
22 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Neuromorphic intermediate representation: A unified instruction set for interoperable brain-inspired computing /
Pedersen, Jens E.; Abreu, Steven; Jobst, Matthias; Lenz, Gregor; Fra, Vittorio; Bauer, Felix Christian; Muir, Dylan
Richard; Zhou, Peng; Vogginger, Bernhard; Heckel, Kade; Urgese, Gianvito; Shankar, Sadasivan; Stewart, Terrence C.;
Sheik, Sadique; Eshraghian, Jason K.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 15:1(2024).
[10.1038/s41467-024-52259-9]

Original

Neuromorphic intermediate representation: A unified instruction set for interoperable brain-inspired
computing

GENERICO -- per es. Nature : semplice rinvio dal preprint/submitted, o postprint/AAM [ex default]

Publisher:

Published
DOI:10.1038/s41467-024-52259-9

Terms of use:

Publisher copyright

The original publication is available at https://www.nature.com/articles/s41467-024-52259-9 /
http://dx.doi.org/10.1038/s41467-024-52259-9.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992804 since: 2024-11-05T08:46:42Z

Nature

Article https://doi.org/10.1038/s41467-024-52259-9

Neuromorphic intermediate representation:
A unified instruction set for interoperable
brain-inspired computing

Jens E. Pedersen 1,15 , Steven Abreu 2,3,15, Matthias Jobst 4,5, Gregor Lenz6,
Vittorio Fra 7, Felix Christian Bauer 8, Dylan Richard Muir 8, Peng Zhou9,
Bernhard Vogginger 4, Kade Heckel 10, Gianvito Urgese 7,
Sadasivan Shankar 11,12, Terrence C. Stewart13, Sadique Sheik8 &
Jason K. Eshraghian14

Spiking neural networks and neuromorphic hardware platforms that simulate
neuronal dynamics are getting wide attention and are being applied to many
relevant problems using Machine Learning. Despite a well-established math-
ematical foundation for neural dynamics, there exists numerous software and
hardware solutions and stackswhose variabilitymakes it difficult to reproduce
findings. Here, we establish a common reference frame for computations in
digital neuromorphic systems, titled Neuromorphic Intermediate Repre-
sentation (NIR). NIR defines a set of computational and composable model
primitives as hybrid systems combining continuous-time dynamics and dis-
crete events. By abstracting away assumptions around discretization and
hardware constraints, NIR faithfully captures the computational model, while
bridging differences between the evaluated implementation and the under-
lying mathematical formalism. NIR supports an unprecedented number of
neuromorphic systems, which we demonstrate by reproducing three spiking
neural network models of different complexity across 7 neuromorphic simu-
lators and 4 digital hardware platforms. NIR decouples the development of
neuromorphic hardware and software, enabling interoperability between
platforms and improving accessibility tomultiple neuromorphic technologies.
We believe that NIR is a key next step in brain-inspired hardware-software co-
evolution, enabling research towards the implementation of energy efficient
computational principles of nervous systems. NIR is available at neuroir.org

The human brain is an exemplar of computational efficiency, out-
performing today’s advanced machine learning models and hardware
in multiple measures, particularly regarding energy consumption.
State-of-the-art machine learning algorithms require vast amounts of
energy and computational resources, especially when trained on large
datasets1,2, whereas thebrain operates on a tinypower budget, learning
and performing a myriad of complex tasks seamlessly. Unlike digital

computations that rely on precise binary logic, the brain’s computa-
tions have a significant analog component innature, utilizing gradients
of ion concentrations and action potentials, which can be represented
as unary activations, commonly referred to as spikes. Neuromorphic
computing, defined as “circuits that emulate the temporal processing
of signals in the brain” [ref. 3, p. 361], draws inspiration from the effi-
ciency of the nervous systems to rethink the principles of information

Received: 19 December 2023

Accepted: 28 August 2024

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: jeped@kth.se

Nature Communications | (2024) 15:8122 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6012-7415
http://orcid.org/0000-0001-6012-7415
http://orcid.org/0000-0001-6012-7415
http://orcid.org/0000-0001-6012-7415
http://orcid.org/0000-0001-6012-7415
http://orcid.org/0000-0002-2272-315X
http://orcid.org/0000-0002-2272-315X
http://orcid.org/0000-0002-2272-315X
http://orcid.org/0000-0002-2272-315X
http://orcid.org/0000-0002-2272-315X
http://orcid.org/0000-0003-3147-1625
http://orcid.org/0000-0003-3147-1625
http://orcid.org/0000-0003-3147-1625
http://orcid.org/0000-0003-3147-1625
http://orcid.org/0000-0003-3147-1625
http://orcid.org/0000-0001-9175-2838
http://orcid.org/0000-0001-9175-2838
http://orcid.org/0000-0001-9175-2838
http://orcid.org/0000-0001-9175-2838
http://orcid.org/0000-0001-9175-2838
http://orcid.org/0000-0002-1631-7403
http://orcid.org/0000-0002-1631-7403
http://orcid.org/0000-0002-1631-7403
http://orcid.org/0000-0002-1631-7403
http://orcid.org/0000-0002-1631-7403
http://orcid.org/0000-0003-3856-826X
http://orcid.org/0000-0003-3856-826X
http://orcid.org/0000-0003-3856-826X
http://orcid.org/0000-0003-3856-826X
http://orcid.org/0000-0003-3856-826X
http://orcid.org/0000-0001-9042-5405
http://orcid.org/0000-0001-9042-5405
http://orcid.org/0000-0001-9042-5405
http://orcid.org/0000-0001-9042-5405
http://orcid.org/0000-0001-9042-5405
http://orcid.org/0009-0009-7021-8834
http://orcid.org/0009-0009-7021-8834
http://orcid.org/0009-0009-7021-8834
http://orcid.org/0009-0009-7021-8834
http://orcid.org/0009-0009-7021-8834
http://orcid.org/0000-0003-2672-7593
http://orcid.org/0000-0003-2672-7593
http://orcid.org/0000-0003-2672-7593
http://orcid.org/0000-0003-2672-7593
http://orcid.org/0000-0003-2672-7593
http://orcid.org/0000-0002-1555-639X
http://orcid.org/0000-0002-1555-639X
http://orcid.org/0000-0002-1555-639X
http://orcid.org/0000-0002-1555-639X
http://orcid.org/0000-0002-1555-639X
https://neuroir.org
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52259-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52259-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52259-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52259-9&domain=pdf
mailto:jeped@kth.se
www.nature.com/naturecommunications

processing. As such, neuromorphic computing stands in contrast to
the conventional andwidespreadvonNeumann architecture and relies
on entirely new algorithms, software tools, and hardware4.

Much like how the brain can be thought of as a physical embo-
diment of the neural code consisting of architecture, hardware, and
software, contemporary neuromorphic hardware and software are
often developed together3. The blurring of top-down and bottom-up
approaches makes it difficult to extrapolate clear abstractions that
generalize to other technology stacks, which impedes incremental
technological progress5. The blurring of top-down and bottom-up
approaches makes it difficult to extrapolate clear abstractions that
generalize to other technology stacks, which impedes incremental
technological progress. As a result, we face a landscape of hetero-
geneous neuromorphic simulators and design tools. By identifying
domain-specific computational primitives, we argue that a layer of
abstraction can be established to achieve greater interoperability and,
in turn: (1) allow hardware and software efforts to develop indepen-
dently andmore rapidly, (2) lower the barrier-of-entry for newcomers,
(3) provide theoreticians with a stable representation to study funda-
mentals of computing across different neuromorphic circuits, and (4)
possibly enable more energy-efficient computing.

The field of deep learning faced similar heterogeneity, and
incompatibility challenges a decade ago, which have been addressed
by intermediate representations (IR) and compiler frameworks such as
ONNX6, MLIR7, XLA8, and TVM9. Note that, by definition, IRs serve
exclusively as a model description, while the compilers carry out the
translation between platforms, although they are often mixed in
practice. These tools have reduced the gap between the simulation of
an application and different hardware accelerators, enabling models
written in higher-level languages to be mapped to different classes of
hardware backends, such as CPUs, GPUs, TPUs, and FPGAs. Notably,
the development of sophisticated compiler frameworks was only
possible once a stable representation and exchange format was
established. Following this precedent, NIR aims to establish a stable
representation and exchange format for neuromorphic computing, as
a foundation on which more specialized compiler frameworks can be
built. Similarly, cross-framework compatibility for deep learning has
been addressed by approaches such as Ivy10 or MMdnn11. Given the
nature of clocked computation in the traditional computing stack,
deep learning representations are based on digital instructions in
discrete time. This contrasts our definition of neuromorphic models
that are best captured as continuous-time dynamical systems. Any
representation of a continuous system as a sequence of digital
instructions implies using numerical integration techniques, possibly
introducing numerical errors during the computation of the desired
dynamics. In addition, neuromorphic simulators and hardware plat-
forms operate on the level of neuronal dynamics, a fundamentally
different abstraction than digital intermediate representations for
conventional machine instruction set-based architectures. This ren-
ders existing intermediate representations such as ONNX and MLIR
suboptimal for describing neuromorphic computations.

Numerous configurable neuromorphic systems have been devel-
oped over the last decades12. The implementation approaches range
from analog / mixed-signal13–16, over digital17–19, hybrid analog/digital20

to processor-based21,22 solutions. We refer to Furber 201623 and Thakur
et al.24 for a detailed overview and comparison of the most prominent
large-scale systems. Most of the systems offer custom interfaces for
programming the chips, suchas theCorelet approach25 for TrueNorth17

or PyNCS26 for the UZH∣ETHZ chips20.
Several works emphasize the need to make neuromorphic hard-

ware and simulatorsmoreuser-friendly and accessible4,27,28 through co-
design5 and shared representations29. PyNN30 is a Python library that
allows users to define spiking neural network (SNN) models in a
simulator-independent language. PyNN models can be run without
modifications on different neural simulators (NEST31, Neuron32,

Arbor33, Brian234, CARLSim35). PyNN has developed into the most
widespread common interface to neuromorphic hardware, supporting
the Heidelberg Spikey chip36, the BrainScaleS systems37, and
SpiNNaker138. NeuroML39 provides a serializable set of biological cell
and networkmodels which emphasizes computational correctness for
neuroscientific studies. The popular Brian2 simulator34 has been
extended to interface with other tools, such as the SNN-GPU simulator
GeNN40, or to emulate the Intel Loihi chip41.

Several frameworks have been developed to design neuro-
morphic algorithms. Fugu42 provides a high-level API to define and
combine spiking neural algorithms. It generates an SNN graph as an
intermediate representation, which can serve as input to neuro-
morphic simulators or hardware compilers. Similarly, Lava43 is a fra-
mework for developing brain-inspired neural network models and
mapping them to Intel’s digital neuromorphic hardware. Its repre-
sentation is based on the Communicating Sequential Processes (CSP)
principle44, where neurons are represented by processes that send
spikes via channels connected to other processes. Lava significantly
simplifies the programming of the neuromorphic chip Loihi 245.
However, at its core, it requires synchronization messages for trig-
gering neuron updates, which is incompatible with applications exhi-
biting continuous-time behaviors. Nengo46 is amature library for brain
simulation and deep learning-inspired spiking networks. Similar to
PyNN, it has been connected to several neuromorphic systems such as
BrainDrop15, Loihi, SpiNNaker1, and FPGAs. In addition to Fugu, Lava,
and Nengo, there are frameworks such as the SNN-Toolbox47, NxTF48,
or hxtorch.snn49 for converting neural network models from ML fra-
meworks to specific SNN simulators and neuromorphic hardware.
Zhang et al.50 have developed an abstraction hierarchy for brain-
inspired computing with loose guarantees, portable across both von
Neumann and neuromorphic architectures. Other interfaces focus on
particular computing elements, such as crossbar arrays using beyond-
CMOS technologies29,51, or ReLU and leaky integrate-and-fire units52.
Unfortunately, none of these standards have spread beyond their
intended subdomain within neuromorphic computing.

Theoretically, our work is inspired by the work on signal flow
graphs53, linear time-invariant systems54, and mealy machines55 for the
description of composable circuit components with applications to
digital, or analog, or hybrid systems. Compiler infrastructures projects
like LLVM56, and later MLIR7, has been leading the field in optimizing
and transforming code for awide range of programs and architectures.

In this work, we (1) derive and implement a set of model-centric
computational primitives that are common to multiple neuromorphic
software and hardware systems, (2) illustrate the application of NIR
across 7 different simulators and 4 different hardware platforms, (3)
demonstrate flexible cross-platform deployment of NIR models, and
(4) evaluate exemplary neuromorphicmodels defined in NIR across all
11 supported platforms—in hardware and software. This work comes at
a decisive moment for novel computing technologies, where the
power consumption of neural networks is growing at unprecedented
rates, and when neuromorphic platforms are available at scale to the
consumer for the first time.

Results
In a collaboration between academia and industry, we propose and
illustrate the Neuromorphic Intermediate Representation: a model-
centric abstraction layer that simplifies the translation between simu-
lated applications, neuromorphic software, and digital hardware
platforms. NIR currently links 7 neuromorphic simulators (Lava43,
Nengo46, Norse57, Rockpool58, Sinabs59, snnTorch60, and Spyx61) and 4
digital neuromorphic hardware platforms (Loihi 262 via Lava, Speck via
Sinabs, SpiNNaker2, and Xylo63 via Rockpool). NIR represents com-
putations as graphs, where each node represents a computational
primitive defined by a hybrid continuous-time dynamical system. This
idealized description provides three distinct advantages: (1) it avoids

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 2

www.nature.com/naturecommunications

any assumptions around discretization or hardware constraints, (2) it
provides a reference model against which implementations can be
compared, and (3) it decouples the software description from the
hardware layer, allowing seamless integration withmixed-signal chips,
as well as analog hardware, and hybrid digital-analog systems. The
computational graph representation is shown in Fig. 1, along with its
relation to digital and analog hardware as well as software, indepen-
dently of the underlying execution model being continuous-time or
discrete-time. While the continuous nature of NIR can be applied to
mixed-signal hardware platforms, this work focuses on digital simu-
lators and hardware platforms. It is also important to point out that the
conversion between continuous-time dynamical systems and digital
platforms will give divergent results. We will further define and mea-
sure these discrepancies in later sections.

NIR defines a set of primitives as coupled hybrid systems, formally
introduced in the Methods Section, that can be arbitrarily composed,
as shown in Figs. 1 and 2. NIR operates on a predefined set of com-
putational primitives rather than custom neural equations, which
cannot easily be supported on efficient and specialized hardware. This
approach is motivated by the nearly universal agreement on a few
computational models, such as the leaky integrator and the integrate-
and-fire models, in prevalent neuromorphic hardware platforms and

simulators. It also allows us to achieve strong generality early on; NIR is
presently supported by four digital neuromorphic hardware plat-
forms: Intel Loihi 243, SynSense Speck, SpiNNaker2, and SynSense
Xylo63. In addition, 7 software simulators now support NIR: Lava (and
Lava-DL)43, Nengo46, Norse57, Rockpool58, Sinabs59, snnTorch60, and
Spyx61.

The primary strength of NIR resides in its ability to reproduce the
same computation on heterogeneous platforms, abstracting away
platform-specific differences. Thus, NIR is able to translate a compu-
tational model into multiple and possibly different, hardware plat-
forms; training or defining models can be done independent of the
substrate carrying out the computation. Below, in Section Experi-
ments, we demonstrate how an NIR graph can be executed and sup-
ported by the above-mentioned platforms for three different tasks: a
leaky integrate-and-fire model, a spiking convolutional network, and a
spiking recurrent neural network. Later, in Sections NIR axioms and
Computational primitives, we establish the axioms underpinning NIR
graphs and list the computational primitives we presently support.

Experiments
We conduct a series of experiments spanning diverse neuromorphic
platforms to gauge the robustness and versatility of NIR. We chose

Fig. 1 | High-level overview of NIR. a NIR allows for continuous-time repre-
sentation of specific models that can then be executed on continuous-time hard-
ware or simulators or discretized for use on discrete-time hardware or simulators.
b A taxonomy of discrete and continuous time hardware and simulators. Some
representative hardware systems are shown. Analog Continuous Time:

BrainDrop15, DYNAP-SE20, and emerging technologies. These systems are grayed
out because they are not covered in the present paper. Analog Discrete Time:
NeuRRAM97, UMich RRAM-IMC98. Digital Continuous Time: Akida, SpiNNaker 1/221,22,
Speck. Note that we include chips with asynchronous routing in this category. Digital
Discrete Time: Generic FPGA-based SNN Accelerators, ReckOn99, Xylo100.

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 3

www.nature.com/naturecommunications

three distinct tasks that are commonwithin neuromorphic computing,
through which we assess and compare performance across all com-
patible platforms: a single leaky integrate-and-fire (LIF) neuron, a
spiking convolutional neural network (SCNN), and a spiking recurrent
neural network (SRNN) (see Fig. 3).

The single LIF neuron task is a simple task that allows us to
assess the visual similarity of the computations on different simu-
lators and hardware platforms. The SCNN and SRNN represent
widespread types of neural networks. Whereas CNN-based net-
works are very common for visual data, RNN show their strengths in

Fig. 2 | Composition of primitives and their mapping to and from software and
hardware systems. a–d shows fourNIR primitives, where the nameof the primitive
is highlighted on top, the implemented computation is illustrated in the white box,
and the parameters that are stored with the NIR graph are highlighted on the
bottom. a shows a stateful primitive, while (b) and (c) show stateless primitives, and

(d) show a higher-order primitive. e–f illustrate the concept of an intermediate
representation (IR) with 7 software (SW) and 4 hardware (HW) backends. Instead of
30 different compilers covering all m ×n cases (e), onlym + n interfaces between
each hardware and software platform to NIR are necessary (f).

Fig. 3 | Computational graphs and sample data used in the experiments. a A
single leaky integrate-and-fire neuron model (LIF), (b) a recurrent Braille classifi-
cation model using current-based leaky integrate-and-fire (CuBa-LIF) in a spiking

recurrent neural network (SRNN), and (c) a spiking convolutional neural network
(SCNN). d, e shows sample data for the N-MNIST and Braille datasets, respectively.
The N-MNIST activity is averaged across 300 timesteps.

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 4

www.nature.com/naturecommunications

tasks involving temporal relations with a limited number of input
dimensions.

A central difficulty in transferring a computation from one neu-
romorphic platform to another is that the neuron models and dis-
cretization schemes do not always match up exactly. There will be
variation between differently implemented neuron models, even for
the seemingly simple LIF neuron. We refer to Section Discussion of
Mismatches for a more detailed discussion of the experimental mis-
matches and the Supplementary Material, Section A, for the subtle
differences in neuron models supported by NIR.

Leaky integrate-and-fire dynamics. As a first experiment, we
demonstrate the behavior of a single leaky integrate-and-fire neuron
under an identical input spike train (Fig. 4a) for every available plat-
form.The LIF neuronwasfirst instantiated inNorse, then exported into
a NIR graph, and subsequently imported and executed by all different
platforms. Figure 4a visualizes both the recorded voltage traces and
output spikes from the platforms.

To assess the viability ofNIR as an intermediate representation for
neuromorphic computing, we ensure that the dynamics are consistent
across all platforms regarding the most common ways of encoding
information in spiking neural networks—namely, rate encoding and
spike time encoding60,64. The equivalence of output firing rates across
different platforms can easily be seen, as the number of output spikes
is identical across all platforms and since the spiking timings mostly
coincide. Rockpool and Sinabs notably differ because of their inte-
gration scheme. They integrate the incoming signal (v−, equation (1))
when checking for a threshold crossing before they update the leak
term (v+, equation (2)), whereas most other simulators immediately
integrate the leak (equation (3)). This effectively brings the neuron

closer to the firing threshold earlier on, as observed in Fig. 4a.

v�ðt + 1Þ= dt
τ

vðtÞ+ vleak +Riðt + 1Þ
� � ð1Þ

v+ ðt + 1Þ= vðtÞ � v�ðt + 1Þ ð2Þ

vðt + 1Þ= dt
τ

vðtÞ+ vleak +Riðt + 1Þ
� � ð3Þ

We further observe that the spike times are systematically delayed
by one timestep for Lava and Loihi 2. This is because Lava calculates
whether a neuron spikes at timestep tbasedon itsmembranepotential
at timestep t − 1, i.e., before the addition of the input to themembrane,
rather than after the input was added to the membrane potential. This
systematic differencewill only have an effect if absolute spike timing is
used, instead of relative spike timing, that is, if information is encoded
in the timing between spikes.

Xylo and Speck are omitted since they do not support the leaky
integrate-and-fire primitive.

Convolutional neural network. For the second experiment, we stu-
died a 9-layer spiking convolutional neural network (SCNN) using
2-dimensional convolutions, sum pooling, and integrate-and-fire neu-
rons, shown in Fig. 3c. The SCNN was trained on the Neuromorphic
MNIST (N-MNIST) dataset to recognize digits from 0 to 965. Details on
the training and exact network architecture are shown in Section
Spiking convolutional neural network. In our experiment, we compare

Fig. 4 | Experimental results. a Single leaky integrate-and fire neuron ordered
from top to bottomondifferent platforms: input spikes, voltage traces, and output
activations. The timestep of spikes is well-aligned andonly differs systematically for
Rockpool and Sinabs due to discretization differences. Membrane potentials are
normalized to lie between the resting potential vrest=0 and the firing threshold ϑ to
ignore platform-specific details regarding the numerical representations. b Spiking
convolutional neural network: a platform-by-platform comparison of the spiking

activity from the first spiking layer using cosine similarity (1 equals perfect overlap).
Sinabs, snnTorch, and Speckdeviate frommost other implementations due to their
discretization choices. c, d Spiking recurrent neural network: similarity measure
between the spiking activity of the first CuBa-LIF layer for an SRNNwith biases and
reset to zero and an SRNN without biases and subtractive reset. See the main text
for details on the similarity metrics.

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 5

www.nature.com/naturecommunications

not only the end-task accuracy but also the activity of the first hid-
den layer.

The accuracies of the SCNNs across the different platforms on the
withheld test dataset are similar (see Table 1), with a mean test accu-
racy of 97.7% and a standard deviation of 0.9% across all platforms.
These results demonstrate that NIR can effectively act as an inter-
mediate representation of a trained, rate-based spiking convolutional
neural network, as the end-task performance is preserved across all
tested platforms.

We further analyze the activities of the SCNN’s hidden layers across
all different platforms. For a visually interpretable comparison, we use
the cosine similarity of time-averaged activities, i.e., spike rates, for the
first channel of the first hidden layer of I&F neurons in Fig. 4b:
Sc(r1, r2) = (r1 ⋅ r2)/(∥r1∥2∥r2∥2) where ri is the flattened vector of spike
rates from platform i. The similarity measure tells us thatmost platforms
have almost identical dynamics, while particularly Rockpool, Sinabs,
snnTorch, and Speck deviate. Since the accuracies are relatively close, we
observe that the rate encoding and feed-forward architecture of the
investigated SCNN are relatively robust to these mismatches.

Rockpool and Xylo are omitted from this comparison because
neither support convolutions, and Xylo does not implement the IF
neuron model used in the SCNN.

Recurrent neural network. For the third and final experiment, we
studied a spiking recurrent neural network (SRNN) with one hidden
layer, with populations of current-based LIF (CuBa-LIF) neurons. The
network was trained in snnTorch with backpropagation-through-time
(BPTT) and surrogate gradients to perform a Braille letter recognition
task66. Further details are reported in Section Spiking's recurrent
neural network. After training, the network was exported to NIR, and
evaluated on all other platforms. The accuracies and similarity mea-
sures for their respective activations are shown in Fig. 4c, d.We trained
two networks with different choices for the discretization of the reset
mechanisms for post-spike membrane reset (shown in equations (1)
and (2) in the Supplementary Material). Similar to the SCNN experi-
ment, wemeasured not only the end-task accuracy but also the activity
of the hidden recurrent layer.

In this experiment, the performance across different platforms
was notably less consistent than in the prior two. Contrarily, the SRNN
presented here displayed significant disparities in end-task perfor-
mance when implemented on different platforms. This divergence can
be attributed to the recurrent connections within the network, which
tend to accentuate subtle discrepancies in the dynamics. The SRNN’s
training in snnTorch suggests that its dynamics are intricately cali-
brated to the specifics of this simulator. Therefore, deploying the
network on a platform with dissimilarities from snnTorch’s nuances
can introduce pronounced differences in the system’s dynamics,
thereby affecting the end-task outcome.

In sum, NIR emerges not only as a representation but also as a
measurement tool—it facilitates a deeper exploration of the dis-
crepancies between platforms, revealing the influence of diverse
parameterization, levels of precision, and models on the resultant
performancemismatches.NIR thus offers a valuable avenue for further
research by quantifying the robustness of neural networks, specifically

gauging their resilience to simulator and device mismatch, and
thereby stands as a pivotal tool for the advancement of neuromorphic
computing.

Discussion of mismatches. Instead of providing perfect functional
reproducibility, NIR establishes an idealized model that serves as a
common ground for comparative analysis while highlighting inter-
platformdiscrepancies.We attribute these discrepancies to threemain
causes:

Neuron model implementation. As shown in Section A in the Sup-
plementary Material, the simulators and chips do not use the same
neuron model definitions. Whereas some definitions can be made
equal bymatching parameters, differences in spike and reset timing or
different discretization choices lead to changes in neuron dynamics.

Quantization. The neuromorphic chips we tested use quantization to
reduce on-chip memory requirements and power required for com-
putation. Quantization will change the activity due to inherent
rounding errors, which can cause performance degradation67. We only
used post-training quantization to reveal discrepancies between the
frameworks. Although quantization-aware training (QAT) or fine-
tuning may be able to recover lost performance, we do not provide a
detailed study of the extent to which QAT reduces mismatches here.

Determinism. Whereas simulation frameworks are usually determi-
nistic in their computation, asynchronous hardware, such as Speckand
SpiNNaker2, are not fully deterministic. This variability can lead to
further activity discrepancies across platforms. Most event-based
processing systems do not guarantee the determinism of the indivi-
dual events.

NIR axioms
The nodes in NIR are described by hybrid continuous-time systems,
capturing the realistic evolution of some physical quantity as well as
jumps and discrete resets. Instead of executing these dynamics, the
NIR graph merely declares them, ensuring that any computational
backend is equipped with the complete information required to
interpret and evaluate the represented computation. It is essential to
clarify that NIR’s objective is not to rectify discrepancies arising from
mismatches between platforms. Rather, NIR offers a common frame-
work on which all hardware platforms can address shared challenges
and brings into sharp focus the inconsistencies that arise from a het-
erogeneous neuromorphic computing landscape where neuron mod-
els and discretization schemes are not standardized.

Axiom 1. (Neuromorphic computational primitives) NIR provides a set
of standardized computational primitives C. Each computational primi-
tive c 2 C defines a parameterized transformation Tθ of a continuous-
time input signal u(t) into a continuous-time output signal y(t), where θ
is the set of parameters for a given compute primitive c.

(1.1) Every computational primitive c is modeled as a hybrid system
that describes how the computational dynamics evolve over

Table 1 | Experimental accuracies

Simulator Both Hardware

Nengo Norse Rockpool Sinabs snnTorch Spyx Lava† Speck SpiNNaker2 Xylo

SCNN 98.1% 98.1% N/A 98.5% 97.9% 97.1% 98.2% 95.4% 98.2% N/A

SRNN (Subtr.) 78.6% 93.57% 71.4% N/A 92.1% 92.12% N/A N/A 93.57% 85.71%

SRNN (Zero) 55.7% 94.29% N/R N/A 95.0% 84.29% 48.6% N/A 85.00% N/A

Performance for the spiking convolutional neural network (SCNN) and the spiking recurrent neural network (SRNN)wasmeasured against the unseen test dataset. The platform onwhich the spiking
neural network was originally trained is underlined. † The Lava column stands for both the Loihi 2 chip and the Lava simulator since they are bitwise accurate.

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 6

www.nature.com/naturecommunications

time. This includes differential equations (_x = f θðx,uÞ) as well as
discretized transition functions for sudden activations, where
xðtÞ 2 RNx , uðtÞ 2 RNu are multidimensional signals. For brevity,
we represent the set of parameters for a particular compute
primitive with θ, although this set of parameters varies for every
primitive (see Table 2). For example, a leaky integrator may be
modeled with the ODE _x = � x +u, and a linear connection layer
may be modeled with the transfer function y =Wx.

(1.2) Every primitive offers a set of input ports pin 2 P, and a set of
output ports pout 2 P. A single port consists of a name and the
expected shape of signal,P = ðS ×NnÞwhereS is the set of strings
and n is the number of independent signal channels. By exposing
one or more ports, a single computational primitive can receive
multiple input signals uðtÞ= ðu1ðtÞ, . . . ,unu

ðtÞÞ and send multiple
output signals yðtÞ= ðy1ðtÞ, . . . ,yny

ðtÞÞ, effectively separating
semantically different signals. For example, a neuronmay receive
one input signal thatmodels a synaptic current input and another
input signal that serves as a neuromodulatory signal. Ports are
uniquely identifiable via a name, which, in the case of input ports,
is similar to the argument name of a function.

(1.3) Computational primitives may be composed into higher-order
primitives, as shown at the bottom of Table 2 and illustrated
in Fig. 2.

Axiom 2. (Graph-based computation) Every computation is repre-
sented as a NIR graph G = ðV × EÞ where V is the set of computational
nodes (e.g., a leaky integrate-and-fire neuron, or a linear connection
layer) and E is the set of directed connections between the nodes in
the graph.

(2.1) A computational node v 2 V is composed of a primitive c 2 C and
its parameters θ. This yields a complete description of an input-
output transformation, and thus fully describes the computation
implemented by the computational node v. For example, the
computational node representing an affine linearmap consists of
the primitive cAffine along with the weight matrixW and the bias b
as the parameters θ = (W, b), such that vAffine= (cAffine, θ).

(2.2) An edge is a directional connection from an outgoing port to an
incoming port E = ðV ×PinÞ× ðV ×PoutÞ, wherePin andPout are the
ports of the input and output nodes, respectively. There are no
restrictions on the number of connections any node or port can
have. As an example, the edge e = ((vAffine, pout), (vAffine, pin))
connects the output of the affine node to the input of that
same node.
(2.2.1) Edges donot performany computation and are effectively

the identity map I: x ↦ x.
(2.2.2) One input port can receive multiple incoming edges,

which are then, by convention, summed together
element-wise. Similarly, one output port can send its
information via different edges to various input ports. The
information is then passed by values, not by reference,
such that information can only flow along the direction of
an edge.

The above axioms closely follow conventional descriptions of
directed signal-flow graphs. Figure 2 further illustrates the workings of
NIR graphs, and Fig. 3 shows three example NIR graphs that are used in
the experiments from Section Experiments.

Computational primitives
NIR defines 11 computational primitives and 3 higher-order primitives,
listed in Table 2, where each primitive describes the evolution of a
hybrid system over time (see Section NIR axioms). We define common
neuromorphic components like the linear map, leaky integrator, and
spike threshold function, but we further included mathematical pri-
mitives such as the affine map and convolution. The input and output
nodes serve to disambiguate the entries and exits of a graph.

The 11 primitives in NIR are “fundamental” in the sense that the
backends implementing the primitives are required to approximate
the computation of the idealized description as closely as possible
within the limitations of the platform. Any given platform is not
expected to implement the full specification. This is particularly
true for functionally specialized hardware, where hardware
restrictions render certain functional primitives impossible. We

Table 2 | Computational primitives in NIR

Primitive Parameters Parameter types Computation

Input Input shape NN0 ���Nn –

Output Output shape NN0 ���N0 –

Affine W, b RN0 ���Nn ×RN1 ���Nn W i(⋅) +b

Convolution W, Stride, Padding, Dilation, Groups, Bias RCout ×Cin ×N0 ���Nn ×NN0 ���N0 ×NN0 ���N0 ×NN0 ���N0 ×N×RN0 ���N0 f ⋆ g

Delay τ RN i(t − τ)

Flatten Input shape, Start dim., End dim. NN0 ���Nn ×N ×N -

Integrator R RN0 ���Nn _v =R ið�Þ
Leaky integrator (LI) τ, R, vleak RN0 ���Nn ×RN0 ���Nn ×RN0 ���Nn τ _v = ðvleak � vÞ+R ið�Þ
Linear W RN0 ���Nn W i(⋅)

Scale s RN0 ���Nn s i(⋅)

Spike θthr RN0 ���Nn δ(i(⋅) −θthr)

Higher-order primitive Composition

Integrate-and-fire (I&F)

Leaky integrate-and-
fire (LIF)

Current-based leaky
integrate-and-fire
(CuBa-LIF)

LIF ∘ Linear ∘ LI

Top: The computational primitives, their parameters, and computationalmodels. Bottom: Higher-order primitives as compositions. Parameters are typed for an arbitrary number of dimensions, n. i(⋅)
denotes input at a given point in time, where t denotes a specific time, Cout ×Cin denotes convolutional output and input channels, and δ denotes the Dirac delta function.

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 7

www.nature.com/naturecommunications

detail such restrictions in Section Hardware platforms and how NIR
can deal with hardware constraints in Modeling hardware con-
straints with NIR.

NIR does not restrict the implementation apart from stating the
idealizeddescriptions, and it is expected that the exact computationof
the primitives will vary across platforms. This is particularly important
for digital systems and their choice of integration and discretization
methods. Given the heterogeneity of the present hardware landscape,
this amount of freedom becomes a practical choice as well; imposing
any restriction on the integration scheme for the hybrid ODEs will
invariably lead to incompatibilities and numerical deviations across
platforms.

The primitives listed in Table 2 can be composed to providemore
complex computational elements. Three such examples are already
present in the specifications as convenient abstractions:
1. The integrate-and-fire (IF) neuron is defined as an integrator

composed of a spike function and a feedback mechanism that
acts as a membrane reset.

2. The leaky integrate-and-fire (LIF) neuron is defined as a leaky
integrator composed of a spike function and a feedback
mechanism that acts as a membrane reset.

3. The current-based leaky integrate-and-fire neuron (CuBa-LIF) is
defined as a leaky integrator, linearity, and leaky integrate-and-
fire neuron.

RelationbetweenNIRandexisting intermediate representations
The field of neuromorphic computing is divided into separate paths
for digital and analog hardware developments,which often progress in
isolation. By providing a unified framework that accommodates both
of the paths, NIR transcends this divide, capturing the underlying
essence of neuromorphic computing that is rooted in the use of time
as a computational element and the exploitation of continuous-time
dynamics where “time represents itself”68. To address these aspects,
NIR draws inspiration from and shares commonalities with, previous
efforts. Below, we sketch the unique characteristics of NIR in relation
to other intermediate representations related to neuromorphic com-
puting. A tabular overview is available in the Supplementary Material,
Section B.

Modular approach to primitives. NIR stands out by not prescribing a
single representation for computations but instead offers a modular
approach where primitives can be composed arbitrarily. The concept
of composing primitives has proven successful in other frameworks
like Fugu and Lava for the neuromorphic domain, and Compiler
infrastructure projects like LLVM56 and MLIR7 for the conventional
domain. Both LLVM and MLIR are designed to optimize discrete
machine-level instructions, rather than continuous-time systems
equations. Modularity and flexibility allow NIR graphs to be tailored to
diverse hardware platforms, ensuring that they can be adapted to the
constraints of each platform (see Section Modeling hardware con-
straints with NIR). Moreover, NIR expands the application of neuro-
morphic computing beyond neuroscience to include deep learning
operations, enabling the modeling of both artificial neural networks
(ANNs) and spiking neural networks (SNNs), as well as supporting
hybrid ANN-SNN computations.

Agnostic to hardware/software platforms. NIR adopts a purely
declarative style, making it agnostic to the specifics of any hardware or
software platform. Any given backend can choose to interpret and
implement NIR graphs, as long as the backend approximates NIR’s
underlying continuous-time dynamics. This contrasts efforts like
PyNN, NeuroML, and Fugu, which make assumptions about the run-
time environments. NIR is designed to integrate with existing stan-
dards and compilers. This interoperability aligns NIR with model-
centric APIs in deep learning and frameworks like MMdnn11 or Ivy10,

facilitating the transfer of models and computations across different
libraries and platforms.

Serializable exchange format. Currently, NIR functions primarily as a
representation and exchange format, focusing on the portability of
core model dynamics rather than optimizing hardware efficiency and
model performance. This approach positions NIR similarly to ONNX6

or MMdnn11, contrasting with frameworks like MLIR7 and TVM9 that
provide cross-compilation and multi-layer abstractions. As NIR’s base
representations stabilize, there is potential to introduce additional
layers of abstraction, enhancing its capability to serve as a founda-
tional building block for future computational frameworks.

Applicability to multiple time scales. NIR and NeuroML model
continuous-time systems, which translate trivially to continuous-time
simulators, as shown in Fig. 1a. By supporting different time constants
in the same computational graph, the model can detail dynamics at
multiple time scales simultaneously. Behaviors at multiple levels are
challenging to capture with discrete simulators that advance via fixed-
time steps, particularly if they are complex or chaotic.

Discussion
We presented an intermediate representation for digital neuro-
morphic systems, the Neuromorphic Intermediate Representation
(NIR), as a platform-independent set of continuous-time computa-
tional primitives. NIR can be viewed as a “neuromorphic instruction
set” that can be composed arbitrarily. It is an ideal serializable repre-
sentation for multiple neuromorphic platforms, serving as a storage
format for software platforms and a source language for these hard-
ware systems. We documented the support of NIR across 11 different
neuromorphic platforms on which we demonstrated three specific
computational graphs: a leaky integrate-and-fire neuron, a spiking
convolutional neural network using integrate-and-fire neurons, and a
spiking recurrent neural network using current-based leaky integrate-
and-fire neurons. We found that NIR faithfully represents the idealized
underlying computation and that the execution aligns well across the
supported platforms for feed-forward dynamics, such as a single LIF
neuron or a spiking convolutional network. For more complex and
time-sensitive models, such as the recurrent network, we found that
platform-specific constraints and discretization choices produced
somewhat diverging activation patterns and accuracies. Although the
graphs are compatible, the continuous-time nature of the primitives
requires platform-dependent optimization, such as quantization-
aware training, on digital systems to achieve the highest accuracies.
The current version ofNIR excludes other importantmechanisms such
as adaptive threshold mechanisms69, gating70,71, resonate-and-fire62,72,
and multicompartmental73,74 neuron models. That said, the open
design of NIR allows for easy integration of new primitives, ensuring
that NIR can adapt to new applications based on neuronal computing
without changing other system-level aspects.

In the context of neuromorphic computing, the notion of mis-
match has traditionally been associated with the imperfections and
variability inherent in analog hardware systems. However, our findings
highlight a crucial and often overlooked aspect of mismatch in purely
digital neuromorphic systems, particularly when working with recur-
rent neural networks. This underscores the need for strategies that
address mismatch across both analog and digital neuromorphic
systems to ensure consistent computational outcomes and enhance
system reliability across various applications.

One key aspect that we do not discuss in this work is the con-
nection to physical systems and future hardware platforms, including
analog. NIR can representmodels of arbitrary scale, limited only by the
underlying hardware of (1) the system that converts a model to and
from the NIR format, and (2) the neuromorphic hardware that runs
such a model. Both the SpiNNaker2 and Loihi platforms scale tomulti-

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 8

www.nature.com/naturecommunications

chip systems, which is necessary to address larger problems such as
energy-efficient large models75. For example, Hala Point combines 1.15
billion neurons distributed across over 1k Loihi 2 processors. In addi-
tion, NIR can be composed into highly complex systems of equations,
such as higher-order systems, which lends itself well to the study of
diffusion, fluid dynamics, and optimization problems for a given
architecture-hardware-software system. NIR primitives can be realized
directly as physical circuit components and can, therefore, generalize
to a richer set of hardware systems than the ones we have discussed so
far. Mapping such models onto larger and richer hardware platforms
would be exciting to explore in future work.

It is crucial that the computations represented by NIR graphs
remain the same, despite evolving primitives and future develop-
ments. An important step towards this is the continued testing of
platform integrations along with a well-documented versioning
approach for the primitives akin to theOperator Set (opset) number in
ONNX6. In addition, and specifically for digital hardware, it would be
interesting to explore the integration of lower-level hardware details
for multi-level models that further optimize efficiency, similar to MLIR
dialects7.

The current computational experiments were chosen to demon-
strate the capabilities of NIR as a proof-of-concept of the representa-
tion’s modular functionality. Hence, tasks such as N-MNIST with SCNN
and Braille dataset with SRNN are not challenging for current ML
algorithms, and we prioritized these illustrations on state-of-the-art
neural network architectures. Yet, the primitives used in the models
are highly relevant for neuromorphic computing76, since recent work
on CNNs and ResNets is successfully competing with ANNs for
vision77–79, and for time-series classification80. These SNNs use far less
computing than their ANN counterparts, which can significantly
reduce energy consumption when implemented on dedicated
hardware81. Large-scale neuromorphic systems like Loihi or SpiNNa-
ker2 and others have shown orders of magnitude energy and latency
improvements compared to off-the-shelf CPUs and GPUs, see
refs. 82,83 for reviews. As the deep learning community has moved to
transformers as a primary component, also efficient, brain-inspired
architectures such as SpikeGPT84 have been developed. There may be
specific applications that run on these current architectures that NIR
may add complex operations, which may reduce energy efficiencies.
For these systems, we do not recommend using NIR as a means to
increase efficiencies. However, formany applications, NIR can become
a useful tool for cross-platform interoperability by providing flexibility
in choosing the most efficient hardware platform for any given neural
architecture. In addition, depending on the application, NIR may
reduce the number of training operations with a potential increase in
energy efficiency.

Our main goal has been to address the lack of shared repre-
sentations for neuromorphic computing. The deployment of software-
generated models on neuromorphic hardware was previously only
possible through hardware-specific software libraries. NIR effectively
decouples the development of neural models from platform-specific
tools, such that software and hardware can evolve independently, as
shown in Fig. 2, and such thatmodels developed in one framework can
be readily deployed and reproduced across neuromorphic simulators
and hardware within device-specific boundary conditions. In turn, NIR
allows users to directly leverage tools and resources from the active

and growing neuromorphic open-source community, such as quanti-
zation mechanisms or algorithms for fast training. Furthermore, the
interoperability of spiking neuron models simplifies benchmarking
and comparison across platforms. Any framework that chooses to
integrate with an intermediate representation, such as NIR, benefits
from these tools as well as a much larger user base compared to
standalone technology stacks. The present set of primitives is limited,
and many platforms are not included in our analysis. However, similar
to how the initial design of digital instruction sets propelled the advent
of modern-day computing, we believe this to be a crucial first step
towards further development of shared tooling infrastructure for
neuromorphic computing. We have argued that abstracting away
hardware-specific details will lower the barrier to entry for new neu-
romorphic hardware systems, and it is our hope that NIR can accel-
erate the academic development required to propel neuromorphic
computing to perform on par with present-day deep learning while
solving practical problems in the near future.

Methods
Computational graphs
Computational graphs are interconnected computational nodes
through which signals flow and have been an important tool for
computational studies in analog and digital systems since their
inception in the 1940s53. In its most abstract form, computational
graphs (G := ðV,EÞ) consist of a set of nodes (V) and edges
(E := ðV ×VÞ) connecting two nodes. An example of a computational
graph could be discrete components on a circuit board, where wires
connect components together. Any state needed in the individual
components, such as voltage, memory, etc., would be dealt with
internally. Another example could be layers in a machine learning
model, where the order in which the layers are applied determines
the flow of the input signal through the model. Most machine
learning models do not require a state contrary to the circuit
example, with the exception of some algorithms such as batch nor-
malization or recurrent neural networks.

In the 1950s Mealy introduced a notation that explicitly captures
state, as it would have to be stored in, say, digital circuits55. Figure 5
visualizes the Mealy machine on the right side, where some input
signal, X, is transformed according to some ruleset in T that recursively
operates on the state S. Both S andX are then transformedaccording to
another ruleset O which computes the final output Y. Mealy machines
formally separate memory (state) from computation (nodes). The
same distinction cannot bemade in analog systems, where the system
itself represents the state computation. While signal flow graphs are
technically more ambiguous regarding the representation of the state,
they compactly represent computational graphs for both digital and
analog systems.

In the following, we restrict ourselves to the domain of first-order
systems, described by ordinary differential equations (ODEs) of the
form

_x = f ðx;θÞ, x 2 RN , θ 2 RM ð4Þ

where x(t) is a real-valued function of time t, _x is the derivative of xwith
respect to time, and f(x) is a continuous real-valued function of the N-
dimensional input x. θ describes a fixed set of M-dimensional

Fig. 5 | Left: a signal flow graph where a signal X is integrated by some arbitrary process to produce the output signal, Y. Right: a Mealy machine where a transition node
T updates a recurrent state S that is forwarded to an output node O which, in turn, determines the output Y.

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 9

www.nature.com/naturecommunications

parameters. f may be smooth, but it may also be subject to sudden
forces, such as a bouncing ball hitting a hard surface. For that reason,
we use hybrid systems, defined as the combination of continuously
smooth functions as well as functions with discrete transitions. We
explicitly model jumps by allowing conditional differential equations
of the form

z =
f Condition

g Else

�
ð5Þ

where f and g are real-valued functions in time.
Digital systems require discrete instructions and cannot directly

solve the equations above. Numerical methods for optimally dis-
cretizing continuousODEs are amature and active research areawith a
long history. Despite the discrepancy between the continuous-time
ODE formulation and digital computers, modern fixed-point neural
solvers allow for sound accuracy with relatively large timesteps and
low precision85. Therefore, we argue that the continuous-time ODE
formulation is not a hindrance for digital systems. In fact, it allows NIR
to express computations at a higher level of informational abstraction
that is independent of how the system is discretized. Thismay result in
inaccuracies across systems that we addressed in Section Computa-
tional primitives.

Modeling hardware constraints with NIR
Not all NIR graphs can be executed by every hardware platform, due to
hardware constraints. We can express these as constraints on the
computational graphs that the hardware supports. For example, the
Xylo Audio 2 chip limits the model to a size of up to 1000 LIF neurons,
eachwith amaximum fan-out of 64. This means that a given NIR graph
G is supported by Xylo only if it contains ≤ 1000 LIF neurons, eachwith
≤ 64 incoming connections.

In this simple example, the constraints are easy to verify, seeBox 1.
In generality, however, this is a difficult problem that is related to the
NP-complete subgraph isomorphism problem. To illustrate the diffi-
culty of this problem, consider a hardware platform that supports only
linear connections, i.e., y =Wx, and no affine connections, i.e., y =
Wx + b. We have a computational graph G in NIR that contains an affine
connection node. A naïve constraint checking algorithm, like the one
shown in Box 1, would decide that theNIR graph G is incompatiblewith
the hardware. However, if the bias b of the affine layer equals zero, we
couldmap the graph G to an “isomorphic” graph G0, in which the affine
connections with zero biases are replaced by linear connections.

Because NIR allows for the composition of existing primitives,
mapping an NIR graph to another platform involves pattern-matching

subgraphs against platform-compatible primitives. For example,
snnTorch represents a recurrently connected LIF population as a
separate building block called RLeaky. Thus, to convert an RNN from
NIR to snnTorch, we must detect subgraphs that are isomorphic to
LIF↔ Linear. Moreover, higher-order primitives are obviously iso-
morphic to the composition of lower-level primitives that define them
(see Table 2).

If we allow for approximations in mapping the graph to the
hardware, this problem gets further complicated as we could, for
example, replace a LIF neuron with a CuBa-LIF neuron with a synaptic
time constant approaching τsyn→0.

Neuromorphic simulators and hardware platforms
As illustrated above, NIR is compatible with many simulators and
hardware platforms that implement the de facto dynamics of the
underlying hybrid ODEs. Specifically, we havemade a series of choices
around the numerical integration of the systems of equations that we
detail alphabetically below.

Hardware platforms
Intel Loihi 2. The Loihi 2 chip by Intel consists of 6 embedded
microprocessor cores (Lakemont x86) and 128 fully asynchronous
neuron cores (NCs) connected by a network-on-chip, as explained in86.
The NCs are optimized for neuromorphic workloads by implementing
a group of spiking neurons and including all synapses connected to
such neurons. All the communication between NCs is in the form of
spike messages. Microprocessor cores are optimized for spike-based
communication and execute standard C code to assist with data I/O as
well as network configuration, management, and monitoring. Some
new functionalities added in this second version of the Loihi chip are
the possibility of implementing custom neuron models using micro-
code instructions (assembly), the option to generate and transmit
graded spikes, and support for three-factor learning rules. A single
Loihi 2 chip supports up to 1million neurons and 120million synapses.
Together with Loihi 2, Intel presented their open-source framework
Lava, that allows users to write neuro-inspired applications and map
them to both traditional and neuromorphic hardware. Using high-level
Python APIs, users can describe their neural networks, which are then
compiled to run on the requested backend. Currently, Lava supports
deployment on traditional CPU and Loihi 2. Specifically for Loihi 2,
Lava also gives the possibility of writing custom neuron models in
assembly to be run on the NCs, and custom C code to be run in the
microprocessor cores. Because of its programmability, the Loihi 2 chip
supports different precision levels for the quantization of parameters
and activations. For our experiments, we used 24 bits for state vari-
ables, 16 bits for activations, 12 bits for time constants, 17 bits for the
thresholds, and 8 bits for the weights.

SpiNNaker2. SpiNNaker2 is an IC designed for the simulation of very
large-scale spiking neural networks. In contrast to many other solu-
tions, it uses 152 processing elements (PE) connected by a network on a
chip. EachPE contains anARMCortexM4Fcorewith 128 kB local SRAM,
as well as accelerators for exponential and logarithm functions and
a 16 × 4 MAC array for 2D convolution and matrix-matrix
multiplications87. Multiple chips can be connected using dedicated
chip2chip links and an on-chip packet router optimized for small
packets of spikes. In addition, each chip can be connected to LPDDR4
DRAM inorder to extend the amountofmemory available per chip. The
py-spinnaker2 software framework88 uses 8-bit signed synapse weights
and 32-bit floating-point numbers for neuron parameters and state
variables, respectively. Currently, IF, LIF and CuBa-LIF neuron models
are implemented and supported, both reset by subtraction or reset to
zero. SinceSpiNNaker2 is software-based, furthermodels canbe added.
It is also not limited to SNN execution but can be used for any com-
putational task, including real-time control or deep neural networks.

BOX 1

Pseudocode for naive
verification of the compatibility
of a NIR graph with the Xylo chip
1 def is_compatible_with_xylo(g: nir.NIRGraph):

2 lif_nodes = filter(is_lif, get_leaf_nodes(g))

3 if len(lif_nodes) > 1000:

4 return False

5 for lif_node in lif_nodes:

6 pre_nodes = get_pre_nodes(lif_node, g)

7 if len(pre_nodes) > 64:

8 return False

9 #... (other constraints)

10 return True

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 10

www.nature.com/naturecommunications

SynSense Speck. Speck is an integrated sensor-processor IC that
fuses event-based vision sensing with event-driven spiking CNN pro-
cessing. The ultra-low-power IC operates fully asynchronously and
takes full advantage of the asynchronous nature of events producedby
theDVS. Theseevents areprocessedby Integrate andFire neurons that
are interconnected efficiently using a convolutional enginewithin each
core. The chip version used in this work comprises of 9 dedicated
SCNN cores, each consisting of convolutional connections, IF neurons,
and pooling. The chip supports 8-bit weight resolution and 16-bit
membrane resolution. Each core supports convolutions of up to 1024
input and output channels with strides of 1, 2, 4, or 8. The device is
accessible via a high-level Python library Sinabs or a low-level library
samna. Further details are available at sinabs.ai and synsense.ai.

SynSense Xylo. Xylo is a series of ultra-low-power devices for sensory
inference, featuring a digital SNN core adaptable to various sensory
inputs like audio and bio-signals. Its SNN core uses an integer-logic
CuBa-LIF neuron model with customizable parameters for each
synapse and neuron, supporting a wide range of network archi-
tectures. The Xylo Audio 2 model (SYNS61201) specifically includes
8-bit synaptic weights, 16-bit synaptic and membrane states, two
synaptic states per neuron, 16 input channels, 1000 hidden neurons, 8
output neurons with 8 output channels, a maximum fan-in of 63, and a
total of 64,000 synaptic weights. For more detailed technical infor-
mation, see https://rockpool.ai/devices/xylo-overview.html. The
Rockpool toolchain contains quantizationmethods designed for Xylo,
as well as bit-accurate simulations of Xylo devices.

Simulation frameworks.Most simulation frameworksmentionedhere
are based on the machine learning accelerator PyTorch89. PyTorch
effectively operates as a compiler that translates Python code to var-
ious digital computing architectures, including CPUs and GPUs. This
does not help the simulation frameworks in addressing the dis-
cretization problems mentioned above, although PyTorch-related
features such as quantization and varying floating-point precision to
approximate hardware constraints can be useful.

Lava is an open-source software stack developed by Intel and
used for programming their Loihi 2 chip43. Lava has a modular struc-
ture, supporting versatile processes from neurons to external device
interfaces. These processes communicate via event-based messaging
and are adaptable to various platforms, including CPU, GPU and the
Loihi 2 chip. Within Lava, there are several other sub-libraries. For NIR,
we are using Lava itself as well as Lava-dl, which offers offline training,
online training, and inference methods for various deep event-based
networks.

Nengo is used to implement networks for deep learning, vision,
motor control, visual attention, serial recall, action selection, working
memory, attractor dynamics, inductive reasoning, path integration,
and planning with problem-solving46. Nengo has been applied to
cognitive modeling, deep learning, adaptive control, and accurate
dynamics, and integrates with several hardware platforms, including
CPU, GPU, FPGA, Loihi 2, and SpiNNaker1. While Nengo aims to be
agnostic to particular neuron models by automatically locally retrain-
ing weights, here we use the neuron model of its default CPU
implementation.

Norse is based on PyTorch and models stateless networks by
explicitly passing the state of the neuron computation into each
computation57. This approach simplifies parallelization and sharding
for both the model and the data. Norse applies simple feed-forward
Euler integration and implements various surrogate and adjoint
methods for gradient-based optimization, as well as spike-time
dependent plasticity and Tsodyks-Markram short-term plasticity for
unsupervised adaptation.

Rockpool is a machine-learning framework for SNNs, supporting
network design, training, testing, and deployment to neuromorphic

hardware58. Rockpool provides a torch-like interface, with automatic
differentiationback-ends andhardwareaccelerationbasedonPyTorch
and JAX90. The library includes hardware-aware training, including
quantization- and pruning-in-training, as well as post-training quanti-
zation. Rockpool includes a flexible and extensible deployment fra-
mework based on graph extraction, which currently includes
deployment to multiple devices in the Xylo family.

Sinabs is a deep learning library based on PyTorch for spiking
neural networks, with a focus on simplicity, fast training, and
extensibility59. Sinabs works well for computer vision models as it
supports weight transfer from conventional CNNs and enables
deployment to Speck, the spiking convolutional processor. With its
support for EXODUS91, it allows for fast training of deep SNNs. It
integrates seamlessly into libraries built on top of PyTorch such as
Lightning.

snnTorch provides a thin abstraction layer on top of PyTorch for
training andmodeling SNNs60. It prioritizes flexibility by providing the
option of stateless and stateful networks to the user. It integrates
various learning rules, including customizable surrogate gradient
descent with backpropagation through time, along with online learn-
ing rules such as real-time recurrent learning variants and spike-time
dependent plasticity. snnTorch also accounts for hardware-friendly
training approaches, including stateful quantization that digital
accelerators may need to account for, as well as probabilistic neuron
models that factor in noise models typical of analog or mixed-signal
hardware.

Spyx61 is a lightweight and modular package for training SNNs
within the JAX ecosystem90. Extending Google Deepmind’s Haiku
library92 for training deep neural networks, Spyx offers a host of sim-
plified spiking neuronmodels and utility functions thatmake it easy to
compose and train SNN architectures through surrogate gradient
descent or neuroevolution. A notable feature is the ability for users to
utilize mixed precision with minimal code modification and leverage
Just-In-Time (JIT) compilation for the entire training loop to achieve
maximal hardware utilization on modern deep learning accelerators
such as GPUs or TPUs.

Training setup
We proceed to describe the training setup used to obtain the archi-
tecture and parameters for the SCNN and SRNN in the second and
third experiments, respectively. The training code can be found on
https://github.com/neuromorphs/NIR/tree/main/paper.

Spiking convolutional neural network. For our SCNN task, we fol-
lowed the ANN to SNN model conversion approach from93. First, we
trained a non-spiking ReLU-based convolutional neural network on
the neuromorphic MNIST dataset (N-MNIST)65 with the following
architecture: Conv (16 channels, 5 × 5 kernel, 2 × 2 stride) - ReLU -
Conv (16 channels, 3 × 3 kernel, 1 × 1 stride) - ReLU - SumPool (2 × 2
kernel), Conv (8 channels, 3 × 3 kernel, 1 × 1 stride) - ReLU - SumPool
(2 × 2 kernel) - Flatten - 1-layerMLP (256 hiddenunits, ReLU activation
on hidden and output). All convolutional layers use a padding of 1 × 1,
and there are no biases for the convolutional or fully connected
layers. The last layer of the network contains 10 neurons, each one
representing one digit.

Each sample from the N-MNIST dataset was turned into three
frames by aggregating over the event count in time, thus creating
180,000 training samples and 30,000 testing samples. The ANN was
trained using backpropagation to optimize the cross-entropy loss
using the Adam optimizer with a learning rate of σ =0.001. The net-
work was trained for four epochs, after which it reached a validation
loss of 0.06 and a validation accuracy of 98%. This ANN was then
transferred to an equivalent spiking convolutional network with
Sinabs. Hence, the neuron with the highest firing rate represents the
label prediction.

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 11

http://sinabs.ai
http://synsense.ai
https://rockpool.ai/devices/xylo-overview.html
https://github.com/neuromorphs/NIR/tree/main/paper
www.nature.com/naturecommunications

Spiking recurrent neural network. For our SRNN task, we trained a
spiking recurrent neural network (SRNN) with one hidden layer on a
Braille letter recognition task66. Data from pressure readings acquired
through an artificial fingertip and encoded using a sigma-delta mod-
ulator with ϑ = 1 was used, accounting for a time binning with a bin size
equal to 5ms.

Compared to the original implementation in ref. 66, we intro-
duced two simplifications to fit the connectivity and size constraints of
the Xylo chip. First, by avoiding input copies and by collapsing the ON
and OFF channels of each tactile sensor into a single spike array
through an OR-like operation at every timestep, we reduced the input
size to twelve. Second, we selected a subset of characters ('Space',
'A', 'E', 'I', 'O', 'U', 'Y') to make this a spatio-temporal classifi-
cation problem that can be handled with only seven neurons in the
output layer. For the hidden recurrent layer, 38 (zero, with bias) or 40
(subtractive, without bias) CuBa-LIF neurons are used, whereas the
output layer contains seven CuBa-LIF neurons. The identification of
optimal hyperparameters for the SRNNwas achievedby performing an
optimization procedure adapted from the one described in ref. 94.

The network was trained with backpropagation-through-time
(BPTT) using surrogate gradients in snnTorch. To optimize the
spiking activity of the output neurons, training was performed on
the cross entropy of the spike count at the output layer. The spike
function was implemented with the Heaviside function in the for-
ward pass and approximated with the fast sigmoid function in the
backward pass95: S≈ U

1 + kjUj with ∂S
∂U = 1

ð1 + kjUjÞ2 where k = 5. A regular-

ization term was added to this loss function to take into account
both the ℓ1 norm of the average number of spikes per neuron and
the ℓ2 norm of the total number of spikes in the recurrent layer. The
coefficients for such regularization were chosen through the
above-mentioned hyperparameter optimization, and the optimal

values found were μ‘1 = 6 × 10�4, μ‘2 = 4 × 10
�6 (zero, bias) and

μ‘1 = 1 × 10
�3, μ‘2 = 1 × 10

�6 (subtractive, no bias). The objective was
minimized using the Adam optimizer with a learning rate of 0.005
(zero, bias) or 0.001 (subtractive, no bias). The training proceeded
for a fixed number of 500 epochs, and the parameters that yielded
the highest validation accuracy were chosen.

Data availability
All data used in this paper is available at neuroir.org and https://doi.
org/10.5281/zenodo.1334121996.

Code availability
All code used in this paper is available at neuroir.org and https://doi.
org/10.5281/zenodo.1334121996.

References
1. Wu, C.-J. et al. Sustainable ai: Environmental implications, chal-

lenges and opportunities. Proc. Mach. Learn. 4, 795–813 (2022).
2. Shankar, S. Energy Estimates Across Layers of Computing: From

Devices to Large-Scale Applications in Machine Learning for Nat-
ural Language Processing, Scientific Computing, and Crypto-
currency Mining. IEEE High Performance Extreme Computing
Conference (HPEC, 2023).

3. Mead, C. Neuromorphic engineering: In memory of Misha Maho-
wald. Neural Comput. 35, 343–383 (2023).

4. Schuman, C. D. et al. Opportunities for neuromorphic computing
algorithms and applications. Nat. Comput. Sci. 2, 10–19 (2022).

5. Frenkel, C., Bol, D. & Indiveri, G. Bottom-up and top-down
approaches for the design of neuromorphic processing systems:
Tradeoffs and synergies between natural and artificial intelli-
gence. Proc. IEEE 111, 623–652 (2023).

6. ONNX. Open neural network exchange https://github.com/onnx/
onnx (2023).

7. Lattner, C. et al. MLIR: A compiler infrastructure for the end of
Moore’s law. Preprint at ArXiv https://doi.org/10.48550/arXiv.
2002.11054 (2020).

8. XLA - tensorflow, compiled. Google Developers Blog https://
developers.googleblog.com/2017/03/xla-tensorflow-compiled.
html (2017).

9. Chen, T. et al. TVM:An automated end-to-endoptimizing compiler
for deep learning. In USENIX Symposium on Operating Systems
Design and Implementation (2018).

10. Lenton, D., Pardo, F., Falck, F., James, S. & Clark, R. Ivy: Templated
deep learning for inter-framework portability. Preprint at https://
doi.org/10.48550/arXiv.2102.02886 (2021).

11. Liu, Y. et al. Enhancing the interoperability between deep learning
frameworks bymodel conversion. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/
FSE 2020, 1320-1330 (Association for ComputingMachinery, New
York, NY, USA, 2020).

12. Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front.
Neurosci. 5, 9202 (2011).

13. Indiveri, G., Chicca, E. & Douglas, R. A vlsi array of low-power
spiking neurons and bistable synapses with spike-timing
dependent plasticity. IEEE Trans. Neural Netw. 17, 211–221
(2006).

14. Giulioni, M. et al. A vlsi network of spiking neurons with plastic
fully configurable “stop-learning” synapses. In 2008 15th IEEE
International Conference on Electronics, Circuits and Systems,
678–681 (IEEE, 2008).

15. Neckar, A. et al. Braindrop: A mixed-signal neuromorphic archi-
tecture with a dynamical systems-based programming model.
Proc. IEEE 107, 144–164 (2018).

16. Schmitt, S. et al. Neuromorphic hardware in the loop: Training a
deep spiking network on the brainscales wafer-scale system.
Proceedings of the 2017 IEEE International Joint Conference on
Neural Networks 2227–2234 (2017).

17. Merolla, P. A. et al. Amillion spiking-neuron integrated circuit with
a scalable communication network and interface. Science 345,
668–673 (2014).

18. Davies, M. et al. Loihi: A neuromorphic manycore processor with
on-chip learning. IEEE Micro 38, 82–99 (2018).

19. Pei, J. et al. Towards artificial general intelligence with hybrid
tianjic chip architecture. Nature 572, 106–111 (2019).

20. Moradi, S., Qiao, N., Stefanini, F. & Indiveri, G. A scalablemulticore
architecture with heterogeneous memory structures for dynamic
neuromorphic asynchronous processors (dynaps). IEEE Trans.
Biomed. Circuits Syst. 12, 106–122 (2017).

21. Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker
project. Proc. IEEE 102, 652–665 (2014).

22. Mayr, C., Hoeppner, S. & Furber, S. SpiNNaker 2: A 10million core
processor system for brain simulation and machine learning.
Preprint at arXiv https://doi.org/10.48550/arXiv.1911.02385
(2019).

23. Furber, S. Large-scale neuromorphic computing systems. J.
Neural Eng. 13, 051001 (2016).

24. Thakur, C. S. et al. Large-scale neuromorphic spiking array pro-
cessors: A quest tomimic the brain. Front. Neurosci. 12, 891 (2018).

25. Amir, A. et al. Cognitive computing programming paradigm: A
corelet language for composing networks of neurosynaptic cores.
In The 2013 International Joint Conference on Neural Networks
(IJCNN), 1–10 (2013).

26. Stefanini, F., Neftci, E. O., Sheik, S. & Indiveri, G. Pyncs: a micro-
kernel for high-level definition and configuration of neuromorphic
electronic systems. Front. Neuroinform. 8, 73 (2014).

27. Aimone, J. B. & Parekh, O. The brain’s unique take on algorithms.
Nat. Commun. 14, 4910 (2023).

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 12

https://neuroir.org
https://doi.org/10.5281/zenodo.13341219
https://doi.org/10.5281/zenodo.13341219
https://neuroir.org
https://doi.org/10.5281/zenodo.13341219
https://doi.org/10.5281/zenodo.13341219
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://api.semanticscholar.org/CorpusID:211296505
https://api.semanticscholar.org/CorpusID:211296505
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://doi.org/10.48550/arXiv.2102.02886
https://doi.org/10.48550/arXiv.2102.02886
https://doi.org/10.48550/arXiv.1911.02385
www.nature.com/naturecommunications

28. Jaeger, H., Noheda, B. & van der Wiel, W. G. Toward a formal
theory for computing machines made out of whatever physics
offers. Nat. Commun. 14, 4911 (2023).

29. Lohoff, J. et al. Interfacing neuromorphic hardware with machine
learning frameworks - a review. In Proceedings of the 2023 Inter-
national Conference on Neuromorphic Systems, ICONS ’23
(Association for ComputingMachinery, NewYork, NY, USA, 2023).

30. Davison, A. P. et al. PyNN: a common interface for neuronal net-
work simulators. Front. Neuroinform. 2, 388 (2009).

31. Gewaltig, M.-O. & Diesmann, M. Nest (neural simulation tool).
Scholarpedia 2, 1430 (2007).

32. Carnevale, N. T. & Hines, M. L.The NEURON Book (Cambridge
University Press, 2006).

33. Abi Akar, N. et al. Arbor — A Morphologically-Detailed Neural
Network Simulation Library for Contemporary High-Performance
Computing Architectures. In 2019 27th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing
(PDP), 274–282 (2019).

34. Stimberg, M., Brette, R. & Goodman, D. F. Brian 2, an intuitive and
efficient neural simulator. Elife 8, e47314 (2019).

35. Niedermeier, L. et al. Carlsim 6: an open source library for large-
scale, biologically detailed spiking neural network simulation. In
2022 International Joint Conference on Neural Networks (IJCNN),
1–10 (IEEE, 2022).

36. Brüderle, D. et al. Establishing a novel modeling tool: a python-
based interface for a neuromorphic hardware system. Front.
Neuroinform. 3, 362 (2009).

37. Müller, E. et al. The operating system of the neuromorphic
brainscales-1 system. Neurocomputing 501, 790–810 (2022).

38. Rhodes, O. et al. sPyNNaker: A software package for running PyNN
simulations on spinnaker. Front. Neurosci. 12, 816 (2018).

39. Cannon, R. C. et al. LEMS: a language for expressing complex
biological models in concise and hierarchical form and its use in
underpinning NeuroML 2. Front. Neuroinform. 8, 79 (2014).

40. Stimberg, M., Goodman, D. F. & Nowotny, T. Brian2genn: accel-
erating spiking neural network simulations with graphics hard-
ware. Sci. Rep. 10, 410 (2020).

41. Michaelis, C., Lehr, A. B., Oed, W. & Tetzlaff, C. Brian2loihi: An
emulator for the neuromorphic chip loihi using the spiking
neural network simulator brian. Front. Neuroinform. 16,
1015624 (2022).

42. Aimone, J. B., Severa, W. & Vineyard, C. M. Composing neural
algorithms with Fugu. In Proceedings of the International Con-
ference on Neuromorphic Systems, ICONS ’19, 1-8 (Association for
Computing Machinery, New York, NY, USA, 2019).

43. Williams, M. G. K., Plank, P. & Shrestha, S. B. Lava - a software
framework for neuromorphic computing. https://github.com/
lava-nc/lava (2023).

44. Hoare, C. A. R. Communicating sequential processes. Commun.
ACM 21, 666–677 (1978).

45. Shrestha, S. B., Timcheck, J., Frady, P., Campos-Macias, L. &
Davies, M. Efficient Video and Audio Processing with Loihi 2.
ICASSP 2024 - 2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP, 2024).

46. Bekolay, T. et al. Nengo: a python tool for building large-scale
functional brain models. Front. Neuroinform. 7, 48 (2014).

47. Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M. & Liu, S.-C. Con-
version of continuous-valued deep networks to efficient event-
driven networks for image classification. Front. Neurosci. 11,
682 (2017).

48. Rueckauer, B. et al. NxTF: An API and compiler for deep spiking
neural networks on intel loihi. ACM J. Emerg. Technol. Comput.
Syst. 18, 1–22 (2022).

49. Spilger, P. et al. hxtorch.snn: Machine-learning-inspired spiking
neural network modeling on BrainScaleS-2. In Neuro-inspired

Computational Elements Workshop (NICE 2023) (Association for
Computing Machinery, New York, NY, USA, 2023).

50. Zhang, Y. et al. A system hierarchy for brain-inspired computing.
Nature 586, 378–384 (2020).

51. Song, S., Balaji, A., Das, A., Kandasamy, N. & Shackleford, J.
Compiling spiking neural networks to neuromorphic hardware.
In The 21st ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, LCTES ’20, 38–50
(Association for Computing Machinery, New York, NY, USA,
2020).

52. Ji, Y., Zhang, Y., Chen, W. & Xie, Y. Bridge the gap between neural
networks and neuromorphic hardware with a neural network
compiler. In Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’18, 448–460 (Association for Com-
puting Machinery, New York, NY, USA, 2018).

53. Shannon, C. E. Mathematical theory of the differential analyzer. J.
Math. Phys. 20, 337–354 (1941).

54. Willems, J. C. From time series to linear system-part i. finite
dimensional linear time invariant systems. Automatica 22,
561–580 (1986).

55. Mealy, G. H. A method for synthesizing sequential circuits. Bell
Syst. Tech. J. 34, 1045–1079 (1955).

56. Lattner, C. &Adve, V. S. Llvm: a compilation framework for lifelong
program analysis & transformation. International Symposium on
Code Generation and Optimization, 2004. CGO 2004.
75–86 (2004).

57. Pehle, C. & Pedersen, J. E. Norse - A deep learning library for
spiking neural networks. https://doi.org/10.5281/zenodo.
4422025 (2021).

58. Muir, D. R., Bauer, F. &Weidel, P. Rockpool documentation https://
doi.org/10.5281/zenodo.3773845. https://rockpool.ai (2019).

59. Sheik, S., Lenz, G., Bauer, F. & Kuepelioglu, N. SINABS: A simple
Pytorch based SNN library specialised for Speck https://github.
com/synsense/sinabs (2023).

60. Eshraghian, J. K. et al. Training spiking neural networks using
lessons from deep learning. Proc. IEEE 111, 1016–1054 (2023).

61. Heckel, K. M. & Nowotny, T. Spyx: A library for just-in-time com-
piled optimization of spiking neural networks. Preprint at https://
doi.org/10.48550/arXiv.2402.18994 (2024).

62. Orchard, G. et al. Efficient neuromorphic signal processing with
loihi 2. In 2021 IEEEWorkshoponSignal ProcessingSystems (SiPS),
254–259 (2021).

63. Bos, H. & Muir, D. R. Sub-mW Neuromorphic SNN Audio Proces-
sing Applications with Rockpool and Xylo. In Embedded Artificial
Intelligence: Devices, Embedded Systems, and Industrial Applica-
tions, River Publishers, pp. 69–78 (2022).

64. Forno, E., Fra, V., Pignari, R., Macii, E. & Urgese, G. Spike
encoding techniques for IoT time-varying signals bench-
marked on a neuromorphic classification task. Front. Neurosci.
16, 999029 (2022).

65. Orchard, G., Jayawant, A., Cohen, G. K. & Thakor, N. Converting
static image datasets to spiking neuromorphic datasets using
saccades. Front. Neurosci. 9, 437 (2015).

66. Müller-Cleve, S. F. et al. Braille letter reading: A benchmark for
spatio-temporal pattern recognition on neuromorphic hardware.
Front. Neurosci. 16, 951164 (2022).

67. Rokh, B., Azarpeyvand, A. & Khanteymoori, A. A comprehensive
survey on model quantization for deep neural networks in image
classification. ACM Trans. Intell. Syst. Technol. 14, 1–50 (2023).

68. Mead, C. Neuromorphic electronic systems. Proc. IEEE 78,
1629–1636 (1990).

69. Brette, R. & Gerstner, W. Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity. J. Neuro-
physiol. 94, 3637–3642 (2005).

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 13

https://github.com/lava-nc/lava
https://github.com/lava-nc/lava
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.5281/zenodo.3773845
https://doi.org/10.5281/zenodo.3773845
https://rockpool.ai
https://github.com/synsense/sinabs
https://github.com/synsense/sinabs
https://doi.org/10.48550/arXiv.2402.18994
https://doi.org/10.48550/arXiv.2402.18994
www.nature.com/naturecommunications

70. Costa, R., Assael, L. A., Shillingford B., de Freitas, N. & Vogels, T.
Cortical microcircuits as gated-recurrent neuralnetworks. Neural
Information Processing Systems (2017).

71. Liu, Q. et al. Lstm-snp: A long short-term memory model inspired
from spiking neural p systems. Knowl. Based Syst. 235,
107656 (2022).

72. Izhikevich, E. M. Resonate-and-fire neurons. Neural Netw. 14,
883–894 (2001).

73. Urbanczik, R. & Senn, W. Learning by the dendritic prediction of
somatic spiking. Neuron 81, 521–528 (2014).

74. Yang, S. et al. Sam: A unified self-adaptive multicompartmental
spiking neuron model for learning with working memory. Front.
Neurosci. 16, 850945 (2022).

75. Zhu, R.-J. et al. Scalable matmul-free language modeling https://
api.semanticscholar.org/CorpusID:270226550 (2024).

76. Rathi, N. et al. Exploring neuromorphic computing based on
spiking neural networks: Algorithms to hardware. ACM Comput.
Surv. 55, 1–49 (2023).

77. Fang, W. et al. Deep residual learning in spiking neural networks.
Adv. Neural Inf. Process. Syst. 34, 21056–21069 (2021).

78. Kim, Y., Chough, J. & Panda, P. Beyond classification: Directly
training spiking neural networks for semantic segmentation.
Neuromorphic Comput. Eng. 2, 044015 (2022).

79. Pedersen, J. E., Conradt, J. & Lindeberg, T. Covariant spatio-
temporal receptive fields for neuromorphic computing. Preprint
at ArXiv https://doi.org/10.48550/arXiv.2405.00318 (2024).

80. Yin, B., Corradi, F. & Bohté, S. M. Accurate and efficient time-
domain classification with adaptive spiking recurrent neural net-
works. Nat. Mach. Intell.3, 905–913 (2021).

81. Panda, P., Aketi, S. A. & Roy, K. Toward scalable, efficient, and
accurate deep spiking neural networks with backward residual
connections, stochastic softmax, and hybridization. Front. Neu-
rosci. 14, 535502 (2020).

82. Davies, M. et al. Advancing neuromorphic computingwith Loihi: A
survey of results and outlook. Proc. IEEE 109, 911–934 (2021).

83. Vogginger, B. et al. Neuromorphic hardware for sustainable AI
data centers. Preprint at https://doi.org/10.48550/arXiv.2402.
02521 (2024).

84. Zhu, R.-J., Zhao, Q. & Eshraghian, J. K. Spikegpt: Generative pre-
trained language model with spiking neural networks. Preprint at
arXiv https://doi.org/10.48550/arXiv.2302.13939 (2023).

85. Hopkins, M. & Furber, S. Accuracy and efficiency in fixed-point
neural ODE solvers. Neural Comput. 27, 2148–2182 (2015).

86. Gomez, W. G. et al. First steps towards micro-benchmarking the
lava-loihi neuromorphic ecosystem. In2023 IEEE 16th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC), 462–469 (2023).

87. Höppner, S. et al. The spinnaker 2 processing element archi-
tecture for hybrid digital neuromorphic computing. Preprint at
arXiv https://doi.org/10.48550/arXiv.2103.08392 (2021).

88. Vogginger, B. et al. py-spinnaker2 https://doi.org/10.5281/
zenodo.10202110 (2023).

89. Paszke, A. et al. PyTorch: An imperative style, high-performance
deep learning library. Advances in neural information processing
systems 32 (2019).

90. Bradbury, J. et al. JAX: composable transformations of Python
+NumPy programs http://github.com/google/jax (2018).

91. Bauer, F. C., Lenz, G., Haghighatshoar, S. & Sheik, S. Exodus:
Stable and efficient training of spiking neural networks. Front.
Neurosci. 17, 1110444 (2023).

92. Hennigan, T., Cai, T., Norman, T., Martens, L. & Babuschkin, I. Haiku:
Sonnet for JAX http://github.com/deepmind/dm-haiku (2020).

93. Diehl, P. U. et al. Fast-classifying, high-accuracy spiking deep
networks through weight and threshold balancing. In 2015

International Joint Conference on Neural Networks (IJCNN), 1–8
(IEEE, 2015).

94. Fra, V. et al. Human activity recognition: suitability of a neuro-
morphic approach for on-edge AIoT applications. Neuromorphic
Comput. Eng. 2, 014006 (2022).

95. Zenke, F. & Vogels, T. P. The remarkable robustness of surrogate
gradient learning for instilling complex function in spiking neural
networks. Neural Comput. 33, 899–925 (2021).

96. Pedersen, J. E. et al. Neuromorphic intermediate representation
https://doi.org/10.5281/zenodo.13341219 (2024).

97. Wan, W. et al. A compute-in-memory chip based on resistive
random-access memory. Nature 608, 504–512 (2022).

98. Cai, F. et al. A fully integrated reprogrammable memristor–CMOS
system for efficient multiply–accumulate operations. Nat. Elec-
tron. 2, 290–299 (2019).

99. Frenkel, C. & Indiveri, G. ReckOn: A 28nm sub-mm2 task-agnostic
spiking recurrent neural network processor enabling on-chip
learning over second-long timescales. In 2022 IEEE International
Solid-State Circuits Conference (ISSCC), vol. 65, 1–3 (IEEE, 2022).

100. Bos, H. & Muir, D. Sub-mW neuromorphic SNN audio processing
applications with Rockpool and Xylo. Embedded Artificial Intelli-
gence: Devices, Embedded Systems, and Industrial Applications
69 (2023).

Acknowledgements
We owe our thanks to Giacomo Indiveri for his careful and detailed
feedback. Yulia Sandarmiskaya and Jörg Conradt deserve our gratitude
for their helpful comments. The authors would like to acknowledge the
Telluride Neuromorphic Cognition Engineering Workshop for providing
a conducive environment for conceiving and implementing the first
steps towards NIR. The authors would like to acknowledge fundings
from EC Horizon 2020 Framework Program under Grant Agreements
785907 and 945539 (J.E.P), the Pioneer Center for AI, under the Danish
National Research Foundation grant number P1 (J.E.P), European Union’s
Horizon 2020 Research and Innovation Program under the Marie
Skłodowska-Curie Grant Agreement No. 860360 (S.A.), the German
Research Foundation as part of Germany’s Excellence Strategy - EXC
2050/1 - Project ID390696704 -Cluster of Excellence “Centre for Tactile
Internet with Human-in-the-Loop” of Technische Universität Dresden
(M.J.), the German Federal Ministry for Economic Affairs and Climate
Action under the contract 01MN23004F (B.V.), the European Union -
NextGenerationEU Project 3A-ITALY MICS Spoke 6, grants PE0000004,
CUP E13C22001900001 (V.F.), the Italian National Recovery and Resi-
lience Plan (NRRP), M4C2, funded by the European Union - NextGener-
ationEU, grant numbers IR0000011, CUP B51E22000150006, “EBRAINS-
Italy” (G.U.), the ECSEL Joint Undertaking grant agreements 826655
“TEMPO” and 876925 “ANDANTE”; the KDT Joint Undertaking grant
agreement 101097300 “EdgeAI”; Innosuisse and the Swiss State
Secretariat for Education, Research and Innovation (D.R.M. and S.
Sheik.), theDepartment of Energy’sOffice of Science contract DE-AC02-
76SF00515 with SLAC through an Annual Operating Plan agreement
WBS 2.1.0.86 from the Office of Energy Efficiency and Renewable
Energy’s AdvancedManufacturing andMaterials TechnologyOffice and
the institutional support fromSLACNational Laboratory (S.Shankar), the
National Science Foundation under Award ECCS-2332166 (J.K.E.).

Author contributions
J.E.P., S.A., M.J., F.C.B., B.V., G.L., and S. Sheik contributed to the NIR
Core library. J.E.P., S.A., M.J., V.F., F.C.B., B.V., G.L., D.R.M., P.Z., K.H.,
T.C.S., S. Sheik, and J.K.E. contributed to the conversions and experi-
ments for the different library and hardware backends. J.E.P., S.A., B.V.,
S. Sheik, G.U., V.F., and S. Shankar conceived the experiments. J.E.P.,
S.A.,M.J., and J.K.E. contributed to thefigures. All authors contributed to
writing the paper.

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 14

https://api.semanticscholar.org/CorpusID:270226550
https://api.semanticscholar.org/CorpusID:270226550
https://doi.org/10.48550/arXiv.2405.00318
https://doi.org/10.48550/arXiv.2402.02521
https://doi.org/10.48550/arXiv.2402.02521
https://doi.org/10.48550/arXiv.2302.13939
https://doi.org/10.48550/arXiv.2103.08392
https://doi.org/10.5281/zenodo.10202110
https://doi.org/10.5281/zenodo.10202110
http://github.com/google/jax
http://github.com/deepmind/dm-haiku
https://doi.org/10.5281/zenodo.13341219
www.nature.com/naturecommunications

Funding
Open access funding provided by Royal Institute of Technology.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-52259-9.

Correspondence and requests for materials should be addressed to
Jens E. Pedersen.

Peer review informationNatureCommunications thanksCorey Lammie,
Youhui Zhang, and the other anonymous reviewer(s) for their contribu-
tion to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

1KTHRoyal Institute of Technology, Stockholm, Sweden. 2CogniGronCenter, University of Groningen,Groningen, Netherlands. 3Bernoulli Institute, University
of Groningen, Groningen, Netherlands. 4Technische Universität Dresden, Dresden, Germany. 5Centre for Tactile Internet with Human-in-the-Loop,
Dresden, Germany. 6Neurobus, Toulouse, France. 7Politecnico di Torino, Turin, Italy. 8SynSense, Zurich, Switzerland. 9LuxiTech Co. Ltd., Shenzhen, China.
10University of Cambridge, Cambridge, UK. 11Stanford University, Stanford, CA, USA. 12SLAC National Laboratory, Menlo Park, CA, USA. 13National Research
Council, Ottawa, Canada. 14University of California, Santa Cruz, USA. 15These authors contributed equally: Jens E. Pedersen, Steven Abreu.

e-mail: jeped@kth.se

Article https://doi.org/10.1038/s41467-024-52259-9

Nature Communications | (2024) 15:8122 15

https://doi.org/10.1038/s41467-024-52259-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:jeped@kth.se
www.nature.com/naturecommunications

	Neuromorphic intermediate representation: A unified instruction set for interoperable brain-inspired computing
	Results
	Experiments
	Leaky integrate-and-fire dynamics
	Convolutional neural network
	Recurrent neural network
	Discussion of mismatches
	Neuron model implementation
	Quantization
	Determinism

	NIR axioms
	Outline placeholder
	Axiom 1
	Axiom 2

	Computational primitives
	Relation between NIR and existing intermediate representations
	Modular approach to primitives
	Agnostic to hardware/software platforms
	Serializable exchange format
	Applicability to multiple time scales

	Discussion
	Methods
	Computational graphs
	Modeling hardware constraints with NIR
	Neuromorphic simulators and hardware platforms
	Hardware platforms
	Intel Loihi 2
	SpiNNaker2
	SynSense Speck
	SynSense Xylo

	Simulation frameworks

	Training setup
	Spiking convolutional neural network
	Spiking recurrent neural network

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information

