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Abstract

The present work focuses on a non-local integro-differential model reproducing Cancer-
on-chip experiments where tumor cells, treated with chemotherapy drugs, secrete chemi-
cal signals stimulating the immune response. The reliability of the model in reproducing
the phenomenon of interest is investigated through a global sensitivity analysis, rather
than a local one, to have global information about the role of parameters, and by exam-
ining potential non-linear effects in greater detail.
Focusing on a region in the parameter space, the effect of 13 model parameters on the
in silico outcome is investigated by considering 11 different target outputs, properly
selected to monitor the spatial distribution and the dynamics of immune cells along the
period of observation. In order to cope with the large number of model parameters
to be investigated and the computational cost of each numerical simulation, a two-step
global sensitivity analysis is performed. First, the screening Morris method is applied to
rank the effect of the 13 model parameters on each target output and it emerges that all
the output targets are mainly affected by the same 6 parameters. The extended Fourier
Amplitude Sensitivity Test (eFAST) method is then used to quantify the role of these 6
parameters.
As a result, the proposed analysis highlights the feasibility of the considered space
of parameters, and indicates that the most relevant parameters are those related to the
chemical field and cell-substrate adhesion. In turn, it suggests how to possibly improve
the model description as well as the calibration procedure, in order to better capture the
observed phenomena and, at the same time, reduce the complexity of the simulation
algorithm. On one hand, the model could be simplified by neglecting cell-cell alignment
effects unless clear empirical evidences of their importance emerge. On the other hand,
the best way to increase the accuracy and reliability of our model predictions would be
to have experimental data/information to reduce the uncertainty of the more relevant
parameters.
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1. Introduction

Mathematical modeling is a powerful asset to explore biological phenomena and thus
support advances, for instance, in medicine, biology and biotechnology. Among the new
technologies, an increasingly important role is played by Organs-on-Chips (OoCs), see
among others [20, 21, 43]. OoCs are bio-engineered microfluidic chips designed to
simulate activities of an organ or an organ system, thanks to their partition in different
areas, called compartments, connected to each other by micro-channels. Among OoC
categories, Cancer-on-chips (CoCs) are used to observe micro-environmental factors that
influence tumor cells in response to anticancer therapies [2, 12, 13, 14, 18, 19, 29]. In
the last decades, laboratory experiments based on these microfluidic devices generated
an extensive collection of images and data. Some mathematical-based in silico models
have been then created to replicate these biological in vitro experiments in order to gain
more insights on cellular behaviors [30, 31, 60, 61, 62].

In this context, the aspect of our interest is the dynamics of immune cells (ICs)
in response to chemical signals secreted by tumor cells (TCs), accounting also for
cell-cell and cell-substrate mechanical interactions. With this aim in mind, the first
in silico model developed by one of the authors on CoC experiments is [33], where a
mathematical model based on reaction-diffusion equations with chemotaxis inspired by
Keller-Segel model [17] was proposed. Such a model describes cell death processes,
effects of chemoattractants, interactions, and competition between different cell species.
In [34] techniques for estimating parameters in the model [33] have been proposed. A
discrete-in-continuous hybrid approach has also been formulated by the same author as
a PDE reaction-diffusion partial model for the evolution of the chemicals, coupled with
an ODE particle model for cell motion, see [15, 16]. Well-posedness and asymptotic
behavior of solutions for this class of hybrid coupled system have been studied in
[36, 37, 38]. Recently, the mean-field limit of a general class of deterministic hybrid
macro-micro models was proposed in [39]. Successively, an agent-based model for the
chip environment dynamics based on cellular automata approach was developed and the
related sensitivity analysis of model parameters was carried out in [32, 35], respectively.

Despite the significant efforts in literature, an accurate model to describe the immune
response in tumor microenvironment is still a challenge. One of the main aspects to
face is the calibration of model parameters, since they may be difficult to measure with

∗annachiara.colombi@polito.it

Preprint submitted to Mathematical Biosciences - accepted on 22 October 2024 November 4, 2024



precision, or even impossible to estimate in vitro. This may happen either due to technical
issues or when model parameters do not represent measurable physical quantities. It is
further worth mentioning that mathematical models implementing complex biological
phenomena with interconnected processes, possibly occurring at different time and
spatial scales, may depend on a large number of parameters.

In this context, a proper sensitivity analysis (SA) of the mathematical model is
crucial. It indeed evaluates the impact of variations in the parameter values on the model
predictions, and possibly highlights how different model components interplay [6, 42].
SA thus provides insights about the accuracy of the model and the considered parameter
settings in reproducing the phenomenon of interest, stating therefore both the robustness
of the model and the reliability of the model calibration. Moreover, SA outcomes can be
used to identify possible model improvements or simplifications; drive the calibration
of the model in different scenarios; or even suggest experimental research priorities to
reduce model uncertainty. In this perspective, the sensitivity analysis should be part of
the modelling process [40].

In this respect, in several of the above-cited works by Bretti et al. on CoCs [16, 32, 34],
the proposed mathematical models have been coherently provided by sensitivity analysis
to shed light on the role of the parameters on in silico outcomes. However, they
have always performed a so-called local sensitivity analysis, i.e., they have investigated
the effect of small perturbations in the parameter values one at a time around a fixed
(nominal) setting. Although easy to use and demanding limited computational resources,
local sensitivity analysis methods have important limitations [65, 66]. Being based on the
assumption of independence between the model parameters, and the limited perturbation
of parameter values, they may lead to heavily biased results in the case of nonlinear
models. In addition, the importance of parameters will be underestimated in the case of
interactions between model parameters, i.e. if the effect of a parameter depends on the
value of others parameters and thus the parameter effects are not additive. A different and
more challenging approach is the so-called global sensitivity analysis (GSA) [6, 41, 42].
On one hand, methods of GSA are based on the full exploration of a given, even large
or infinite, region of the space of parameters, by means of proper sampling methods.
On the other hand, the effect of variations in each model parameter on the outcome is
regarded globally, i.e. averaged over variations of the other parameters. In addition,
GSA methods are able to deal with nonlinear effects and highlight interactions between
the model parameters. In turn, GSA methods allow us to rank model parameters from
the most to the least globally affecting the evolution of the system, thereby pointing out
the main factors/processes.

In this regard, in the present work we perform GSA of a slight variation on recent
non-local integro-differential models proposed in [15, 16]. Our aim is to gain a more
complete overview of the potentials and critical issues of this modelling framework in
capturing the biological COC experiments by Vacchelli et al. [14]. In particular, among
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their experiments, we here focus on those performed with tumor cells that, having
been treated with a chemotherapy drug, undergo apoptosis by secreting chemical signals
stimulating the response of immune cells. From a mathematical point of view, in [15, 16],
cells are described as discrete point-wise entities, while a continuous approach is adopted
for the chemical signal. The latter evolves according to a reaction-diffusion equation
provided by a non-local source term related to the position of TCs. For simplicity, the
apoptotic cells are here assumed static. The dynamics of ICs are conversely given by
a second-order differential equation including non-local terms implementing cell-cell
and cell-chemical interactions. In the present work, inspired by [26], a Cucker and
Smale-like alignment term [27] is included in the equation for ICs dynamics, as in [16].

The GSA is here applied to investigate the role of 13 model parameters, i.e. all
those involved in the equations for either the ICs or the chemical field apart from cell
radii whose values are taken from [24, 25]. In order to study how these 13 parameters
affect ICs dynamics, our GSA is performed by focusing on a representative scenario
designed to mimic the experiments in [14], avoiding excessively high computational
costs. According to [15, 16], the spatial domain reproduces a small portion of the CoC
device monitored in [14] and proper boundary conditions for the chemical field reproduce
chemical-secreting TCs placed outside the domain. For simplicity, a randomly generated
spatial distribution of the TCs inside the domain and an ICs inflow consistent with data
in [14] are fixed equal for all the simulations. The range of values of the 13 model
parameters investigated in our GSA are defined on the basis of the pertinent biological
and mathematical literature. The choice and the characterization of the outputs to be
investigated are crucial to perform a useful sensitivity analysis of a model. In this
particular case, IC paths cannot be fully determined by a small number of output values.
For this reason, the temporal evolution of ICs distribution and dynamics are described
through 11 distinct scalar measures, calculated over 3 disjoint sub-intervals of the period
of observation. Some of these measures have been inspired by the statistical paper by
Agliari et al. [1].

The GSA is here carried out in two-step in order to cope with the large number of
model parameters selected, the non-linearity of the model, and the computational cost of
each numerical simulation. First, we apply the Elementary Effects method by Morris [4],
in the improved version proposed by Campolongo et al. [3]. It belongs to the class of
screening methods, i.e., designs conceived to efficiently treat non-linear models with tens
or hundreds of parameters that return a rank of the input factors in order of importance
(qualitative information), but do not quantify the effect of each parameter nor differentiate
among them [6]. The ranks obtained for each output quantity, over each sub-interval,
are compared by computing the Spearman’s rank correlation coefficient. Interestingly,
this allows us to extract a group of 6 parameters mainly responsible for the variability
of all the output quantities and investigate them with a more accurate, although more
expensive in terms of required number of model realizations, GSA method. Specifically,
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we apply the variance-based method eFAST (Extended Fourier Amplitude Sensitivity
Test) [10, 44, 46, 54, 55], which estimates, by means of spectral analysis, the so-called
Sobol sensitivity indices/measures denoting the fraction of the output variance due to
each model parameter singularly (first order/main effects) or in combination with other
parameters (total effects).

As detailed in the following sections, the first step of our analysis highlights that (i)
the considered region in the 13-dimensional parameter space results in reliable in silico
scenarios; and (ii) that both cell dynamics and spatial distribution are mainly affected
by parameters regulating either the evolution of the chemical field, cell chemotactic
sensing/motion or their adhesion to the substrate. The second step of our analysis
conversely quantifies how the 6 most relevant parameters affect the variance of the
outcome quantities capturing different aspects of system evolution (e.g. cell mean
speed, cell clustering around tumor cells and so on) as time goes by. In turn, these
additional information identify the parameters, and related processes, included into the
model (i.e. chemotaxis, adhesion to the substrate, chemical sensing) that are mainly
responsible for the variability of system behavior over time. In particular, it emerges that
(i) all the monitored output quantities are strongly affected by the chemical secretion rate
and the diffusion coefficient, while (ii) the decay rate has substantially negligible effects;
(iii) cell substrate adhesion and chemical sensing have an important effect mainly on
the initial evolution of cell distribution and mean speed. On one hand, this approach
therefore allows to validate the proposed model in combination with the considered
region of space parameter. On the other hand, it suggests which parameter/processes
mainly require careful calibration.

It is finally worth clarifying that a two-step sensitivity approach based on the ap-
plication of the Morris method followed by the estimation of the Sobol indices of the
most important parameters is not new in literature. For instance, it is nowadays a con-
solidated practice in agronomy, to analyze complex crop models (see, among others
[47, 48, 49, 50, 51, 52, 53]). On the other hand, as far as we know, there are few works in
literature where GSA methods have been used to investigate the behavior of mathemati-
cal models for spatial cell dynamics (see, for instance, [56, 57] for ABM models) or for
other relevant biological phenomena (see e.g. [58, 59]). Regardless of cell dynamics,
an example of application of GSA methods is found in [63] where Sobol’s sensitivity
indices are used to identify non-influential parameters that can be fixed to reduce the
complexity of an ordinary differential equation model reproducing the immune response
to an S. aureus infection in mice. However, we have not found works where the Morris
method coupled with a variance-based method has been applied to study mathemati-
cal models for spatial cell dynamics or, more specifically, non-local integro-differential
models coupling continuous and discrete descriptions.

The rest of the manuscript is organized as follows. Section 2 is devoted to summarize
preliminary knowledge at the basis of our work and to define our two-step GSA approach.
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Figure 1: Microfluidic chip environment. Schematic representation of the microfluidic chip architecture.

In detail, Section 2.1 introduces the biological experiments inspiring the model in [15].
The mathematical model here analyzed is described in Section 2.2, while details on the
applied numerical scheme are reported in Appendix A. In Section 2.3 the case study
and the parameter space to investigate are introduced. Then, the output quantities used
to characterize the system dynamics are defined. The main aspects of the standard GSA
methods of Morris and eFAST, as well as our strategy to use them, are delineated in
Section 2.4 and in Appendix B. Section 3 is devoted to the presentation of obtained
results. First, in Section 3.1 a representative numerical simulation, performed with
a fixed parameter setting, is described to help readers not familiar with the model to
interpret the forthcoming sensitivity analysis. The SA performed with the subsequent
application of the Morris and the eFAST methods are presented in Sections 3.2 and
then discussed in Section 3.3. Conclusions and future perspectives of the work are
highlighted in Section 4.

2. Materials and methods

2.1. The Cancer-on-Chip biological experiment
Biological phenomena inspiring the present work are described in [14, 29], where

detailed laboratory settings of in vitro experiments performed on CoC are reported.
The immune-oncology chip designed for the experiments presents a complex geometry
sketched in Fig. 1. It is composed of cylindrical wells containing, separately, cell cultures
of TCs (red circles) or ICs (black circles). These wells are connected by culture chambers
(white areas) and microchannels (striped gray areas). Microchannels, having a width
and length of 12 𝜇m and 500 𝜇m, respectively, allow both the flow of the chemical
and the migration of cells between the chambers. Biologists observed that this type
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Figure 2: Panel A: Schematic representation of the chip area monitored in the experiments by Vacchelli
et al. [14]. The green square area is the computational domain considered in the present work. For
the sensitivity analysis, the domain is partitioned in 4 disjoint square areas: Ω𝑞 , with 𝑞 = 1, 2, 3, 4: i.e.
Ω1 (North-West), Ω2 (North-East), Ω3 (South-West) and Ω4 (South-East). The sides of the domain are
denoted by N (North), E (East), W (West), S (South). Panel B: Representation of cell morphologies and
cell radii used to model cell chemotaxis and cell-cell interactions.

of configuration is able to reproduce quite realistically the physiochemical environment
and the mechanical stresses acting on the living cells inside it. It is worth noting that we
reported the schematic representation of the chip for the sake of completeness. However,
video recordings of the laboratory experiments only focus on the monitored area depicted
in blue in Fig. 1.

In particular, among the experimental settings proposed in [14], we focus on the
case where TCs, having been treated with a chemotherapy drug, are dying and secrete
a chemical signal that acts as an attractant for wild-type ICs. Being apoptotic, TCs are
quasi-static, and thus, in addition to the cells placed in the TC wells, experimentalists
also planted some cancer cells in the TCs chamber in adherence to the glass slide. The
immune population consists of peripheral blood mononuclear cells (PBMCs), i.e. any
peripheral blood cell having a round nucleus. It is a heterogeneous population including
different cell species: monocytes, dendritic cells, and T and B lymphocytes. However, a
classification of the experimental data with respect to the different IC types in the PBMC
population is not provided. Note that PBMCs measure on average about 8-10 𝜇𝑚 of
diameter [25], while TCs measure about 20 𝜇𝑚 in diameter [24].

The laboratory experiments in [14] last 48-72 h, and video frames are acquired at a
constant rate of 2 min. In detail, the area monitored during the laboratory experiments
is a portion of the entire chip (see Fig. 1) consisting of a rectangular area of size
1362 𝜇m × 1702 𝜇m, which includes part of the TC chamber and the central one, with
the microchannels connecting them.
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2.2. The mathematical model
The mathematical model derived from [15], which we will analyze in the next

section, is here reported. This model gathers the advantages of both microscopic and
macroscopic descriptions: cells are treated as discrete entities, whereas the concentration
of the chemoattractant is modeled as a continuum, and with our approach we aim at
describing short-range interactions between TCs and ICs. It is worth noting that the
experiment in [14] involves 2D culture of immune cells in the liquid with TCs adherent
to the glass slide and mainly static, while ICs are floating. The video footage of the
experiment is recorded on a small portion of the chip and at fixed height, thus registering
the dynamics of ICs travelling towards TCs that are in adhesion with the slide. For
these reasons, the third spatial dimension in our framework is neglected since a 2D
mathematical model it is well-suited to describe the bidimensional trajectories of ICs
towards TCs observed in video recordings.

System evolution is then described on a bidimensional domain Ω denoting either a
portion or the entire complex geometry of the chip. In particular, according to [15], we
hereafter focus on a square region of size 600 𝜇m × 600 𝜇m in the TCs chamber, see
the blue area in the Panel A of Fig. 2. This allows a detailed analysis of short-range
interactions and pattern formation in the chip environment. Furthermore, it reduces the
computational cost of numerical simulations.

Cells are described as point-wise particles characterized by their positions: Y 𝑗 ∈ Ω

with 𝑗 = 1, ..., 𝑁𝑇 for static treated TCs; and X𝑖 (𝑡) ∈ Ω with 𝑖 = 1, ..., 𝑁 (𝑡) for ICs. The
number of ICs 𝑁 (𝑡) actually present in the domain varies in time due to a continuous
inflow and outflow at the boundary. Specifically, having in mind the experiments in [14],
we assume that ICs enter in the domain from the top side of the domain, and definitively
left the domain as soon as they reach the boundary.

The concentration of the chemical is represented through its spatial distribution
𝜑 : I ×Ω ↦→ R+, where I is the time interval [0, 𝑇], with 𝑇 > 0, denoting the period of
observation. The temporal evolution of the system is then given by

𝜕𝑡𝜑 = 𝐷 Δ𝜑︸︷︷︸
diffusion

+ 𝜉 𝐹𝑆 (Y)︸   ︷︷   ︸
production

− 𝜂 𝜑︸︷︷︸
decay

in Ω (1)

¥X𝑖 = −𝜁 ¤X𝑖︸︷︷︸
substrate
adhesion

+ 𝛾 F𝐶 (X𝑖, 𝜑)︸        ︷︷        ︸
chemotaxis

+F𝑇 (X𝑖,Y)︸      ︷︷      ︸
IC-TC

interactions

+ F𝐼 (X)︸︷︷︸
IC-IC

interactions

+ 𝛽 F𝐴 (X, ¤X)︸        ︷︷        ︸
alignment

for 𝑖 = 1, ..., 𝑁 (𝑡)

(2)

where the vectors X := [X1, ...,X𝑁 (𝑡)] and Y := [Y1, ...,Y𝑁𝑇
] denote the positions

of ICs and TCs respectively; 𝐷, 𝜉, 𝜂, 𝜁 , 𝛾, 𝛽 are positive constants; and 𝐹𝑆, F𝐶 , F𝑇 ,
F𝐼 , F𝐴 are suitable functions defined below. Specifically, in the reaction-diffusion
equation (1), 𝐷 is the diffusion coefficient; 𝜉 and 𝜂 are the default production and decay
rate of the chemical, respectively; while the function 𝐹𝑆 implements the production of
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chemoattractant by TCs. In the second order differential equation (2), 𝜁 is the damping
coefficient due to cell adhesion to the substrate. F𝐶 is the contribution in cell acceleration
triggered by the amount of chemoattractant sensed by the cell and 𝛾 is said coefficient of
chemotactic effect. F𝑇 and F𝐼 implement IC interactions with TCs and ICs, respectively;
while F𝐴 is related to IC mutual alignments and 𝛽 is the alignment coefficient. Hereafter
we report the functional forms of 𝐹𝑆, F𝐶 , F𝑇 , F𝐼 , and F𝐴.

Chemoattractant secretion 𝐹𝑆. In Eq. (1), 𝐹𝑆 implements the chemoattractant substance
constantly secreted by TCs through their membrane. It is thus defined as

𝐹𝑆 (Y) =
𝑁𝑇∑︁
𝑗=1

𝑓B(Y 𝑗 ,𝑅𝑇 ) (x), (3)

where 𝑅𝑇 is the radius of a TC (see Panel B in Fig. 2), B(y, 𝑟) denotes the bidimensional
ball with radius 𝑟 centered at y, and 𝑓A is the identity function of the set A.

Chemotactic response F𝐶 . In Eq. (2), the chemotactic contribution F𝐶 depends on the
chemoattractant sensed by the 𝑖−th IC in its neighborhood. It is thus computed as a
weighted average of the gradient ∇𝜑 over a ball centered at X𝑖 whose radius 𝑅𝐶 denotes
the extension of cell sensing extracellular molecules (see again Panel B in Fig. 2).
Similar non-local chemotaxis terms have been already proposed in literature, see [67]
for a review and references therein. Specifically, F𝐶 is assumed as

F𝐶 (X𝑖, 𝜑) =
1
W

∫
B(X𝑖 ,𝑅𝐶 )

𝑤𝑖 (𝒙) 𝜒(𝜑) ∇𝜑(𝒙, 𝑡) 𝑑x, (4)

where the function 𝑤𝑖 : R2 ↦→ R+ is a truncated Gaussian weight function implementing
the distribution of chemical receptors. It is defined as 𝑤𝑖 (𝒙) = 2(1−∥𝒙−X𝑖 ∥/𝑅𝐶 )2) when
x ∈ B(X𝑖, 𝑅𝐶) and null otherwise, so that the value of W :=

∫
B(X𝑖 ,𝑅𝐶 )

𝑤𝑖 (𝒙)𝑑x is
independent on 𝑖. It only depends on the value of 𝑅𝐶 . Conversely, the function
𝜒 : R+ ↦→ R+, also known as receptor saturation function, imposes a limitation on
the maximum chemoattractant local amount, hence reducing cell migration in high
concentration areas. According to [28], it is given by

𝜒(𝜑) = 𝑘1

(𝑘2 + 𝜑)2 , (5)

where 𝑘1 represents the cellular drift velocity, while 𝑘2 is the receptor dissociation
constant indicating how many molecules are necessary to bind the receptors.
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IC-TC interactions F𝑇 . The function F𝑇 in Eq. (2) implements a repulsion effect affecting
the dynamics of the i-th IC whereas it collides with some TCs, i.e. as the distance
between their centers is less than 𝑅p,𝑇 := 𝑅𝐼 + 𝑅𝑇 (see Panel B in Fig. 2). Assuming
that the resulting repulsion term is due to the superposition of pairwise isotropic metric
interactions, F𝑇 is defined as

F𝑇 (X𝑖,Y) = −𝜔rep,𝑇
∑︁

𝑗 : Y 𝑗∈B(X𝑖 ,𝑅rep,𝑇)

(
1

∥Y 𝑗 − X𝑖∥
− 1
𝑅rep,𝑇

) Y 𝑗 − X𝑖

∥Y 𝑗 − X𝑖∥
, (6)

where 𝜔rep,𝑇 is said repulsion coefficient.

IC-IC interactions F𝐼 . The function F𝐼 in Eq. (2) includes attraction-repulsion effects
between ICs. In particular, repulsion occurs if the distance between the centers of two ICs
is less than 𝑅rep,𝐼 := 2𝑅𝐼 (see Panel B in Fig. 2). Conversely, attraction, implementing
adhesive interaction between cells via filopodia, occurs if the mutual distance is between
𝑅rep,𝐼 and 𝑅adh,𝐼 > 𝑅rep,𝐼 (see Panel B in Fig. 2). Assuming again the superposition of
pairwise isotropic metric interactions, F𝐼 writes

F𝐼 (X) =
𝑁 (𝑡)∑︁
𝑗=1
𝑗≠𝑖

K(∥X 𝑗 − X𝑖∥)
X 𝑗 − X𝑖

∥X 𝑗 − X𝑖∥
, (7)

where, given positive constants 𝜔rep,𝐼 (repulsion coefficient) and 𝜔adh,𝐼 (adhesion coef-
ficient), the function K is assumed as

K(𝑟) =


− 𝜔rep,𝐼

(
1
𝑟
− 1
𝑅rep,𝐼

)
, if 𝑟 ≤ 𝑅rep,𝐼 ,

𝜔adh,𝐼
(
𝑟 − 𝑅rep,𝐼

)
, if 𝑅rep,𝐼 < 𝑟 ≤ 𝑅adh,𝐼 .

(8)

Note that for both IC-TC interactions in Eq. (6) and IC-IC interactions in Eq. (7), repulsive
kernels are assumed to go as 1/𝑟 , as proposed in literature for cell-cell interactions for
instance in [26, 64].

Alignment F𝐴. In Eq. (2), the function F𝐴 implementing cell alignment is defined as a
Cucker and Smale-like flocking term [27]:

F𝐴 (X, ¤X) = 1
𝑁𝐴 (𝑡)

∑︁
𝑗 : 𝑗≠𝑖

X 𝑗 ∈B(X𝑖 ,𝑅rep,𝐼 )

(
1 +

∥X 𝑗 − X𝑖∥2

𝑅2
rep,𝐼

)− 1
2 ( ¤X 𝑗 − ¤X𝑖

)
, (9)

where 𝑅rep,𝐼 has been chosen as a suitable radius of influence based on [26], and
𝑁𝐴 (𝑡) := card{ 𝑗 = 1, ..., 𝑁 (𝑡) : 𝑗 ≠ 𝑖, X 𝑗 (𝑡) ∈ B(X𝑖, 𝑅rep,𝐼)} is the number of ICs
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close enough to the 𝑖-th cell to allow alignment effects. We remark that the alignment
term was first introduced in [27] for birds and applied to morphogenesis in the setting
of conditional flocking, see [26]. In [16], this term has been added for the first time
to the model proposed in [15] in order to better mimic the IC flocking movements
observed in cancer-on-chip experiments and it is explored in depth in through different
scenarios showing the effect of the alignment term coupled with the other effects, such
as chemotaxis and adhesion-repulsion terms.

The initial condition is given by the position and velocity of ICs at the initial time
𝑡 = 0 h, i.e. X(0) = X0 and ¤X(0) = V0; together with the distribution of the TCs Y and
the initial concentration of the chemoattractant 𝜑(𝒙, 0) = 𝜑0(𝒙).
As already anticipated, in order to reproduce the experiments described in Section 2.1,
an influx of ICs over time is required. For simplicity, given the inflow rate 1/𝜏, at every
instant time 𝑡′ equal to a multiple of 𝜏, a new IC is added to the system by increasing
by one the amount of 𝑁 (𝑡′); selecting a position X𝑁 (𝑡′) (𝑡′) over the top boundary of the
domain; and defining an inward directed velocity. On the other hand, since the boundary
of the domain does not represent a physical barrier, ICs are always allowed to trespass it
and leave the domain. For simplicity, we assume that once they leave the domain, they
will not re-enter. In mathematical terms, if the 𝑖-th IC enters the domain at time instant
𝑡in and moves inside Ω until 𝑡out, when it reaches the boundary, i.e., X𝑖 (𝑡) ∈ Ω for any
𝑡 ∈ [𝑡in, 𝑡out) and X𝑖 (𝑡out) ∈ 𝜕Ω, then we state that X𝑖 (𝑡) ∉ Ω for any 𝑡 > 𝑡out.
Due to the peculiarity of the chosen computational domain Ω, we further assign a non-
homogeneous Robin boundary condition to reproduce the flow of the chemoattractant
through the boundary:

𝐷
𝜕𝜑

𝜕n
+ 𝑎𝜑 = 𝑏, on 𝜕Ω, (10)

where 𝑎 is the local rate of exchange of the chemoattractant with the external environment,
and 𝑏 is the outflow of the chemical. In particular, labelling the four sides of Ω by 𝑆
(South), 𝐸 (East), 𝑁 (North),𝑊 (West) (see Panel B in Fig. 2), the values assumed by 𝑎
and 𝑏 over them are respectively denoted as 𝑎𝑆, 𝑎𝐸 , 𝑎𝑁 , 𝑎𝑊 and 𝑏𝑆, 𝑏𝐸 , 𝑏𝑁 , 𝑏𝑊 .

2.3. Case study and definition of the observable quantities
Case study and parameter space. Our sensitivity analysis is performed by focusing on
a representative numerical setting, denoted hereafter as a case study, designed on the
domain Ω by fixing the period of observation I, the initial condition, the inflow of ICs,
and the Robin boundary conditions, to reproduce the experiments in [14] described in
Section 2.1.

Specifically, the period of observation is fixed to I = [0, 24] h and it represents the
interval of time [24, 48] h in the experiment. Indeed, this is the period presenting the
more interesting dynamics, with ICs migrating towards the tumor chamber in the left
compartment. The initial condition for the chemoattractant is 𝜑0(𝒙) = 0 mol 𝜇m−2 for
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any 𝒙 ∈ Ω. A fixed number of TCs, given by 𝑁𝑇 = 35, are randomly distributed in Ω

while no ICs are initially located within the domain, i.e. 𝑁 (0) = 0. The influx of ICs
has been defined based on a qualitative observation of the video footage of laboratory
experiments reported in [14], by focusing on the monitored area corresponding to the
computational domain and FPR1 CC cells, as well as the related statistics reported in [2].
Specifically, ICs are assumed to progressively enter the domain from the top side of the
domain over the period of time [0, 15] h, corresponding to the period [24, 39] h, with an
inflow rate of about 1 cell every 𝜏 = 6 min resulting into a total amount of 150 ICs. The
positions over the boundary domain where the cells enter the domain will be randomly
selected only once and fixed for all the forthcoming simulations. The velocity of the
entering cells is always assumed downward directed with modulus equal to 0.03 𝜇m s−1,
i.e. the mean value reported in [2].

Following preliminary results in [15], the Robin boundary conditions in Eq. (10) are
set with a uniform rate of exchange over the entire boundary, i.e. 𝑎𝑁 = 𝑎𝐸 = 𝑎𝑁 = 𝑎𝑊 =

105 𝜇m s−1, and different flux intensities on each side of Ω, i.e. 𝑏𝑆 = 2.2 mol 𝜇m−1s−1,
𝑏𝐸 = 1.2 mol 𝜇m−1s−1, 𝑏𝑁 = 0 mol 𝜇m−1s−1, 𝑏𝑊 = 1.8 mol 𝜇m−1s−1. In fact, these
values qualitatively well capture the experimentally observed chemical distributions,
which, in reality, are affected also by the TCs placed outside the domain, i.e. in the rest
of the TCs chamber and, mainly, in the bottom TCs wells.

Remark. The effect of Robin boundary conditions in Eq. (10) on the overall dynamics is
strong, as shown in [15, 16] and in the Supplementary Material S1. Indeed, such bound-
ary conditions involving the values of parameters 𝑎 and 𝑏, regulate the inflow/outflow of
chemicals in the observed domain. Note that the numerical values here imposed allow
us to qualitatively reproduce the ICs dynamics observed in experimental movies, but
they do not correspond to reality. For the mentioned reasons, here we keep them fixed
in order to not affect the results of the sensitivity analysis.

Concerning the space of parameter to investigate, it is first worth noticing that the
cell radii 𝑅𝑇 and 𝑅𝐼 can be easily measured in vitro. 𝑅𝑇 and 𝑅𝐼 are therefore hereafter
fixed to 10 𝜇m and 4 𝜇m, respectively, accounting for the experimental measurements
reported in Section 2.1. In turn, 𝑅rep,𝑇 and 𝑅rep,𝐼 are consistently defined equal to
14 𝜇m and 8 𝜇m, respectively. Our sensitivity analysis therefore deal with the 13
model parameters listed in Table 1. Notice that this will highlight the role of the
different features of the mathematical model. In fact, we have: coefficients regulating
the evolution of the chemical signal, i.e. 𝐷, 𝜉, 𝜂; the damping coefficient due to
cell adhesion to the substrate 𝜁 ; parameters characterizing ICs sensing of the chemical
signal, i.e. 𝛾, 𝑅𝐶 , 𝑘1, 𝑘2; and parameters linked to cell-cell interactions, i.e. 𝜔rep,𝑇 ,
𝜔rep,𝐼 , 𝜔adh,𝐼 , 𝑅adh,𝐼 , 𝛽. Specifically, taking into account either estimates in literature
and preliminary numerical simulations in [15], qualitatively reproducing phenomena
observed experimentally, model parameters are assumed independent and uniformly
distributed over the ranges reported in Table 1.
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Par. Description Units Range Value Ref.

𝐷 Diffusion coefficient of the chemical 𝜇m2s−1 [1.5 · 102, 1.5 · 103] 900 [23]
𝜉 Default production rate of the chemical 𝜇m−2 mol s−1 [5 · 10−7, 10−5] 1.6·10−6 [-]
𝜂 Decay rate of the chemical s−1 [10−5, 10−3] 10−4 [22]
𝜁 Damping coefficient (IC-substrate ad-

hesion)
s−1 [10−3, 5 · 10−3] 2.1·10−3 [-]

𝛾 Coefficient of chemotactic effect 𝜇m−1 [5, 102] 2 · 10 [-]
𝑅𝐶 Detection radius of chemicals 𝜇m [5, 15] 7 [-]
𝑘1 Cellular drift velocity mol s−1 [10−9, 10−8] 3.9·10−9 [23]
𝑘2 Receptor dissociation constant mol 𝜇m−2 [10−14, 10−13] 5 · 10−14 [23]
𝜔rep,𝑇 Repulsion coefficient between ICs and

TCs
𝜇m2s−2 [10−3, 10−2] 8.5·10−3 [-]

𝜔rep,𝐼 Repulsion coefficient between ICs 𝜇m2s−2 [10−4, 10−3] 5 · 10−4 [-]
𝜔adh,𝐼 Adhesion coefficient between ICs s−2 [10−8, 10−6] 10−7 [-]
𝑅adh,𝐼 Radius of action of adhesion between

ICs
𝜇m [9, 11] 10 [-]

𝛽 Alignment coefficient s−1 [5 · 10−2, 5] 10−1 [26]

Table 1: Model parameters investigated in the GSA. For each parameter, we report a short description;
the unit of measurements; a range of values where the parameters are considered uniformly distributed
used in our sensitivity analysis; a nominal value used for the simulation in Section 3.1; references used
to estimate the used values. In the last column ‘[-]’ means that the values have been estimated through
preliminary numerical simulations.

Output quantities. A crucial point in performing a useful sensitivity analysis is the
choice of the output quantities to be considered. In our case, on one hand, it is hard
to characterize with a single scalar measure the ICs dynamics arising from Eqs. (1)-
(2). On the other hand, as highlighted for instance by the several statistics reported in
[1, 2], there are many relevant readouts and features of CoC biological experiments to be
considered: e.g. the clusterization of ICs around TCs, the spatial distribution of ICs, as
well as their speed and direction of motion. In fact, from a biological point of view, the
experimental evaluation of these statistics may support the identification of how possible
manipulations of the scenario affect ICs dynamics. In this perspective, our sensitivity
analysis deals with multiple model outcomes (defined below) to highlight how the model
parameters affect the spatial distribution, the speed, and the direction of motion of ICs,
in the considered case study. In order to look at the temporal evolution of the system, the
observation period I is divided into three sub-intervals Iℎ = [𝑡ℎ−1, 𝑡ℎ], with ℎ = 1, 2, 3,
with the same length. The symbol < · >ℎ then introduced to denote the time average of
the quantity “ · ” over the time interval Iℎ, i.e,

< · >ℎ :=
1

(𝑡ℎ − 𝑡ℎ−1)

∫
Iℎ
· 𝑑𝑡. (11)

The decision to divide the observation period into three intervals is based on preliminary
studies of the experiment and numerical simulations of cell dynamics, which highlighted
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three distinct cell behaviors over time. During the first time interval I1 = [0, 8] h the
few ICs present in the domain are usually located in the top part of the domain. During
I2 = [8, 16] h there still are ICs entering the domain and, depending on the cases, the
other ICs might either still move downwards following the chemical field, cluster around
a TC or leave the domain. During I3 = [8, 16] h no more cells are entering the domain,
and enough time has passed to observe the ICs’ final ‘destiny’, i.e. whether they leave
the domain or cluster around an encountered TC. These three time intervals therefore
allow to monitor possible variations in time of both ICs dynamics and detect the role of
the model parameters.

To monitor the spatial distribution of the ICs, the domain Ω is partitioned into 4
square disjoint subdomains Ω𝑞, with 𝑞 = 1, 2, 3, 4, i.e. Ω1 (North-West), Ω2 (North-
East), Ω3 (South-West) and Ω4 (South-East), as depicted in Panel A in Fig. 2. The spatial
distribution of ICs during each time interval Iℎ with ℎ = 1, 2, 3, is then characterized by
the following quantities.

< 𝑁 >ℎ: the average number of ICs in the domain Ω during the time period Iℎ, i.e.
< 𝑁 >ℎ:=< 𝑁 (𝑡) >ℎ, being 𝑁 (𝑡) the number of ICs inside the domain at the
instant of time 𝑡.

< 𝑁𝑞 >ℎ : the average number of ICs located in the portion of the domain Ω𝑞, 𝑞 =

1, . . . , 4 during the period of time Iℎ, i.e. < 𝑁𝑞 >ℎ:=< 𝑁𝑞 (𝑡) >ℎ being 𝑁𝑞 (𝑡) the
number of ICs such that X𝑖 (𝑡) ∈ Ω𝑞 at the instant of time 𝑡.

𝑝out(𝑡ℎ): the fraction of ICs that have left the domain Ω before the instant of time 𝑡ℎ.
Specifically, it is defined as

𝑝out(𝑡ℎ) :=
𝑁out(𝑡ℎ)
𝑁in(𝑡ℎ)

, (12)

where 𝑁in(𝑡) and 𝑁out(𝑡) are the number of ICs that respectively entered or exited
from the domainΩ over the period [𝑡0, 𝑡]. Notice that if 𝑁in(𝑡ℎ) = 0 then obviously
also 𝑁out(𝑡ℎ) nullifies, and it is then consistent to set 𝑝out(𝑡ℎ) = 0.

𝑝cl(𝑡ℎ): the fraction of ICs clustered around a TC at the instant time 𝑡ℎ, i.e.

𝑝cl(𝑡ℎ) :=
𝑁cl(𝑡ℎ)
𝑁 (𝑡ℎ)

, (13)

where 𝑁cl is the number of ICs sufficiently close to a TC to be considered cluster-
ized. Specifically, we assume

𝑁cl(𝑡) := card
{
𝑖 = 1, . . . , 𝑁 (𝑡) : min

𝑗=1,...,𝑁𝑇

∥X𝑖 (𝑡) − Y 𝑗 (𝑡)∥ ≤ 𝑅cl

}
, (14)
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where 𝑅cl is set equal to 𝑅𝑇 + 3𝑅𝐼 . This value of 𝑅cl allows to detect clusters
constituted by at most two layers of ICs around a TC. Also in this case, if the
denominator 𝑁 (𝑡ℎ) nullifies, then also as also 𝑁cl(𝑡ℎ) = 0, and it is thus consistent
to set 𝑝cl(𝑡ℎ) = 0.

Notice that the computation of the quantities 𝑝out and 𝑝cl is quite expensive. Hence, they
are not calculated as means on Iℎ, but only at the final instants of each time interval.

Concerning instead the dynamics of ICs, we hereafter distinguish between cell speed
and direction of motion by writing IC velocities as ¤X𝑖 (𝑡) = 𝑣𝑖 (𝑡) (cos 𝜃𝑖 (𝑡), sin 𝜃𝑖 (𝑡)),
where 𝑣𝑖 := ∥ ¤X𝑖∥, while 𝜃𝑖 is the angle between ¤X𝑖 and the direction n = (0,−1) toward
the bottom side 𝑆 of the domain. Cell dynamics at each time interval Iℎ with ℎ = 1, 2, 3,
is thus described by the following quantities.

< 𝑣 >ℎ: the time average over the time interval Iℎ of the mean speed 𝑣(𝑡) of the ICs
located in the domain Ω at 𝑡, i.e.

𝑣(𝑡) :=
1

𝑁 (𝑡)

𝑁 (𝑡)∑︁
𝑖=1

𝑣𝑖 (𝑡). (15)

< 𝑣std >ℎ: the time average over the interval time Iℎ of the standard deviation 𝑣std(𝑡) of
the speed located in the domain Ω at 𝑡, i.e. 𝑣ℎstd :=< 𝑣std(𝑡) >ℎ with

𝑣std(𝑡) :=

√√√
𝑁 (𝑡)∑︁
𝑖=1

(𝑣𝑖 (𝑡) − 𝑣(𝑡))2

𝑁 (𝑡) . (16)

Cℎn : the correlation between cell direction of motion and the fixed direction n. Specifi-
cally, it is defined as

Cℎn =
1

𝑁 (𝑡)

𝑁 (𝑡)∑︁
𝑖=1

< cos(𝜃𝑖 (𝑡)) >ℎ . (17)

Cℎ
𝐶

: the correlation between the direction of motion of ICs and the gradient of the
chemical cue sensed by cells. Denoting by 𝜙(x) the angle between the gradient of
the chemical field ∇𝜑 at x ∈ Ω and the direction n, we define

Cℎ𝐶 :=
1

𝑁 (𝑡)

𝑁 (𝑡)∑︁
𝑖=1

< cos(𝜙(X𝑖 (𝑡)) − 𝜃𝑖 (𝑡)) >ℎ . (18)

Notice that if Cℎ
𝐶
≈ 1 indicates that all individuals move according to the chemical

cue over the entire period Iℎ.
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2.4. Our GSA approach
Accounting for a large number of model parameters, the non-linearity of the model,

and the considerable computational cost of a single in silico realization (see Appendix A
for further details about the numerical scheme), the GSA is performed in two successive
steps. First, the improved method of Morris is used to screen the model parameters and
rank them according to their importance in affecting the model outcome. Then the more
computational expensive eFAST method is used to quantify the effect of only the few
most important parameters detected by the Morris method.

The improved Morris method. The screening method of the Elementary Effects defined
by Morris in [4], as well as its improved version proposed by Campolongo et al. [3],
are suited to efficiently treat deterministic models with a large number 𝑑 of model
parameters mutually independent, and/or fairly expensive to simulate. In [4], the concept
of elementary effect associated with the 𝑘-th model parameter on a scalar target output
𝑄 is defined as

EE𝑘 (z) :=
𝑄(z + Δe𝑘 ) −𝑄(z)

Δ
(19)

where z is a point in the region of interest H of the 𝑑-dimensional parameters space; e𝑘
are the standard basis vectors in R𝑑; and Δ is such that (z + Δe𝑘 ) ∈ H . The basic idea
of the Morris method is to characterize the distribution of EE𝑘 , by randomly sampling
different z from H , (see Appendix B or [3] for further details), and then use the mean
𝜇𝑘 and the standard deviation 𝜎𝑘 of the sampled EE𝑘 as sensitivity measures. However,
as stated in [3], using the mean of the absolute value of EE𝑘 , said 𝜇∗

𝑘
rather than 𝜇𝑘 ,

avoids possible cancellation effects introduced by negative values. Specifically, 𝜇∗
𝑘

is
an indicator of the overall influence of the 𝑘-th parameter on the output, thus providing
the ranking of model parameters by importance. Conversely, 𝜎𝑘 highlights if the 𝑘-th
parameter has non-linear effects or interacts with other parameters. An effective way
to visualize the qualitative information provided by the extended Morris method is to
display model parameters in the 𝜇∗

𝑘
− 𝜎𝑘 plane. This allows to identify three classes

of model parameters, as stated in [3, 4, 6, 42]: negligible ones (low 𝜇∗
𝑘

and 𝜎𝑘 , i.e.
𝜇∗
𝑘
, 𝜎𝑘 ≈ 0); important parameters with large linear effects and no interactions (large

𝜇∗
𝑘

and small 𝜎𝑘 , i.e. 𝜇∗
𝑘
> 𝜎); important parameters with non-linear and/or interaction

effects (large 𝜇∗
𝑘

and large 𝜎𝑘 , i.e. 𝜇∗
𝑘
≤ 𝜎). In practice, negligible parameters appear

in the bottom left part of the 𝜇∗
𝑘
− 𝜎𝑘 plane while important parameters are distributed

on their right. In addition, important parameters located largely below the 45-degree
line has purely linear effects without and no interactions, while those close or above the
45-degree line are affected by non-linear effects and/or interactions.

The eFAST method. The eFAST method is a variance-based GSA method, i.e. an
approach suitable to study non-linear models, and based on the ANOVA-like decompo-
sition of the target output variance [10, 44, 46, 54, 55]. Denoting by {𝑍𝑘 }𝑘=1,...,𝑑, the 𝑑
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model parameters, if they are mutually independent, the variance of the output 𝑄 can be
decomposed into contributions related to either the single parameters or combinations
of them, i.e.

Var(𝑄) =
∑︁

𝑘=1,...,𝑑
𝐷𝑘 (𝑄) +

∑︁
𝑘,𝑖=1,...,𝑑

𝑘<𝑖

𝐷𝑘𝑖 (𝑄) + ... + 𝐷12...𝑑 (𝑄), (20)

where 𝐷𝑘 (𝑄) := Var[E(𝑄 |𝑍𝑘 )]; while 𝐷𝑘𝑖 (𝑄) := Var[E(𝑄 |𝑍𝑘 , 𝑍𝑖)] − 𝐷𝑘 (𝑄) − 𝐷𝑖 (𝑄)
and so on. Then, the eFAST method returns, for each 𝑘-th model parameter, the Sobol’
sensitivity indices [7] defined as

𝑆𝑘 (𝑄) =
𝐷𝑘 (𝑄)
Var(𝑄) , 𝑆𝑇𝑘 (𝑄) = 𝑆𝑘 (𝑄) +

∑︁
𝑖=1,...𝑑
𝑖< 𝑗

𝐷𝑘𝑖 (𝑄)
Var(𝑄) + ... + 𝐷12...𝑑 (𝑄)

Var(𝑄) =
∑︁
𝑔∈#𝑘

𝐷𝑔 (𝑄)
Var(𝑄) ,

(21)
where #𝑘 denotes all the possible combinations from {1, ..., 𝑑} containing 𝑘 . In Eq. (21),
the first-order indices 𝑆𝑘 (𝑄) quantify the fraction of the output variance due to changes in
the 𝑘-th model parameter only, and are thereby also called main effects indices [54, 55].
Conversely, the so-called total effects 𝑆𝑇

𝑘
(𝑄), introduced in [44], assess the impact of

parameter 𝑘 including all possible interactions with the other factors. It follows that
the difference 𝑆𝑇

𝑘
− 𝑆𝑘 represents the fraction of the output variance due to interactions

involving the 𝑘-th parameter. Practical criteria to interpret these quantities are provided
in [11]: (i) the threshold 0.01 discriminates between negligible effects/parameters (af-
fecting less than 1% of the output variance) and relevant once; (ii) Sobol indices above
0.1 identify the key parameters influencing more than the 10% of Var(𝑄).
The general idea at the basis of the eFAST method for computing first-order and total-
effect indices is reported in Appendix B. Refer to [10] and references therein for a
detailed description.

Two-step GSA. For each one of the output quantities introduced in Section 2.3, the
improved Morris method is first used to rank the 13 parameters in Table 1 according
to their importance. Specifically, the sampling method by Campolongo et al. [3] has
been used and allows us to identify 280 points in the 13-dimensional parameter space
(see Appendix B for further details about the Morris sampling). Each one of these
points identifies a parameter setting used to compute, by numerically solving the model,
the values of our 11 output quantities over the 3 distinct time intervals, as detailed in
Section 2.3. All these values are then used to estimate the elementary effects of the
13 model parameters on each output quantity 𝑄. The relative sensitivity measure 𝜇∗

𝑘
,

defined in [3] and recalled above, identifies for each output quantity 𝑄 a parameters’
ranking of the 13 model parameter by importance (i.e. by decreasing values of 𝜇∗

𝑘
).

The resulting rankings are then compared two-by-two by using the Spearman’s Rank
correlation coefficient to measure their degree of similarity. High values of this coef-
ficient,denoting by definition a strong similarity, in fact indicate that the two compared
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Figure 3: Representative model realization. Eqs. (1)-(2) are solved by considering the case study scenario
in Section 2.3, by fixing the 13 investigated model parameters equal to the nominal parameters values in
Table 1. The concentration of the chemoattractant 𝜑, with units mol, is plotted with 2D contour lines.
Red dots represent the static 35 TCs randomly distributed in the domain. Black dots denote the present
positions of the moving ICs, and the black arrows their direction of motion. In Panel A, the names of the
subdomains Ω𝑙 , with 𝑙 = 1, . . . , 4 are reported.

output quantities are mainly affected by the same model parameters. It therefore fol-
lows that, if all the Spearman’s Rank correlation coefficients are sufficiently high, it is
possible to identify a single group of relevant parameters mostly determinant for all the
considered model outputs. Otherwise, it could be necessary to consider different groups
of relevant parameters to study in the second step of our analysis or find other strategies.
Interestingly, as detailed in the next section, in our case, all the model outputs of our
interest are mainly affected by the same 6 parameters.
The eFAST method is then applied to investigate a smaller space of parameters, obtained
by fixing the parameters denoted as negligible by the Morris method, equal to an arbi-
trary value in the range used for the screening. The sampling method in [10] here results
in a sampling of 3000 points in the 6-dimensional parameter space (see Appendix B).
Notice that, despite the eFAST method has been here used to investigate only 6 parame-
ters, it requires approximately one order of magnitude more than the Morris method to
screen 13 parameters. Such a different computational cost is intrinsically linked to the
sampling approach at the basis of each method, specifically designed to provide either
qualitative (Morris) or quantitative (eFAST) information about the role of the model pa-
rameters. This underlines the computational usefulness of coupling these two methods,
instead of applying eFAST to all the 13 model parameters.
Both Morris and Sobol analysis have been performed by using the SALIB Python library
[8, 9].
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3. Results

3.1. Representative numerical realization of the case study
This section is devoted to a representative numerical realization of the model shown

in Fig. 3, that has been obtained by considering the case study scenario introduced in
Section 2.3 (see, for instance, the video footage of laboratory experiments Movie S13
and Movie S14 in the Supplementary Material of [14]). The 13 investigated model
parameters are here fixed equal to the nominal values in Table 1, within the ranges
considered for the sensitivity analysis. The aim of this simulation is to help readers not
familiar with the model to better appreciate the forthcoming sensitivity analysis.

As specified in Section 2.3, at the initial time instant 𝑡 = 0 h, there are no ICs inside
the domain, 𝑁𝑇 = 35 TCs are randomly distributed as shown in Panel A (red dots), and
the chemoattractant field is 𝜑0(𝒙) = 0 mol 𝜇m−2 for any 𝒙 ∈ Ω. Due to the presence in
the reaction-diffusion equation (1) of the non-local source term 𝐹𝑆 defined in Eq. (3),
a certain amount of chemical is progressively generated around the TCs since the first
time instant. At the same time, the chemoattractant rapidly spreads across the domain
driven by the diffusion and decay terms in Eq. (1), in addition to the Robin conditions
in Eq. (10), with the values defined in Table 1 and Section 2.3, respectively. A feasible
chemical field consistent with experimental evidence in [14], see Panel A in Fig. 3, is
thus obtained before the first ICs enter the domain at 𝑡 = 𝜏(= 6 min). Specifically, the
emerged chemical field is characterized by higher concentrations at the bottom left of
the domain by mimicking the presence of chemical secreting TCs outside Ω, especially
the large number of them located in the bottom well, see Fig. 1. Such a chemical pattern
then drives first ICs entered in the domain, to move downwards to possibly approach the
TCs, see Panel B in Fig. 3. As time goes by, see Panels C-D in Fig. 3, the chemical
field gradually becomes more homogeneous due to the diffusion and decay terms, in
addition to the boundary conditions defined above. Notice that ICs are coherently
mainly attracted toward the densest groups of TCs. However, during the evolution of
the system, some ICs reach the boundary and leave the domain. The resulting reduction
in the downward chemical gradient is consistent with IC dynamics observed in [14].
Meanwhile, the ICs continue to mostly move downwards following the chemical field,
by possibly temporarily clustering around the encountered TCs.

3.2. Two-step global sensitivity analysis
3.2.1. First step: Morris sensitivity analysis

First, as described in Section 2.4, the improved Morris method is applied to investigate
the hypercube in the space of parameters defined by the ranges in Table 1. Figures 4-5
show the values of the output quantities resulted by solving the model with each one
of the 280 sampled parameter settings. It is remarkable that all the obtained values are
consistent with the experimental observations in [1, 2, 14]. This confirms the feasibility
of the space of parameters we are considering and support our SA.
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G H

Figure 4: Dynamics of ICs in the model realizations considered for the Morris analysis. Each panel
shows the values of an output quantity obtained over all the 280 parameter settings constituting the
Morris sampling. In all panels, data referring to three time intervals I1 = [0, 8] h, I2 = [8, 16] h, and
I3 = [16, 24] h are respectively represented in green, yellow, and red. Panel A: < 𝑣 >ℎ vs. < 𝑣std >ℎ,
see Eqs. (15)-(16). Circle markers denote the values obtained with the parameter settings identified by
the Morris sampling. Square markers refer to the representative simulation in Section 3.1. Panels B-C-D:
Absolute frequency of the angles 𝜃𝑖 denoting the direction of motion of ICs over I1 (B), I2 (C), and I3
(D). Panel E: Distributions of the correlation between cell direction of motion and the fixed direction n,
i.e. Cℎ

n in Eq. (17). Panel F: Distributions of the correlation between cell direction of motion and the
gradient of the chemical field, i.e. Cℎ

𝐶
in Eq. (18). Panel G: Distributions of the fraction of ICs clustered

around a TC at 𝑡ℎ, i.e. 𝑝cl (𝑡ℎ) in Eq. (13). Panel H: Distributions of the fraction of ICs that have left
the domain at 𝑡ℎ, i.e. 𝑝out (𝑡ℎ) in Eq. (12). In Panels E-H, x-axis and y-axis denote the values assumed
by the considered quantity and relative frequencies, respectively; and dashed lines represents the values
observed in Section 3.1.
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Figure 5: Number and distribution of ICs in the model realizations considered for the Morris analysis.
Each panel shows the values of an output quantity obtained over all the 280 parameter settings constituting
the Morris sampling. Panel A: Number of ICs in the domain < 𝑁 >ℎ. Panel B-E: Number of ICs in the
subdomains, i.e. in the North-West < 𝑁1 >ℎ (B); North-East < 𝑁2 >ℎ (C); South-West < 𝑁3 >ℎ (D); and
South-East < 𝑁4 >ℎ (E). In all panels, data referring three time intervals I1 = [0, 8] h, I2 = [8, 16] h, and
I3 = [16, 24] h are respectively represented in green, yellow and red; x-axis and y-axis denote the values
assumed by the considered quantity and relative frequencies, respectively; and dashed lines represents the
values observed in the representative simulation in Section 3.1.
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Referring to Panel A in Fig. 4, the ranges covered by IC speeds in the three time
intervals are in fact in accordance with the values reported in Fig. 4 of [2]. All together
Panels A-D in Fig. 4 show that, during the first time interval I1, ICs dynamics is always
characterized by a faster motion directed towards the bottom side of the domain. Instead,
during I2 and I3, both the mean and the standard deviation of their speed decrease, and
the directions of motion of ICs are more distributed, as shown by the polar histograms
in Panel C and D. This can be explained by the fact that at time I2 and I3 ICs reach their
targets and have local interactions in all the directions. In addition, Panels E-F in Fig. 4
indicate that ICs over I1 mainly move towards the bottom side of the domain following
the chemotactic field, as C1

n and C1
𝐶

are both mostly close to 1. Then, the alignment of
ICs direction of motion to n and to the chemotactic field slightly decreases.

These first results suggest a system behavior similar to those observed in the reference
simulation in Section 3.1 is captured for all the sampled parameter setting. In the first
period I1, ICs dynamics are mainly driven by the chemical field, which is characterized
by a higher difference in its concentration between the top and the bottom part of the
domain, where the concentration is higher, see Panels A-B in Fig. 3. As time goes by, the
chemoattractant diffuses inside and outside the domain reducing the spatial differences
in its concentration, see Panels C-D in Fig. 3, while ICs have either left the domain or
have approached the TCs so that cell-cell interactions enter into play. This explains why
both the mean and the standard deviation of ICs speed decrease, while the directions of
motion of ICs are more sparse.

These considerations are also supported by Panels G-H in Fig. 4. Panel G in Fig. 4
shows that the fraction of cells that reach the TCs and cluster around them slightly
increases in time. Indeed, as time goes by, ICs entered in the domain progressively move
downwards so that a higher portion of cells falls close to the TCs. In addition, Panel
H in Fig. 4 shows that the portion of ICs that have left the domain before 𝑡1, 𝑡2, and 𝑡3,
is substantially the same. This suggests that 𝑝out is independent on where the ICs are
mainly located (i.e., in the top or bottom part of the domain) confirming that cells are
allowed to trespass the boundary with no limitations.

Figure 5 provides information about the mean number and the spatial distribution
of the ICs coherent with the above considerations. Panel A of Fig. 5 shows that over
I1, in most cases, roughly 25-30 ICs are present inside the domain with slight changes
among the different simulations. During I2 and I3, a greater and greater variability in
the average number of ICs inside the domain is observed. This is due to the fact that, as
time goes by, the Robin condition, mimicking the presence of other TCs outside Ω, may
attract some of, sometimes all, the ICs outside of the domain. Concerning instead the
spatial distribution of the ICs in the domain portions Ω𝑞, with 𝑞 = 1, ..., 4, Panels B-C in
Fig. 5 show that the time evolution of both < 𝑁1 >ℎ and < 𝑁2 >ℎ, i.e. the mean number
of ICs in the upper parts of the domain, are qualitatively similar to that observed over
the entire domain, i.e. in Panel A of Fig. 5. Conversely, Panels D-E in Fig. 5 highlight
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Figure 6: Distribution of the model parameters in the plane 𝜇∗/𝜇∗max − 𝜎/𝜎max, according to the Morris
sensitivity measures relative to the observables < 𝑁 >ℎ with ℎ = 1, 2, 3, given in Section 2.3, i.e. the
mean amount of ICs in the domain over the time intervals I1 = [0, 8] h (A), I2 = [8, 16] h (B), and
I3 = [16, 24] h (C).

that only in a few cases all the ICs reach the bottom part of the domain, indicating that
they mainly cluster around the TCs in Ω1 and Ω2, or leave the domain.

Once stated that the considered hypercube in the space of parameter results in admis-
sible system outcomes, i.e. consistent with the scenarios observed in the experiments by
Vacchelli et al. in [14], it is reasonable to analyze the Morris sensitivity measures. As
recalled in Section 2.4, for each output quantity, the improved Morris method returns
two sensitivity measures 𝜇∗

𝑘
and 𝜎𝑘 for each model parameter 𝑘 = 1, ..., 13, i.e. the mean

of the absolute value and the standard deviation of their elementary effects. Recalling
that these quantities provide only qualitative information about the role of the model
parameters, in Fig. 6 and in Figs. S1-S4 of the Supplementary Material, the Morris
measures 𝜇∗

𝑘
and 𝜎𝑘 are scaled by the values 𝜇∗max := max

𝑘
(𝜇∗𝑘 ) and 𝜎max := max

𝑘
(𝜎𝑘 ),

respectively.
The plots in Fig. 6 show that, despite small differences in their order, the parameters

mostly affecting the mean number of ICs in the domain, over all the three time intervals,
are 𝐷, 𝜉, 𝜂, 𝜁 , 𝛾, 𝑘1, while the effect of the other model parameters results negligible.
As a remark, the first three parameters are the diffusion coefficient 𝐷, the growth rate
𝜉, and the consumption rate 𝜂 defining the evolution equation (1) for the chemical
signal released by TCs. The latter are instead related to the dynamics of ICs. The
damping coefficient 𝜁 and the coefficient of chemotactic effect 𝛾 appear in the evolution
equation (2). The drift velocity 𝑘1 is involved in the receptor saturation function 𝜒(𝜑)
defined in Eq. (5) and included in Eq. (4) to implement cell chemical sensing.

Interestingly, a similar result emerges also from the plots in Figs. S1-S4 in the
Supplementary Material for the other output quantities, i.e. < 𝑣 >ℎ and < 𝑣std >ℎ (see
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Suppl. Fig. S1), < 𝑁𝑞 >ℎ (see Suppl. Fig. S2), 𝑝out(𝑡ℎ) and 𝑝cl(𝑡ℎ) (see Suppl. Fig.
S3), Cℎn and Cℎ

𝐶
(see Suppl. Fig. S4). The consistency among the rankings resulted from

the Morris method by assuming the ranges of parameters in Table 1, is evaluated through
the Spearman rank correlation coefficients between any pair of output quantities. All
these coefficients are higher than 0.8 and thereby allow us to neglect small differences
among the rankings and state that variations in all the outcomes of our interests are
mainly regulated by the same 6 parameters. In other words, both the spatial distribution
and the dynamics of ICs are thus mainly affected by the evolution of the chemical signal,
dictated by 𝐷, 𝜉, and 𝜂; cell sensing of and reactivity to the chemoattractant, i.e. 𝑘1 and
𝛾; and cell adhesion to the substrate, i.e. 𝜁 ,.

Lastly, notice that in all panels in Fig. 6 and in Figs. S1-S4 in the Supplementary
Material, the most influential parameters are mainly distributed along the bisector of
the plane. This suggests that there are important non-linear and/or interaction effects,
consistently with the non-linearity of the analyzed model.

3.2.2. Second step: eFAST sensitivity analysis
Following the approach stated in Section 2.4, the second step of our sensitivity

analysis consists in focusing on the non-negligible model parameters detected by the
Morris method, by applying the eFAST method. Having identified a small group of
6 relevant parameters mostly responsible for the variability of all the output quantities
of our interest, the space of parameter to investigate here is defined by the ranges of
values of 𝐷, 𝜉, 𝜂, 𝜁 , 𝛾, 𝑘1 in Table 1. The other 7 negligible parameters can be instead
equivalently fixed equal to any value in their ranges. In particular, we here set them as
in the reference simulation in Section 3.1, i.e. equal to the nominal value in Table 1. For
each output quantity, the eFAST method estimates the Sobol sensitivity indices 𝑆𝑘 and
𝑆𝑇
𝑘

of the 6 model parameters, i.e. the main and total effects defined in Eq. (21). These
are displayed in bar charts in Figs. 7-8. Specifically, in order to highlight possible effects
due to model non-linearity and parameter interactions, for each time interval, the main
effect 𝑆𝑘 of each model parameter is plotted alongside the total effect bar 𝑆𝑇

𝑘
, see again

Eq. (21). In all panels, two dotted lines denote the thresholds 0.01 (black) and 0.1 (red)
defined in [11] to identify non-influential and key parameters, affecting less than 1% or
more than 10% of the variance, respectively, see Section 2.4 and references therein.

Panel A in Fig. 7 first highlights that the variance of the number of ICs within the
domain Ω is mainly due to the source rate of the chemical 𝜉 and the diffusion coefficient
𝐷, over the whole observation period. Having fixed the inflow of ICs, this means that
the mean number of ICs remaining in the domain mainly depends on the strength of
the gradient of the chemical and how fast it spreads over the domain. In fact, the same
results are obtained for the fraction of ICs 𝑝out(𝑡ℎ) that have left the domain, see Panel
B in Fig. 7. In both cases, the decay rate 𝜂 of the chemical always has negligible effects.
Notice that it happens for almost all the output quantities, see Figs. 7-8.

Focusing instead on each portion Ω𝑞, with 𝑞 = 1, ..., 4, of the domain, see Panels
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Figure 7: eFAST-estimated Sobol sensitivity indices in Eq. (21) of the output quantities < 𝑁 >ℎ (A),
𝑝out (𝑡ℎ) (B), < 𝑁1 >ℎ (C), < 𝑁2 >ℎ (D), < 𝑁3 >ℎ (E), and < 𝑁4 >ℎ (F), with ℎ = 1, 2, 3, given in
Section 2.3. In all panels, filled bars represent the main effects 𝑆𝑘 while transparent bars denote the total
effects 𝑆𝑇

𝑘
. Data referring to the three interval times I1, I2, and I3 are respectively displayed in green,

yellow, and red.
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C-F in Fig. 7, the eFAST analysis reveals that, apart from 𝜂, all the other five relevant
model parameters have a key role on the variance of < 𝑁𝑞 >ℎ, in terms of either main
or total effects. In particular, differences among the Sobol indices values shown in
Panels C-F of Fig. 7 suggest that the number and distribution of TCs characterizing each
Ω𝑞 (see Panel A in Fig. 3), as well as their distance from the source of ICs have an
important role on the local cell dynamics. Comparing Panels C-F with Panel A, it also
emerges that parameters 𝜁 , 𝛾, and 𝑘1, involved in Eq. (2) for ICs dynamics, have more
important effects on the variance of < 𝑁𝑞 >ℎ, i.e. the local distribution of ICs, rather
than on < 𝑁 >ℎ, i.e. the mean number of ICs within the entire domain. In addition,
notice that in Panels C-F of Fig. 7 both the main and the total effects of 𝜁 , 𝛾 and 𝑘1
on < 𝑁𝑞 >ℎ decrease in time, while those of 𝜉 and 𝐷 increase and become the most
relevant parameters over the last time interval I3 (see red bars). It is further remarkable
that non linear/interaction effects have a higher influence on the mean amount of ICs
in the bottom of the domain, i.e. < 𝑁3 >ℎ and < 𝑁4 >ℎ (see Panels E-F), rather than
the mean amount of ICs in the top of the domain, i.e. < 𝑁1 >ℎ and < 𝑁2 >ℎ (see
Panels C-D). Such a difference, can be related to the fact that regions Ω3 and Ω4 are
more distant from the inflow ICs boundary. For instance, according to the considered
parameter setting, it may happen that a very small portion or even none of the entered
ICs reach the bottom part of the domain. The analysis of different ICs influx conditions
may seed light on this aspect, however this is out of the purpose of the present work.

Concerning instead the observables introduced to monitor cell dynamics, due to the
strong connection between cell displacement and speed, the time evolution of the main
effects 𝑆𝑘 observed in Fig. 7 appears also for the mean speed of ICs < 𝑣 >ℎ, see Panel A
in Fig. 8. Over the first time interval I1, 𝛾, 𝑘1 and 𝜁 have key main effects on the mean
speeds (see green filled bars). As time goes by, these main effects lose importance, until
during the last time interval I3, 𝜉 and 𝐷 have the more relevant main effects on < 𝑣 >ℎ
(see red filled bars). However, all the considered model parameters, apart from 𝜂, always
have relevant total effects (see the transparent bars). In fact, the model non-linearity
here results in important discrepancies between the total 𝑆𝑇

𝑘
and main effects 𝑆𝑘 affecting

the mean ICs speed, which moreover considerably increase in time. Notice that these
variations in time of the main and interaction effects lead to a remarkable increase in time
of the total effects 𝑆𝑇

𝑘
of the model parameters 𝜉 and 𝐷, denoting that the influence of the

underling chemical field on cell speed considerably changes in time. At the beginning,
𝜉 appears among the key parameters since the outgoing flux (i.e. the fixed Robin’s
boundary conditions) can generate a strong downward chemical gradient provided that
the source coefficient 𝜉 is sufficiently high. As time goes by, the value of 𝜉 and 𝐷

become more crucial with respect to the others, as the evolution of the chemical gradient
is dictated by how fast the chemical is released and spreads over all of the domain. In
addition, the damping coefficient 𝜁 always appears among the key parameters regulating
the mean cell speed. This is coherent both from a mathematical point of view, as it is the
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Figure 8: eFAST-estimated Sobol sensitivity indices in Eq. (21) of the output quantities < 𝑣 >ℎ in Eq. (15)
(A), < 𝑣std >ℎ in Eq. (16) (B), Cℎ

n in Eq. (17) (C), Cℎ
𝐶

in Eq. (18) (D), and 𝑝cl (𝑡ℎ) in Eq. (13) (E), with
ℎ = 1, 2, 3. In all panels, filled bars represent the main effects 𝑆𝑘 while transparent bars denote the total
effects 𝑆𝑇

𝑘
. Data referring to the three interval times I1, I2, and I3 are respectively displayed in green,

yellow, and red.
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damping coefficient in Eq. (2), and from a biological point of view, since a higher/lower
cell-adhesion to the homogeneous substrate have a constant in time effect on cell speed.

Concerning instead the standard deviation < 𝑣std >ℎ of ICs speed, see Panel B of
Fig. 8, notice that also in this case the main effects of 𝜁 , 𝛾 and 𝑘1 decrease in time
while 𝜉 and 𝐷 increase. Moreover, there is a remarkable increase in the total effect of 𝜉
and 𝐷. Interestingly, all the relevant parameters have a higher total effect on < 𝑣std >ℎ
rather than on < 𝑣 >ℎ, i.e. variations in the model parameters affect more the mean cell
behavior than discrepancies among the individual behaviors.

Dealing with ICs direction of motion, Panels C-D in Fig. 8 show the effects of model
parameters on Cℎn and Cℎ

𝐶
. On one hand, in Panel C, Cℎn , i.e. cell motion alignment to

the downward direction n, is always strongly affected by all the parameters (apart from
𝜂) with important contributions due to the non-linearity of the model and interactions
among the parameters. Indeed, cell trajectories are quite tortuous since they result from
the interplay between the influence of the chemical field pattern and cell-cell interactions.
In Panel D, also the alignment of cell motion to the gradient of the chemoattractant mainly
depends on the values of 𝜉, 𝛾 and 𝑘1, 𝐷 and 𝜁 , i.e. all parameters apart form 𝜂. However,
in this case, important differences among total and main effects appears only for 𝜉 and
𝐷 regulating the chemical field evolution. These aspects are consistent and confirm the
previous considerations about the relation between cell dynamics and chemical field.

Lastly, Panel E in Fig. 8 shows that 𝑝cl(𝑡ℎ), i.e. cell clustering around TCs is
mainly regulated by the rate of chemical secretion 𝜉, the diffusion coefficient 𝐷 and the
coefficients 𝛾 and 𝑘1 in the chemotactic term. In other words, this is coherently mainly
related by the evolution of the chemoattractant field and cell ability to locally detect the
chemical gradient.

3.3. Discussion
Summing up, our study first indicates that the proposed model, by assuming param-

eter values within the ranges in Table 1, results in feasible scenarios qualitatively in
accordance with the experimental results reported in [2, 14].

The improved Morris method then highlights that among the investigated 13 param-
eters listed in Table 1 only 6 of them are mainly responsible for the variability in both
spatial distribution and dynamics of the ICs: the chemoattractant diffusion coefficient
𝐷; the chemical source and decay rates 𝜉 and 𝜂; the chemotactic coefficient 𝛾; the drift
velocity 𝑘1; and the damping coefficient 𝜁 . Notice that parameters related to cell-cell
interactions thus result negligible with respect to the influence of the chemical field
and the substrate adhesion. Indeed, consistently in CoC experiments in [14], ICs do
not move compactly but rather individually explore the domain by only accidentally
and temporarily interacting with the other cells, as shown in Fig. 3. From a modeling
point of view, the lack of parameters related to the cell-cell alignment among the most
influential ones denotes that this term, at least as it is, is not fundamental in reproducing
CoC experiments. This suggests that the model could be simplified by removing this
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term unless specific empirical observations strongly justify its presence and possibly
guide its re-calibration.

Focusing on the 6 non-negligible parameters, the eFAST method further states that:
(i) the secretion rate 𝜉 and the diffusion coefficient 𝐷 of the chemoattractant strongly
affect all the monitored output quantities (more than 10% of their variances over all
the period or at least over I2 and I3); (ii) the decay rate 𝜂 results substantially always
negligible; (iii) cell adhesion to the substrate 𝜁 and cell sensitivity to the chemical,
i.e. 𝛾 and 𝑘1, have constant relevant effects on the standard deviation of cell speed
and cell directions of motion, while they strongly affect only the initial evolution of
cell distribution and mean speed, i.e. only over I1; lastly (iv) the coefficient 𝛾 is a key
parameter also for cell clustering.

In [32] a local sensitivity analysis on an agent-based CoC in-silico model was
performed by varying the parameters one factor-at-time (OAT) in a range of ±20%.
From the analysis carried out in [32], it turns out that the model there proposed is most
sensitive to a parameter regulating the threshold value of chemical density necessary to
start the migration of ICs towards the left chamber of the chip. Despite the different
approach with respect to the modeling here presented, the study in [32] is substantially
in accordance with our findings, since the most influential parameters result to be those
linked to the chemical gradient.

However, due to the strong non-linearity of the model, it is not possible to deeply
understand and study the system behavior when multiple parameters vary by changing
one factor-at-time. In the present work, since all parameters are varied simultaneously
(some of them in a wider range) and analyzed with GSA approach, we were able to detect
both nonlinear and interaction effects (total effects) in addition to the individual role of
the corresponding modeled phenomena. On one hand, the results here obtained by GSA
mostly confirm the insights obtained by local sensitivity analysis. As an example, we
had the confirmation that the alignment term changes very little the outcome of the
experiment (very low sensitivity) as it was hypothesized in the previous work [16]. On
the other hand, it is worth noting that here we get conclusions that with simpler approach
could not be deduced, thanks to the observation of total effect of model parameters. See,
for example, the extraordinary effect that 𝜉 and 𝜁 have on the velocities in terms of total
effect but not in terms of main effect, as shown in Fig. 8.

For instance, focusing on the damping parameter 𝜁 , we further investigated system
evolution in the case of an almost negligible inertia. Specifically, considering the
case study used in Section 3.2.1, the Morris method has been performed assuming 𝜁
uniformly distributed within the range [10−16, 2 · 10−16], while the other 12 parameters
are uniformly distributed within the ranges in Table 1. The obtained results show that
during I1 and I2, the ICs move towards the bottom side of the domain faster than in the
control case so that in I3 almost all the ICs have unrealistically left the domain. This
suggests that, in order to reproduce IC dynamics over a CoC by neglecting inertial terms,
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i.e., with a first-order ODE instead of Eq. (2), it is first necessary to properly revise the
calibration of all the other model parameters, for instance, by reducing cell chemical
sensing 𝜉 and reactivity 𝛾.

The Morris sensitivity measures can be used as indications about which parameters
may be first considered in the re-calibration of the model, being the most affecting
ones. However, this approach requires further investigations and analysis to be properly
formalized.

Moreover, having observed in Fig. 7 that the distribution and number of TCs have
a relevant effect, a deep investigation of the role of the initial condition is necessary.
In this perspective, we have studied whether and how TCs configuration influences the
evolution of the reference simulation in Section 3.1. Specifically, 1000 different model
realizations have been obtained by assuming the same settings used in Section 3.1, apart
from the number and distribution of TCs. These have been randomly generated for
each model realization assuming that the number of TCs within each portion Ω𝑞, with
𝑞 = 1, ..., 4, of the domain is uniformly distributed between 2 and 12. Interestingly, over
all the three-time intervals, the obtained output quantities result more condensed around
the values of the simulation reported in Section 3.1, than in Figs. 4-5 resulting from the
280 realizations identified with the Morris method. This suggests that the influence of
the initial distribution of TCs is somehow less impacting than the choice of the model
parameters.

4. Conclusions and future perspectives

The sensitivity analysis carried out in this work shows the effect of almost all model
parameters on the system behavior and highlights that the model is able to describe the
crucial role of tumor microenvironment on IC dynamics. To our knowledge, a GSA
producing Sobol indices identifying the role of parameters in CoC in silico realizations
represents an original contribution to the literature. We also believe that a rigorous GSA
including the initial distribution of TCs and/or the ICs inflow among the investigated
parameters, requiring the identification of a proper and sufficient samples, deserves to
be investigated in future works.

The indications provided by this type of analysis may drive a fine tuning of the most
influential parameters against available experimental data, in order to improve the in
silico model in reproducing and forecasting cell dynamics observed in CoC biological
experiments. To this aim, a large amount of information and data extracted from
laboratory tests is necessary. A first attempt in this direction was made in [15] where ICs
velocity field was computed numerically and compared with an interpolated synthetic
dataset.

In order to get a higher adherence of the model to CoC biological experiment it
will be necessary to: i) collect data from multiple realizations of the same biological
experiment; ii) extract more experimental measures, such as:
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• the localization of ICs in the microfluidic chip and in particular around TCs across
time in order to reconstruct the density in the monitored domain;

• the identification of different cell species involved in the ICs population;

• the death rate of TCs;

• the number of interactions between the two cell populations, in order to evaluate
the killing activity of ICs;

• the chemoattractant concentration in the microenvironment, possibly detected at
different space and time points.

From a mathematical point of view, in order to set up a calibration procedure against
real data, it is recommended to extend the computational domain and avoid the artificial
Robin condition used here for numerical convenience. For instance, a multiscale model
can be obtained by combining our model with the macroscopic approach in [33], in
order to describe the overall dynamics in the entire CoC geometry with a special focus
on the tumor microenvironment represented by the TC chamber. Having more specific
data about chemical gradients will allow us to set proper initial and boundary conditions,
and possibly consider space-dependent coefficients (e.g. for chemical diffusion or cell-
substrate adhesion). In addition, a further step to improve the in silico model of the CoC
experiment is to include the death of TCs as either spontaneous (as a consequence of
drug administration) and/or induced by the activity of ICs.

Acknowledgements. G. B. and E. C. are members of the Gruppo Nazionale Calcolo
Scientifico, Istituto Nazionale di Alta Matematica (GNCS-INdAM). A. C. is member
of the Gruppo Nazionale di Fisica Matematica, Istituto Nazionale di Alta Matematica
(GNFM-INdAM).

Funding. This work was supported by the Italian Ministry of University and Research
[Project code PNC0000001, CUP B53C22006100001 - project “D3-4H—Digital Driven
Diagnostics, prognostics and therapeutics for sustainable Health care” under the National
Plan for Complementary Investments to the NRRP, Spoke 3 and 4]; the European Union
- Next Generation EU and the Italian Ministry of University and Research [Project code
P2022KHFNB, CUP E53D23017990001 - Research Project Prin2022 PNRR of National
Relevance]; the Istituto Nazionale di Alta Matematica INdAM [CUP E53C23001670001
- “INdAM–GNCS Project”].

Appendix

Appendix A. Numerical Approximation of the model

We consider a square domain Ω = [𝑥𝐿 , 𝑥𝑅] × [𝑦𝐵, 𝑦𝑇 ] with 𝑥𝐿 = 𝑦𝐵 = 0 𝜇𝑚 and
𝑥𝑅 = 𝑦𝑇 = 600 𝜇𝑚, then it has horizontal and vertical size 𝐿𝑥 = 𝐿𝑦 = 600𝜇𝑚. The
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computational domain Ω is depicted with dotted blue line in Panel B of Fig. 1. We
introduce a discretization on 𝐿𝑥 in 𝑁𝑥 − 1 subintervals of length Δ𝑥 = 𝐿𝑥/(𝑁𝑥 − 1)
and a discretization on 𝐿𝑦 in 𝑀𝑦 − 1 subintervals of length Δ𝑦 = 𝐿𝑦/(𝑀𝑦 − 1). Time
and spatial steps are chosen, respectively, as Δ𝑡 = 10𝑠, i.e. representing 1/12 of the
video footage timeframe (of 2 minutes) and Δ𝑥 = Δ𝑦 = 5𝜇𝑚. A Cartesian grid ΩΔ is
created consisting of grid points (𝑥𝑛, 𝑦𝑚), where 𝑥𝑛 = 𝑥𝐿 + 𝑛Δ𝑥, for 𝑛 = 0, ..., 𝑁𝑥 − 1 and
𝑦𝑚 = 𝑦𝐵 +𝑚Δ𝑦, for 𝑚 = 0, ..., 𝑀𝑦 − 1, and for the time interval [0, 𝑇], the 𝑘-th temporal
step 𝑡𝑘 is 𝑡𝑘 = 𝑘Δ𝑡, for 𝑘 = 0, ..., 𝑁Δ𝑡 .

The simulations are performed over a number of frames equal to 8640, corresponding
to a final time 𝑇 = 86400𝑠 (24h) of observations.

Besides, since experimentally it was observed that ICs leave the domain Ω, we added
a ghost grid to ΩΔ in order to manage the entrance and exit of cells and avoid numerical
instabilities. The ghost grid, where the cells lie after having left the main domain, is
defined as ΩΔ∗ . The extension of the nunerical grid is obtained by discretizing the
domain [𝑥𝐿 − 𝐿𝑥∗ , 𝑥𝑅 + 𝐿𝑥∗] × [𝑦𝐵 − 𝐿𝑦∗ , 𝑦𝑇 + 𝐿𝑦∗] with the same discretization step
values Δ𝑥,Δ𝑦 already introduced for ΩΔ. In our tests we assume 𝐿𝑥∗ = 𝐿𝑦∗ = 100𝜇𝑚
and the equations are solved on ΩΔ∗ .

Appendix A.1. Discretization of the PDE in Eq. (1)
The parabolic Eq. (1) is composed of the diffusion term, the source term, and the

stiff degradation term −𝜂𝜑. Then, the classical exponential transformation is applied:
𝜑(x, 𝑡) = 𝑒−𝜂𝑡𝑢(x, 𝑡), which leads to the diffusion equation with source for 𝑢(x, 𝑡):

𝜕𝑡𝑢 = 𝐷Δ𝑢 + 𝑒𝜂𝑡𝜉
𝑁𝑇∑︁
𝑗=1

𝜒B(Y 𝑗 ,𝑅𝑇 ) . (A.1)

For this equation we apply a central difference scheme in space, i.e. the 5-point stencil
for the Laplacian, and the parabolic Crank–Nicolson scheme in time.
Denoting with 𝑢𝑘𝑛,𝑚 the approximation of 𝑢 at the grid point (𝑥𝑛, 𝑦𝑚), for any time instant
𝑡𝑘 the numerical scheme can be written as:

𝑢𝑘+1
𝑛,𝑚 − 𝑢𝑘𝑛,𝑚

Δ𝑡
=
𝐷

2

(
𝜕2
𝑥 𝑢

𝑘+1 + 𝜕2
𝑦𝑢

𝑘+1
)
+ 𝐷

2

(
𝜕2
𝑥 𝑢

𝑘 + 𝜕2
𝑦𝑢

𝑘

)
+ 1

2
𝑒𝜂(𝑘+1)Δ𝑡𝜉

𝑁𝑇∑︁
𝑗=1

𝜒B(Y𝑘+1
𝑗 ,𝑅𝑇 ) +

1
2
𝑒𝜂𝑘Δ𝑡𝜉

𝑁𝑇∑︁
𝑗=1

𝜒B(Y𝑘
𝑗 ,𝑅𝑇 )

,

where 𝜕2
𝑥 𝑢

𝑘 (and analogously 𝜕2
𝑦𝑢

𝑘 ) is defined as the central difference:

𝜕2
𝑥 𝑢

𝑘 =
𝑢𝑘
𝑛−1,𝑚 − 2𝑢𝑘𝑛,𝑚 + 𝑢𝑘

𝑛+1,𝑚

Δ𝑥2 .

32



Appendix A.1.1. Boundary conditions
Using the exponential transformation above, the associated boundary conditions

rewrite as 𝐷
𝜕𝑢

𝜕n
+ 𝑎𝑢 = 𝑒𝜂𝑡𝑏, that we rewrite as

𝜕𝑢

𝜕n
+ 𝑝𝑢 = 𝑞(𝑡), with 𝑝 =

𝑎

𝐷
and

𝑞(𝑡) = 𝑒𝜂𝑡
𝑏

𝐷
eventually different on each side of Ω. For the discretization of the

boundary conditions we use a central finite difference scheme. At the bottom and top
boundaries, i.e. 𝑦 = 𝑦𝐵 and 𝑦 = 𝑦𝑇 , we have:

𝜕𝑦𝑢
𝑘 + 𝑝𝑙𝑢𝑘 − 𝑞𝑘𝑙 =

𝑢𝑘
𝑛,𝑚+1 − 𝑢

𝑘
𝑛,𝑚−1

2Δ𝑦
+ 𝑟𝑙𝑢𝑘𝑛,𝑚 − ℎ𝑙 , (A.2)

with 𝑙 = 𝑆, 𝑁 , and we proceed analogously for the vertical conditions, with the signs of
𝑟𝑙 and ℎ𝑙 depending on the incoming/outgoing flow.

Appendix A.2. Discretization of the ODE
As in [15], the equation of motion (2) is reduced to a first order system with

¤V𝑖 =
𝛾

W

∫
B(X𝑖 ,R0)

𝜒(𝜑(x, 𝑡))∇𝜑(x, 𝑡)𝑤𝑖 (x)𝑑x +
∑︁

𝑗 :Y 𝑗∈B(X𝑖 ,R1)\{X𝑖}
𝐾 (Y 𝑗 − X𝑖)

+
∑︁

𝑗 :X 𝑗∈B(X𝑖 ,R4)\{X𝑖}
𝐾 (X 𝑗 − X𝑖) +

𝛽

𝑁𝑖

∑︁
𝑗 :X 𝑗∈𝐵(X𝑖 ,𝑅3)\{X𝑖}

(V 𝑗 − V𝑖)(
1 + ∥X 𝑗−X𝑖 ∥2

𝑅2
3

)𝛼 − 𝜁V𝑖,

(A.3)
¤X𝑖 = V𝑖, (A.4)

for 𝑖 = 1, ..., 𝑁𝐼 . Eq. (A.3) is discretized with a one step IMEX method, putting in
implicit the term containing V𝑖 and in explicit the other addends, and equation (A.4)
is solved with forward Euler method. The two-dimensional integral in Eq. (A.3) can
be computed by a 2D quadrature formula, which due to the truncated Gaussian weight
function𝑤𝑖 (x) in Eq. (3), is reduced to a sum of the discretized integrand functions on the
grid points belonging to the ball B(X𝑖,R0). The two-dimensional integral in W in Eq.
(3) is approximated by W̃ :=

∑
𝑛,𝑚 s.t.(𝑥𝑛,𝑥𝑚)∈B(X𝑘

𝑖 ,R0) (𝑤𝑖)
(𝑘)
𝑛,𝑚 . The gradients of Eq. (A.3)

are approximated with first order differences ∇𝑛,𝑚𝜑𝑘 ≈
(
𝜑𝑘
𝑛+1,𝑚 − 𝜑𝑘𝑛,𝑚

Δ𝑥
,
𝜑𝑘
𝑛,𝑚+1 − 𝜑

𝑘
𝑛,𝑚

Δ𝑦

)
,

then Eq. (A.3)-(A.4) are discretized as follows:

V𝑘+1
𝑖 − V𝑘

𝑖

Δ𝑡
=
𝛾

W̃

∑︁
𝑛,𝑚 s.t.(𝑥𝑛,𝑥𝑚)∈B(X𝑘

𝑖 ,R0)

𝜒(𝜑𝑘 ) (∇𝑛,𝑚𝜑𝑘 ) (𝑤𝑖) (𝑘)𝑛,𝑚
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+
∑︁

𝑗 :X𝑘
𝑗 ∈B(X𝑘

𝑖 ,R1)\{X𝑘
𝑖 }

𝐾 (X𝑘
𝑗 − X𝑘

𝑖 ) +
∑︁

𝑗 :X𝑘
𝑗 ∈B(Y𝑘

𝑖 ,R4)\{Y𝑘
𝑖 }

𝐾 (Y𝑘
𝑗 − X𝑘

𝑖 )

+ 𝛽

𝑁𝑖

∑︁
𝑗 :X𝑘

𝑗 ∈𝐵(X𝑘
𝑖 ,𝑅3)\{X𝑘

𝑖 }

(V𝑘
𝑗 − V𝑘+1

𝑖 )(
1 + ∥X𝑘

𝑗−X𝑘
𝑖 ∥2

𝑅2
3

)𝛼 − 𝜁V𝑘+1
𝑖 ,

X𝑘+1
𝑖 − X𝑘

𝑖

Δ𝑡
= V𝑘+1

𝑖 .

Remark. On a laptop equipped with an Intel Core i7-1060NG7 processor and 16 GB
RAM each run of the numerical code, by considering the case study scenarion, given the
time and spatial discretizations here, takes around 15 min.

Appendix B. Additional details about GSA methods

Appendix B.1. The sampling strategy by Campolongo et al.
For readers’ convenience we here summarize the sampling strategy at the basis of

the improved version of the Morris method. It is first worth to notice the approach is
designed for 𝑑 model parameters assumed independent and uniformly distributed over
[0, 1], so that the region of interest in the space of parameter is the 𝑑-dimensional
unit hypercube. However, it is straightforward that different parameter distributions can
be easily reduced to this case through proper transformations. The region of interest
is sampled following the optimized strategy defined in [3]. The 𝑑-dimensional unit
hypercube is first discretized into a 𝑑-dimensional 𝑝-level grid, and a large number
𝑀 ≈ 500 − 1000 of Morris trajectories is generated. Each Morris trajectory starts
from a randomly selected point of the 𝑑-dimensional 𝑝-level grid, and is obtained by
performing 𝑑 steps, one for each dimension, by randomly defining both the direction of
motion (random choice without re-entry) and the length of each step (which is always
a random multiple of the grid size, i.e. 1/𝑝). This way, the difference between two
successive points in a Morris trajectory is equal to Δe𝑘 where Δ is a multiple of the
grid size 1/𝑝. Then, the ‘best’ 𝑟 ≪ 𝑀 Morris trajectories that maximise the coverage
of the 𝑑-dimensional unit hypercube are selected and actually used to rank the model
parameters. The coverage of the hypercube is estimated by evaluating the distance 𝐷𝑚𝑙

between each couple of trajectories 𝑚 and 𝑙, defined in [3] as the sum of the Euclidean
distances between all couples of their points. The 𝑟 best Morris trajectories that maximize
𝐷𝑚𝑙 thus identify a sample of 𝑟 (𝑑 + 1) points z in the space of parameters. The model is
then solved 𝑟 (𝑑 +1) times to compute the corresponding values of the target output𝑄(z)
and estimate the elementary effects in Eq. (19). Notice that, by construction, the EE𝑘
can be evaluated by considering only pair of successive points in a Morris trajectory.
This means that each Morris trajectory gives 𝑘 elementary effect values, one for each
parameter, so that the sensitivity measures 𝜇∗

𝑘
and 𝜎𝑘 are evaluated on 𝑟 different values
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of EE𝑘 . Interestingly, the method is able to capture the same qualitative information
provided by the variance-based method [6] (regarded as good practice in sensitivity
analysis) without requiring large 𝑟, nor an extremely small grid size 1/𝑝. In this respect,
referring to [3], we here always set 𝑝 = 4, 𝑀 = 500 and 𝑟 = 20, and thus consider a
sample of 280 points in the 13-dimensional space of parameters.

Appendix B.2. Computing the first-order and total-effect indices with eFAST
The extended Fourier Amplitude Sensitivity Test (eFAST) method proposed by

Saltelli et al. [10], is an extended version of the FAST method by Cukier et al. [46] able
to estimate also the total effects of the model parameters, rather than just the main effects.
The basic idea of these approaches is that periodic oscillations of relevant parameters
propagate to the model output more than periodic oscillations of non-influential param-
eters. Let us consider the model as a function linking the parameters Z = (𝑍1, ..., 𝑍𝑑)
to the value of the output 𝑄, i.e. 𝑄 = 𝑓 (Z). Assuming the model parameters are
independent random variables, the Sobol’ indices in Eq. (21) are estimated by using the
monodimensional Fourier decomposition along a so-called search curve defined by the
set of parametric equations

𝑍𝑘 (𝑠) = 𝐺𝑘 (sin𝜔𝑘 𝑠), with 𝑘 = 1, ..., 𝑑. (B.1)

In Eq. (B.1), the transformation functions 𝐺𝑘 depend on the probability distribution of
each parameter. The frequencies 𝜔𝑘 are 𝑑 distinct positive integer frequencies chosen to
satisfy several criteria given in [46, 10, 45]. It follows that varying 𝑠, i.e. moving along
the search curve, all the model parameters change simultaneously, but each 𝑍𝑘 oscillates
periodically at the corresponding frequency 𝜔𝑘 . As demonstrated in [45], with integer
frequencies, the search curve yields a closed path entirely traveled as 𝑠 ∈ (−𝜋, 𝜋). In
turn, the output function 𝑓 , as a function of 𝑠, is such that 𝑓 (𝑠) = 𝑓 (𝑠 + 2𝜋) and can
be Fourier analyzed. It is worth to stress that assuming a distinct frequency for each
parameter allows to distinguish their effects during the Fourier analysis. Let us denote
the Fourier coefficients of the output function by

𝐴 𝑗 =
1

2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑠) cos( 𝑗 𝑠) 𝑑𝑠 𝐵 𝑗 =

1
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑠) sin( 𝑗 𝑠) 𝑑𝑠 (B.2)

with 𝑗 ∈ Z; and the spectrum of the Fourier series expansion by Λ 𝑗 = 𝐴2
𝑗
+ 𝐵2

𝑗
with

𝑗 ∈ Z. Noticing that Λ0 estimate the expected mean of the output, while the second
momentum is given by the sum of all harmonics, the total variance of the output writes

Var(𝑄) = 2
+∞∑︁
𝑗=1

Λ 𝑗 . (B.3)
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To estimate the main effect indices 𝑆𝑘 (𝑄) in Eq. (21), the variance of the output arising
from the uncertainty of the 𝑘-th parameter is given by the spectrum of the frequency 𝜔𝑘
and its higher harmonics, see [46], i.e.

𝐷𝑘 (𝑄) = 2
+∞∑︁
𝑝=1

Λ𝑝𝜔𝑘
. (B.4)

The total-order sensitivity indices 𝑆𝑇
𝑘

in Eq (21) is estimated by the difference 1−𝑆−𝑘 (𝑄),
where 𝑆−𝑘 (𝑄) is the summed sensitivity index of all parameters except 𝑘 , obtained by
using their identification frequencies in Eq. (B.4), see [10].

From a computational point of view, to evaluate the above integrals, a sample of
points over the search curve is selected. Following the improved sampling approach
described in [5], the analysis in Section 3.2.2 is performed by considering a sample of
3000 different points into the 6-dimensional space of parameter.
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