻
𝝎

𝝎𝒏
         (3.18) 

which in the case of free decay, where ω = ωn for the linear case, becomes: 
𝜂 = 2𝜻 

In this work, a model with a D.O.F. is adopted with viscous damping to check the 
frequency and damping values in a complete adhesion contact state. 

Subsequently, a model without damping is adopted to verify the nonlinear damping 
trend and frequency as a function of vibration amplitude. The results will be compared 
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with the theoretical trends obtained with the Single Harmonic Balancing Method 
(SHBM)[29]. 

To verify the values during the complete adhesion state, the parameters for the 1 
D.O.F. was chosen arbitrarily. Then damping η, natural frequency fn during the complete 
adhesion of the contact (linear system), and the amplitude of critical oscillation XCr 
beyond which sliding is possible have been calculated [29].  
 

 
The frequency and damping and also the contact state for this example is shown in 

Figure 3.7. 

 
Figure 3.7: 1 D.O.F. Model, Direct integration 

 
In Figure 3.8, the result of FREEVIB application to the model with a degree of 

freedom is shown. The frequency obtained under adhesion conditions corresponds to 
theoretical (fn=544.73[Hz]) with an error of 0.03% and the damping (η=5·10−3) with an 
error of 0.11%. The critical vibration amplitude (XCr=μN0kt= 100μm) has the largest error 
by 6.3%. 
 



- 41 - 
 

 
Figure 3.8: Application of the FREEVIB method to the 1 DOF model 

 
The nonlinearity corresponds to the theoretical prediction which presented by the 

Single Harmonic Balance Method [29]. Then the sliding contact can be represented with 
an equivalent stiffness and equivalent damping as below: 

 
 

௞೐೜

௞೟
=

ଵ

గ
ቀ𝜃஻ −  

ଵ

ଶ
sin (2𝜃஻)ቁ   

௖೐೜

௞೟
=

ସ

గ

ଵ

൬
ೣబ

ೣ಴ೝ
൰

൭1 −
ଵ

൬
ೣబ

ೣ಴ೝ
൰
൱ 3.19 

Where 

𝜃஻ = 𝑎𝑟𝑐𝑐𝑜𝑠 ൭1 −
ଶ

൬
ೣబ

ೣ಴ೝ
൰
൱  𝑥஼௥ =

ఓேబ

௞೅
 𝑥଴ is the amplitude of oscillation 

 

 
Figure 3.9: Equivalent stiffness and damping provided by the SHBM 
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3.5 Analysis of the measurements 
 
In this section, analysis of the measurements obtained during the experimental 

procedure is investigated. It includes the first flexural mode, the second flexural mode, 
the effect of vibration amplitude, and the axial load on frequency and damping. It leads 
to the proper selection of the target to investigate the contact stiffness in a diverse range 
of axial loads. 
 

3.5.1 First Flexural Mode 
 
To investigate the effect of vibration amplitude and traction force on frequency and 

damping in the first flexural mode, the measurement point is shown in Figure 3.10. It is 
supposed to be in the beam's middle point to be matched with the relevant mode shape.  
 

 
 

Figure 3.10: Measurement point for First Flexural Mode 
 
3.5.1.1 Effect of vibration amplitude on frequency and damping 
 
Damping 

 
The dependence of damping on vibration amplitude, visible in Figure 3.11, confirms 

the results by the Single Harmonic Balance Method [29]. 
The vibration amplitude shown in the below graphs is on the point indicated in Figure 

3.10, which is the antinode of the first flexural mode. The damping trend by the SHBM 
was reported as a function of oscillation amplitude of the contact points, which in the case 
in question are the contact points of the dovetail joints. For small vibration amplitudes, 
there is constant damping, i.e., independent of the amplitude, which is an index of 
complete adhesion of contact areas. Therefore, it implies the linearity of the system in 
question. For amplitudes greater than a critical value, the damping shows a steep increase, 
indicating the beginning of possible sliding in the contact areas and the establishment of 
the hysteresis cycle due to the alternation between adhesion and sliding states during each 
oscillation cycle. 
Dissipation of energy due to this phenomenon has a maximum according to the vibration 
amplitude, as can be seen in Figure 3.11, beyond which the damping decreases. 



- 43 - 
 

 
Figure 3.11: First Flexural Mode: Damping as a function of amplitude 

 
Frequency 

 
The frequency dependence on the vibration amplitude, visible in Figure 3.12, differs 

from the Single Harmonic Balance Method [29], which was analyzed previously. This is 
likely due to the following factors: 
• In Figure 3.12, the frequency is shown as a function of the oscillation amplitude on the 
antinode of the first flexural mode, different from the point of contact, as explained in 
detail in the previous paragraph. 
• The frequency of the first inflectional model shown in Figure 3.12 depends on the 
behavior of four contact areas, including two for each dovetail joint. Instead, in the graphs 
of SHBM, the single contact is analyzed. 
For small vibration amplitudes, it is still possible to observe a constant frequency, i.e., 
independent of amplitude as an index of complete adhesion, which implies the linearity 
of the system in question. 
For amplitudes greater than a critical value, the frequency presents a steep decrease, 
indicating the beginning of possible sliding in contact areas and the establishment of the 
hysteresis cycle due to the alternation between adhesion and sliding states during each 
oscillation cycle. 
For low values of traction force, it is hypothesized that stiffening (frequency increase) 
observable as the vibration amplitude increases is due to the variation of normal force at 
contact areas caused by beam bending. An increase in this normal force could imply an 
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adhesion state. On the other hand, the hypothesis of constant normal force would be in 
sliding conditions. 

 
Figure 3.12: Frequency as a function of Amplitude Effect of traction force on frequency 

and damping for first flexural mode 
 

3.5.1.2 Effect of traction force on frequency and damping 
 
Damping 

 
Figure 3.11 shows a reduction in the maximum damping as the traction force 

increases. This behavior can be explained by assuming that not all four contact areas are 
in the state of macro-slip, but there are some contact areas in the micro-slip state, sliding 
only at the edges of the contact area. This hypothesis is compatible with the previous 
supposition of variation in force normal on the contact areas caused by the bending of the 
beam. 

In this hypothesis, an increase in traction force would imply an increase in normal 
contact force. For micro-slip areas, an increase in contact area in complete adhesion and 
a reduction in the peripheral area subject to sliding, caused a consequent reduction of 
energy dissipation and, therefore, damping.  

Figure 3.13b, represents the damping under adhesion conditions as a function of 
traction force. There is also an increase in the average value of frequency (average with 
respect to the vibration amplitude) as the traction force increases as shows in Figure 3.13a. 

This stiffening effect is also clearly visible in Figure 3.13a, which also shows the 
theoretical trend obtained from the model of Euler-Bernoulli beam stuck at the two ends, 
modified to consider the braking moment due to the normal stress in the deformed 
configuration of the beam [30 ]. 

Figure 3.13a also shows that for axial forces less than about 12kN, the frequency 
trend differs from the theoretical one. This phenomenon was also described in [1], where 
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it is assumed that for low values of traction force, micro-slips are present in contact areas, 
decreasing the effective stiffness of the dovetail joint. 
 
 

 
(a)                                                                    (b) 

Figure 3.13: Effect of the tensile force on fn and η under adhesion conditions 
 

Visualization of combined effects of axial force and amplitude on damping and 
frequency in the first flexural mode is shown in Figure 3.14 and Figure 3.15. 

 
 

Figure 3.14: Natural frequency as a function of vibration amplitude and traction 
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Figure 3.15: Damping as a function of the vibration amplitude and traction 

 

3.5.2 Second Flexural Mode 
 

To investigate the effect of vibration amplitude and traction force on frequency and 
damping in the first flexural mode, the measurement point is shown in Figure 3.16. It is 
supposed to be in this point to be matched with the relevant mode shape.  
 

 
 

Figure 3.16: Second Flexural Mode measurement point 
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3.5.2.1 Effect of vibration amplitude on frequency and damping 
 
Damping  

 
The dependence of damping on the vibration amplitude in the second flexural mode 

(Figure 3.17) recalls what was found for the first mode. There is an initial stretch of 
constant damping that is not dependent on the amplitude and a critical value beyond 
which the sliding begins, causing the steep growth of the damping. 
For the same traction force, the critical amplitude depends on the effective ARMS input 
current to the shaker. This current defines the amplitude of the exciting force before 
detachment of the shaker tip from the blade that means the vibration amplitude at the 
beginning of free decay. 
 
Frequency 

Dependence of the frequency to vibration amplitude (Figure 3.17) has a constant trait 
for low amplitude values, indicating the complete adhesion of contact areas. 
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Figure 3.17: Second Flexural: Frequency = fn (Amplitude), damping = η (Amplitude) for different values 

of effective ARMS current sent to the shaker 

 
3.5.2.2 Effect of traction force on frequency and damping 
 
Damping 

 
As shown in Figure 3.17 and the second graph of Figure 3.18, incomplete damping 

adhesion has a maximum of about 8kN applied force, beyond which it decreases as the 
traction force increases. Also, a slight variability of the results was found as a function of 
ARMS current entering the shaker. 

From the graphs in Figure 3.17, there is a decrease in the critical amplitude as the 
traction force increases. Such a phenomenon also presents for the first flexion mode, to 
which a hypothesis was referred. 
 
Frequency 

 
The frequency trend as a function of traction force (Figures 3.17, 3.18) re-proposes 

the stiffening effect which was already found for the first flexural mode, with the 
deviation of the measured frequencies from the theoretical ones for low force values, a 
phenomenon probably due to the micro slip in the contacts. 
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Figure 3.18: Effect of the tensile force on fn and η under adhesion conditions 

 
Visualization of the combined effects of axial force and amplitude on damping and 

frequency in the second flexural mode is shown in Figure 3.19 and Figure 3.20. 
 
 

 
 

Figure 3.19: Frequency as a function of the amplitude of vibration and traction 
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Figure 3.20: Damping as a function of vibration amplitude and traction 

 

3.6 Estimation of errors 
 
Measurement inaccuracies are critical when estimating the damping of a lightly 

damped structure. It is inevitable to have some errors during the measurement, so to 
increase the confidence in the results, a procedure is proposed in Appendix F to calculate 
the measurement error propagation to the calculated frequency and damping. The possible 
sources of the inaccuracy in the measurements can be summarized as follows: 

 
1. uncertainty of axial traction force due to accuracy of pressure gauge used to 

measure the actuator pressure. This type of error can be easily estimated 
considering the accuracy of the pressure gauge: 

𝛿𝑝

𝑝
= 1%          @700𝑏𝑎𝑟 

𝐹 = 𝐴௖௬௟. 𝑝 →
𝛿𝐹

𝐹
= 1% 

2. uncertainty of speed measurement due to the precision of laser interferometer and 
consequent propagation of this error in the signal analysis procedure  

The error analysis was carried out only in the range of vibration amplitudes for which 
the contacts can be considered in full adhesion or where frequency and damping have a 
constant trend, not dependent on the amplitude. 

For each axial force, the mean 𝑓௝̅, 𝜂̅௝ and the standard deviation were calculated (σf)j, (ση)j 
for each j-th frequency and damping measurement. 
 

  (3.20) 
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The average values of all measurements carried out at the same axial force were then 
calculated and the error propagation was calculated using the formula: 

 

 (3.21) 
 

Fax [N] fn [Hz] dfn[Hz] dfn/fn 𝜼 d𝜼 d𝜼/𝜼 

3580 480.03 0.28 0.058% 0.04864 0.00034 0.7% 
3938 488.64 0.51 0.103% 0.01147 0.00049 21.7% 
5370 505.34 0.11 0.022% 0.00573 0.00074 12.9% 
5907 512.34 0.20 0.039% 0.00512 0.00066 12.8% 
6802 521.17 0.08 0.013% 0.01121 0.00024 2.1% 
7160 522.41 0.04 0.007% 0.01174 0.00030 2.6% 
7697 527.78 0.02 0.004% 0.00293 0.00002 0.6% 
10382 535.22 0.01 0.002% 0.00188 0.00001 0.6% 
12530 540.31 0.01 0.001% 0.00203 0.00001 0.2% 
24165 559.87 0.11 0.021% 0.00721 0.00041 5.8% 

 
Table 3.1: First Flexural Mode: Error estimate - contact Status: STICK 

 
 

Fax [N] fn [Hz] dfn[Hz] dfn/fn 𝜼 d𝜼 d𝜼/𝜼 

1790 1300.42 0.10 0.007% 0.00456 0.00023 5.1% 
3401 1292.21 0.20 0.015% 0.00418 0.00030 5.0% 
3580 1333.48 0.18 0.013% 0.00511 0.00021 7.2% 
3759 1328.07 0.21 0.016% 0.00391 0.00058 4.1% 
4654 1366.83 0.14 0.010% 0.00757 0.00062 14.8% 
5012 1361.97 0.49 0.036% 0.00731 0.00014 8.2% 
5191 1364.20 0.17 0.012% 0.00638 0.00017 1.9% 
5370 1363.86 0.26 0.019% 0.00679 0.00025 2.7% 
5549 1382.93 0.12 0.009% 0.00739 0.00029 3.7% 
6265 1399.80 0.11 0.008% 0.00880 0.00005 3.9% 
7160 1406.46 0.15 0.010% 0.01152 0.00007 0.6% 
7697 1418.69 0.09 0.006% 0.00975 0.00016 0.6% 
8950 1430.47 0.09 0.006% 0.00828 0.00009 1.6% 
10382 1440.05 0.07 0.005% 0.00684 0.00003 1.1% 
10740 1443.01 0.13 0.009% 0.00731 0.00018 0.4% 
12172 1445.92 0.04 0.003% 0.00684 0.00011 2.5% 
12530 1450.65 0.06 0.004% 0.00691 0.00017 1.6% 
13783 1450.10 0.03 0.002% 0.00696 0.00017 2.5% 
14320 1454.84 0.02 0.001% 0.00627 0.00015 2.4% 
14678 1457.82 0.04 0.002% 0.00618 0.00007 2.4% 
16110 1458.34 0.07 0.005% 0.00615 0.00008 1.1% 
17900 1464.49 0.35 0.024% 0.00541 0.00031 1.3% 
18795 1466.33 0.77 0.053% 0.00527 0.00089 5.7% 
19690 1470.16 0.06 0.004% 0.00522 0.00012 16.9% 
21480 1474.05 0.06 0.004% 0.00531 0.00009 2.3% 
23270 1480.02 0.17 0.011% 0.00452 0.00038 1.7% 
23449 1478.18 0.03 0.002% 0.00567 0.00002 8.4% 

 
Table 3.2: Second Flexural Way: Error estimate - contact Status: STICK 
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Chapter 4 
 
Numerical Simulations 
 
4.1. The general procedure of simulation with Finite Elements 
 

The objective of the numerical part of this work is to find the normal and tangential 
stiffness values, kn and kt of the contact areas of the dovetail joint, as shown in Figure 4.1. 
These values represent the input parameters of the typical Node-to-Node contact elements 
used in numerical simulations [21-23, 35, 36]. 
 

Figure 4.1: Dovetail joint under examination 
 
The following procedure was followed to find the values of kn and kt:  

1. The blade model with two dovetail ends was discretized with the finite element method 
implemented in ANSYS ®, as well as the beam supports (slots), paying particular 
attention to the coincidence of nodes in the contact interfaces  
2. As the axial traction force changes, nonlinear static analysis was carried out just on the 
blade to obtain the stiffening effect of this force in stiffness matrices of the blade, which 
will be used later. 
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3. Model degrees of freedom were reduced using Craig-Bampton's Component Mode 
Synthesis technique [35]. Then the reduced model of mass and stiffness matrices were 
imported into MATLAB®. The reduction includes the contact nodes and other nodes 
necessary for displaying the modes. 
4. The reduced models of the beam and supports were assembled in MATLAB® by 
introducing linear contact elements, i.e., contact elements that do not implement the 
sliding or separation state of the contact. The parameters of these elements are the values 
of kn and kt, which are the object of this research. 
5. A developed code compares the frequencies of the first and second flexural modes of 
the F.E. model with corresponding frequencies obtained from the analysis of 
measurements. It is done in the range of axial traction forces in which complete adhesion 
of the contacts was found, which implies linearity of contacts. 
 
4.2. Finite Element Model 
 

The model was discretized with a structured mesh where possible. SOLID185 8-node 
hexahedral linear elements were used, the size of which was gradually reduced in the 
vicinity of the contact areas as shown in Figure 4.2 

Figure 4.2: F.E. model of the blade simulacrum and slots 
 

As shown in Figure 4.3, the coincidence of the beam nodes and the slots in the contact 
interfaces has been set geometric to use Node-to-Node contact elements in the subsequent 
assembly. 

 

 
Figure 4.3: Nodes at the contact interface 
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In order to subsequently insert the contact elements, the nodes at the interface must 
be distinct and coincident only in the position. In other words, for each pair of nodes 
having the same position, the identification number of the beam node must be different 
from the slot node. However, the distinction between beam nodes and slots for interfaces 
is only necessary during the assembly of the bodies in MATLAB®, while in ANSYS®, 
beam and slots will be analyzed individually. 
 
4.3 Stiffening effect of the axial load 
 

To consider the nonlinearity due to the stiffening effect of the axial traction force, the 
static analyzes just on the beam should be carried out as the force varied. The additional 
stiffness matrix ΔKF was obtained for each force, which will be considered in the 
subsequent C.M.S. reduction of the model. Total stiffness can be defined as below: 

 
K = K(F = 0) + ΔKF        (4.1) 

     (4.2) 
 
where [σ] is the stress tensor and [Sg] is the matrix of the derivatives of the shape functions 
[36]. 
 

The beam was loaded on both ends with forces normal to the contact areas, simulating 
the limit condition of zero tangential forces on contact. The reference loading for each 
static analysis is the axial force Fax visible in Figure 4.4. The normal loads at the N0 
contact were therefore imposed as a function of the axial force. So, from the balance of 
forces: 

 

𝑁଴ =
ಷೌೣ

మ

ௌ௜௡(ఏ)
        with θ = 45◦ 

 
Figure 4.4: Load system for static analysis 

 
The loaded blade thus is subject to a self-balanced system of forces. It does not require 

reactions. However, the software does not allow the static analysis to be carried out 
without introducing constraints. As shown in Figure 4.5, four elastic supports with 
stiffness close to zero are considered on specific nodes to avoid the influence on 
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subsequent analysis. These nodes are located in the first, middle and last nodes of the mid 
line of blade bottom. Another node is also selected in the mid of blade. 

 

 
Figure 4.5: Constraints by elastic supports on specific nodes for static analysis 

 
To verify that the assigned constraints did not affect the dynamic behavior of the 

beam, a comparison between the frequencies of a free beam with the constrained beam 
with elastic supports was made. The results in Table 4.1 show no stiffening effect due to 
the applied constraints. 

 
Table 4.1: Comparison between the frequencies [Hz] of a free beam with the constrained 

beam with elastic supports 
Mode Free beam 

frequency[Hz] 
Beam with Elastic Support 
frequency[Hz] 

1 0 0 

2 0 0 

3 0 0 

4 0 0.15 

5 0 1.09 

6 0 1.11 

7 476.75 476.76 

8 1162.9 1162.9 

9 1284.6 1284.6 

10 2613.6 2613.6 

11 2869.3 2869.3 

12 3154.8 3154.8 
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4.3.1 Stiffening effect on beam 
 

For each associated static analysis to the assigned axial force, to check the effect of 
the additional stiffness matrix ΔKF, a linear modal analysis was carried out using equation 
(4.1). An increase in the value of frequencies was found with increasing axial force, such 
as predicted by theoretical models [30]. Stiffening effect of axial force on the beam is 
shown in Table 4.2 and Figure 4.6. 

 

F [N] 1 5000 10000 15000 20000 25000 30000 
Mode f [Hz] 
X 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
y 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Z 3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Rx 4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Ry 5 1.1 74.7 105.5 129.1 149.0 166.4 182.2 
Rz 6 1.1 76.4 108.0 132.2 152.6 170.6 186.8 
1Fy 7 476.8 498.8 519.9 540.1 559.6 578.4 596.6 
1Fz 8 1162.9 1172.6 1182.3 1191.8 1201.3 1210.7 1220.0 
2Fy 9 1284.6 1302.0 1319.1 1336.0 1352.7 1369.2 1385.5 
3Fy 10 2613.6 2627.9 2642.1 2656.3 2670.4 2684.5 2698.4 

 
Table 4.2: Stiffening effect of axial force on the beam 

 

 
Figure 4.6: Stiffening effect of axial force on the beam 
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4.3.2 Stiffening effect on Slots 
 

In a preliminary analysis, the stiffening effect was also introduced for the slots. For 
this analysis, the nodes at the base of the supports were constrained, and a force was 
applied on the contact surfaces, Figure 4.7. As shown in Figure 4.8, the stiffening effect 
was found negligible. Therefore, the supports model can be considered in further analysis 
without loads or constraints. 

 
Figure 4.7: Load and constraints on slots to investigate the stiffening effect 

 

 
Figure 4.8: Negligible stiffening effect on slots 

 
4.4 CMS reduction of the model 

 
To identify the stiffness values by comparing F.E. frequencies with experimental 

measurements, a global search method varying kn, kt is considered. So, many modal 
analyzes should be carried out to this purpose. To reduce the computation cost, it was 
decided to preliminarily reduce the degrees of freedom of beam and support models with 
a procedure belonging to the Component Mode Synthesis proposed by Craig-Bampton 
[35]. 
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In this method, a change of coordinates of the motion equations should be 
implemented. The first step is to break down the degrees of freedom of the model into 
"master D.O.F.s" - which will be also present in the final reduced model - and "slave 
D.O.F.s". Given the system of equations of the motion as below: 

 
[M]{u¨} + [K] {u} = {0}       (4.3) 
 

The following partitioning can be considered: 
 

         (4.4) 
 

Defining the "Static Modes" [ΦC] as the displacements of the "slave D.O.F.s" due to 
the displacements of "Master D.O.F.s," can be written as: 
 

(4.5) 
 

The "Internal Modes" [ΦN] is defined as the structure modes when all the "master 
D.O.F.s" is bound: 

 
 ω2[Mss ][ΦN] = [Kss ][ΦN]       (4.6) 
 
It is now assumed that, when all the "master D.O.F.s" is bound, the movements of the 

"slave D.O.F.s" can be approximated by the combination of a subset of the internal 
modes: 

    (4.7) 
                  

A new generalized coordinate system is adopted consisting of the "master" degrees 
of freedom and the coordinates {pN}: 

{𝑝} = ቄ
௨೘

௣ಿ
ቅ         (4.8) 

Therefore, the movements of the "slave D.O.F.s" can be written according to the new 
coordinates Using Static Modes and Internal Modes: 
 
{us } = [ΦC ]{um}+[ΦN]{pN}      (4.9) 
 

That is, the initial degrees of freedom and the new generalized coordinate system are 
related by transformation matrix: 
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  (4.10) 
 
The equations of motion of the structure in the new coordinates are therefore: 
 

(4.11) 
 
So the matrices [M], [K] of the reduced system can be obtained as below: 
 

            (4.12) 
Where 
 

 
 

4.4.1 Choice of Master Nodes 
 

The master nodes chosen for the beam (to which the master D.O.F.s correspond) 
includes: 
• selected nodes for each of the four contact interfaces; 
• selected nodes along the longitudinal axis of the beam, for each of the two sides to view 
the modal forms of the reduced model. 
The following master nodes have also been chosen for each of the two supports: 
• selected nodes for each of the two contact interfaces; 
• selected nodes corresponding to the vertices of the support for displaying the modes; 
• the nodes at the base of the support to be subsequently constrained in MATLAB 
The selected nodes described above are shown in Figure 4.9.  
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Figure 4.9: Master nodes for the reduced model 
 

Once the master nodes were defined, the reduction of each was carried out on 
ANSYS® of the three models including the beam and two slots, and respectively reduced 
matrices [M], [K] have been exported. 

The matrices of the reduced models were imported into MATLAB®, and the modal 
analysis was performed for each model (beam and the two supports). The frequencies 
obtained were compared with those deriving from the modal analysis of the respective 
non-reduced models carried out on ANSYS®. The results were obtained with a maximum 
percentage difference of 0.05%. 

 
4.5 Resonance frequency dependence on the tensile load 
 

In this section the numerical method is used to estimate the variation of frequency 
with the variation of the tensile load. The below procedure has been done and the results 
are shown in further figures: 

1- Static solution with pre-stress effects calculation, Pressure applied on the contact 
surfaces  

2- Modal solution including pre-stress effects, remove the pressure applied and apply 
different boundary conditions  

3-1 All nodes of contact surfaces are fixed in both normal and tangential directions 
3-2 All nodes fixed in normal direction 

As shown in Figure 4.10, all nodes in contact surfaces were fixed in normal direction. 
The obtained frequencies using this assumption is shown in Table 4.3. It reflects the 
frictionless status.  
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Figure 4.10: All nodes fixed in normal direction 
 
 

Table 4.3: Frequency variations considering all nodes fixed in normal direction 
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As shown in Figure 4.11, all nodes in contact surfaces were fixed in in both normal and 
tangential directions. The obtained frequencies using this assumption is shown in Table 
4.4.  
 
 

 
Figure 4.11: All nodes of contact surfaces fixed in both normal and tangential directions 
 
 
Table 4.4: Frequency variations considering all nodes of contact surfaces fixed in both 

normal and tangential directions 

 
 
 
Figure 4.12 and Figure 4.13 shows the resonance frequency dependence on tensile load 
in first/second bending modes respectively for both constraint’ assumptions. 
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Figure 4.12: Resonance frequency dependence on tensile load, first bending mode 

  
 

 
Figure 4.13: Resonance frequency dependence on tensile load, second bending mode 
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Chapter 5 
 
Contact Stiffness Model 
 
 

Contact models are essential to predict the dynamic behavior of structures that 
include contacts. Forces that develop at the contact surfaces may affect the structures in 
different ways. The non-linear behavior of the contact and the coupling between 
tangential and normal forces induce non-linear static and dynamic responses e.g. stick-
slip oscillation, noise, chattering. 

In this chapter, a contact stiffness model is described in which the [𝑀ഥ] and [𝐾ഥ] 
matrices of the reduced models for the beam, and two supports are used to define the 
global matrices [MGLOB] and [KGLOB] for the complete assembly, including the beam and 
two slots. This procedure was repeated for each matrix [K]i of the beam, which contains 
the stiffening effect of the i-th axial traction force. The nodes at the base of slots were 
constrained, and contact elements which are defined by the parameters kn and kt, were 
added to the interfaces. 

 
 

5.1. Definition of assembly matrices 
 
By defining the proper nodes in contact interfaces on the blade and slots in different 

directions, the integration of  [𝑀ഥ] and [𝐾ഥ] matrices in assembly can be indicated in 
Figures 5.1 and 5.2. 
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Figure 5.1: Assembly of the super element mass matrices 

 

 
Figure 5.2: Assembly of the super element stiffness matrices 

 
5.1.1 Constraints on the supports 
 
For the subsequent modal analysis, it was necessary to constrain the nodes at the base 

of the supports. These nodes were previously inserted between the master nodes to 
possibly carry out static analysis by applying the loads on them. Target nodes at the base 
of the supports are shown in Figure 5.3. 
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Figure 5.3: Target nodes at the base of the supports 

 
By dividing the degrees of freedom between the effectively free (F) and the 

constrained ones (C), it was possible to partition the mass and stiffness matrices as below: 

(5.1) 
From which 
 

    (5.2) 
 
Then the modal analyzes were carried out using the matrices [MFF], [KFF], obtained 

from the global matrices [MGLOB], [KGLOB] by eliminating the rows and columns 
orresponding to the degrees of freedom of bases (B) of two supports. The structure of the 
resulting matrices can be seen in Figures 5.4 and 5.5. 
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Figure 5.4: Global mass matrix after adding the constraints 
 

 
Figure 5.5: Global stiffness matrix after adding the constraints 

 
5.1.2 Connectivity matrix 
 

To insert the contact elements to the interfaces, a connectivity matrix should be 
defined to associate the degrees of freedom of coincident nodes of beam and supports. 
Each row of the connectivity matrix corresponds to a pair of coincident nodes between 
which a contact element should be inserted. 

 
 

Coincident nodes were identified by looking for nodes with the same identification 
number used in ANSYS. It was verified that this method is equivalent to searching for 
nodes having the same coordinates. 
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5.1.3 Contact Element 
 

As shown in Figure 5.6, linear contact elements were considered which do not 
implement sliding nor the separation of contact. The stiffness matrix in local coordinates 
can be written as below: 

 

 

 
Figure 5.6: Linear contact element 

 
5.1.4 Stiffness matrix in global coordinates 
 

As the total potential energy is invariant with respect to the reference system, the 
rotation matrix [Λ] can be used to switch from the local to the global system. The rotation 
matrix is given by the relation: 

 

(5.3) 
 
Where the rotation matrix is given by the relation 
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          With  
 

Rotation state of the coordinates of the contact elements is shown in Figure 5.7. 

 
Figure 5.7: Rotation of the coordinates of the contact elements 

 
For the assembly of the contact elements, a contact element was then inserted for each 

pair of coincident nodes by adding the element matrix in global coordinates [𝐾(௘)
ீ ] to the 

global matrix of the assembly [(KGLOB)FF]. The assembly procedure can be verified by the 
structure of the resulting global matrix, shown in Figure 5.8. 

 

 
Figure 5.8: Assembly of the contact elements 
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5.2 Search of the kn and kt 
 
The global matrix [(KGLOB)FF] depends on the values of parameters kn, kt, which is 

the object of the present research. The frequencies were compared to obtain an estimate 
of these F.E. values with the measured frequencies, for the first and second flexural 
modes, for each axial traction force. 

The F.E. model has contact elements that do not implement sliding or separation. 
Therefore, for each axial force Fax, there is a linear model. To compare the natural 
frequencies of this model with those measured, it was necessary to extract the frequencies 
obtained during the complete adhesion of contact regions from the measurements.  
By analyzing the curves fn(A) obtained from the measurements for each axial force, the 
frequency in which fStick has a constant trend has been selected. It is an index of complete 
contact adhesion and linearity of system for that range of vibration amplitudes (Figure 
5.9). 
 

 
Figure 5.9: Selection of frequencies in complete adhesion status of the contacts 

 
Figure 5.10 shows the extracted values of frequencies with respect to the relevant 

axial force. These curves were compared with the theoretical ones obtained from the 
Euler-Bernoulli beam model, which has been modified to consider the stiffening effect of 
the traction force [30]. 
For low traction values, the deviation of measured frequencies from the theoretical linear 
trend is attributable to the micro slip of contacts . So, for further analyses, the axial forces 
greater than 12kN is considered to provide the linear behavior in complete adhesion status. 
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Figure 5.10: Selection of fstick, frequencies for Fax> 12kN 

 
 
5.2.1 Nonlinearity behavior of the system 
 

For each axial traction force, the frequencies of the linear F.E. model were obtained 
from the classical linear modal analysis. Considering the global matrices as    [M] = 
[(MGLOB) FF], [K] = [(KGLOB)FF], the general equation can be written ∀Fax i-th as below: 

 

     (5.4) 
 
the linear solution is the harmonic type: 
 

     (5.5) 
 
Excluding the trivial solution {q} = 0, the other possible solutions (eigenvectors) are 

obtained for those values of ω2 (eigenvalues of the generalized problem) for which the 
matrix (−ω2M + K) is not invertible. This condition is verified when: 

 
det(−ω2M + Ki (kn, kt)) = 0  ∀Fi      (5.6) 
 
which the roots 𝜔௡,௜

ଶ  are the eigenvalues: 
 

  
 
The natural vibration frequency ωn = 2πfn of each mode depends on the coefficients 

aj of the polynomial characteristic, which refers to the nonlinear functions of the stiffness 
parameters kn, kt. So the frequencies depend non-linearly on kn, kt which fn(FEM) = fn(kn,kt) 
as shown in Figure 5.11 
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For the comparison: 
 

(fn)MEASURES - (fn,i)FEM(kn, kt) = 0 ∀Fi                (5.7)  
 
In the equation (5.7),  n represents1B for the First Bending Mode and 2B for the 

Second Bending Mode. It requires an iterative local method or a global one to find the 
solution of (kn,kt) 

 
 

Figure 5.11: Example of nonlinear dependence of the frequency on kn, kt 
 
5.2.2 Determination of (kn,kt) for each axial force 
 

As there are two unknowns of the problem (kn, kt), it was necessary to consider at 
least two equations to obtain a solution. So, the solution (kn, kt) for each i-th axial force 
is considered, imposing the comparison between the measured frequencies and those of 
the F.E. model for the first and second flexural mode:  

 

൜
(𝑓ଵ஻)ிாெ(𝑘௡ , 𝑘௧) − (𝑓ଵ஻)ெூௌ௎ோாௌ = 0
(𝑓ଶ஻)ிாெ(𝑘௡ , 𝑘௧) − (𝑓ଶ஻)ெூௌ௎ோாௌ = 0

       ∀𝐹௜    (5.8) 

 
Which can be written in vector form as: 
 

     (5.9) 
 

To converge the above set of equations, which means (kn,kt) satisfy both (Δf)1B and 
(Δf)2B, the error on Δf due to measurement and F.E. calculations should be considered. 
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1B refers to fist bending mode and 2B refers to second bending mode. The system of 
equations then becomes: 

 

       (5.10) 
 

This system was solved with a global approach on the (kn,kt) domain considering the 
below condition: 

 
||{Δf}|| <δ ||{Δf}|| 

 
Where ||{Δf}|| is the Euclidean norm of the vector {Δf} and δ ||{Δf}|| is the norm 

error, calculated with the theory of error propagation, as described below. In this way, 
there are two variables (kn, kt) and a scalar value of the objective function ||{Δf}||. 
 
5.2.3 Error propagation of measurements 
 

From the theory of error propagation, given a function q of the variables xj = xj ± δxj, 
the maximum uncertainty δq is given by: 
 

                  

                                                                (5.11) 
In this case: 
 
 

 (5.12) 
 

Where δf1BMIS, δf2BMIS are the uncertainties of measurements and δf1BFEM, δf2BFEM are 
the errors of the F.E. model inserted to take into account the possible invalidity of the 
assumptions made, including the linearity of the system, or complete adhesion of contact 
areas. As the axial forces of each point (Fax, FMIS) of measurements and finite element 
calculation do not necessarily match, linear interpolation needs to be applied on the 
measured frequencies to estimate the frequency at the same force used in F.E. So in this 
interpolation process, the error of measurements can be written as below: 

 

     (5.13) 
Where 
F = Force used in the FEM 
f1, f2 = measured frequencies 
F1, F2 = measured forces  
Assuming independent and random errors: 
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   (5.14) 
 

Error of the measured frequencies interpolated for the F.E. forces is mentioned in the 
Table 5.1. 

 
 
 

F             [kN] 12 14 16 18 20 22 
δf1BMIS      [Hz] 0.24 0.19 0.19 0.22 0.28 0.34 
Δf2BMIS     [Hz] 0.22 0.89 0.09 0.46 0.37 0.56 

 
Table 5.1: Error of the measured frequencies interpolated for the F.E. forces 

 
Figure 5.12 shows that the possible solutions (kn, kt) can belong to a curve with a trend 
similar to an equilateral hyperbola. 

 
 

 
Figure 5.12: Example of solution space (red circles) - (Fax = 12kN) 

 

5.3 Estimation of error of kn, kt and search for the solution 
with minimum error 
 

To define a single solution, the associated error with stiffness (kn, kt) of the set of 
solutions was estimated. The point with the least error was therefore considered as the 
final solution. The procedure for estimating the error is described in detail in [38]. The 
vector function consisting of the frequencies (f1B)FEM.(kn,kt), (f2B)F.E.(kn,kt) can be written 
as: 
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This expression can be approximated around the solution point (kn,kt)0 with Taylor 
expansion using the Jacobian: 

    (5.15) 

⎩
⎪
⎨

⎪
⎧ 𝑘 = ൜

𝑘௡

𝑘௧
                                

𝑘଴ 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡
𝑗 = 1,2                                  
𝑛 𝑖𝑠 𝑀𝑜𝑑𝑒 1𝐵, 2𝐵              

 

 
Which in matrix form becomes: 
 

    (5.16) 
 
Generic error on frequency around the solution - indicated with "0" - can therefore be 

written as a function of generic error on stiffness: 
 

δf = Jδk         (5.17) 
 
The diagonal matrix is defined 
 

       (5.18) 
 
Containing the inverse of variances means square of standard deviations of frequency 

measurements errors. Pre-multiplying by JT[1/σ2]: 
 

JT [1/σ2] δf = JT[1/σ2]J·δk      (5.19) 
From which: 

δk = CJT [1/σ2].δf   C = (JT [1/σ2] J) −1 
 

By indicating with <x> the expected value of x, the covariance matrix of the stiffness 
in the solution point k0={kn, kt}0 can be calculated as follows: 

 

  (5.20) 
Assuming the errors δfj of the statistically uncorrelated frequency measurements: 
 

    (5.21) 
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Where the ultimate equality derives from the symmetry of matrix C. In conclusion: 

(5.22) 
 
The covariance matrix of the stiffness is obtained for each point of the set of solutions 

found previously. The following overall error measurement was used to find the solution 
with minimum error: 

 

         (5.23) 
 

At the final solution point with min Err, the standard deviations of two stiffness values 
kn0, kt0 are respectively σnn and σtt. So can be written as: 

 
kn = kn0 ± σnn  kt = kt0 ± σtt     (5.24) 

 
An example of the point with minimum error between the set of solution points found 

for Fax = 12kN is shown in Figure 5.13 with yellow marks. Percentage errors of kn and kt 
are also shown in Figure 5.14. 

 

 
Figure 5.13: Solution (kn, kt) with minimum error (Fax=12kN) 
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Figure 5.14: Percentage errors of kn and kt 

 
5.4 Search results for kn, kt 

 
The procedure for finding kn and kt described up to now was carried out for each i-th 

axial force of the interval visible in Figure 5.10. The results are shown in Table 5.2. Note 
that the found stiffness are the nodal ones. It is necessary to multiply the results by the 
number of nodes used for each interface to estimate the overall value of each contact 
region. 

 
F  

[kN] 
kn 

[N/mm] 
dkn 

[N/mm] 
dkn/kn 

[N/mm] 

kt  
[N/mm] 

dkt 
[N/mm] 

dkt/kt 
[N/mm] 

12 41428.6 4866.6 11.7% 64285.7 6587.3 10.2% 
14 50000.0 10042.7 20.1% 61428.6 10822.9 17.6% 
16 51000.1 5439.5 10.9% 72857.1 6550.6 9.0% 
18 55714.3 9546.6 17.1% 75714.2 11395.4 15.2% 
20 58571.4 11673.4 19.9% 84285.7 14891.3 17.7% 
22 61428.6 16485.6 26.7% 85334.1 19768.2 23.5% 

 
Table 5.2: Final results of the search for kn, kt 

 
Normal and tangential stiffness variations considering the estimated errors is shown in 
Figure 5.15 and Figure 5.16 respectively. 
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Figure 5.15: Normal stiffness variations considering the estimated errors 

 

 
Figure 5.16: Tangential stiffness variations considering the estimated errors 
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The obtained stiffness are associated with the frequencies of the finite element model 
visible in Figure 5.17 and Figure 5.18 for both first and second bending mode in stick 
contact status. 
 

 
 

Figure 5.17: Results of the frequency comparison for the first bending mode in stick 
contact status 

 

 
Figure 5.18: Results of the frequency comparison for the second bending mode in stick 

contact status 
 



- 80 - 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 6 
 
Theoretical estimate of contact 
stiffness 
 

The sliding contact between conformal surfaces was theoretically studied in [44], 
where a model of the indenter (Figure 6.1) with the rounded edges pressed on the flat 
half-space. It is extended to the three-dimensional case, and displacements are calculated 
using the potential theory developed by Cerruti and Bussinesq [43, 45]. 

Figure 6.1: Model of the indenter (1) on the flat half-space (2) [44] 
 

 



- 81 - 
 

6.1 Contact Model 
 
The analytical model developed to evaluate the hysteresis cycles at the contact is 

based on a number of hypothesis to permit to solve the analytical problem and obtain a 
solution suitable for the implementation on the forced response calculation of bladed disk 
with contact interfaces. The below items are considered to this purpose: 

- The material of two bodies is perfectly elastic. The elastic limit is not reached in the 
contact areas. 

- The two bodies under examination must be isotropic. 
- The contacting surfaces are perfectly smooth, so that contact is continuous over a defined 

area. This hypothesis implies that the roughness is not considered. 
- The complex geometry of the blade root under study is transformed into an analogue 

contact problem. Interaction between the dovetail segment of the blade and attachment 
slot of the disk, can be modelled by the contact of an indenter with flat base and the 
rounded edges on a half space, i.e. semi-infinite bodies with infinitely remote boundaries. 
The half plane (or half space) idealization is certainly justified when the ratio between the 
half width of the contact area and the radius of curvature, a/R, is small. Actually the outer 
parts of the indenter will support the contact area in the same way as for the Hertzian case. 
As the contact patch extends further into the curved region the half plane assumption 
becomes poorer and the overall geometry becomes increasingly more important. The real 
model of dovetail and load applied at 2D state is shown in Figure 6.2. 

 

 
Figure 6.2: On the left real dovetail geometry, on the right load applied at 2D problem. 

 
These first hypothesis are basically the same proposed by Hertz to solve the problem 

of spheres in contact. 
- Amonton’s law of friction with constant coefficient of friction , this hypothesis considers: 

 

       (6.1) 
in the stick region and 
 

                  (6.2) 
in the slip region. 
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- Constant normal load at the contact. In dovetail joint, if the centrifugal load is kipped 

constant, the forces induced by vibrations can change both normal and tangential load at 
the interface of blade to disc. It is assumed in this study that the variation of normal load 
due to vibrations is negligible in comparison with the constant normal load generated by 
centrifugal force. 

- Normal pressure distributions and shear traction distributions are obtained under the 
hypothesis of 2D contact problem. The length of the joint, L, in comparison with the 
contact area, 2a, justifies this hypothesis. Obviously the real contact is three-dimensional 
and therefore demands theoretically a three dimensional solution. But few solutions are 
known in three dimensional theory, typically for axis-symmetric problems, therefore it is 
often better to approximate the geometry in 2D state. So, the plain strain hypothesis is 
applied [35]. 

By means of these hypothesis the distributions of pressure and shear traction on the 
contact surfaces are known [35, 36]. To obtain the relation between the displacement of 
a point distant from the contact area and the tangential load it is, however, necessary 
abandoning the 2D contact hypothesis. Actually in 2D contact problems the absolute 
displacement depends on an arbitrary constant that can be found only by choosing a datum 
depth at which the displacement are assumed to vanish. However, by taking the datum 
depth deeper and deeper the displacements increase without limit.  

The approach here proposed uses the Cerruti potential equations for 3D general 
contact problem with the pressure and tangential traction distributions obtained for a 2D 
contact problem kept constant in L dimension. An analoguous approach was utilized to 
evaluate the normal deformation of cylinders in contact [37]. This method involves to 
neglect the edge effect. Indeed, if an indenter of finite length is pressed normally onto the 
surface of an elastic half plane, a more severe stress occurs at the ends. This problem may 
be avoided by barreling the indenter in the L direction to achieve constant distributions 
of normal pressure and shear traction distributions in the transverse direction. The normal-
pressure distribution on the 3D half-plane is shown in Figure 6.3. 

 
Figure 6.3. Normal-pressure distribution on the 3D half-plane.  

 
The distribution is obtained by assuming in the narrow dimension (2b) the solution 

of the 2D contact problem and keeping it constant in the length of the contact (L). The 
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edge effects are neglected. The same methodology is utilized for the shear traction 
distribution. 

 
 

6.2  2D pressure and shear traction distributions 
 
The contact problem for indentation by a flat punch with rounded edges in this section 

reported. The solution for a flat punch with rounded edges was performed by Ciavarella 
et al [35]. Previous works about this geometry were published by Goodier and 
Loutzenheiser [38], Galin [39] and Steuerman [40]. The geometry studied is shown in 
Fig. 5.5. The shape of the flat indenter with rounded edges is described by the function 
(6.3): 

 

     (6.3) 
 

Where ’a’ is the semi-width of the straight part of the punch and R is the edge radius. 
The elastic punch is pressed against an elastic half-plane. In general the two bodies can 
be elastically dissimilar. 

However the solution is exact only for elastically similar bodies. In this case shearing 
tractions induce equal and opposite vertical displacement in each body, so the contact 
pressure distribution is unmodified. Differently for dissimilar elastic bodies coupling 
occurs and the pressure distribution is affected by shearing tractions. However this effect 
is shown to be usually negligible ([41,42]). 

Under the hypothesis reported in the previous paragraph the pressure and hear 
traction distribution are found. The normal pressure distribution is provided by the 
following equations: 

 
(6.4) 

Where 

 
 

and b is half-width of the contact area. The angle φ0 , and therefore the size of the contact 
area, may be found using the following implicit equation 
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      (6.5) 
Where 

 
and E* is a measure of the combination stiffness of the two bodies in contact, defined 
under plain strain conditions by 

      (6.6) 
 
where Ei is the Young’s modulus and υi is the Poisson’s ratio of body i.  
The parameter 

 
can vary from zero to infinite, varying the shape of the indenter. When f vanishes the 
indenter tends to a flat pad indenter with rounded edges, on the other hand if f tends to 
infinity the shape of the indenter tends to a cylindrical indenter. The width of the contact 
region b is a function of geometry (a, R), normal load per unit of length (P = N / L) and 
material (E, ν → E ∗). In Figure 6.4 the pressure distribution, for different ratio between 
tangential force and normal force is shown.  

 
Figure 6.4: Pressure distribution, for different ratio between tangential force and 

normal force 
 

In Figure 6.5 shear traction distributions for different values of the ratio between the 
tangential force and the normal force is shown. In [35] it is reported that in the flat part 
micro-slip is not permitted, i.e. the value of c/b must be always larger than a/b. This 
statement is true only if the punch is perfectly aligned with the half plane. If the punch is 
inclined the micro-slip can gradually penetrate into the flat part of the indenter, as it is 
reported in [36]. 
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Figure 6.5: Shear distribution for different ratio between tangential force and 

normal force 
 
The two-dimensional distributions of pressure and shear stress obtained above are 

used as a starting point to derive the displacements of three-dimensional cases. 
 
The contact geometry of the dovetail joint under examination differs from the 

indenter model, as shown in Figure 6.6. To apply the theoretical model the following 
parameters were used: 

 

 
The largest radius of curvature between R = 2.5mm and R = 1.25mm was used  

To derive the contact stiffness, the values of the forces were calculated (Tangential or 
Normal) for the corresponding displacements obtained with the procedure described in 
[44]. 
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Figure 6.6: Contact geometry 
 

The shear stress can be written as the superposition of two distributions [44], [43]: 
 

q(x) = μp(x) −q∗(x)        (6.7) 
 
Where μp(x) is the shear stress that would occur if the contact were in complete sliding 
and q∗ can be obtained in an analogous way to p (x). The width of the adhesion region c 
is also obtained through solving: 
 

    (6.8) 
 
Where 

  
the corrective distribution q∗ is given by the below expression: 
 

(6.9) 
 
6.3 Tangential stiffness 
 

Using the pressure and shear distributions given above, through the theory of the 
potential of Boussinesq-Cerruti [45] it is possible to evaluate the tangential displacement 
ux1, ux2 [44] of the two bodies and therefore their relative displacement δx as a function 
of the normal load N = P·L and tangential load T =Q.L: 

 

    (6.10) 
 
 
 



- 87 - 
 

The tangential stiffness as a function of the normal force N was then calculated 
numerically: 

     (6.11) 
 
        Tangential stiffness variations considering the normal Force is shown in Figure 6.7. 
 

 
Figure 6.7: Tangential Stiffness variations considering the Normal Force 

 
6.4 Normal Stiffness 
 

Similarly to what was done for tangential stiffness, pressure distribution is possible 
calculate the normal displacements uz1, uz2 through the theory of potential [45] studying 
separately the influence of pressure on the displacement uz, or by analyzing the case in 
which qx = 0: 

 

  (6.12) 
 
In the case in question, a constant p = p (r) distribution along L. 
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   (6.13) 
Therefore the relative displacement is: 
 

    (6.14) 
 
The normal stiffness as a function of the normal force N was then calculated 

numerically: 
 

        (6.15) 
Normal stiffness variations considering the normal force is shown in Figure 6.8. 

 
Figure 6.8: Normal Stiffness variations considering the Normal Force 

 
6.5 Comparison of the Stiffness values obtained with the 
theoretical ones 
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To compare the theoretical stiffness kn, kt of the contact with the nodal stiffness 
obtained from the model FEM it was necessary to multiply these stiffness by the number 
of nodes at the interface which here is 33. 

   (6.16) 
 

The theoretical stiffness are functions of the normal force N, instead the results of the 
present work are reported as a function of the axial traction force. To compare the results 
the borderline cases T = 0 and T = μN were considered: 

 
 
Thus, by reporting the comparison between the obtained and theoretical stiffness 

(Figures 6.9, 6.10), it was noted that the numerical-experimental procedure used in the 
present work provides some rigidity higher than those of the analytical model and a 
dependence of the stiffness on the axial force more marked than the theoretical one. 

 
Figure 6.9: Normal Stiffness variation in two states T=0 and T=μN 
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Figure 6.10: Tangential Stiffness variation in two states T=0 and T=μN 

 
Furthermore, theoretical vs numerical-experimental comparison of normal stiffness 

is shown in Figure 6.11 and this comparison for tangential stiffness is shown in Figure 
6.12. As shows in these figures, there is a difference between the numerical-experimental 
results and theoretical ones that comes from different reasons including: considered 
simplicity in 2D of a punch in a surface and the errors of experimental procedure, however 
the contact model can be considered as an indicative method for further investigations. 

 

 
Figure 6.11: Theoretical vs numerical-experimental comparison of normal stiffness 
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Figure 6.12: Theoretical vs numerical-experimental of tangential stiffness 
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Chapter 7 
 
Conclusions 
 

As mentioned in the below summary, in this research valuable outcomes for further 
contact mechanics studies in design and analysis of blade root joints are obtained. 
 
• An experimental method has been defined for the identification of modal parameters 
(frequency and damping) of a system that simulates the vibrations of a turbine blade 
connected to the disc via a dovetail joint. 
The first and second flexural modes of the system were investigated. The frequency and 
damping were extracted from the free response of the following system to an oscillatory 
excitation with a frequency close to the modal form in question. 
The nonlinear dependence of frequency and damping on the vibration amplitude was 
obtained, as the axial traction force varies (simulating the centrifugal force of the blade) 
 
• A numerical-experimental method has been defined for the determination of stiffness 
normal kn and tangential contact kt for the system under investigation. 
 
• The obtained stiffness were compared with those of a theoretical model of contact 
 
Final remarks on the results of the measurements are summarized as follows: 
 
• As the centrifugal force increases, the damping decreases. This probably is due to the 
reduction of the micro-sliding area of the contact regions 
 
• As the centrifugal force increases, the natural frequency of each mode increases, such as 
provided by the analytical models [30] 
 
• In the range of axial forces analyzed (Fax <25kN, similar to the centrifugal forces for the 
headstock), the nonlinear dependence of natural frequencies and amplitude damping of 
vibration is not negligible. 
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• The linear behavior of the dovetail joint, i.e. the complete adhesion of the contacts, 
occurs only for small vibration amplitudes and high centrifugal loads (Fax> 8kN and 
A<2μm for the first flexural mode; Fax> 12kN and A <2μm for the second flexural mode) 
 
• The dependence of natural frequencies on the Centrifugal Force differs from that 
expected from the analytical models [30] for force values lower than 12kN. This 
difference is attributable to the micro-sliding of the contacts. 
 
• The previous observations imply that for low centrifugal forces, the effect of nonlinearity 
contact must be considered for a correct estimate of the resonance frequencies. 
Finally, it has been noted that this range of centrifugal forces corresponds to the speeds of 
rotation of the turbines associated with the descent phase of aircraft flight.  
 
Final remarks on the results of the numerical research of kn, kt are summarized as follows: 
 
• The stiffness kn, kt obtained have a significant dependence on the axial force (similar to 
the centrifugal force of the blade), showing an increasing trend with increasing force. 
 
• This trend can also be found in the theoretical model of contact adopted in the present 
work for comparison of results. However, the variation of stiffness predicted by this 
analytical model is negligible compared to the variation obtained with the numerical 
procedure proposed here. 
 
• The theoretical values of the stiffness turn out to be about half of those obtained here. 
This probably is due to the imperfect correspondence between the geometry in the 
theoretical model and real contact. 
 
• The relatively large uncertainty of the obtained stiffness with the numerical-
experimental method (of the order of 15%) is due to the weak sensitivity of natural 
frequency to variation of the stiffness of the contacts. 

 
Possible further developments 

 
The research of the stiffness kn, kt was carried out here using linear contact elements 

and comparing only the frequencies of the model with those measured in the range of 
forces and amplitudes, so the system exhibits a linear behavior. The vibration amplitude 
was not used for this research. 
A possible development to include this further condition and possibly reduce uncertainty 
of the obtained stiffness consists in: 
• The implementation of the nonlinear contact element 
• Simulation of the free response of the system through direct time integration comprising 
the nonlinear behavior of the contacts 
• Comparison of the simulation results with the measurements made in the present work. 
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Appendix A 

Technical Data of Blade Roots Tested 
 

A1.1 Dovetail Joint 
Dovetail joint utilized in blade root damping tests was machined with the same 

geometry of a real blade, precisely the sixth turbine stage of Avio turbo engine GE90. 
 

 
Figure A1.1. GE90 turbo engine 

 
 

Knowing the rotation speed of the rotor and the mass of the blade (here not reported 
for confidence reasons) it is easy to evaluate the centrifugal force acting on the blade. On 
the real engine, the maximum load that would act on the studied dovetail joint is 35kN, 
corresponding to the take-off of the aircraft (Fig A1.2). 
 



- 95 - 
 

 
Figure A1.2.Variation of the centrifugal force acting on the blade during a typical flying 
plan. 
 

This engine is used for power generation, so that the centrifugal load acting on the 
blades is almost constant in working condition (Fig A1.3). In the tests a maximum load 
equal to 10% more than upper limit of the operative range, equal to about 44kN, is used. 
In Fig (A1.3) it can be seen that the rotational speed of the shaft is reduced to 3600 rpm 
by means of a reduction gear to produce 60 Hz electric energy. 

 

 
Figure. A1.3. Rotational speed in working condition 
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Appendix B 
 
Theoretical estimate of the stiffening 
effect of the Traction force 
 
The stiffening effect due to the axial traction force was initially estimated analytically 

through the method proposed in [30]. 

 
Dynamic model of the beam with stiffening effect 

 

 
Figure B.1: Elementary segment of the deformed beam 

 
The equilibrium equations of the elementary segment of the deformed beam are: 
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(B-1) 
Deriving the last equation in z: 
 

         (B-2) 
 
Using the other two equilibrium equations: 

       (B-3) 
 
From geometric considerations: 
 

(B-4) 
 
Substituting in (B-3): 
 

        (B-5) 
 
Applying the method of separating variables: 
 

(B-6) 
 
Assuming harmonic solution q(t) = cos(ω(t)+ϕ) and dividing by q(t): 
 

      (B-7) 
 
By dimensioning z: Z = z / L: 
 

      (B-8) 
 
Multiplying by X and integrating in z by the length of the beam: 
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        (B-9) 
 
By imposing the boundary conditions of the beam wedged at both ends: 
 

        (B-10) 
 
The first integral becomes: 
 

 (B-11) 
the second integral becomes: 
 

 
 
The natural pulsation ω can therefore be estimated with the expression: 
 

          (B-12) 
 
where (ω2

n)N=0 is the natural pulsation obtained from the beam model without 
stiffening effect described below - and the modal form X is approximated with that of the 
following model. 

 
Dynamic model of the beam without stiffening effect 
 

              (B-13) 
 
whose solution is known: 
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  (B-14) 
Defining for simplicity of notation: 
 

 
 
By imposing the boundary conditions: 

  (B-15) 
By putting the four expressions found into a system: 
 

     (B-16) 
 
whose non-trivial solution is found by nullifying the determinant: 

   (B-17) 

 
The modal forms can then be calculated: 
 

    (B-18) 



- 100 - 
 

 

 
With Iy = hb3/12 
So through expression 9.4 it was possible to calculate the stiffening effect: 
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Appendix C 
 
Cylindrical Hertzian Contact 
 

Surface displacements for a cylindrical Hertzian contact problem have been 
published by Poritsky (1950). In his work the displacements on the surface of an half 
plane loaded are provided by a shear traction distribution given by: 

       (C-1) 
where Q is the tangential load, per unit of length, applied to the bodies in contact and 

b is the half width of contact area. The displacements on the surface are: 

 
 
The slip between the two bodies can be evaluated conveniently by superposition of 

the solution for the surface displacements (Eqs. 2) in the sliding case, since q(x) is the 
sum of two elliptical distributions (Chapter 5) 
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where the constants C1 and C2 are removed imposing that the slip vanishes in the 
stick region. This equation has been utilized to check the Matlab routine written to 
evaluate displacements for a flat pad with rounded edges. It is obtained the cylindrical 
solution reducing to zero the flat part. In the following figure the results obtained by 
numerical integration, Eq. 5.29, and the analytical formulation are compared. The two 
approaches, confirming the correctness of the routine applied, provide the same results. 

 
Figure C.1. Displacements on contact surface for a cylindrical Hertzian contact. 

Solid line, numerical solution; asterisks, analytical solution. 
Another useful benchmark, provided by Poritsky solution, concerns the dissipated 

energy calculation. Indeed the damage parameter, D, in the case of incipient full sliding, 
for the Hertzian case, is: 

 
This function is analytically integrable on the slip area providing the dissipated 

energy: 

 
Inserting in Eq. A4.5 

 
And evaluating the integral (x/b = t), 

 
Introducing in Eq. A4.7 the same dimensionless used in Fig. 5.15. (Chapter 5), and 

bearing in mind that the energy dissipated in a full load cycle is equal to four time the 
energy evaluated in A4.5 ( Q varies fro 0 to Qmax, from Qmax to 0, from 0 to -QMAX, 
from -QMAX to zero ) the value, π/2 plotted in Fig A4.5 is obtained: 
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Appendix D 
 
HBM and Harmonic Contact Stiffness 
 

The hypothesis standing over the harmonic balance method (HBM) assumes that the 
output signals, y(t), of a non-linear dynamic system, are periodic with the same period of 
the input signal, x(t). 

The Fourier first order approximation of a generic function, ft(θ), is calculated as: 

 
 
Through the use of rotating vectors it is easy to demonstrate that: 

 
In the case of friction forces, if the output signal is the tangential force acting on the 

contact interface ,Ft is the amplitude of the harmonic output signal approximating the 
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friction force, while φ is the phase between the input signal (the harmonic oscillation u(θ)) 
and the friction force approximation ft(θ) . In a complex notation it is possible to write 

 

 
 
Then 

 
The tangential force creating a hysteresis loop is substituted by  harmonic force 

oscillating with the angular frequency of the exciting force (Fig. A5.1): 
 

 
It can be noted that in this appendix the value θ=0 corresponds to the maximum 

displacement of the harmonic tangential relative displacement. When HBM is included 
in the equilibrium equations of a dynamic system, it is necessary to remember that the 
displacement has a further phase ψ due to the presence of some kind of structural damping 
not equal to zero which determines the phase delay between the response and the 
excitation force. The excitation force is in fact usually chosen as reference input signal. 
Hence also the HBM approximated non-linear force must be shifted in time with respect 
to this delay in order to be inserted in the equilibrium equations (Fig. A5.2). 

The non-linear contact forces can also be seen as complex stiffness. The non-linear 
force approximated by truncating the Fourier series to the first order can be divided into 
two components: one component proportional to the relative displacement and one 
component that has a phase delay of π/2 with respect to u (t) (Fig.A5.2). 
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For θ=π/2: ft(t=T/4)= -Im(Ft). Hence the maximum value for the two components 
(Fig.A5.3b-c) are determined.  
If the real part of Ft is divided for the amplitude of u(t) an equivalent stiffness keq 

determined. If the imaginary part of Ft is divided for the amplitude of an equivalent 
hysteretic damping heq is determined. The sum of the two components divided for |u| 
forms a complex stiffness: 
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Appendix E 
 
Normal Contact Stiffness 
 

To evaluate the normal contact stiffness, the pressure distributions and size of the 
contact area developed for 2D contact problem were used, as shown in Chapter 5. To 
determine the deformation, the contact area will be taken as being a finite rectangle with 
one side very much greater than the other, keeping constant the pressure distribution in 
the larger dimension. It is the same approach with the same hypotheses, based on Cerruti 
and Bussinesq potential theory, employed in the Chapter 5 to evaluate the tangential 
displacement at the contact. 

If the contact pressure is known it may be substituted in the following equation to 
obtain the surface displacements (z = 0) normal to the contact: 

 

 
To obtain the displacement at the centre of the contact, Eq. A6.1 is evaluated in x = 

0 and y = 0. 

 
By evaluating the second integral in Eq. A6.2 with the assumption that L >> b, 

 
That can be rewritten in a more useful form 

 
This displacement is relative to one side only. If both sides are desired, then 
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Figure A6.1. Normal contact displacement versus normal load. Different curves for 

different geometries (the half width of the flat part varies from 0, Hertzian contact, to 
0.8 mm). The length of the contact L and the edge radius, R, are kept constant. 

 
The normal stiffness can be numerically calculated as 

 

 
Figure A6.1. Normal contact displacement versus normal load. Different curves for 
different geometries ( the half width of the flat part varies from 0, Hertzian contact, 
to 0.8 mm). The length of the contact L and the edge radius, R, are kept constant. 

 
The approach adopted is the same proposed by different authors ([59]-[60]-[61]) to 

evaluate the deformation of cylinders in contact. Here the method is extended to a 
different geometry, flat punch with rounded edges. 
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Appendix F 
Measurement Error Estimates and 
Propagation 
 
The procedure here proposed is used to calculate the measurement error propagation 

to the identified frequency and damping. According to the method in use (Chapter 4), the 
natural frequencies and the damping loss factors are functions of the envelope V(t) and 
of the instantaneous phase (t) of the analytic signal. Measured values of the phase and 
envelope can be expressed as function of their actual (or “true”) values as in the following 
two equations (m subscript is for “measured,” t subscript is for “true”): 
 

 
 

Similarly the error on the sampling time is: 
 

 
 

Where ɛf is the sampling frequency error. The vibrating frequency is calculated using 
finite differences instead of the differential form: 

 

 
Similarly the hysteretic damping is approximated as: 
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Where tm is the duration (in time) of the recorded signal used for the identification, 

nperiods is the number of periods, hence: 
 

 
 
The next step is to express and V as a function of measurement errors. If the measured 

signal has a bias, this would be filtered and therefore it has no effect on the identification. 
Also, any eventual calibration error ɛ0 has no effect, in fact: 

 

 
 

 
 
Therefore the only source of error in the identification process is the measurement 

noise. The Hilbert transform of a signal corrupted with noise is: 
 

 
 
Where r(t) is random Gaussian noise and r(t) = H(r(t)). According to the properties 

of the Hilbert transform of a random Gaussian signal, r(t) is a signal with the same 
statistical properties of r(t) [62]. In Fig. A7.1 the analytic signals of the real and measured 
signals are reported in a polar coordinate for a given time instant. R is the module of the 
difference between Vm and Vt due to noise. 
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Figure A7.1. True and measured analytic signal in polar representation. 

 
 

Following the graphic construction of Fig. A7.1, and V can be estimated as: 
 

 
 

The last two relations can be substituted in Eqs. (6) and (7), allowing for δ(t) to be 
uncorrelated with δφ(t+t): 
 

 
 

Finally the expression for and can be written with the effect of noise: 
 

 
 
Where the term ɛf is negligible because it is two orders of magnitude smaller than the 

term due to the noise to signal ratio. 
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