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Abstract
Weconstruct newsupersymmetricAdS2×M4 solutions of D = 6gauged supergravity,
where M4 are certain four-dimensional orbifolds. After uplifting to massive type IIA
supergravity these correspond to the near-horizon limit of a system of N D4-branes
and N f D8-branes wrapped on M4. In one class of solutions, M4 = �g � ˚ is a
spindle fibered over a smooth Riemann surface of genus g > 1, while in another class
M4 = ˚�˚ is a spindle fibered over another spindle. Both classes can be thought of as
orbifold generalizations of Hirzebruch surfaces and, in the second case, we describe
the solutions in terms of toric geometry. We show that the entropy associated with
these solutions is reproduced by extremizing an entropy function obtained by gluing
gravitational blocks, using a general recipe for orbifolds that we propose. We also
discuss how our prescription can be used to define an off-shell central charge whose
extremization reproduces the gravitational central charge of analogous AdS3 × M4
solutions of D = 7 gauged supergravity, arising from wrapping M5-branes on M4.

Keywords AdS/CFT correspondence · Supersymmetric solutions · Orbifolds · Toric
geometry
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1 Introduction

For two decades several examples of the AdS/CFT correspondence have been engi-
neered considering setups involving branes wrapped on compact cycles, preserving
supersymmetry via a topological twist on the brane world-volumes [44]. On the super-
gravity side, these give rise to supersymmetric solutions involving a warped product
of an anti-de Sitter (AdS) spacetime, together with an internal compact manifold. The
corresponding dual field theories are obtained from suitably twisted compactifica-
tions of the parent theories on smooth Riemann surfaces embedded holomorphically
in Calabi–Yau manifolds, or different higher-dimensional calibrated submanifolds in
special holonomy manifolds.

Solutions with an AdS2 factor are particularly interesting because on general
grounds these are expected to correspond to the near-horizon limit of supersymmetric
black holes arising in string or M-theory. In this case, the AdS/CFT correspondence
gives access to the microscopic entropy of these black holes, obtained via count-
ing the microstates of the dual supersymmetric quantum mechanics, which becomes
particularly useful when the latter arises from a twisted compactification of a higher-
dimensional gauge theory. The paradigmatic example of this successful strategy is that
of the four-dimensional static black holes of [13], for which a microscopic account of
the entropy has been obtained in [9].

The construction presented in [30] changed somewhat the rules of the game, show-
ing that one can obtain examples of holographic dual pairs with genuine novel features
by considering D3-branes wrapped on the orbifold ˚ = WCP

1[n−,n+], where n−, n+
are co-prime integers, sometimes referred to as spindle. Perhaps the most striking
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aspect of this construction is that supersymmetry is preserved via a novel mechanism
different from the topological twist, that was later called anti-twist. Further examples
of various branes wrapping the spindle have been discussed in [4, 10, 18, 22, 23, 27–
29, 31–33, 38] and closely related constructions appeared in [5, 6, 19, 21, 39, 50–52].
In general, the only two possible ways to preserve supersymmetry on a spindle are by
the anti-twist of [30] or the twist introduced in [32], which is a global version of the
standard topological twist [31].

Once it has been established that it makes sense to wrap branes on spaces with
orbifold singularities, it is natural to extend the exploration of the landscape of holo-
graphic dualities to branes wrapping orbifolds of dimension higher than two. Simple
examples of branes wrapped on four-dimensional orbifolds of the type M4 = �g ×˚
were discussed in [10] for M5-branes and in [27, 33] for D4-branes (see also [53]). In
this paper, we will focus mainly on D4-branes, extending the results of [27] in various
ways. In particular, we will present two classes of new supersymmetric solutions of
gauged D = 6 supergravity of the type AdS2 × M4, where M4 are four-dimensional
orbifolds. After uplifting to massive type IIA supergravity these describe a system of
N D4-branes and N f D8-branes wrapped onM4, and are expected to correspond to the
near-horizon limit of novel supersymmetric AdS6 black holes. Previously, supersym-
metric AdS2×M4 solutions of the same theory, whereM4 is either a negatively curved
Kähler–Einstein manifold or the product of two Riemann surfaces �g1 × �g2 (with
g1, g2 > 1), were discussed in [35] and [49], with the latter reference also presenting
numerical solutions for supersymmetric AdS6 black holes with �g1 × �g2 horizons.
Below, we will construct two new classes of solutions. In one class, M4 = �g �˚ is a
spindle fibered over a smooth Riemann surface of genus g > 1, while in the other class
M4 = ˚ � ˚ is a spindle fibered over another spindle. Both classes can be thought
of as generalizations of Hirzebruch surfaces and analogous AdS3 × M4 solutions of
D = 7 gauged supergravity, arising from wrapping M5-branes on M4, appeared in
[17].

One of the motivations for this paper was to begin investigating entropy func-
tions whose extremization reproduces the entropy associated with the corresponding
supergravity solutions, comprising orbifolds of dimension higher than two. In the two-
dimensional case, entropy functions associated with compactifications on the spindle
were discussed in [16, 32, 38] and a conjectural extension to more general off-shell
free energies was put forward in [27]. In particular, for all cases, precise formulas for
the off-shell free energies and for the associated constraints obeyed by the magnetic
fluxes and fugacities were given in terms of data at the north and south poles of the
spindle. These are the fixed points of the Killing vector generating itsU (1) azimuthal
symmetry and the contributions to the off-shell free energies arising at these fixed
points are referred to as gravitational blocks [37]. Here we will extend the conjecture
of [27] presenting an orbifold entropy function whose contributions (blocks) arise
from fixed points of aU (1)2 action on M4, together with a recipe for determining the
appropriate constraints.

The key for formulating this proposal is to provide a toric description of our solu-
tions. Despite the fact that our orbifolds are not symplectic and therefore there are
no moment maps with associated polytope, assuming a U (1)2 action, we can still
define a set of toric data from the co-dimension two loci where one U (1) ⊂ U (1)2
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degenerates. In particular, these can be determined by studying the Killing vectors of
the explicit metrics on M4. We can then associate a compact polytope defined using
these data as normal vectors to the edges and identify the vertices as fixed points of the
torus action, as in symplectic toric geometry. Our proposal for the entropy function
reproduces the results of the explicit supergravity solutions presented here, but we
formulate it in a way that is in principle applicable to more generic toric orbifolds,
including toric manifolds, for which explicit solutions have not yet been found.

Finally, we discuss how our prescription can be extended to describe analogous
supersymmetric AdS3 × M4 solutions of D = 7 gauged supergravity arising from
wrapping M5-branes on M4. In these cases, one can employ the method of integrating
the M5-branes anomaly polynomial on M4 to obtain an off-shell central charge of
the corresponding d = 2, N = (0, 2) SCFTs and our proposal reproduces the results
available in the literature. In particular, whenM4 is actually a toricmanifold, our recipe
reduces to the construction of [36], whereas for the specific case of M4 = ˚ � ˚ we
recover the results of [17].

The rest of the paper is organized as follows. In Sect. 2, we present the new solutions
in D = 6 and demonstrate their supersymmetry by solving the relevant Killing spinor
equations. In Sect. 3, we uplift our solutions to massive type IIA supergravity and
calculate their associated geometric entropies. In Sect. 4, we work out the toric data
of the relevant solutions. In Sect. 5, we present our conjectural entropy functions and
use these to recover the entropies of the above solutions, as well as the central charge
associated with the solutions in [17]. Appendix A contains a discussion about the
different quantization conditions on the fluxes and their resolution. In Appendix B,
we present a special limit in which a Riemann surface can be retrieved from a spindle.
In Appendix C, we derive toric data from different metrics, including the solutions of
[17].

Note added: as this work was being finalized we became aware that there would be
significant overlap with the results of [20], which appeared on the arXiv on the same
day.

2 Solutions inD = 6 gauged supergravity

In this paper, we discuss solutions of a D = 6 gauged supergravity with gauge group
U (1)2, comprising two gauge fields A1, A2, a two-form B and two real scalar fields
�ϕ = (ϕ1, ϕ2). This model can also be obtained as a sub-sector of an extension of
Romans F(4) gauged supergravity [47], coupled to three vector multiplets [2, 26].
The bosonic part of the action reads1

S6D = 1

16πG(6)

∫
d6x

√−g

[
R − V − 1

2
|d �ϕ|2 − 1

2

2∑
i=1

X−2
i |Fi |2 − 1

8
(X1X2)

2|H |2

− m2

4
(X1X2)

−1|B|2 − 1

16

εμνρστλ√−g
Bμν

(
F1 ρσ F2 τλ + m2

12
Bρσ Bτλ

)]
,

(2.1)

1 Here and in what follows we define, for any p-form ω, |ω|2 = 1
p! ωμ1...μpω

μ1...μp .
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where Fi = dAi , H = dB and the scalar fields �ϕ are parameterized as

Xi = e− 1
2 �ai · �ϕ with �a1 = (21/2, 2−1/2), �a2 = (−21/2, 2−1/2). (2.2)

The scalar potential is

V = m2X2
0 − 4g2X1X2 − 4mg X0(X1 + X2), (2.3)

with g the gauge coupling andm the mass parameter, and where for later convenience
we defined X0 = (X1X2)

−3/2.
A solution to the equations of motion of the model is supersymmetric if and only

if it satisfies also the following set of Killing spinor equations [26]:

Dμε
A + 1

8

[
g(X1 + X2) + mX0

]
με

A

+ 1

32

[
m(X1X2)

−1/2Bνλ7δ
A
B

+ i
(
X−1
1 F1 + X−1

2 F2
)
νλ
(σ 3)AB

](
 νλ
μ − 6δνμ λ

)
εB

− 1

96
(X1X2)Hνλρ7

(
 νλρ
μ − 3δνμ λρ

)
εA = 0,

(2.4)

1

4

(
X−1
1 ∂μX1 + X−1

2 ∂μX2
)
μεA − 1

8

[
g(X1 + X2) − 3mX0

]
εA

+ 1

32

[
m(X1X2)

−1/2Bμν7δ
A
B − i

(
X−1
1 F1 + X−1

2 F2
)
μν
(σ 3)AB

]
μνεB

+ 1

96
(X1X2)Hμνλ7

μνλεA = 0,

(2.5)

1

2

(
X−1
1 ∂μX1 − X−1

2 ∂μX2
)
μ(σ 3)ABε

B − g(X1 − X2)(σ
3)ABε

B

− i

4

(
X−1
1 F1 − X−1

2 F2
)
μν
μνεA = 0,

(2.6)

where

Dμε
A ≡ ∂με

A + 1

4
ω ab
μ abε

A − i

2
g(A1 + A2)μ(σ

3)ABε
B . (2.7)

These follow from setting to zero the supersymmetry variations of the fermionic fields
of the theory with three vector multiplets [26], that do not vanish automatically in the
sub-truncation that we are considering. Here (σ 3)AB is the usual third Pauli matrix,
{a, b} = 2ηab and 7 ≡ 012345. The SU (2) indices A, B are raised
and lowered as εA = εABεB and εA = εBεBA, where εAB = −εBA and its inverse
matrix εAB is defined such that εABεAC = δBC . The supersymmetry parameter εA is
an eight-component symplectic-Majorana spinor; hence, it satisfies the condition

εABε∗
B = B6εA, (2.8)
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where B6 is related to the six-dimensional charge conjugation matrix C6 by B6 =
−i C60.

2.1 AdS2 × 6g � ˚2 solutions

The first local solutions to the supergravity action (2.1) that we consider are of the type
AdS2 ×�g �˚2, which consist of a two-dimensional spindle ˚2 non-trivially fibered
over a Riemann surface�g, with genus g > 1. When g = 0 a solution to the equations
of motion still exists, but it is not supersymmetric. Specifically, the backgrounds are
described by the following set of fields solving the equations of motion

ds2 = (y2h1h2)
1/4
[
1

4
ds2AdS2 + 1

2
ds2�g

+ y2

F
dy2 + F

h1h2

(
dz − 1

2m
ω�g

)2]
,

Ai = − y3

hi

(
dz − 1

2m
ω�g

)
, Xi = (y2h1h2)

3/8h−1
i ,

B = y

2m
vol(AdS2) ,

(2.9)

where ds2AdS2 denotes the unit radiusmetric onAdS2, ds2�g
the unit radiusmetric on�g

and ω�g is such that dω�g = vol(�g). The functions hi and F are given by

hi (y) = 2g

3m
y3 + qi , F(y) = m2h1h2 − y4, (2.10)

with q1, q2 two real parameters. A curvature singularity lies at y = 0, hence without
loss of generality, in what follows we will restrict to y > 0.

The first step we take in the analysis of these solutions is to prove that they are
supersymmetric by constructing the local form of the Killing spinors solving the
Eqs. (2.4)–(2.6). We employ the following orthonormal frame

eâ = y1/4(h1h2)1/8

2
êâ, eǎ = y1/4(h1h2)1/8√

2
ěǎ,

e4 = y5/4(h1h2)1/8

F1/2 dy, e5 = y1/4F1/2

(h1h2)3/8

(
dz − 1

2m
ω�g

)
,

(2.11)

where êâ , â = 0, 1, is the zweibein on AdS2, whose coordinates are denoted as
x μ̂, and ěǎ , ǎ = 2, 3, is the zweibein on �g, whose coordinates are denoted as x μ̌.
Equation (2.4) then splits into the following system
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(
∂μ̂ + 1

4
ω âb̂
μ̂

âb̂

)
εA + êâ

μ̂

[
− i

4
 45
â (σ 3)ABε

B + 1

4
 2345
â εA

]
= 0,

∂μ̌ε
A − 1

2

[
(ω�g)μ̌ + 1√

2
 45
μ̌

](
23εA + i(σ 3)ABε

B) = 0,

∂yε
A − 1

16y

[
(2 + yh̃′)εA − i

4y2

F1/2 (4 − yh̃′)5(σ 3)ABε
B
]

= 0,

∂zε
A − i

g

2

(
α1 + α2 − 2m

g

)
(σ 3)ABε

B = 0,

(2.12)

where we defined h̃ ≡ log(h1h2) and we applied the gauge transformation Ai �→
Ai + αi dz. Equations (2.5) and (2.6) yield the same constraint

F1/24εA + m(h1h2)
1/2εA + i y245(σ 3)ABε

B = 0. (2.13)

We note that the equations along y and z in (2.12) and Eq. (2.13) are the same as in
the AdS4 × ˚ system (cf. equations (3.3) and (3.4) of [27]), a fact that will play an
important role later on. From the fourth equation in (2.12) we see immediately that
setting

α1 + α2 = 2m

g
(2.14)

leads to Killing spinors independent of z and we will adopt this choice in the reminder
of this section.

Before tackling the Killing spinor equations, we note the following fact about the
AdS4 ×˚ solution of [27]: choosing a suitable decomposition of the six-dimensional
gamma matrices, it is possible to write the six-dimensional Killing spinors as tensor
products of a single AdS4 spinor and a single spinor on ˚. Specifically, we consider
the decomposition

ã = γ ã ⊗ ρ∗, 4,5 = I4 ⊗ ρ1,2, (2.15)

where γ ã , ã = 0, . . . , 3, are the (Lorentzian) gamma matrices in D = 4, ρ ı̂ , ı̂ = 1, 2,
are the (Euclidean) gamma matrices in D = 2 and ρ∗ = −i ρ1ρ2 is the related chiral
matrix. For ρ ı̂ we choose the following representation

ρ ı̂ = σ ı̂ , ρ∗ = σ 3, (2.16)

and we take Bρ
2 = −σ 2. For consistency, the six-dimensional matrix B6 decomposes

as

B6 = (B4γ5) ⊗ (Bρ
2ρ∗), (2.17)
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where γ5 = i γ 0γ 1γ 2γ 3 is the four-dimensional chiral matrix. Adopting this
decomposition, the symplectic-Majorana condition (2.8) and the Killing spinor equa-
tions (3.3)–(3.4) of [27] can be solved to give

ε1 = (γ5ϑ(4)) ⊗ η1, ε2 = ϑ(4) ⊗ η2, (2.18)

where ϑ(4) = ϑ(4)(x μ̃) is a Majorana Killing spinor on AdS4 and

η1 = ξη y
1/8(h1h2)

−3/16

(
f 1/21

− f 1/22

)
, η2 = −i ξ∗

η y1/8(h1h2)
−3/16

(
f 1/22

− f 1/21

)
.

(2.19)

Here, ξη is a complex constant and we have defined

f1(y) ≡ m(h1h2)
1/2 + y2, f2(y) ≡ m(h1h2)

1/2 − y2, (2.20)

which satisfy F(y) = f1(y) f2(y). Notice thatη1 andη2 are related byη2 = i σ 1(η1)∗,
which descends from the symplectic-Majorana condition (2.8).

Going back to the AdS2 ×�g �˚2 background, in order to solve its Killing spinor
equations we adopt the same decomposition of the six-dimensional gamma matrices
as in (2.15). Moreover, we decompose the four-dimensional gamma matrices γ ã as

γ â = β â ⊗ τ∗, γ 2,3 = I2 ⊗ τ 1,2, (2.21)

where β â are the (Lorentzian) gamma matrices in D = 2, τ ı̂ , ı̂ = 1, 2, are the
(Euclidean) gamma matrices in D = 2 and τ∗ = −i τ 1τ 2 is the related chiral matrix.
Explicitly, we adopt the same representation as in (2.16)

τ i = σ i , τ∗ = σ 3, (2.22)

and we take Bτ
2 = σ 1. The four-dimensional matrices B4 and γ5 decompose as

B4 = (Bβ
2 β∗) ⊗ Bτ

2 , γ5 = β∗ ⊗ τ∗, (2.23)

where β∗ = −β0β1 is the (Lorentzian) chiral matrix in D = 2. The ansatz for the
six-dimensional Killing spinors is

εA = ϑ ⊗ χ A ⊗ ηA, (2.24)

where ϑ = ϑ(x μ̂) is a Majorana Killing spinor on AdS2, hence ∇̂μ̂ϑ = 1
2βμ̂ϑ and

ϑ∗ = Bβ
2 ϑ . χ

A = χ A(x μ̌) are two two-component spinors defined on the Riemann
surface �g, while η1 and η2 are given in (2.19). Putting all the ingredients together,
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the symplectic-Majorana condition (2.8) and the Killing spinor Eqs. (2.12)–(2.13) can
be solved to give

χ1 =
(
0
ξχ

)
, χ2 =

(−ξ∗
χ

0

)
, (2.25)

where ξη is a complex constant. Notice that we can express χ2 as χ2 = −i σ 2(χ1)∗.
We can now count the number of supersymmetries preserved by ourAdS2×�g�˚2

solution. ϑ is a Majorana spinor, hence it has two real degrees of freedom, while the
tensor product χ A ⊗ ηA is fully determined by the product ξχξη, which has two real
degrees of freedom. Therefore, there are four real independent Killing spinors, that
is one quarter of the number of supersymmetries of the six-dimensional N = (1, 1)
theory; hence, the solution is 1/4-BPS.

We now proceed to the global analysis of the local solution (2.9), for which we
set m = 2g/3 without loss of generality2. Fixed a generic point on the Riemann
surface �g, the metric on the spindle ˚2 reads

ds2˚2
= y2

F
dy2 + F

h1h2
dz2. (2.26)

In order to have a well-defined metric and positive scalars Xi we need to take F > 0,
h1 > 0, h2 > 0 in a closed interval not containing the curvature singularity in y = 0,
thus without loss of generality we restrict to y > 0. Moreover, denoting [yN , yS] the
range of the coordinate y, ˚2 is a proper spindle given that [27]

gF ′(yN )
3y3N

�z = 2π

n−
,

gF ′(yS)
3y3S

�z = −2π

n+
, (2.27)

where n± are two co-prime integers and �z is the periodicity of the z coordinate.
These two relations ensure that at the poles y = yN ,S there are Zn∓ orbifold sin-
gularities, respectively. An additional constraint comes from the quantization of the
magnetic fluxes across˚2, which arises from the requirement that gAi be well-defined
connection one-forms onU (1) bundles over ˚2. Given any point of�g, we must have

ti = g

2π

∫
˚2

Fi = pi
n+n−

, pi ∈ Z. (2.28)

It can be shown that [27]

p1 + p2 = n+ + n−, (2.29)

meaning that the R-symmetry gauge field AR ≡ g(A1 + A2) is a connection one-
form on the line bundle O(n+ + n−) over ˚2, and therefore the integers pi can be

2 Taking g > 0 and m > 0, we can apply the rescaling (2.4) of [27], together with B �→ (m/lg)−1/2B, in
order to absorb m in the coupling constant.
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conveniently parameterized as

p1 = n+ + n−
2

(1 + z), p2 = n+ + n−
2

(1 − z), (2.30)

where z is an appropriate rational number. The value of the sum p1 + p2 implies that
AR realizes on the bundle the type of twist that was dubbed “twist,” as for the D4 [27]
and M5-branes [29] wrapped on a spindle.

All the conditionswe presentedwere studied in [27], towhichwe refer for a detailed
analysis, and it was proven that they can be satisfied if n− < n+, p1 < 0, p2 > 0, the
expressions of qi and yN ,S are determined as in equations (3.39) and (3.31) of [27]
and z has periodicity

�z = χ2
3π(x2 + 3)(μ − x)

8gx2
. (2.31)

Here, χ2, the Euler characteristic of ˚2, and μ are defined as

χ2 = n+ + n−
n+n−

, μ ≡ n+ − n−
n+ + n−

, (2.32)

and x is the only solution of the quartic equation

x4 + (8z2 − 3 − 9μ2)x2 + 12μx − 9μ2 = 0 (2.33)

lying inside the range 0 < x < 1.
Aswe alreadymentioned, the internal space has the structure of a spindle˚2 fibered

over a Riemann surface �g. This fibration is well defined in the orbifold sense if the
one-form η describing the fibration is globally defined, i.e.,

1

2π

∫
�g

dη = t, t ∈ Z, (2.34)

where

η ≡ 2π

�z

(
dz − 3

4g
ω�g

)
. (2.35)

This requirement yields a quantization condition relating the spindle data (n±,z) and
the genus g, namely

t = − 8x2(g − 1)

χ2(x2 + 3)(μ − x)
∈ Z. (2.36)

We refer to Appendix A for the analysis of this constraint.
The last conditions follow from the quantization of the fluxes Fi through two-cycles

in �g � ˚2. Their integration through ˚2 were computed in (2.28), hence they are
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already appropriately quantized. Next, we define the two-cycles S− ≡ {y = yN } and
S+ ≡ {y = yS}, corresponding to the two poles of ˚2, and compute, e.g.,

s−
1 = g

2π

∫
S−

F1 = 3

2

y3N
h1(yN )

(g − 1)

= tχ2
x3 − (2 + 2z + 3μ)x2 + (3 − 2z)x − 3μ

8x2 ,

(2.37)

where we substituted t as in (2.36). Similarly to what happened in (2.34), the quan-
tization condition requires (2.37) to be an integer. In Appendix A, we present some
examples in which this constraint is satisfied. The quantization through S+ can be
addressed easily since an explicit computation shows that

s+
i = g

2π

∫
S+

Fi = s−
i + t

pi
n+n−

, (2.38)

therefore the related condition is automatically satisfied due to the fact that n± divide t ,
as explained in Appendix A. We also notice that (2.38) agrees with the homology
relation S+ − S− = t ˚2. The fluxes of F2 can be obtained flipping the sign of z in the
previous formulas and, as a consequence, the quantization of its fluxes automatically
holds exchanging p1 with p2.

Focusing on the R-symmetry gauge field, its fluxes read

1

2π

∫
S−

FR = 2(g − 1) − t

n−
,

1

2π

∫
S+

FR = 2(g − 1) + t

n+
, (2.39)

and, as expected, they are correctly quantized because n± divide t .

2.2 AdS2 × ˚1 � ˚2 solutions

A second class of solutions to the model described by action (2.1) is the AdS2 ×˚1 �

˚2 background, where a two-dimensional spindle ˚2 is non-trivially fibered over a
different two-dimensional spindle ˚1. Remarkably, there exists a specific limit of the
coordinates and the parameters in which the AdS2 ×�g �˚2 solutions are retrieved,
both their bosonic content and the Killing spinors. All the details and computations
are left to Appendix B. Going back to the systems under exam, they read

ds2 = (y2h1h2)
1/4
[
x2

4
ds2AdS2 + x2

q
dx2 + q

4x2
dψ2 + y2

F
dy2

+ F

h1h2

(
dz − 1

2m

(
1 − a

x

)
dψ
)2]

,

Ai = − y3

hi

(
dz − 1

2m

(
1 − a

x

)
dψ
)
, Xi = (y2h1h2)

3/8h−1
i ,

B = ay

2m
vol(AdS2),

(2.40)
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where ds2AdS2 denotes the unit radius metric on AdS2 and a is a real parameter. The
functions hi and F are the same as in (2.10), while q is given by

q(x) = x4 − 4x2 + 4ax − a2. (2.41)

Notice that formally taking a = 0 we retrieve the AdS4 × ˚ background studied in
[27].

In order to construct the local formof theKilling spinors and to demonstrate that this
solution is supersymmetric, we must first specialize the Killing spinor Eqs. (2.4)–(2.6)
to our system employing the orthonormal frame

eâ = x y1/4(h1h2)1/8

2
êâ, e2 = x y1/4(h1h2)1/8

q1/2
dx, e3 = q1/2y1/4(h1h2)1/8

2x
dψ,

e4 = y5/4(h1h2)1/8

F1/2 dy, e5 = y1/4F1/2

(h1h2)3/8

(
dz − 1

2m

(
1 − a

x

)
dψ
)
, (2.42)

where êâ , â = 0, 1, is the zweibein on AdS2, whose coordinates are denoted as x μ̂.
Equation (2.4) then splits into the following system

(
∂μ̂ + 1

4
ω âb̂
μ̂

âb̂

)
εA + êâ

μ̂

[
q1/2

4x
 2
â εA − i

x

4
 45
â (σ 3)ABε

B + a

4x
 2345
â εA

]
= 0,

∂xε
A − a

2xq1/2
345εA − i

x

2q1/2
245(σ 3)ABε

B = 0,

∂ψε
A − i

2

(
1 − a

x

)
(σ 3)ABε

B + 2q − xq ′

8x3
23εA + aq1/2

4x3
245εA

− i
q1/2

4x
345(σ 3)ABε

B = 0,

∂yε
A − 1

16y

[
(2 + yh̃′)εA − i

4y2

F1/2 (4 − yh̃′)5(σ 3)ABε
B
]

= 0,

∂zε
A − i

g

2

(
α1 + α2 − 2m

g

)
(σ 3)ABε

B = 0,

(2.43)

where h̃ ≡ log(h1h2) is defined as before and we employed the gauge transformation
Ai �→ Ai + αi dz. Equations (2.5) and (2.6) yield, again, the same constraint

F1/24εA + m(h1h2)
1/2εA + i y245(σ 3)ABε

B = 0. (2.44)

Also in this case, the Killing spinor equations along y and z and the last constraint are
identical to those obtained in the AdS4 ×˚ background. Once again we fix the gauge
such that α1 + α2 = 2m/g, in order to have a z-independent Killing spinors.

The explicit construction of the Killing spinors proceeds in a way similar to the
AdS2 × �g � ˚2 case. First of all, we employ the following decomposition of the
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six-dimensional gamma matrices (cf. Eqs. (2.15) and (2.21)):

â = β â ⊗ τ∗ ⊗ ρ∗, 2,3 = I2 ⊗ τ 1,2 ⊗ ρ∗, 4,5 = I2 ⊗ I2 ⊗ ρ1,2,

(2.45)

which implies,

B6 = Bβ
2 ⊗ (Bτ

2τ∗) ⊗ (Bρ
2ρ∗), (2.46)

where β â are the (Lorentzian) gamma matrices in D = 2, ρ ı̂ and τ ı̂ , ı̂ = 1, 2, are the
(Euclidean) gamma matrices in D = 2 and ρ∗ and τ∗ are the related chiral matrices.
In the Euclidean sectors, we adopt the representation (2.16)

ρ ı̂ = τ ı̂ = σ ı̂ , ρ∗ = τ∗ = σ 3, (2.47)

andwe takeBρ
2 = −σ 2 andBτ

2 = σ 1. The six-dimensionalKilling spinors are assumed
to consist of the tensor product of spinors living on AdS2, ˚1 and ˚2. Namely,

εA = ϑ ⊗ χ A ⊗ ηA, (2.48)

with ϑ = ϑ(x μ̂) Majorana Killing spinor on AdS2, χ A = χ A(x, ψ) two
two-component spinors defined on the spindle ˚1 and ηA given in (2.19). The
symplectic-Majorana condition (2.8) and the Killing spinor equations (2.43)–(2.44)
are satisfied given that

χ1 = ξχ x−1/2

(
Q1/2

1

−Q1/2
2

)
, χ2 = ξ∗

χ x−1/2

(
Q1/2

2

Q1/2
1

)
, (2.49)

where ξχ is a complex constant and

Q1(x) ≡ x2 − (2x − a), Q2(x) ≡ x2 + (2x − a), (2.50)

which satisfy q(x) = Q1(x) Q2(x). Notice that the relation χ2 = −i σ 2(χ1)∗ holds
also in this case. The count of the real degrees of freedom is identical to the AdS2 ×
�g � ˚2 case and shows that the solution is 1/4-BPS, since it preserves four real
supercharges.

The first part of the global analysis of the AdS2 ×˚1 �˚2 solution (2.40) proceeds
along the path traced in the previous section. Chosen a generic point on the base
spindle ˚1, the metric of ˚2 is the same as in (2.26), therefore are identical also
the conditions for it to describe a proper spindle with Zn∓ orbifold singularities. In
particular,�z must be as in (2.31). Moreover, at a generic point of ˚1 (different from
the north and south poles) the magnetic fluxes are quantized as in (2.28):

ti = g

2π

∫
˚2

Fi = pi
n+n−

, pi ∈ Z, (2.51)
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with p1 + p2 = n+ + n−.
The base spindle ˚1, described by the metric

ds2˚1
= x2

q
dx2 + q

4x2
dψ2, (2.52)

was thoroughly studied in [28], thus we will take advantage of the results presented
therein, setting j = 0. ˚1 is indeed a spindle, characterized by the two co-prime inte-
gers m±, with m− < m+3, if the parameter a and the periodicity of the coordinate ψ
are

a = m2+ − m2−
m2+ + m2−

, �ψ =
√
m2+ + m2−√
2m+m−

2π. (2.53)

The coordinate x is restricted between the two middle roots of the quartic polyno-
mial q(x), namely x ∈ [xN , xS] with

xN = −1 +
√
2m+√

m2+ + m2−
, xS = 1 −

√
2m−√

m2+ + m2−
. (2.54)

At the north and south poles of ˚1, namely x = xN ,S , are present Zm∓ orbifold
singularities, respectively. Moreover, defined the vector field

A4d = 1

2

(
1 − a

x

)
dψ, (2.55)

its magnetic flux through the spindle ˚1 is

1

2π

∫
˚1

F4d = m+ − m−
2m+m−

. (2.56)

In the four-dimensional theory, this implies that 2A4d is a connection one-form on the
line bundle O(m+ − m−) over ˚1 and, as a consequence, that we have anti-twist.

Similarly to the �g � ˚2 system, the fibration of ˚2 over ˚1 is well-defined given
that

1

2π

∫
˚1

dη = t

m+m−
, t ∈ Z, (2.57)

where, in this case,

η ≡ 2π

�z

(
dz − 3

4g

(
1 − a

x

)
dψ
)
. (2.58)

3 Notice that we exchanged m− and m+ with respect to [28].
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We derive the following constraint on the quantum numbers n±, m± and z

t = − 4x2(m+ − m−)
χ2(x2 + 3)(μ − x)

∈ Z, (2.59)

which is solved in Appendix A.
Likewedid in the previous section,we study the quantizationof thefluxes of Fi , now

through two-cycles in˚1�˚2. Themagnetic fluxes across˚2 were computed in (2.28)
and are, thus, already quantized. Again we define the two-cycles S− ≡ {y = yN } and
S+ ≡ {y = yS}, which corresponds to two copies of the base spindle˚1, and compute

s−
1 = g

2π

∫
S−

F1 = 3

4

y3N
h1(yN )

m+ − m−
m+m−

= tχ2
m+m−

x3 − (2 + 2z + 3μ)x2 + (3 − 2z)x − 3μ

8x2 .

(2.60)

In analogy to (2.37), theflux (2.60)must be an integer dividedby (m+m−), andwe refer
to Appendix A for the analysis of this constraint. The same quantization condition,
but with F1 integrated across S+, is automatically satisfied due to the relation

s+
i = g

2π

∫
S+

Fi = s−
i + t

m+m−
pi

n+n−
, (2.61)

which can be both computed explicitly and obtained from the homology relation
S+−S− = t

m+m− ˚2. On the other hand, the fluxes of F2 can be obtained switching the
sign of z, i.e., exchanging p1 with p2, in the previous formulas and, as a consequence,
the quantization follows directly. The fluxes of the R-symmetry gauge potential read

1

2π

∫
S−

FR = m+ − m−
m+m−

− t

m+m−n−
, (2.62)

1

2π

∫
S+

FR = m+ − m−
m+m−

+ t

m+m−n+
,

and are well quantized, i.e., they are integers divided by m+m−, because n± divide t .

2.3 Truncation to D = 4minimal gauged supergravity

An accurate inspection of the AdS2 × �g � ˚2 and AdS2 × ˚1 � ˚2 solutions given
in (2.9) and (2.40), respectively, hints at the existence of an underlying consistent
truncation of matter-coupled D = 6, U (1)2 gauged supergravity on a spindle ˚2,
down to D = 4, N = 2 minimal gauged supergravity. Even though we do not
demonstrate the consistency of this truncation4, we conjecture its validity in analogy

4 This truncation has been proved to be consistent and to preserve supersymmetry in [20].
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with the results of [17] and we will provide supporting evidence. For completeness,
we report here the action describing the four-dimensional theory

S4D = 1

16πG(4)

∫
d4x

√−g
(
(4)R + 6 − FμνF

μν
)
, (2.63)

along with the corresponding Killing spinor equation

(
∇μ − iAμ + 1

2
γμ + i

4
Fρσ γ

ρσ γμ

)
ε = 0, (2.64)

where F = dA , {γa, γb} = 2ηab and the AdS4 radius has been set to 1.
Given a solution of D = 4 minimal gauged supergravity comprising a metric ds2(4)

and a gauge potential A , we propose the following ansatz for the six-dimensional
solution:

ds2(6) = (y2h1h2)
1/4
[
ds2(4) + y2

F
dy2 + F

h1h2

(
dz − 1

m
A
)2]

,

Ai = − y3

hi

(
dz − 1

m
A
)
, Xi = (y2h1h2)

3/8h−1
i ,

B = 2y

m
�4F .

(2.65)

Here, �4 is the Hodge dual with respect to the metric ds2(4) and (cf. (2.10))

hi (y) = 2g

3m
y3 + qi , F(y) = m2h1h2 − y4. (2.66)

This ansatz may be justified comparing the two six-dimensional solutions already
mentioned with the following AdS2 × �g [14] and AdS2 × ˚1 [28] backgrounds

ds2(4) = 1

4
ds2AdS2 + 1

2
ds2�g

, A = 1

2
ω�g , (2.67)

ds2(4) = x2

4
ds2AdS2 + x2

q
dx2 + q

4x2
dψ2, A = 1

2

(
1 − a

x

)
dψ, (2.68)

with q(x) = x4 − 4x2 + 4ax − a2. In both cases, plugging the four-dimensional
solutions into the ansatz (2.65) gives the corresponding ones in D = 6. An additional
example is given by the AdS4 × ˚2 solution of [27], which can be obtained starting
from the AdS4 vacuum.

In addition to the truncation of the bosonic sector, we also propose an ansatz con-
necting the Killing spinors of the two supergravity theories in D = 4 and D = 6.
This conjecture is driven both by the construction presented in [17] and by the fact,
already observed, that some of the Killing spinor equations are the same for the two
background considered in this paper, as well as for the AdS4 × ˚2 solution.
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The truncation ansatz for the Killing spinors heavily depends on the choice of
the decomposition of the six-dimensional gamma matrices. In what follows we will
consider (2.15)

ã = γ ã ⊗ σ 3, 4,5 = I4 ⊗ σ 1,2, (2.69)

where γ ã , ã = 0, . . . , 3, are the (Lorentzian) gamma matrices in D = 4. For consis-
tency, B6 decomposes as

B6 = (B4γ5) ⊗ (B2σ
3), (2.70)

where γ5 = i γ 0γ 1γ 2γ 3 is the four-dimensional chiral matrix and B2 = −σ 2. We
conjecture that the first Killing spinor ε1 takes the expression

ε1 = ζ ⊗ η, (2.71)

where ζ is a Killing spinor of D = 4 minimal gauged supergravity and η is given by5

η = ξ y1/8(h1h2)
−3/16

(
f 1/21

− f 1/22

)
, (2.72)

where ξ is a complex constant and

f1(y) ≡ m(h1h2)
1/2 + y2, f2(y) ≡ m(h1h2)

1/2 − y2, (2.73)

satisfying F(y) = f1(y) f2(y). The second Killing spinor ε2 is determined by the
symplectic-Majorana condition (2.8), explicitly

ε2 = i (γ5ζ
c) ⊗ (σ 1η∗), (2.74)

where we defined the charge conjugate spinor ζ c = B−1
4 ζ ∗.

As for the bosonic part of the truncation, we can justify this ansatz making contact
with the Killing spinors of D = 4 minimal gauged supergravity. Assuming, addition-
ally, the decomposition of the four-dimensional gamma matrices in (2.21), the Killing
spinors of the AdS2 × �g [14] and AdS2 × ˚1 [32] (see also [28]) backgrounds are,
respectively,6

ζ = ϑ ⊗
(
0
1

)
, (2.75)

ζ = ϑ ⊗ x−1/2

(
Q1/2

1

−Q1/2
2

)
, (2.76)

5 Here we relabeled η1 with η and ξη with ξ with respect to (2.19).
6 Here, ζ is a superposition of the two Killing spinors ε̃1 and ε̃2 of [32].
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where ϑ is a Majorana Killing spinor on AdS2 and we defined Q1(x) ≡ x2− (2x−a)
and Q2(x) ≡ x2 + (2x − a). Uplifting these two spinors by means of the proposed
recipe, we obtain exactly the Killing spinors of the corresponding six-dimensional
solution. For what concerns the AdS4 × ˚2 background, we must take ζ = γ5ϑ(4),
with ϑ(4) a Killing spinor on AdS4, due to a slightly different convention on the
four-dimensional Killing spinor equations.

The existence and the consistency of the truncation for the Killing spinors would
prove that any supersymmetric solution of D = 4 minimal gauged supergravity gives
rise to a supersymmetric solution of D = 6,U (1)2 gauged supergravity after uplifting
on ˚2 via (2.65).

3 Uplift to massive type IIA supergravity

The local solutions presented in Sect. 2 can be embedded in massive type IIA super-
gravity by means of an appropriate ansatz. A consistent truncation for the field content
of interest is unfortunately not available. However, if we set m = 2g/3 we can con-
sider an enlarged version of the ansatz presented in [27]. This proposal7 comes as
a superposition of the formulas presented in [25] and [24], which we recover in the
respective limits. In the former, only one scalar is considered, but the six-dimensional
two-form B is nonzero, while the latter encompasses four scalar fields, but vanishing
B field. The ansatz for the metric in the string frame and the dilaton is the same as in
[27]

ds2s.f. = μ
−1/3
0 (X1X2)

−1/4{�1/2ds26

+ g−2�−1/2[X−1
0 dμ2

0 + X−1
1

(
dμ2

1 + μ2
1σ

2
1

)+ X−1
2

(
dμ2

2 + μ2
2σ

2
2

)]}
,

(3.1)

e� = μ
−5/6
0 �1/4(X1X2)

−5/8, (3.2)

but now we have also a nonvanishing two-form field

B(2) = 1

2
μ
2/3
0 B. (3.3)

Here, ds26 stands for the line element of the six-dimensional space M6 and the one-
forms σi ≡ dφi − gAi are built up from the six-dimensional gauge fields. The angular
coordinates φ1, φ2 have canonical 2π periodicities, whereas the coordinates μa , with
a = 0, 1, 2, satisfy the constraint

∑
μ2
a = 1. Lastly, the warp factor reads

� =
2∑

a=0

Xaμ
2
a . (3.4)

7 A more general truncation ansatz, which does not require m = 2g/3, has been proposed in [20].
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A possible parameterization of the coordinates μa is

μ0 = sin ξ, μ1 = cos ξ sin η, μ2 = cos ξ cos η, (3.5)

with η ∈ [0, π/2] and ξ ∈ (0, π/2], where the range of ξ is fixed by the necessity of
having μ0 > 0. In this way, the ten-dimensional metric (3.1) parameterizes, at each
point of M6, a four-dimensional hemisphere, denoted as S4 from now on. The metric
on S4 is in general squashed, and becomes the metric on “half the round four-sphere”
when X1 = X2 = 1. The RR sector of massive type IIA supergravity comprises the
ten-dimensional Romans mass and the two-form flux

F(0) = m = 2g

3
, F(2) = g

3
μ
2/3
0 B, (3.6)

along with the four-form flux, conveniently written in terms of its Hodge dual as8

�10F(4) = −gUvol(M6) + 1

g2
∑
i

X−2
i μi (�6Fi ) ∧ dμi ∧ σi

− 1

g

∑
a

X−1
a μa(�6dXa) ∧ dμa

+ μ1μ2

3g3
�−1X0 B ∧ dμ1 ∧ dμ2 ∧ σ1 ∧ σ2

− μ1μ2

2g3
�−1 H ∧ (X2μ2 dμ1 − X1μ1 dμ2) ∧ σ1 ∧ σ2, (3.7)

where we defined

U = 2
2∑

a=0

X2
aμ

2
a −

[
4

3
X0 + 2(X1 + X2)

]
�. (3.8)

The Hodge star operators �10 and �6 are computed using the string frame metric (3.1)
and ds26 , respectively. Even though we did not prove that this truncation is consistent,
we tested it successfully against our AdS2×�g�˚2 (2.9) and AdS2×˚1�˚2 (2.40)
solutions.

Provided the equations of motion of the six-dimensional gauged supergravity are
satisfied, the above ansatz should solve the equations of motion of massive type IIA

8 The four-flux differs in a global sign from (2.16) of [27]. Although this fact does not affect the equations
of motion therein, which, in that case, are invariant under F(4) �→ −F(4), the expression (3.7) correctly
reduces to [25] when only one scalar field is retained.
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supergravity, which can be derived from the string frame action9

SmIIA = 1

16πG(10)

{∫
d10x

√−g
[
e−2�(R + 4|d�|2 − 1

2
|H(3)|2

)

− 1

2

(
F2
(0) + |F(2)|2 + |F(4)|2

)]

−1

2

∫ (
B(2) ∧ dC(3) ∧ dC(3) + 2F(0)B

3
(2) ∧ dC(3) + 6F2

(0)B
5
(2)

)}
,

(3.9)

where, in these conventions, the field strengths are

H(3) = dB(2), F(2) = dC(1) + F(0)B(2),

F(4) = dC(3) − H(3) ∧ C(1) + 1

2
F(0)B(2) ∧ B(2). (3.10)

As noticed in [27], the ten-dimensional equations of motion are invariant under a
scaling symmetry, which defines an “improved uplift” and whose action is

dŝ2s.f. = λ2ds2s.f., e�̂ = λ2e�, B̂(2) = λ2B(2),

F̂(0) = λ−3F(0), Ĉ(1) = λ−1C(1), Ĉ(3) = λC(3),
(3.11)

where λ is any strictly positive constant. This additional parameter λ enters in the
regularity analysis of the uplifted ten-dimensional solutions. In particular, its presence
will be necessary for the fluxes to be correctly quantized [27].

In the next subsections, we will specify our proposed truncation ansatz to the solu-
tions presented in (2.9) and (2.40). After having applied the scaling symmetry (3.11),
we will quantize the fluxes, thus ensuring the global regularity of the ten-dimensional
solutions.

3.1 AdS2 × 6g � ˚2 solutions

We begin this section by presenting the key ingredients for the flux quantization and
the computation of the entropy. The quantization conditions are

(2π�s)F(0) = n0 ∈ N,
1

(2π�s)3

∫
S4

F(4) = N ∈ N,

1

(2π�s)3

∫
M4

F(4) = K ∈ N,

(3.12)

where M4 = �g � ˚2. At ξ = 0, where μ0 = 0 and the warp factor is singular,
there are an O8-plane and N f = 8−n0 coincident D8-branes, while N D4-branes are

9 Here we use the shortcut Bn
(2) to denote the wedge product of B(2) with itself n times, divided by n!.
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wrapped over �g � ˚2. These integers get contributions from the following fluxes

F(0) = 2g

3λ3
, (3.13)

F(4) = −λμ
1/3
0 h1h2
g3�h

{
Uh

�h

μ1μ2

μ0
dμ1 ∧ dμ2 ∧ σ1 ∧ σ2

−
∑
i �= j

[
g Fi ∧ dφ j − y3(h′

i − 3y−1hi )h j

�hhi
μ2
i dy ∧ σi ∧ σ j

]

∧ (μ0μ j dμ j − y3h−1
j μ2

j dμ0
)}

+ λy

2
μ
4/3
0 vol(�g) ∧ dy ∧ dz − λy2

3
μ
1/3
0 vol(�g) ∧ dz ∧ dμ0, (3.14)

while the metric and the dilaton enter in the computation of the entropy

ds2s.f. = λ2μ
−1/3
0 y−1�

1/2
h

{
1

4
ds2AdS2 + ds2�g

+ y2

F
dy2 + F

h1h2

(
dz − 1

2m
ω�g

)2

+ g−2y�−1
h

[
y3 dμ2

0 + h1
(
dμ2

1 + μ2
1σ

2
1

)+ h2
(
dμ2

2 + μ2
2σ

2
2

)]}
,

(3.15)

e� = λ2μ
−5/6
0 y−3/2�

1/4
h . (3.16)

For convenience, we defined the functions

�h = h1h2 μ
2
0 + y3h2 μ

2
1 + y3h1 μ

2
2,

Uh = 2
[
(y3 − h1)(y

3 − h2)μ
2
0 − y6

]− 4

3
�h .

(3.17)

Additionally, we report for completeness also the other ten-dimensional fields, which,
however, do not play an important role in our analysis

B(2) = λ2y

4m
μ
2/3
0 vol(AdS2), F(2) = gy

6λm
μ
2/3
0 vol(AdS2). (3.18)

Plugging our solution in the first two conditions of (3.12) gives

g8 = 1

(2π�s)8
18π6

N 3n0
, λ8 = 8π2

9Nn30
. (3.19)

It is worth noting that, being N and n0 integers, the second equation would be incon-
sistent with λ = 1. Such a problem arises from the fact that, without introducing λ, the
first two constraints in (3.12) would have to be imposed on an unique dimensionless
parameter, namely (g�s). This makes the scaling symmetry (3.11) crucial to establish
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the regularity of the ten-dimensional uplifted solution. The integration in the third con-
dition of (3.12) is performed along a representative of M4, which we take to be at the
pole of the hemisphere S4, i.e., in ξ = π/2. The result can be implicitly expressed in
terms of the integer parameters (g, n±,z, N ) by means of equations (3.31) and (3.38)
of [27], and reads

K = Nχ2(g − 1)
3[3μ(x2 + 1) − x(x2 + 5)]

8x(x2 + 3)
. (3.20)

The analysis of this quantization condition is left to Appendix A.
We now move to the computation of the entropy. The first step is to write the

ten-dimensional metric in the form

ds2s.f. = e2A
(
ds2AdS2 + ds2M8

)
, (3.21)

where ds2M8
is the metric on the internal space M8, that is the total space of an S4

bundle over M4, namely S4 ↪→ M8 → M4. There is aU (1)2 symmetry acting on S4,
with gAi connections on the associated circle bundles, and the correct quantization
of the corresponding magnetic fluxes ti and s

±
i , as discussed in Sect. 2.1, ensures that

the ten-dimensional solution is a well-defined orbifold. The entropy of our solution
can be read from the two-dimensional effective Newton constant G(2) as

S = 1

4G(2)
= 8π2

(2π�s)8

∫
e8A−2� vol(M8). (3.22)

Applying this to metric (3.15), we obtain

S�g�˚2 = 8π2

(2π�s)8
3π2λ4

20g4
4π(g − 1) (y3S − y3N )�z

= (g − 1) FS3×˚2
,

(3.23)

where FS3×˚2
is the free energy of d = 3, N = 2 SCFTs that arise from a system of

N D4-branes and N f D8-branes wrapped on a spindle [27]

FS3×˚2
= χ2

√
3πN 5/2

5
√
8 − N f

[3μ(x2 + 1) − x(x2 + 5)]3/2
x(x2 + 3)(μ − x)1/2

. (3.24)

3.2 AdS2 × ˚1 � ˚2 solutions

Similarly to the previous section we present the explicit expressions of the fluxes,
which are then quantized. Apart from the Romans mass, which is the same as in
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(3.13), the complete uplifted solution includes the four-flux

F(4) = −λμ
1/3
0 h1h2
g3�h

{
Uh

�h

μ1μ2

μ0
dμ1 ∧ dμ2 ∧ σ1 ∧ σ2

−
∑
i �= j

[
g Fi ∧ dφ j − y3(h′

i − 3y−1hi )h j

�hhi
μ2
i dy ∧ σi ∧ σ j

]

∧ (μ0μ j dμ j − y3h−1
j μ2

j dμ0
)}

+ λay

2x2
μ
4/3
0 dx ∧ dψ ∧ dy ∧ dz − λay2

3x2
μ
1/3
0 dx ∧ dψ ∧ dz ∧ dμ0, (3.25)

and the metric and dilaton

ds2s.f. = λ2μ
−1/3
0 y−1�

1/2
h

{
x2

4
ds2AdS2 + x2

q
dx2 + q

4x2
dψ2 + y2

F
dy2

+ F

h1h2

(
dz − 1

2m

(
1 − a

x

)
dψ
)2

+ g−2y�−1
h

[
y3 dμ2

0 + h1
(
dμ2

1 + μ2
1σ

2
1

)+ h2
(
dμ2

2 + μ2
2σ

2
2

)]}
,

(3.26)

e� = λ2μ
−5/6
0 y−3/2�

1/4
h , (3.27)

where �h and Uh were defined in (3.17). Again, even if they are not fundamental for
the computations, we also have

B(2) = λ2ay

4m
μ
2/3
0 vol(AdS2), F(2) = agy

6λm
μ
2/3
0 vol(AdS2). (3.28)

The quantization conditions are the same as in (3.12), where now M4 = ˚1 � ˚2,
and the first two give again the relations (3.19). The last one, expressed in terms of
(m±, n±,z, N ), reads

K = Nχ2
m+ − m−
m+m−

3[3μ(x2 + 1) − x(x2 + 5)]
8x(x2 + 3)

∈ N. (3.29)

We refer to Appendix A for a detailed analysis.
The ten-dimensional geometry is similar to the solution of the previous subsection,

with the internal space M8 having a fibration structure S4 ↪→ M8 → M4. Again,
there is aU (1)2 symmetry acting on S4, with gAi connections on the associated circle
bundles. Therefore, the uplifted solution can be considered a well-defined orbifold
thanks to the correct quantization of the magnetic fluxes of gAi , as discussed in
Sect. 2.2.
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The entropy of this solution can be computed following the same steps of the
previous case and the final result is

S˚1�˚2 = 8π2

(2π�s)8
3π2λ4

20g4
(xS − xN )�ψ (y3S − y3N )�z

= 1

2π
A˚1FS3×˚2

,

(3.30)

where FS3×˚2
is given in (3.24) and A˚1 is the area of the horizon of the four-

dimensional supersymmetric black hole solutionswithAdS2×˚1 near-horizon studied
in [28], namely

A˚1 =
√
2
√
m2+ + m2− − (m+ + m−)

m+m−
π. (3.31)

4 Toric geometry

In this section, we will provide a description of the orbifold ˚1 � ˚2 in terms of
certain combinatorial data, that will be used in the next section to construct the entropy
function. Since˚1�˚2 admits aU (1)2 action, corresponding to theU (1)2 isometry of
the metric (2.40), it is natural to seek a description in terms of toric geometry. Below,
we will discuss a method for extracting a set of toric data that is sufficient for the
purposes of this paper, leaving a more detailed study of the geometry for future work.
As a warm-up, we will begin with an S2 �˚2 geometry, namely a spindle fibered over
a smooth two-sphere. This can be obtained formally as an analytic continuation of the
�g �˚2 family and although it is not an actual supersymmetric background, it solves
the equations ofmotion. This case can be analyzed in the framework of symplectic toric
geometry and we will derive a labeled polytope [43] from the image of an associated
moment map. From the algebraic geometry point of view, the corresponding fan of
labeled normals to the polytope does not lead to a toric variety, but to a generalization
known as a “stack.” The reason is that in ordinary toric varieties orbifold singularities
along divisors cannot appear, as all the singularities are in co-dimension higher than
one. In the broader context of stacks, the key combinatorial gadget is called a stacky fan,
which roughly speaking is a simplicial fan with a distinguished lattice point on each
ray of the fan (see, e.g.,[11, 34, 42, 48]). For the more general ˚1 �˚2 family we will
not be able to find a symplectic structure and therefore we will have to use an indirect
method to extract the toric data. These will again take the form of a stacky fan and
will be taken as inputs for constructing an entropy function in terms of gravitational
blocks in the next section. As further illustration of our approach, in Appendix C
we present the derivation of the Delzant polytope of the first Hirzebruch surface F1,
starting from the explicit metric found in [45], as well as the toric data relevant for the
seven-dimensional solutions of [17].
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4.1 AdS2 × S2 � ˚2 solutions

Before studying the ˚1 � ˚2 orbifold, in which case the analysis is more involved,
we begin with a geometry characterized by a smooth two-dimensional base. Since a
Riemann surface with g > 0 is not toric, we need to consider its analytic continuation
to a two-sphere. Although non-supersymmetric, the AdS2 × S2 � ˚2 backgrounds
form a family of solutions to the equations of motion very similar to (2.9), but with
a different value of the radius of the Riemann surface, now a sphere. Specifically, the
space we consider is the four-dimensional toric orbifold S2 � ˚2 with metric

ds2S2�˚2
= 1

6

(
dθ2 + sin2θ dψ2)+ y2

F
dy2 + F

h1h2

(
dz + 1

2m
cos θ dψ

)2
. (4.1)

In this case, the condition on t (2.36) in order to have a well-defined fibration reads

t = − 1

m

2π

�z
∈ Z, (4.2)

where t results to be negative. For fixed values of y, metric (4.1) describes an S3/Z−t ,
where S3 is a squashed three-sphere written as a Hopf fibration; therefore, a natural
basis of an effective two-torus action is [45]10

e1 = ∂ν2 , e2 = ∂ψ − t

2
∂ν2 , (4.3)

where we introduced the 2π -periodic coordinate ν2 = 2π
�z z. In total, we have four

fixed points v� (� = 1, . . . , 4) under the action of the two-torus, which are all the
possible combinations obtained by pairing the poles of the sphere (θ = 0, π ) and the
poles of the spindle (y = yN ,S)

v1 = {θ = 0, y = yN }, v2 = {θ = 0, y = yS},
v3 = {θ = π, y = yS}, v4 = {θ = π, y = yN }. (4.4)

We now consider the conformally rescaled metric ds2 = (y) ds2
S2�˚2

, with
(y) > 0, with compatible symplectic two-form

ω = (y)

[
1

6
sin θ dθ ∧ dψ + y

(h1h2)1/2
dy ∧

(
dz + 1

2m
cos θ dψ

)]
. (4.5)

When ′(y) = − 3y
m(h1h2)1/2

(y) 11, the two-form (4.5) is closed and can be written
as

ω = dψ ∧ d

[
1

6
(y) cos θ

]
+ dν2 ∧ d

[
− 1

3t
(y)

]
. (4.6)

10 We exchanged e1 and e2 with respect to [45] in order to have the vectors �n� ordered counterclockwise.
11 A real and positive solution to this differential equation exists and is unique, up to an irrelevant overall
constant.
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v1

v2

v3 v4

n−

n+

1

2

3

4

Fig. 1 Labeled polytope corresponding to the S2 � ˚2 orbifold. The different facets are labeled with the
integers m�. In the figure t = −2

From this expression we can derive the moment maps with respect to the basis (4.3)

�μ = − 1

3t
(y)

(
1,− t(1 + cos θ)

2

)
, (4.7)

and compute the image of the fixed points (4.4)

�μ(v1) = − 1

3t
(yN ) (1,−t), �μ(v2) = − 1

3t
(yS) (1,−t),

�μ(v3) = − 1

3t
(yS) (1, 0), �μ(v4) = − 1

3t
(yN ) (1, 0),

(4.8)

which are vertices of the moment polytope. Vertices are connected by facets and we
define the facet D� to be the one that joins v�−1 and v�, where � is modulo 412.
In order to correctly draw the polytope, we notice that, since ′(y) < 0, we have
(yN ) > (yS).

Due to the orbifold nature of the spindle, we can construct an associated labeled
polytope following [43], which extends the classic Delzant construction. In particular,
if the preimage under moment maps of a facet has an orbifold singularity locally
modeled on C/Zm�

, we label the facet with the corresponding integer m�, otherwise
there is no label (formally, we have m� = 1). Specifically, the S2 � ˚2 orbifold is
characterized by

D1 = {y = yN } : m1 = n−, D2 = {θ = 0} : m2 = 1,

D3 = {y = yS} : m3 = n+, D4 = {θ = π} : m4 = 1.
(4.9)

The resulting labeled polytope is depicted in Fig. 1, and if the labels are stripped off

12 With a slight abuse of notation, we denote as v� both the fixed points and the vertices. Moreover, we
denoted as D� both the facets and the corresponding divisors, i.e., their preimages under �μ.
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this is exactly the polytope corresponding to the Hirzebruch surfaces F−t . This poly-
tope can also be described uniquely by a set of inequalities

〈 �μ,m��n�〉 ≤ λ�, (4.10)

where 〈·, ·〉 is the standard inner product between vectors in R
2, �μ is a generic point

in the (μ1, μ2)-plane, λ� is a real number and each �n� is a primitive element of Z
2,

which represents the outward-pointing normal vector to the facet D�. In particular, we
have

�n1 = (1, 0), �n2 = (t, 1), �n3 = (−1, 0), �n4 = (0,−1). (4.11)

The method we employed to construct the labeled polytope above is rigorous and
the result fits in the theory of symplectic toric orbifolds [43]. However, we will now
study this toric orbifold from a different point of view, in order to derive a method that
can be applied also to orbifolds which do not admit a conformally rescaled symplectic
form. A direct computation using the metric (4.1) shows that there are four distinct
loci D� where a linear combination of the two Killing vectors ∂ψ and ∂z degenerates.
These are precisely the toric divisors which in the symplectic context correspond to
the preimages of the four facets of the polytope and intersect at the four fixed points.
Explicitly, denoting with ξ(�) the Killing vector that degenerates at D�, they are

ξ(1) = n− ∂ν2 , ξ(2) = ∂ψ + t

2
∂ν2 , ξ(3) = n+ ∂ν2 , ξ(4) = ∂ψ − t

2
∂ν2 , (4.12)

normalized so to have unitary surface gravity

κ2grav = ∂μ|ξ |2 ∂μ|ξ |2
4|ξ |2 = 1 where |ξ |2 = 0. (4.13)

Expanded in the basis (4.3), the degenerating Killing vectors read

ξ(1) = n− e1, ξ(2) = t e1 + e2, ξ(3) = n+ e1, ξ(4) = e2. (4.14)

We notice that

ξ(�) = m� �n� · (e1, e2), (4.15)

where we packed the basis vectors (4.3) into a two-dimensional vector (e1, e2) and
(�n�,m�) are the toric data of the corresponding labeled polytope.

We can use relation (4.15) to infer the toric data starting from the information about
the degenerate Killing vectors. In particular, given a toric divisor D� where the Killing
vector ξ(�) is degenerate, studying the (possible) orbifold singularity on D� we can
obtain the corresponding integerm�. Expanding ξ(�) on a suitable basis—in which the
two-torus act effectively—according to (4.15) we can deduce the normal vectors �n�,
up to a global sign depending on the conventions. This sign can be chosen arbitrarily
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n̂1

n̂2

n̂3
n̂4

τ1
τ2

τ3 τ4

Fig. 2 Stacky fan corresponding to the vectors (4.16). The cones generated by �̂n� and �̂n�+1 are denoted
as τ�. In this example, we took n+ = 3, n− = 2 and t = −2

for one of the vectors and for the others it follows requiring the vectors �n� to be ordered
counterclockwise, in our conventions.

For an un-labeled, convex, rational polytope (not necessarily a Delzant polytope)
one can pass to the algebraic point of view, where the primitive normals to the polytope
represent the fan of a toric variety. In this context, the one-dimensional cones (rays) of
the fan are in a one-to-one correspondence with the toric divisors and the order of the
orbifold singularities at the intersection between two divisors can be read off from the
determinant of two adjacent generators, namely det(�n�, �n�+1). Orbifold singularities
along divisors cannot arise in toric varieties, so the information of a labeled polytope
cannot be accommodated in an ordinary fan. An equivalent way of thinking about the
labelsm� is by dropping the primitive requirement and considering �̂n� = m� �n� instead
of �n� [1]. We will refer to the �n� as “short” vectors and to the �̂n� as “long” vectors. In
algebraic geometry, the fan obtained from such “long” (non-primitive) normals can
be understood in the broader context of stacks and it is referred to as a stacky fan.
This turns out to be the correct combinatorial data needed in the construction of the
entropy function in the next section. The “long” vectors characterizing the S2 × ˚2
orbifold then read

�̂n1 = (n−, 0), �̂n2 = (t, 1), �̂n3 = (−n+, 0), �̂n4 = (0,−1) , (4.16)

and the corresponding stacky fan, dual to the labeled polytope of Fig. 1, is presented
in Fig. 2.

Let us make some comments on the orbifold �g � ˚2, with g > 1. This cannot be
toric in any sense; therefore, none of the previous considerations can be applied. Nev-
ertheless, for our purposes, we can think about extending the results obtained for the
S2 �˚2 toric orbifold to this case, and adopt as “toric data” the same vectors �n� (4.11)
and the same integers m� (4.9). The information on the genus of the Riemann surface
does not enter in any way in the “toric data,” but it will appear in the twisting procedure
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of Sect. 5, as discussed in the examples. Clearly, for �g �˚2 the divisors D2 and D4
have no physical meaning, and likewise the four fixed points v�, but they are all arti-
facts needed for the application of the conjectural entropy function we will present in
Sect. 5.

4.2 AdS2 × ˚1 � ˚2 solutions

After the warm-up with the S2 � ˚2 case, we are now ready to study the ˚1 � ˚2
orbifold. In this case, we can not construct a conformal symplectic structure; therefore,
we do not have a moment map to derive the labeled polytope. Nevertheless, we are
still able to obtain the toric data that we need by analyzing where the Killing vectors
of ˚1 � ˚2 degenerate. Recall that the metric on ˚1 � ˚2 is

ds2˚1�˚2
= x2

q
dx2 + q

4x2
dψ2 + y2

F
dy2 + F

h1h2

(
dz − 1

2m

(
1 − a

x

)
dψ
)2
.

(4.17)

A simple direct calculation shows that it has four Killing vectors degenerating at the
poles of the two spindles, defining the four loci

D1 = {y = yN }, D2 = {x = xN }, D3 = {y = yS}, D4 = {x = xS},
(4.18)

intersecting at the four fixed points

v1 = {x = xN , y = yN }, v2 = {x = xN , y = yS},
v3 = {x = xS, y = yS}, v4 = {x = xS, y = yN }. (4.19)

normalizing the degenerating Killing vectors so that they have unitary surface gravity,
these read

ξ(1) = n− ∂ν2 , ξ(2) = m−
(
∂ν1 − a − xN

2mxN

�ψ

�z
∂ν2

)
,

ξ(3) = n+ ∂ν2 , ξ(4) = m+
(
∂ν1 − a − xS

2mxS

�ψ

�z
∂ν2

)
,

(4.20)

where, in addition to ν2 = 2π
�z z, we introduced also the 2π -periodic coordinate ν1 =

2π
�ψ

ψ .
Reading off the labels associated with the D� turns out to be a bit tricky. We will

first present a naive argument leading to slightly wrong conclusions, and then we will
explain how to amend this. Each of the Killing vectors in (4.20) is in a one-to-one
correspondence with a specific pole of either ˚1 or ˚2, whose rotation around the axis
is generated by the 2π -periodic Killing vector ∂ν1 or ∂ν2 , respectively. This suggests
that the integer coefficient in front of this rotational Killing vector corresponds to a
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C/Zm�
quotient singularity, with m� = (n−,m−, n+,m+). While for D1 and D3 this

is correct, for D2 and D4 this conclusion is not precise, as we will show below.
In order to derive the normal vectors �n� we need to find an appropriate basis in

which to expand the ξ(�). Inspired by (4.3), where ∂ν2 is the first basis element and ξ(4)
plays the role of e2, we consider the following basis

e1 = ∂ν2 , e2 = ∂ν1 − a − xS
2mxS

�ψ

�z
∂ν2 , (4.21)

in which the degenerating Killing vectors are decomposed as

ξ(1) = n− e1, ξ(2) = t

m+
e1 + m− e2,

ξ(3) = n+ e1, ξ(4) = m+ e2,
(4.22)

where we made use of the quantization condition on t in (2.59) in the form

t

m+m−
= −a(xS − xN )

2mxN xS

�ψ

�z
. (4.23)

Note that, even though xN ,S and a are real numbers, all the coefficients in (4.22) are
rational. Taking the labels as above, for the “short” vectors we obtain

�n1 = (1, 0), �n2 =
( t

m+m−
, 1
)
, �n3 = (−1, 0), �n4 = (0,−1), (4.24)

where we picked the sign of �n1 as in (4.11) and the others followed accordingly.
However, since these vectors are not primitive elements ofZ

2, they cannot be regarded
as the normal vectors to the facets of a polytope, in the sense of [43]. Even adopting
the alternative description in which the labels are included in the normal vectors, the
“long” vectors associated with (4.24) are not valued in Z

2:

�̂n1 = (n−, 0), �̂n2 =
( t

m+
,m−

)
, �̂n3 = (−n+, 0), �̂n4 = (0,−m+).

(4.25)

Although in the mathematical literature there are examples where the normal vec-
tors are allowed to take rational [1, 41] as well as real values [7], the fact that the
Killing vectors in (4.22) are not linear combinations of the basis {e1, e2} with integer
coefficients indicates that the two-torus is not acting effectively. A better basis can be
obtained rotating the vectors �̂n� through the following SL(2,Q) matrix

S =
(
1 −r−/m+
0 1

)
, (4.26)
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where r− is an integer prime to m+. Defining �̂w� ≡ S �̂n�, we have
�̂w1 = (n−, 0), �̂w2 = (r+,m−), �̂w3 = (−n+, 0), �̂w4 = (r−,−m+),

(4.27)

where r± ∈ Z are chosen such that t = r+ m++r− m−, and exist byBézout’s lemma13,
for co-primem±. The vectors �̂w� now take values in Z

2, with primitive �̂w2, �̂w4, hence
m2 = m4 = 1, and non-primitive �̂w1, �̂w3, corresponding to the labels m1 = n− and
m3 = n+. We can now define a new basis {E1, E2}, obtained as Ei = S−1

j i e j , such
that

ξ(�) = �̂w� · (E1, E2) , (4.28)

and the degenerating Killing vectors take the form

ξ(1) = n− E1, ξ(2) = m− E2 + r+ E1,

ξ(3) = n+ E1, ξ(4) = m+ E2 − r− E1.
(4.29)

All the coefficients of this decomposition are now integers, indicating that in this basis
the torus action is effective. For completeness we also write the basis vectors in terms
of the Killing vectors ∂ν1 and ∂ν2

14

E1 = ∂ν2 , E2 = ∂ν1 + r+ + r−
m+ − m−

∂ν2 . (4.30)

The combinatorial data can be presented in the form of a stacky fan, as depicted
in Fig. 3a. Note that for n+ = n− = 1 this reduces to the “Hirzebruch orbifold”
discussed in [54] in the context of toric stacks. We can then read off the order of the
quotient singularities at the intersections of the four divisors, corresponding to the four
cones τ�, which are given by C

2/Zdet(�̂n�,�̂n�+1)
and thus read C

2/Zn−m− , C
2/Zn+m− ,

C
2/Zn+m+ , C

2/Zn−m+ , for � = 1, . . . , 4, respectively. From the toric description, we
see that the total space ˚1 � ˚2 is smooth not only away from the poles of ˚2, but
also at the poles of ˚1, in agreement with [17].

Despite the fact that we do not have a moment map, it is of course possible to
formally define a labeled polytope, encapsulating the same combinatorial data. This
is obtained from the stacky fan in Fig. 3a, considering the vectors generating the rays
of the fan and interpreting them as normal vectors to each facet of the polytope. The
labels are read off from the “multiplicities” of the non-primitive vectors. The result
is the rational convex polytope depicted in Fig. 3b, described by the labels m� =
(n−, 1, n+, 1) and the primitive normal vectors �w� = �̂w�/m�, which together are
packed into what we shall refer to as toric data ( �w�,m�).

13 By Bézout’s lemma, if m+ and m− are co-prime, there exist a± ∈ Z such that a+ m+ + a− m− = 1.
Then we take r+ = t a+ and r− = t a−.
14 Notice that E2 is finite also when m+ = m− = 1. Indeed, in this limit we have r+ + r− = t , which is
proportional to m+ − m− (cf. (2.59)), thus eliminating the vanishing denominator.
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ŵ1

ŵ2

ŵ3

ŵ4

τ1τ2

τ3 τ4

(a) Stacky fan.

v3

v4

v1

v2

n+

n−

3

4

1

2

(b) Labelled polytope.

Fig. 3 Toric data of the ˚1 � ˚2 orbifold corresponding to the vectors (4.27). In this example, we took
n+ = 5, n− = 4, m+ = 3, m− = 2, r+ = −1, r− = 1 and t = −1

4.3 Toric divisors and their intersection

In this section, we will discuss toric divisors with the aim of computing their intersec-
tion matrix, that will be a key ingredient in the construction of the entropy function.
We will begin recalling some basic facts about divisors in the context of toric varieties
(thus, ignoring the labels) and then we will indicate the modifications needed to pass
to the broader setting in which our toric orbifolds fit. Recall that all the toric varieties
defined by fans are normal and therefore all the (orbifold) singularities are in complex
co-dimension higher than one. For toric surfaces M4 (i.e., in real dimension 4), this
implies that only points can be singular, while there cannot be singularities along divi-
sors. Divisors that are torus-invariant are called toric divisors and are in a one-to-one
correspondence with the primitive generators of the rays of the fan. These are in gen-
eral Weil divisors, but for toric surfaces, since all the fans are necessarily simplicial,
all Weil divisors D have an integer multiple lD that is a Cartier divisor—namely they
are Q-Cartier divisors15. Below, we will consider only such Q-Cartier toric divisors,
associated with the primitive generators of a fan, �v�, that will be denoted as D�. As in
the previous sections, � = 1, . . . , n runs over the generators of the fan in cyclic order.
Furthermore, associated with any toric divisor D� there is an equivariant line bundle
L�, whose first Chern class c1(L�) ∈ H2(M4,Q) is Poincaré dual to D�. While the
second co-homology group ofM4, H2(M4,Q), is (n−2)-dimensional, its equivariant
extension, generated by the c1(L�), has clearly dimension n.

The intersection matrix of the toric divisors is defined as

D�,�′ ≡ D� · D�′ =
∫

M4

c1(L�) ∧ c1(L�′), (4.31)

15 Varieties with such a property are called Q-factorial.
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and by a standard calculation in toric geometry, it reads

D�,�′ [�v�] = D�,�′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

det(�v�−1, �v�) if �′ = � − 1,

1

det(�v�, �v�+1)
if �′ = � + 1,

− det(�v�−1, �v�+1)

det(�v�−1, �v�) det(�v�, �v�+1)
if �′ = �,

0 otherwise ,

(4.32)

where we used the notation D�,�′ [�v�] to emphasize that it is the intersection matrix of
the toric divisors associated with a fan with generators �v�. It can be easily proven that
this satisfies the relation

∑
�′

D�,�′ �v�′ = 0, (4.33)

implying that D�,�′ , viewed as an n×nmatrix, has two null eigenvalues, and it is there-
fore not invertible. This of course is consistent with the fact that dim(H2(M4,Q)) =
n − 2 implies that only n − 2 toric divisors D� are independent in homology.

For the special case of toric manifolds, all det(�v�, �v�+1) = 1, and the above discus-
sion reduces to that in [36]. On the other hand, for our purposes we need to incorporate
the effect of the labels.Wewill refrain from attempting a rigorous treatment, indicating
a natural way to take into account this additional information. If we have a labeled
polytope/stacky fan described by “long” vectors �̂v� = m��v�, it is natural to associate
a divisor D̂� to �̂v�, which is related to D� simply by

D̂� = 1

m�

D�. (4.34)

In particular, this implies that for any two-form ! the integrals over the two sets of
divisors are related as

m�

∫
D̂�

! =
∫
D�

!, (4.35)

and the intersection matrix of the divisors D̂� is given by

D̂�,�′ ≡ D�,�′ [�̂v�] = 1

m�m�′
D�,�′ [�v�]. (4.36)

Correspondingly, the first Chern classes of the dual line bundles are related as c1(L�) =
m� c1(L̂�). Since we can use either c1(L�) or c1(L̂�) as basis for H2(M4,Q), these
two descriptions are essentially interchangeable.
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We note that D̂�,�′ is invariant under SL(2,Z) transformations of the basis and
more generally for any transformation in SL(2,R). This follows immediately from
the fact that given any two vectors �v1, �v2 ∈ R

2, det(�v1, �v2) is invariant under SL(2,R)

transformations of the two vectors. In particular, taking a generic matrix S ∈ SL(2,R)

and transforming the vectors as �v′
a = S �va , we have that S acts on the matrix (�v1, �v2)

simply by matrix multiplication, i.e., (�v′
1, �v′

2) = S (�v1, �v2), therefore

det(�v′
1, �v′

2) = det(S) det(�v1, �v2) = det(�v1, �v2). (4.37)

This property implies that formally the intersection matrix of the divisors computed
in the two bases �̂w� and �̂n� are identical, being related by the SL(2,Q) transforma-
tion (4.26).

In order to make contact with the computations in supergravity, we need to describe
the relation between the toric divisors defined above and the representative of the
cycles, that we used to integrate fluxes in our main example of ˚1 � ˚2. The S±
introduced in Sect. 2.2 were precisely two copies of the base ˚1 at the south pole
(section at infinity) and north pole (zero section) of the fiber ˚2, and we can identify
these with the toric divisors D1 and D3 as

D1 = S−, D3 = S+. (4.38)

On the other hand, D2 and D4 correspond to copies of the fiber ˚2 at the poles of the
base ˚1. In the smooth case (m+ = m− = 1), these would be simply homologous
to ˚2. However, the orbifold singularities of the base imply that instead

D2 = X−, D4 = X+, (4.39)

where X± ≡ ˚2/Zm± , respectively. Therefore, in order to compare the integral of a
two-form! over X± with the integral over ˚2 at a generic point of ˚1 we should use
the relation

m±
∫
X±

! =
∫
˚2

! . (4.40)

Since in Sect. 2.2 the fluxes were computed integrating on ˚2 (see, e.g., (2.51)), the
integrals computed using X± will have to be multiplied by a factor of m± to be
compared with the fluxes computed in Sect. 2.2.

5 The entropy function

We conjecture that the solutions presented in Sect. 2.2 are holographically dual to
one-dimensional SCQMs obtained compactifying on a ˚1 � ˚2 the five-dimensional
SCFTs dual to the solution of [12]. In this section, we provide supporting evidence for
this conjecture, proposing an entropy function, whose extremization reproduces the
entropy (3.30) of the (putative) black hole near-horizon AdS2×˚1�˚2. Starting from
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first principles, this function should be derived from the localized partition function
of the d = 5 SCFT, placed on the background of S1 × ˚1 � ˚2, and then taking the
large N limit. Following the idea of “gravitational blocks” [37], we will propose a
large N entropy function on S1 × ˚1 � ˚2 obtained by suitably gluing the S5 free
energy of the d = 5 theories. With some further assumptions, this prescription can
be applied also to the AdS2 × �g � ˚2 solutions of Sect. 2.1. The prescription that
we propose extends the results of [27] to a broader class of configurations, including
solutions arising in D = 7 supergravity.

5.1 Twisting data

In this section, we consider the compactification of five- and six-dimensional SCFTs
on a four-dimensional toric orbifold M4. Specifically, we place the theory on M4 and
couple it to two background gauge fields Ai , with appropriately quantized magnetic
fluxes. All the information about M4 is encoded in the toric data (�v�,m�), which
can be thought of as the data defining a labeled polytope. The vectors �v� must be
primitive, Z

2-valued and, in our conventions, ordered counterclockwise. The recipe
we will formulate is in principle applicable to toric orbifolds (including smooth toric
manifolds) with an arbitrary number n ≥ 3 of fixed points.

Consider the two line bundles Ei on which the one-forms−Ai are the connections.
Since the set of c1(L�) form a basis for the equivariant extension of H2(M4,Q), we
can decompose the first Chern class of Ei as

c1(Ei ) = −dAi

2π
= −

∑
�

p
(�)
i c1(L�), (5.1)

where p(�)i ∈ Q. The “physical fluxes” are defined as16

q
(�)
i ≡ 1

2π

∫
D�

Fi = −
∫
D�

c1(Ei ), (5.2)

and using (5.1) we obtain the relation

q
(�)
i =

∑
�′

D�,�′ p(�
′)

i , (5.3)

where D�,�′ is the intersection matrix defined in (4.32). We recall that H2(M4,Q)

has dimension n − 2, thus the whole set of p(�)i is a redundant parameterization. In

particular, for fixed i , only n−2 of the p(�)i are linearly independent. The two additional
degrees of freedom are the expression of a gauge symmetry that we will discuss in the
next subsection.

16 Here and in the following, we shall rename the background gauge fields as gAi �→ Ai , which is more
natural from the field theory point of view.
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A further consequence of relation (4.33) is that, combined with (5.3), it gives

∑
�

q
(�)
i �v� = 0. (5.4)

This is a vector equation and, for fixed i , we have n fluxes q(�)i constrained by two
equations, one for each component of the two-dimensional vectors �v�. Therefore, only
n − 2 physical fluxes are linearly independent. In what follows, given a generic toric
orbifold with arbitrary fluxes, we shall require them to satisfy the constraint (5.4). We
can now go back to relation (5.3). As we explained, it represents a linear system of
rank(D�,�′) = n − 2 independent equations for n − 2 independent unknowns p(�)i .

Eliminating the redundant equations, we can solve this system and obtain p(�)i in terms

of q(�)i , up to gauge transformations.

Equation (5.4) imposes a similar condition on the R-symmetry fluxes q(�)R ≡ q
(�)
1 +

q
(�)
2 , specifically

∑
� q

(�)
R �v� = 0. This constraint can be solved writing

q
(�)
R =

∑
�′

D�,�′
σ (�′)

m�′
, (5.5)

where m� are the labels of the labeled polytope associated with M4 and, a priori, σ (�)

are n arbitrary coefficients. Denoting as ER the R-symmetry (orbifold) line bundle,
Eq. (5.5) can be rewritten as

c1(ER) = −
∑
�

σ (�)c1(L̂�), (5.6)

or, following standard practice, as c1(ER) = −∑� σ
(�) D̂�. Note that the standard

topological twist corresponds to identifying ER with the orbifold canonical line bundle
K orb

M4
= −∑� D̂� and hence σ

(�)
top-twist = (+, . . . ,+). See, e.g., [46] for a related

discussion of orbifold line bundles.
In analogy with the case of the spindle [31], we conjecture that the only possible

values of σ (�) are±1. This hypothesis is supported by the different examples analyzed,
as we shall see. In other words, we expect that it should be possible to compactify a
SCFT on a toric orbifold M4, turning on a background R-symmetry gauge field with
magnetic fluxes given in (5.5), with σ (�) parameterizing the different supersymmetry-
preserving twists. Of course, we have not proven that all these different twists preserve
supersymmetry, nor that there cannot exist more general twists. It would be interesting
to carry out such an analysis extending the results of [31], where it was demonstrated
that, in whole generality, on a spindle the only two supersymmetry-preserving twists
are the twist and the anti-twist.
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5.2 The recipe

We conjecture that given a general class of SCFTs in d = 5, 6 compactified on a
four-dimensional toric orbifold M4, with an arbitrary twist parameterized by a set
of signs σ (�) as in (5.5), the corresponding entropy/central charge, respectively, is
determined extremizing the following off-shell free energy

F(ϕi , εi ; q(�)i ,m�) = kd
∑
�

η
(�)
d

d�,�+1

Fd(�
(�)
i )

ε
(�)
1 ε

(�)
2

. (5.7)

The sum runs over the n fixed points v� of the toric orbifold M4, kd is a numerical
constant, which, a posteriori, takes the values

k5 = −1, k6 = 64

9
, (5.8)

d�,�+1 is defined as d�,�′ ≡ d�,�′ [�v�] = det(�v�, �v�′) and Fd are the usual gravitational
blocks (cf. table 2 of [27])

F5(�i ) = − 4
√
2π N 5/2

15
√
8 − N f

(�1�2)
3/2, F6(�i ) = −9N 3

256
(�1�2)

2. (5.9)

The variables �(�)
i are defined as

�
(�)
i = ϕi − p

(�)
i ε

(�)
1 − p

(�+1)
i ε

(�)
2 , (5.10)

and the auxiliary quantities ε(�)1 and ε
(�)
2 read

ε
(�)
1 = −det(�v�+1, �ε)

d�,�+1
, ε

(�)
2 = det(�v�, �ε)

d�,�+1
, (5.11)

with �ε = (ε1, ε2)
17. Here, ε1 and ε2 may be interpreted as the fugacities associated

with the two U (1) rotational symmetries and parameterize their mixing with the R-
symmetry. η(�)d = ± are signs that at this stage must be tuned by hand: in particular
we believe that in general18 in d = 6 they are all +, while for d = 5 they are related
to the type of twist and we speculate that η(�)5 = σ (�)σ (�+1). In the next section we
will see some explicit examples applying this prescription to the AdS2 × ˚1 � ˚2
family. In this construction, ϕi and εi are variables with respect to which one has to
extremize F(ϕi , εi ), �v� and m� are data describing the toric orbifold M4 and p

(�)
i are

related to the physical fluxes q(�)i through (5.3).

17 The two variables ε1,2 are different from the ones adopted in [27]. Specifically, εherei = 2εtherei .
18 Due to different conventions they could also be all −, as explained at the end of Sect. 5.4.
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The variables ϕi and εi are subject to the constraint

ϕ1 + ϕ2 − det( �W , �ε) = 2, (5.12)

where �W is a two-dimensional constant vector parameterizing a “gauge invariance” of
the problem, that we discuss below. This condition is inherited from the R-symmetry
constraint�1 +�2 = 2, where�i are the fugacities parameterizing the R-symmetry
within the Cartan subgroup of the global symmetries of the d-dimensional parent
theory. The vector �W can be determined imposing

p
(�)
1 + p

(�)
2 = σ (�)

m�

+ det( �W , �v�) , (5.13)

which is a system of n equations – one for each value of � – for the two compo-
nents of �W , and it is thus overdetermined. Yet, a solution always exists. By means of
Eqs. (5.3) and (5.13) we can write the following chain of equalities

q
(�)
R =

∑
�′

D�,�′
(
p
(�′)
1 + p

(�′)
2

) =
∑
�′

D�,�′
σ (�′)

m�′
+ det

( �W ,
∑
�′

D�,�′ �v�′
)

=
∑
�′

D�,�′
σ (�′)

m�′
, (5.14)

where, in the last step, we made use of (4.33). First of all, this relation proves the
consistency of (5.13), since, as it should be, the physical quantities q(�)R do not depend
on the auxiliary vector �W . Moreover, it shows that n − 2 independent linear com-
binations of Eqs. (5.13), obtained contracting them with D�,�′ , are already satisfied
once (5.5) is imposed. The result is a linear system of two independent equations with
two unknowns, that can always be solved.

As we already mentioned, the quantity det(�v1, �v2) is invariant under SL(2,R)

transformations of the two vectors �v1, �v2 ∈ R
2. This property is fundamental for the

consistency of our construction. A given toric orbifold can be described by an infinite
number of polytopes equivalent under SL(2,Z) transformations of the vectors �v�.
These transformations are generated by rotations of the basis vectors (e1, e2) that give
rise to effective torus actions. On the other hand, we expect the free energy not to
be affected by these transformations and, indeed, this is the case. If we perform an
SL(2,Z) rotation of the vectors �v�, the expression of the intersection matrix D�,�′ is
retained, and the explicit form of the off-shell free energy is not modified provided we
apply exactly the same transformation to �ε and �W .

The off-shell entropy function we constructed enjoys also another symmetry, the
gauge symmetry we mentioned before. Thanks to (4.33), relation (5.3) is left invariant
under the “gauge transformation”

p̃
(�)
i = p

(�)
i + det(�λi , �v�), (5.15)
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for any two-dimensional constant vector �λi . This transformation affects the value of
the vector �W appearing in the constraint. Specifically, since σ (�) and m� are fixed, we
must impose

p̃
(�)
1 + p̃

(�)
2 − det( �̃W , �v�) = p

(�)
1 + p

(�)
2 − det( �W , �v�), (5.16)

which returns �̃W = �W + �λ1 + �λ2. Introducing the new variables ϕ̃i = ϕi + det(�λi , �ε)
it is possible to keep the functional expression of �(�)

i unmodified, i.e., �(�)
i (ϕ̃, p̃) =

�
(�)
i (ϕ, p). Remarkably, the constraint changes accordingly

ϕ̃1 + ϕ̃2 − det( �̃W , �ε) = ϕ1 + ϕ2 − det( �W , �ε) = 2. (5.17)

As a result, both the off-shell free energy and the constraint retain the same functional
expression under the gauge transformation (5.15), thus the value of the former at its
critical points will be the same.

The proposed prescription takes inspiration from [36] and extends their construction
to compactifications on generic toric orbifolds. Moreover, it also applies to d = 5,
generalizing the formulas presented in [27] for compactifications on �g1 × �g2 and
˚×�g, to the case of fibered spaces. The constrained extremization of F(ϕi , εi ) can
be performed defining the function

S(ϕi , εi ,!; q(�)i ,m�) = F(ϕi , εi ; q(�)i ,m�) + !
(
ϕ1 + ϕ2 − det( �W , �ε) − 2

)
(5.18)

and extremizing it with respect to ϕi , εi and the Lagrangian multiplier !. In order to
solve this problem, it might be helpful to notice that (5.7) is homogeneous of degree h
in ϕi and εi (h = 1 for d = 5, h = 2 for d = 6). As a consequence, by Euler’s
theorem, we have F(ϕ∗

i , ε
∗
i ) = − 2

h!
∗.

5.3 Application to the AdS2 × ˚1 � ˚2 solutions

The first example to which we can apply the prescription presented in the previous
section is the AdS2 × ˚1 � ˚2 solution (2.40). We now briefly collect some of the
results needed in the construction. The toric orbifold M4 = ˚1 �˚2 can be described
by the toric data (see Sect. 4.2)

m1 = n−, �w1 = (1, 0), m2 = 1, �w2 = (r+,m−),
m3 = n+, �w3 = (−1, 0), m4 = 1, �w4 = (r−,−m+),

(5.19)

with t = r+ m+ + r− m−. The vectors �w� are integers, primitive and ordered coun-
terclockwise, as required by the recipe. Keeping in mind all the observations about
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divisors made in Sect. 4.3, the physical fluxes defined in (5.2) read

q
(1)
i = g

2π

∫
S−

Fi = s−
i , q

(2)
i = g

2π

∫
X−

Fi = g

2π

1

m−

∫
˚2

Fi = ti

m−
,

q
(3)
i = g

2π

∫
S+

Fi = s+
i , q

(4)
i = g

2π

∫
X+

Fi = g

2π

1

m+

∫
˚2

Fi = ti

m+
,

(5.20)

where s+
i , s

−
i and ti are given, respectively, in (2.61), (2.60) and (2.28). The intersection

matrix D�,�′ , computed straightforwardly using (4.32), reads

D�,�′ =

⎛
⎜⎜⎜⎝

− t
m+m−

1
m− 0 1

m+
1
m− 0 1

m− 0

0 1
m−

t
m+m−

1
m+

1
m+ 0 1

m+ 0

⎞
⎟⎟⎟⎠ ,

(5.21)

and imposing (5.5) we obtain the vector of twists

σ (�) = (+,+,+,−). (5.22)

Taking advantage of the gauge symmetry, we impose p(1)i = p
(3)
i and p

(2)
i /m− =

p
(4)
i /m+. Therefore, the relation (5.3) yields the identifications

p
(1)
i = p

(3)
i = ti

2
, p

(2)
i = m− s∗

i

2
, p

(4)
i = m+ s∗

i

2
, (5.23)

where we defined s∗
i ≡ s+

i +s−
i

2 . In particular, s∗
1 explicitly reads

s∗
1 = tχ2

m+m−
x3 − 3μx2 + (3 − 2z)x − 3μ

8x2 , (5.24)

and s∗
2 can be obtained flipping the sign of z. With this definition, s±

i can be written
as

s±
i = s∗

i ± t

2m+m−
ti . (5.25)

System (5.13) can be solved to get �W , which gives the constraint (5.12)

ϕ1 + ϕ2 + n+ − n−
2n+n−

ε1 +
(m+ + m−

2m+m−
− r+ m+ − r− m−

m+m−
n+ − n−
4n+n−

)
ε2 = 2.

(5.26)
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The ingredients ε
(�)
1,2 and �

(�)
i can be constructed by means of (5.11) and (5.10),

whereas the off-shell free energy (5.7) reads

F(ϕi , εi ; s±
i , ti ,m�)

= − F5(�
(1)
i )

d1,2 ε
(1)
1 ε

(1)
2

− F5(�
(2)
i )

d2,3 ε
(2)
1 ε

(2)
2

+ F5(�
(3)
i )

d3,4 ε
(3)
1 ε

(3)
2

+ F5(�
(4)
i )

d4,1 ε
(4)
1 ε

(4)
2

,

(5.27)

where the relative signs have been fixed using the prescription η
(�)
5 = σ (�)σ (�+1).

We can now proceed to the extremization of the off-shell free energy and, after
some work, we get the critical values

ϕ∗
i = 2m+m−

m+ − m−

(
1 + η

m+ + m−
2m+m−

2π

�ψ

)
s∗
i ,

ε∗
1 = − 1

m

2π

�z
+ η

2(r+ + r−)
m+ − m−

2π

�ψ
, ε∗

2 = −2η
2π

�ψ
,

(5.28)

where the sign ambiguity η = ±1 arises by solving the equations over the complex
numbers19. Inserting these values back into (5.27), we obtain

F(ϕ∗
i , ε

∗
i ; s±

i , ti ,m�) =
−η

√
2
√
m2+ + m2− − (m+ + m−)

2m+m−
FS3×˚2

, (5.29)

where FS3×˚2
is given in (3.24). In order to get a positive entropy, we need to pick

η = −1 and in this case the result agrees with the gravitational entropy (3.30).
We propose that the procedure we formulated can be extended also to non-toric

four-dimensional orbifolds, e.g., in the presence of Riemann surfaces as submanifold.
In this case, we can adopt the same toric data obtained replacing �g (g > 1) with S2,
setting g = 0 whenever it occurs in (5.13) and (5.5). The genus is preserved in the
explicit expression of the fluxes. Specifically, we will test our conjecture against the
AdS2 × �g � ˚2 system (2.9). The “toric data” are given in (4.11) and (4.9), the
physical fluxes are the same as in the previous example, with m± = 1, and now s±

i

can be read in (2.38) and (2.37). The fluxes p(�)i are identified as before and s∗
i retains

the same form, but, again, with m± = 1 and t as in (2.36). The constraint on the
variables ϕi and εi is

ϕ1 + ϕ2 + n+ − n−
2n+n−

ε1 − t
n+ − n−
4n+n−

ε2 = 2, (5.30)

19 Generically, in the presence of rotation we have to work with the complex numbers [16]; therefore, we
continue to do so also in the static case.
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whereas the off-shell free energy reads

F(ϕi , εi ; s±
i , ti ,m�) = F5(�

(1)
i )

d1,2 ε
(1)
1 ε

(1)
2

+ F5(�
(2)
i )

d2,3 ε
(2)
1 ε

(2)
2

+ F5(�
(3)
i )

d3,4 ε
(3)
1 ε

(3)
2

+ F5(�
(4)
i )

d4,1 ε
(4)
1 ε

(4)
2

,

(5.31)

where again the relative signs were chosen to be η(�)5 = σ (�)σ (�+1). These different
gluing signs are due to the different types of twist that we have. In particular, on both
�g and ˚2 the twist is realized, in contrast to the previous case, in which we had
anti-twist on ˚1. The off-shell free energy is extremized by

ϕ∗
i = s∗

i

g − 1
, ε∗

1 = − 1

m

2π

�z
, ε∗

2 = 0, (5.32)

to which corresponds the critical value

F(ϕ∗
i , ε

∗
i ; s±

i , ti ,m�) = (g − 1) FS3×˚2
. (5.33)

Also in this case, the result returned by the extremization agrees with the entropy
computed from the ten-dimensional supergravity solution (3.23).

5.4 Application to the AdS3 × ˚1 � ˚2 solutions

The conjectured prescription presented at the beginning of this section can also be
applied to another interesting family, the AdS3 × ˚1 � ˚2 solutions constructed in
[17]20. The toric data of the ˚1 � ˚2 toric orbifold are derived in Appendix C.3 and
we recall them here for the reader’s convenience

m1 = n−, �w1 = (1, 0), m2 = 1, �w2 = (r+,m−),
m3 = n+, �w3 = (−1, 0), m4 = 1, �w4 = (r−,−m+),

(5.34)

with t = r+ m+ + r− m−. Global conditions lead to

t = −6(m+ − m−)n+n−(n+ − n−)
[s − (p1 + p2)][s + 2(p1 + p2)] ,

s =
√
7(p21 + p22) + 2p1 p2 − 6(n2+ + n2−),

(5.35)

where p1 and p2 are two integers related to the magnetic fluxes as in (2.11) of [17].
The physical fluxes can be computed as in the previous example and, compactly, they
read

q
(�)
i =

(
s−
i ,

ti

m−
, s+

i ,
ti

m+

)
, (5.36)

20 In order to make the analogy with the AdS2×˚1�˚2 systems more manifest, we exchanged n+ ↔ n−
and m+ ↔ m− with respect to [17].
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where s−
1 corresponds to the flux computed in (3.15) of [17], s−

2 and s+
i can be derived

from the former and ti = pi
n+n− . The gauge symmetry allows us to impose p(1)i = p

(3)
i

and p
(2)
i /m− = p

(4)
i /m+, which yields, through (5.3), the identifications

p
(1)
i = p

(3)
i = ti

2
, p

(2)
i = m− s∗

i

2
, p

(4)
i = m+ s∗

i

2
. (5.37)

For later convenience we defined s∗
1 ≡ s+

i +s−
i

2 , whose expression is

s∗
i = tpi [−6pi + 4(n+ + n−) − s]

6m+m−n+n−(n+ − n−)
. (5.38)

The fluxes s±
i are related to s∗

i through

s±
i = s∗

i ± t

2m+m−
ti . (5.39)

The constraint can be derived following the path traced in the previous case and reads

ϕ1 + ϕ2 + n+ − n−
2n+n−

ε1 +
(m+ + m−

2m+m−
− r+ m+ − r− m−

m+m−
n+ − n−
4n+n−

)
ε2 = 2.

(5.40)

Notice that this expression is identical to (5.26). As we discussed in Sect. 5.2, in d = 6
we set η(�)6 = + for all �. Remarkably, this implies that F is quadratic in the ϕi , as
expected for the off-shell central charge of a two-dimensional SCFT [8]. Explicitly,
this reads

F(ϕi , εi ; s±
i , ti ,m�)

= −
[
t2s

∗
1 + t1s

∗
2

8

(
t1t2ε

2
1 + (r2+m2+ + r2−m2−)t1t2 + 2m2+m2−s∗

1s
∗
2

2m2+m2−
ε22

− r+m+ − r−m−
m+m−

t1t2ε1ε2

)
+ t2s

∗
2ϕ

2
1 + t1s

∗
1ϕ

2
2

2
+ (t2s

∗
1 + t1s

∗
2)ϕ1ϕ2

+ 2m+m−ε1 − (r+m+ − r−m−)ε2
8m2+m2−

t t1t2(t2ϕ1 + t1ϕ2)

]
N 3 . (5.41)

The extremization procedure, realized by means of Lagrangian multipliers, gives
the critical values21

21 We notice that the expression of ϕ∗
i , written in this seemingly cumbersome way, is identical to the

corresponding quantity of the AdS2 × ˚1 � ˚2 extremization.
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ϕ∗
i = 2m+m−

m+ − m−

(
1 − m+ + m−

2m+m−
2π

�ψ

)
s∗
i ,

ε∗
1 = −4

3

2π

�z
− 2(r+ + r−)

m+ − m−
2π

�ψ
, ε∗

2 = 2
2π

�ψ
,

(5.42)

which, plugged into the off-shell central charge, gives

F(ϕ∗
i , ε

∗
i ; s±

i , ti ,m�) = 4(m+ − m−)3

3m+m−(m2+ + m+m− + m2−)
a4d, (5.43)

where a4d is the central charge of d = 4,N = 1 SCFTs that arise from N M5-branes
wrapped on a spindle [29]

a4d = 3p21 p
2
2(s + p1 + p2)

8n+n−(n+ − p1)(p2 − n+)[s + 2(p1 + p2)]2 N 3. (5.44)

This matches exactly the central charge of the AdS3 × ˚1 � ˚2 system computed
in [17]. In general, we expect that the anomaly polynomial computation of [17] and
the prescription presented in this paper should be equivalent and connected by a
suitable gauge choice and a possible redefinition of ε1,2, mixing the two related U (1)
isometries.

As explained in the previous section, our recipe can be applied also to non-toric
four-dimensional orbifolds. In this class, we consider AdS3 ×�g � ˚2, whose “toric
data” are deduced in Appendix C.2 for AdS3 × S2 � ˚2 and read

m1 = n−, �n1 = (−1, 0), m2 = 1, �n2 = (0,−1),

m3 = n+, �n3 = (1, 0), m4 = 1, �n4 = (−t, 1).
(5.45)

Global regularity leads to

t = 12(g − 1)n+n−(n+ − n−)
[s − (p1 + p2)][s + 2(p1 + p2)] , (5.46)

with s given in Eq. (5.35). We take the physical fluxes to be as in (5.36), where
ti = pi

n+n− is unchanged and s±
i can be read from (4.7) of [17]. The gauge symmetry

allows us to identify the p(�)i as in Eq. (5.37), with s±
i = s∗

i ± t
2 ti and

s∗
i = tpi [−6pi + 4(n+ + n−) − s]

6n+n−(n+ − n−)
. (5.47)

We can then solve Eq. (5.5) to obtain σ (�) = (+,−,+,−), use it to identify the
auxiliary vector �W through (5.13) and write down the constraint (5.12)

ϕ1 + ϕ2 − n+ − n−
2n+n−

ε1 − t
n+ − n−
4n+n−

ε2 = 2. (5.48)
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This is the same as in (5.30), with t �→ −t and ε1,2 �→ −ε1,2, due to the different
conventions used in [17].

Taking all the η(�)6 = − and extremizing Eq. (5.18) with respect to ϕi , εi and !,
we obtain the critical values

ϕ∗
i = − s∗

i

g − 1
, ε∗

1 = 4

3

2π

�z
, ε∗

2 = 0, (5.49)

as well as the off-shell central charge at the extremum

F(ϕ∗
i , ε

∗
i ; s±

i , ti ,m�) = 32

3
(g − 1) a4d, (5.50)

witha4d given in (5.44). This result agreeswith the central charge of theAdS3×�g�˚2

system studied in [17]. The origin of the choice of the η(�)6 can be traced to the sign of
the gauge potential of the five-dimensional solution that the authors of [17] uplifted
to obtain the AdS3 × �g � ˚2 backgrounds. The component along AdS3 of their
Killing spinors satisfy the corresponding Killing spinor equations, but with a minus,
namely ∇̂μ̂ϑ = − 1

2αμ̂ϑ , which implies that in the two-dimensional dual SCFTs (2, 0)
supersymmetries are preserved, instead of (0, 2) as in our case. This fact leads to a
different sign in the extraction of the central charge from the anomaly polynomial.

6 Discussion

In this paper, we have presented two new families of supersymmetric AdS2 solutions
of massive type IIA supergravity, associated with D4-branes wrapped on four-
dimensional orbifolds M4, which may be viewed as two different generalizations
of the Hirzebruch surfaces. In one case, M4 = �g � ˚ is a spindle ˚ fibered over a
smooth Riemann surface �g of genus g > 1, while in the other case M4 = ˚ � ˚
is a spindle ˚ fibered over another spindle ˚. We have argued that these are dual
to N = 2 SCQMs arising from different twisted compactifications of the d = 5,
N = 1USp(2N ) supersymmetric gauge theories on M4. The structure of these solu-
tions is analogous to that of the AdS3 solutions constructed in [17] and indeed for the
M4 = ˚ � ˚ family we have provided a toric geometry description and formulated a
conjectural extremal problem that applies to both classes.

As in [17], the solutions that we found have less parameters than the data specifying
the orbifolds M4. In particular, the twisting parameter t is not an arbitrary integer,
but it is unnaturally related to the spindle data n±, m±. We therefore expect more
general solutions to exist, although the ansatz describing them is likely to be quite
different from those employed here and in [17]. Furthermore, the toric description of
the M4 = ˚ � ˚ solutions strongly suggests that there exist solutions corresponding
to toric orbifolds with an arbitrary number of fixed points, and could include the case
of toric manifolds.

While in this paper we provided a basic description of the orbifolds, which was
adequate for characterizing the present solutions, it would be desirable to study more
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systematically their underlying structure. For example, it would be useful to perform a
global analysis of the gauge fields and Killing spinors on M4, determining the bundles
of which these are sections. Relatedly, given a generic compact four-dimensional
toric orbifold M4, it would be nice to determine what are the allowed supersymmetry-
preserving twists. It could also be useful to cast our solutions in terms of classifications
of supersymmetric solutions of massive type IIA supergravity, or to characterize them
directly in the context of D = 6 and D = 7 gauged supergravities. For example,
we expect that generic M4’s will be endowed with a canonical complex structure22.
Another natural extension of our results is to investigate whether supersymmetric
AdS6 black holes with M4 horizons can be constructed.

In this paper, we have proposed an entropy function constructed assembling grav-
itational blocks, extending the proposal of [27] from the spindle to a very general
class of four-dimensional orbifolds. We believe that our approach will be applicable
to orbifolds more general than those for which we constructed explicit solutions here.
However, finding additional explicit examples may lead to a more refined formulation
of our recipe. Similarly to the spindle off-shell free energies [27], it is striking that
the structure we introduced applies to both D = 6 and D = 7 supergravities, with
minor tweaks. In the context of D = 7 supergravity, our proposal reproduces the
results obtained by integrating the M5-branes anomaly polynomial on compact toric
four-manifolds [36] and on the M4 = ˚� ˚ orbifolds [17]. On the other hand, in the
context of D = 6 supergravity, at present we do not have access to any field theory
computation and therefore our proposal gives a prediction for the large N limit of the
localized partition function of the d = 5, N = 1 USp(2N ) on S1 × M4.
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Table 1 Examples of solutions to the quartic Eq. (2.33) for n+ ≤ 100 and |p1| ≤ 100

n+ n− p1 x

11 1 −22 1/6

11 4 −6 1/5

14 3 −19 3/17

17 8 −98 1/25

17 12 −52 1/29

24 1 −81 3/25

31 3 −98 2/17

32 25 −21 1/19

36 11 −85 5/47

41 19 −19 1/6

43 3 −8 12/23

43 17 −87 1/10

53 13 −6 4/11

59 13 −39 1/4

67 50 −15 1/13

73 42 −27 3/23

80 19 −18 1/3

82 5 −42 11/29

83 7 −33 2/5

83 47 −12 2/13

90 53 −93 1/11

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Some solutions to the Diophantine equation

In this appendix we address the quantization conditions we stated through the paper.
Althoughwewere not able to prove that these constraints can be satisfied appropriately
tuning the parameters of the solutions, nevertheless we could find some examples in
which the quantization can be realized.

A priori, there are no constraints on x apart from being solution of the quartic
Eq. (2.33) and lying in the range (0, 1). Nevertheless, in order to construct the integer
quantities we are searching for, it is easier to work with rational values of x, if they
exist. Indeed, they exist, and in Table 1 we present some of them, along with the
corresponding values of the integers n+, n− and p1 (recall that p2 = n+ + n− − p1).

Inspired by [17] we propose an algorithm to construct a family of solution to the
quantization conditions. For the combinations of parameters presented in Table 1, x
is rational and positive, thus we can write it as x = p/q, with p,q ∈ N. Then, we
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define t as

t = −8n+n−p2q u, (A.1)

with u ∈ N, which makes t integer by construction and, moreover, multiple of both n+
and n−. We now focus on the AdS2 ×˚1 �˚2 system, the case with Riemann surface
proceeds similarly. Substituting the expression of t in the constraint (2.59) we obtain

m+ − m− = 2(p2 + 3q2)[(n+ − n−)q − (n+ + n−)p] u, (A.2)

which can be solved to findm± in terms of n±,z and u. The quantization condition that
follows from (2.60) is automatically satisfied given t as in (A.1), indeed it becomes

(m+m−) s−
1 = −[(n+ + n−)p3 − (p1 − 3p2 + 6n+)p2q + (p1 + 5p2)pq

2

−3(n+ − n−)q3
]
u, (A.3)

which is evidently an integer. The last requirement (3.29) can be met considering that
3μ(x2+1)−x(x2+5) > 0 (cf. [27]) and that all the quantities appearing are rational,
hence N can be tuned appropriately so that K ∈ N.

B Riemann surfaces from spindles

In the presence of twist, it was explicitly shown in [31] that the spindle factor of
the known AdSD−2 × ˚ solutions, with D = 4, 5, 7, can be turned into a round
sphere performing a particular limit of the coordinates and parameters of the system.
In the same spirit, as we will see in this appendix, a similar mechanism applies to the
AdSD−2 × ˚ solutions with anti-twist, so far constructed only in D = 4 and D = 5.
In this case, the spindle becomes the two-dimensional hyperbolic space, which can
later be quotiented to give a constant curvature Riemann surface with genus g > 1.

B.1 AdS2 × M4 solutions

Let us begin considering the local spindle metric (2.52)

ds2˚1
= x2

q
dx2 + q

4x2
dψ2, (B.1)

where, we recall, q(x) = x4−4x2+4ax−a2. Performing the change of coordinates

x = 1 + ε ξ, ψ = φ

ε
, with a = 1 − ε2, (B.2)
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and computing the limit ε → 0+, the spindle metric becomes

ds2˚1
= 1

2

(
dξ2

ξ2 − 1
+ (ξ2 − 1

)
dφ2
)

= 1

2
ds2H2 , (B.3)

which is the local metric of the hyperbolic space H2, with radius squared equal to 1/2.
This space can then be quotiented to obtain a Riemann surface with g > 1. In order for
metric (B.3) to genuinely describe H2, the coordinates ξ and φ must have the correct
range of definition, i.e., |ξ | ∈ (1,+∞) and φ ∈ [0, 2π ]. To address this issue, we
begin considering that the coordinate x is restricted between xN and xS , where [28]

xN = −1 + √
1 + a, xS = 1 − √

1 − a. (B.4)

By means of (B.2), these bounds are mapped to

ξ2 = −2 + √
2 − ε2

ε
→ −∞, ξ3 = −

√
ε2

ε
= −1, (B.5)

in the limit ε → 0+, thus correctly giving ξ ∈ (−∞,−1). The periodicity of φ can
be studied by analyzing the conditions under which ˚1 is proper spindle [28]

√
1 + a · �ψ = 2π

m−
,

√
1 − a · �ψ = 2π

m+
, (B.6)

with m± two co-prime integers such that m− < m+. By means of the change of
coordinates (B.2), these conditions yield

√
2 − ε2 · �φ

ε
= 2π

m−
,

√
ε2 · �φ

ε
= 2π

m+
, (B.7)

hence we have �φ = 2π if and only if, at first order,

m− = ε√
2

→ 0, m+ = 1. (B.8)

Consistently, plugging these values of m± into Eq. (2.53) gives a = 1 − ε2, as
in (B.2). The global quantities characterizing the spindle ˚1 are not mapped directly
to the corresponding ones for a Riemann surface. Indeed, if we take as an examples
the Euler characteristic of ˚1 [30]

χ1 = 1

4π

∫
˚1

R˚1vol(˚1) = m+ + m−
m+m−

, (B.9)

we see that it diverges when m− → 0 and m+ = 1. The reason for this behavior can
be found in the definition of �g as a quotient of the hyperbolic space, whose Ricci
curvature, integrated over thewhole space, diverges, since it is not compact. Therefore,
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we need a way to “regularize” this limit. To this end, we notice that, adopting the
substitution (B.8),

2(1 − g) · χ1 = 2
√
2(1 − g)

ε
+ 2(1 − g), (B.10)

that is, we obtain a simple pole at ε = 0 plus the Euler characteristic of a Riemann
surface. We propose the following prescription, that we will test against different
examples: given a system comprising a�g factor that can be obtained from˚1 through
limit (B.8), the global quantities of the former can be computedmultiplying by 2(1−g)
the corresponding quantities of the latter and taking the finite term in the Laurent series.

We can now transfer this technology to higher-dimensional spacetimes. Applying
the change of coordinates (B.2)—driven by the underlying limit (B.8)—to the AdS2×
˚1 systemdescribed by (2.68)weobtain theAdS2×�g background in (2.67). Likewise
are related the respective Killing spinors. Indeed, in this limit Q1 vanishes and Q2
becomes constant, thus (2.76) turns into (2.75), apart from an irrelevant overall factor.
For what concerns the total charge of the two systems, applying the recipe illustrated
for the Euler characteristic χ1 we obtain (cf. (2.56))

2(1 − g) · 1

2π

∫
˚1

F˚1
4d = a−1

ε
+ 1

2π

∫
�g

F
�g
4d , (B.11)

where a−1 is the residue.
The change of coordinates (B.2) also maps the AdS2×˚1�˚2 solution and Killing

spinors to the AdS2 × �g � ˚2 corresponding quantities. This relation reflects in a
formal connection between the respective entropies by means of (B.8):

2(1 − g) · S˚1�˚2 = a−1

ε
+ S�g�˚2 + O(ε), (B.12)

where S˚1�˚2 is given in (3.30) and S�g�˚2 in (3.23).

B.2 AdS3 × M4 solutions

Moving to the local spindle metric presented and studied in [30]23

ds2˚1
= x

q
dx2 + q

36x2
dψ2, (B.13)

where q(x) = 4x3 − 9x2 + 6ax − a2, we perform the change of coordinates

x = 1 + 2ε ξ, ψ = φ

ε
, with a = 1 − 3ε2. (B.14)

23 To stick to our notation, we relabeled the coordinates (y, z) as (x, ψ) and the integers n± as m∓.
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In the ε → 0+ limit, the spindle metric becomes

ds2˚1
= 1

3

(
dξ2

ξ2 − 1
+ (ξ2 − 1

)
dφ2
)

= 1

3
ds2H2 . (B.15)

Once again, we can quotient the hyperbolic space to give a constant curvature Riemann
surfacewith genus g > 1. It can be shown that themetric obtained in this limit describes
a genuine hyperbolic space if

m− = 2ε

3
→ 0, m+ = 1. (B.16)

Applying this recipe to the AdS3 × ˚1 solution of [30] we have

ds25d = 4

9
ds2AdS3 + 1

3
ds2H2 , A5d = 1

2
ωH2 , (B.17)

where ωH2 is such that dωH2 = vol(H2). This is the AdS3 × H2 near-horizon of the
black string solution of D = 5, N = 2 minimal gauged supergravity constructed in
[40]24. Like in the six-dimensional case, applying the change of coordinates (B.14),
followed by the ε → 0 limit, to the AdS3 × ˚1 � ˚2 solution of [17] gives the
AdS3 × �g � ˚2 background therein. Moreover, it is possible to retrieve the central
charge of the latter, presented in (5.50), multiplying the central charge of the former,
given in (5.43), by 2(1− g), substituting m± as in (B.16) and taking the finite part of
the Laurent series. Explicitly,

2(1 − g) · c˚1�˚2 = a−1

ε
+ c�g�˚2 + O(ε). (B.18)

C More toric data from explicit metrics

In this appendix, we will provide further examples of how to extract toric data from
explicit metrics, as discussed in the main body of the paper. The first example we
consider is the Hirzebruch surface F1, that is a well-known symplectic toric manifold.
Its associated polytope is a Delzant polytope (see, e.g.,[15]) and below we show how
to obtain it starting from an explicit metric on F1 [45], using two methods. Namely,
computing the image of the moment map associated with a symplectic structure com-
patible with a conformally rescaled metric and studying the Killing vectors generating
the U (1)2 isometry of the metric. We will then employ these methods to extract the
toric data associated with the metrics presented in [17]. These are used in Sect. 5 to
show that our recipe reproduces the central charge computed in [17].

24 The gauge potential has a different sign with respect to [40], but the solution is equivalent and still
supersymmetric.
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C.1 Hirzebruch F1

We now illustrate an example of Delzant polytope and its construction studying the
first Hirzebruch surface F1, whose metric is given by (cf. equation (7.11) of [45])25

ds2
F1

= 1 − y

6

(
dθ2 + sin2θ dφ2)+ dy2

w q
+ l2w q

36F
(d" + cos θ dφ)2, (C.1)

where the expression of the functions w(y), q(y) and F(y) can be found in [45].
The angular coordinates lie in the ranges θ ∈ [0, π ], φ ∈ [0, 2π ], " ∈ [0, 4π ],
while y spans the range [y1, y2], where y1 and y2 are, respectively, the negative and
the smallest positive roots of q(y). To ensure the correct signature of the metric we
require 1 − y > 0. After having rescaled the metric as ds2 = (y) ds2

F1
, we consider

the symplectic two-form

ω = (y)

[
1 − y

6
sin θ dθ ∧ dφ + l

6F1/2 dy ∧ (d" + cos θ dφ)

]
. (C.2)

When (y) is such that ′(y) = F1/2−l
(1−y)F1/2(y), the two-form (C.2) is closed and can

be written as

ω = dφ ∧ d

[
1 − y

6
(y) cos θ

]
+ d" ∧ d

[
1 − y

6
(y)

]
. (C.3)

For fixed values of y, metric (C.1) describes a squashed, smooth three-sphere,
corresponding to the system studied in Sect. 4 of [45] for m = 1. Following their
arguments, we take as a basis of an effective torus action26

e1 = V2, e2 = V1 + 1

2
V2, (C.4)

where V1 generates the rotations of the two-sphere about the equator with weight one,
hence V1 = ∂φ , and V2 the rotations of the S1 fiber, also with weight one, hence
V2 = ∂ν , where we introduced the new radial coordinate ν = "/2, with period 2π .
Once we have chosen a basis for the torus action, we can derive the related moment
maps

�μ = 1 − y

3
(y)

(
1,

cos θ + 1

2

)
. (C.5)

In total, we have four fixed points, corresponding to all the possible combinations
pairing the poles of the base two-sphere (θ = 0, π ) and the poles of the fiber two-

25 Here, we replaced � with l in order to avoid confusion with the index of the fixed points.
26 We exchanged e1 and e2 with respect to [45] in order to stick to our notation of counterclockwise ordered
normal vectors.
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v1

v2

v3 v4

1

2

3

4

(a) Delzant polytope of F1.

1

2

3
4

τ1

τ2

τ3 τ4

(b) Fan of F1.

Fig. 4 Toric data of the first Hirzebruch surface F1

sphere (y = y1,2)

v1 = {θ = 0, y = y1}, v2 = {θ = 0, y = y2},
v3 = {θ = π, y = y2}, v4 = {θ = π, y = y1}. (C.6)

The image of these points under the moment maps are

�μ(v1) = #1(1, 1), �μ(v2) = #2(1, 1),

�μ(v3) = #2(1, 0), �μ(v4) = #1(1, 0),
(C.7)

where we defined, for convenience, the positive constants#i = 1−yi
3 (yi ). A numer-

ical analysis shows that#1 > #2, therefore the moment polytope of F1 can be drawn
as in Fig. 4a. A quick investigation proves that it is a Delzant polytope in R

2.
The polytope is uniquely defined by the relations

〈 �μ, �n1〉 ≤ #1, 〈 �μ, �n2〉 ≤ 0, 〈 �μ, �n3〉 ≤ −#2, 〈 �μ, �n4〉 ≤ 0, (C.8)

where the Z
2 primitive normal vectors �n� are

�n1 = (1, 0), �n2 = (−1, 1), �n3 = (−1, 0), �n4 = (0,−1). (C.9)

The fan generated by these vectors is depicted in Fig. 4b and is dual to the Delzant
polytope of Fig. 4a.

A different approach to the construction of the toric data of a given toric manifold
goes through the analysis of the degenerating Killing vectors of the corresponding
metric. In total, we have four Killing vectors ξ(�) degenerating at the loci D�, namely

D1 = {y = y1} : ξ(1) = 2∂", D2 = {θ = 0} : ξ(2) = ∂φ − ∂",

D3 = {y = y2} : ξ(3) = 2∂", D4 = {θ = π} : ξ(4) = ∂φ + ∂".

(C.10)
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These vectors have been normalized such that they have unitary surface gravity when
approaching the degeneracy hypersurface. Expanding on the basis (C.4), the four
Killing vectors read

ξ(1) = ξ(3) = e1, ξ(2) = e2 − e1, ξ(4) = e2. (C.11)

We notice that the four loci D� are in a one-to-one correspondence with the facets of
the polytope in Fig. 4a and that the Killing vectors ξ(�) can be written in terms of the
related normal vectors �n� as ξ(�) = �n� · (e1, e2).

C.2 AdS3 × S2 � ˚2 solutions

We consider here the AdS3×�g�˚2 geometry presented in Sect. 4 of [17] subjected,
as before, to the analytic continuation �g �→ S2. The metric is given by27

ds2 = 4(yP)1/5

9

[
ds2AdS3 + 3

4
ds2S2 + 9y

16Q
dy2 + 9Q

4P

(
dz − 2

3
ωS2

)2]
,

(C.12)

where dωS2 = −vol(S2) and

hi (y) = y2 + qi , P(y) = h1(y) h2(y), Q(y) = −y3 + 1

4
P(y).

(C.13)

We can take explicitly

ds2S2 = dθ2 + sin2θ dψ2, ωS2 = cos θ dψ. (C.14)

Since the requirement of having a globally well-defined fibration

1

2π

∫
S2
dη = t ∈ Z, η ≡ 2π

�z

(
dz − 2

3
ωS2

)
, (C.15)

yields the relation28

4

3t
= �z

2π
, (C.16)

27 In order to make the comparison with [17] easier, we relabeled φ and a therein as z and a and exchanged
n+ ↔ n−.
28 Notice that here t is a positive integer, due to the different convention of [17] in defining ω.
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we can define a 2π -periodic coordinate ν2 = 2π
�z z in terms of which the four-

dimensional toric orbifold S2 � ˚2 of interest is

ds2S2�˚2
= 1

3

(
dθ2 + sin2θ dψ2)+ y

4Q
dy2 + Q

P

(2
t
dν2 − cos θ dψ

)2
. (C.17)

For fixed y this metric describes an S3/Zt , thus we consider as a basis of an effective
torus action

e1 = ∂ν2 , e2 = ∂ψ + t

2
∂ν2 . (C.18)

The four fixed points are

v1 = {θ = 0, y = y2}, v2 = {θ = 0, y = y3},
v3 = {θ = π, y = y3}, v4 = {θ = π, y = y2}, (C.19)

where y2,3 are the two middle roots of Q(y), with y2 < y3. These points define the
four divisors

D1 = {y = y2}, D2 = {θ = 0}, D3 = {y = y3}, D4 = {θ = π},
(C.20)

and, with respect to the basis (C.18), the degenerate normalized Killing vectors and
the orbifold labels are

D1 : ξ(1) = n− e1, m1 = n−, D2 : ξ(2) = e2, m2 = 1,

D3 : ξ(3) = n+ e1, m3 = n+, D4 : ξ(4) = e2 − t e1, m4 = 1.

(C.21)

We can now construct the polytope, considering the four-dimensional conformally
rescaled metric ds2 = (y) ds2

S2�˚2
and the related symplectic two-form

ω = (y)

[
1

3
sin θ dθ ∧ dψ + y1/2

2P1/2 dy ∧
(
dz − 2

3
cos θ dψ

)]
. (C.22)

When ′(y) = y1/2

P1/2(y), the two-form (C.22) is closed and can be written as

ω = dψ ∧ d

[
1

3
(y) cos θ

]
+ dν2 ∧ d

[
− 2

3t
(y)

]
. (C.23)

From this expression, we can derive the moment maps with respect to the basis (C.18)

�μ = − 2

3t
(y)

(
1,

t(1 − cos θ)

2

)
, (C.24)
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whose action on the fixed points (C.19) is

�μ(v1) = − 2

3t
(y2) (1, 0), �μ(v2) = − 2

3t
(y3) (1, 0),

�μ(v3) = − 2

3t
(y3) (1, t), �μ(v4) = − 2

3t
(y2) (1, t).

(C.25)

Since we have chosen the same basis as in (4.3), the resultant polytope is similar to
the one constructed in Sect. 4.1. Indeed, it can be read off from Fig. 1 exchanging
v1 ↔ v3, v2 ↔ v4 and n+ ↔ n−. The normal vectors �n� change accordingly with
respect to Eq. (4.11), i.e., �n1 ↔ �n3 and �n2 ↔ �n4, together with t �→ −t . We can
quickly verify that the quantities we derived satisfy relation (4.15).

C.3 AdS3 × ˚1 � ˚2 solutions

We now move to the AdS3 × ˚1 � ˚2 solutions presented in Sect. 3 of [17]29. The
metric on the toric orbifold is given by

ds2˚1�˚2
= x

f
dx2 + f

36x2
dψ2 + y

4Q
dy2 + Q

P

(
dz − 1

3

(
1 − a

x

)
dψ
)2
,

(C.26)

where functions hi , P and Q are the same as in (C.13) and

f (x) = 4x3 − 9x2 + 6ax − a2. (C.27)

The coordinate x ranges between x1 and x2, the two smallest roots of f (x) with
x1 < x2, and y lies between y2 and y3 as before. The fibration is globally well defined
if

m+m−
2π

∫
˚1

dη = t ∈ Z, η ≡ 2π

�z

(
dz − 1

3

(
1 − a

x

)
dψ
)
, (C.28)

which gives the relation

t

m+m−
= −a(x2 − x1)

3x1x2

�ψ

�z
. (C.29)

Taking inspiration from Sect. 4.2, we introduce the following basis {E1, E2} for an
effective torus action:

E1 = ∂ν2 , E2 = ∂ν1 + r+ + r−
m+ − m−

∂ν2 , (C.30)

29 In addition to n±, we also exchanged m+ ↔ m−.
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where ν1 = 2π
�ψ

ψ and r± are two integers such that t = r+ m++r− m−. In total, there
are four Killing vectors degenerating at the divisors D1 = {y = y2}, D2 = {x = x1},
D3 = {y = y3}, D4 = {x = x2}, which, in the basis (C.30), read

ξ(1) = n− E1, ξ(2) = m− E2 + r+ E1,

ξ(3) = n+ E1, ξ(4) = m+ E2 − r− E1.
(C.31)

These are formally the sameKilling vectors given in (4.29). The “long” normal vectors
can be obtained by means of (4.28)

�̂w1 = (n−, 0), �̂w2 = (r+,m−), �̂w3 = (−n+, 0), �̂w4 = (r−,−m+).
(C.32)

Following the same arguments of Sect. 4.2, we derive the labels m� = (n−, 1, n+, 1)
and the “short” vectors �w = �̂w�/m�, which together constitute the toric data ( �w�,m�)

describing the˚1�˚2 toric orbifold. This orbifold is characterized by the same stacky
fan and labeled polytope of Fig. 3.
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