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Abstract
We investigate the relations between normalized critical points of the nonlinear
Schrödinger energy functional and critical points of the corresponding action func-
tional on the associated Nehari manifold. Our first general result is that the ground
state levels are strongly related by the following duality result: the (negative) energy
ground state level is the Legendre–Fenchel transform of the action ground state level.
Furthermore, whenever an energy ground state exists at a certain frequency, then all
action ground states with that frequency have the same mass and are energy ground
states too. We prove that the converse is in general false and that the action ground
state level may fail to be convex. Next we analyze the differentiability of the ground
state action level and we provide an explicit expression involving the mass of action
ground states. Finally we show that similar results hold also for local minimizers.

Mathematics Subject Classification 35Q55 · 49J40 · 58E30

1 Introduction andmain results

This paper is devoted to the relation between action ground states and energy ground
states of the nonlinear Schrödinger (NLS) equation

�u + |u|p−2u = λu in� (1)
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1546 S. Dovetta et al.

where λ is a real parameter, � is a (possibly unbounded) open subset of RN and u ∈
H1
0 (�) (most of our methods and results, however, are rather general and remain valid

in other settings, such as Neumann boundary conditions, or even the NLS equation
on metric graphs). Here and throughout the paper, without further warning, we will
always assume that the exponent p satisfies

p ∈ (2, 2∗), 2∗ = 2N

N − 2
(2∗ = ∞ if N = 1, 2), (2)

which allows for a standard definition of weak solutions.
Since the seminal papers [8, 9, 16, 17, 40], the literature on semilinear scalar field

equations (with (1) as a prototype) has grown enormously and, with no pretence of
being exhaustive, we just refer the reader to the monograph [12] for a comprehensive
discussion of the NLS equation onRN , and for instance to [18, 19, 36] (and references
therein) for some of the most recent developments.

The existence of positive solutions to (1) can be addressed by variational methods in
at least two different ways, either by minimizing the action functional Jλ : H1

0 (�) →
R

Jλ(u) := 1

2
‖∇u‖2L2(�)

+ λ

2
‖u‖2L2(�)

− 1

p
‖u‖p

L p(�) (3)

on the associated Nehari manifold

Nλ =
{

u ∈ H1
0 (�)\{0} : J ′

λ(u)u = 0
}

=
{

u ∈ H1
0 (�)\{0} : ‖∇u‖2L2(�)

+ λ‖u‖2L2(�)
= ‖u‖p

L p(�)

}
,

(4)

or by minimizing the energy functional E : H1
0 (�) → R

E(u) = 1

2
‖∇u‖2L2(�)

− 1

p
‖u‖p

L p(�) (5)

on the manifold of mass-constrained functions

Mμ =
{

u ∈ H1
0 (�) : 1

2
‖u‖2L2(�)

= μ

}
. (6)

Definition 1.1 (Ground states) With the notation introduced above,

(1) given λ ∈ R, a function u ∈ Nλ is called an action ground state if Jλ(u) = J (λ),
where

J (λ) := inf
v∈Nλ

Jλ(v), (7)

and J (λ) is called the action ground state level;
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(2) givenμ ≥ 0, a function u ∈ Mμ is called an energy ground state if E(u) = E(μ),
where

E(μ) := inf
v∈Mμ

E(v), (8)

and E(μ) is called the energy ground state level.

It is well known that, due to the form of Jλ, an action ground state will solve (1)
because u ∈ Nλ is a “natural constraint” for Jλ, i.e. any constrained critical point of
Jλ is in fact a genuine critical point in H1

0 (�). This approach is quite natural when
one is interested in solutions of (1) having a prescribed “frequency” λ (for a general
discussion on the method of Nehari manifold see [41]).

On the other hand, an energy ground state u of prescribed mass μ will solve (1)
with λ as a Lagrange multiplier due to the mass constraint. These solutions are usually
referred to as normalized (or having prescribed mass), and in this case the frequency
λ is not known a priori. Contrary to critical points of the action functional, the analysis
of normalized solutions is relatively recent. Starting from the original paper [24], this
topic is nowadays a well-developed research line (see for instance [1–6, 15, 23, 30,
31, 33–35] and references therein).

More generally, in both cases, besides ground states one may also look at (con-
strained) critical points, but in any case these two approaches are clearly intertwined,
since any critical point u ∈ Nλ of Jλ is also a critical point of E in Mμ (where μ is
the mass of u) and, conversely, any critical point u ∈ Mμ of E is also a critical point
of Jλ in Nλ (where λ is the Lagrange multiplier of u that pops up in (1)).

Despite these relationships, however, the precise interplay between the “action
approach” and the “energy approach” (in particular, the question whether an action
ground state is necessarily also an energy ground state, or the other way round, etc.)
has not been thoroughly investigated yet, and the present paper aims at taking a first
step in this direction.

Our first general result is that the “ground state levels” defined in (7) and (8) are
strongly related by the following duality result.

Theorem 1.2 The (negative) energy ground state level − E(μ) is the Legendre–Fenchel
transform of the action ground state level J (λ), that is

− E(μ) = J ∗(μ) := sup
λ∈R

(λμ − J (λ)) ∀μ ≥ 0. (9)

The fact that (9) holds for μ ≥ 0 only is by no means restrictive, as J ∗(μ) = +∞
for every μ < 0 (see Remark 2.6 below), whereas E is not even defined for negative
masses. Note that (9) is valid in full generality, regardless for what λ orμ the infima in
(7) and (8) are attained, and even regardless the finiteness of E(μ) (notice that, while
at this level of generality E(μ)may take the value−∞, in any case J (λ) ≥ 0 because
Jλ(u) = ( 12 − 1

p )‖u‖p
L p(�) for every u ∈ Nλ).

When an energy ground state exists, however, it is always an action ground state.
More precisely, we have the following result.
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1548 S. Dovetta et al.

Theorem 1.3 Given μ > 0, assume u ∈ Mμ is an energy ground state of mass μ,
and let λ be the Lagrange multiplier associated with u in (1). Then u is also an action
ground state on Nλ. Moreover, any other action ground state v ∈ Nλ belongs to Mμ

(i.e. v has the same mass as u), and v is also an energy ground state on Mμ.

This reveals a certain rigidity of the variational framework with respect to energy
ground states. Indeed, whenever a frequency λ pops up as the Lagrange multiplier
of an energy ground state u, not only is u also an action ground state in Nλ, but any
other action ground state v ∈ Nλ is forced to have the same mass as u, and is itself an
energy ground state.

In view of Theorem 1.2 (that entails the concavity of E(μ)), it is natural to wonder
if the duality between J and E can be reversed, by expressing the transform of −E
in terms of J . Contrary to (9), this question is sensitive to the finiteness of E . For
instance, in the L2-supercritical regime p > 2 + 4/N , since E(μ) = −∞ for every
μ > 0 (and E(0) = 0),

J ∗∗(λ) = (−E)∗(λ) = sup
μ≥0

(λμ + E(μ)) = 0 ∀λ ∈ R.

As J (λ) > 0 for certain values of λ, it is evident that J ∗∗ �≡ J , so that for these
values of p the duality in Theorem 1.2 goes in one direction only. As a by-product,
this also shows that, in the L2-supercritical regime, J is never a convex function.

In the L2-subcritical and critical regimes, on the contrary, the situation is more
involved. In this case, there always exist values of the mass for which E is finite.
Nevertheless, whether J coincides with J ∗∗ is not trivial only if J is a continuous
function on R. In view of Lemma 2.4 below (see also Remark 2.5), this is equivalent
to J (−λ�) = 0, where

λ� := inf
u∈H1

0 (�)

‖∇u‖2
L2(�)

‖u‖2
L2(�)

denotes the bottom of the spectrum of the Dirichlet Laplacian. The validity of
J (−λ�) = 0, without further assumptions on �, seems however to be an open prob-
lem. Anyway, even in this setting it is possible to prove that the duality of Theorem
1.2 does not hold in the opposite direction in full generality.

Theorem 1.4 Let p ≤ 2 + 4/N and assume that � has finite measure. If for some
λ̄ ∈ R there exist two action ground states v1, v2 ∈ Nλ̄ with different masses, then

J (λ̄) > J ∗∗(λ̄) = sup
μ≥0

(
λ̄μ + E(μ)

)
. (10)

In particular, J is not a convex function.

The previous theorem unravels a certain asymmetry between the two variational
problems. Indeed, if some λ̄ allows, as above, for two action ground states of different
masses, then Theorem 1.3 prevents the existence of any energy ground state (of any
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Action versus energy ground states in nonlinear… 1549

prescribed mass) with frequency λ̄. This also shows that the implication of Theorem
1.3 “energy ground state �⇒ action ground state” cannot be reversed, in general.

At present, we do not know any reference in the literature providing a domain �

and a frequency λ̄ satisfying the hypotheses of Theorem 1.4. However, we believe that
this may happen, and we can exhibit an explicit example of such a phenomenon in the
context of NLS equations on metric graphs, that will be the object of a forthcoming
paper. The finitemeasure assumption in the preceding result is of course far from sharp.
We stated Theorem 1.4 in its present form to highlight the key idea underpinning the
possible loss of convexity of J in the most basic framework possible. However more
general conditions can be considered to extend the result to sets of infinite measure
(for the major differences arising in this case see Remark 2.7 below).

Clearly, though up to now we pursued a wide generality, this type of results is most
meaningful in those regimes where ground states of either kind do exist, which of
course depends on the power p, on the values of λ and μ being considered, and on �.
On the one hand, in light of the above discussion it is obvious that problem (8) admits
no solution (for anyμ > 0) whenever p > 2+4/N , while existence of energy ground
states at the L2-critical power p = 2+ 4/N strongly depends on the specific value of
the mass. On the other hand, existence of action ground states is possible only when
λ exceeds −λ�. Therefore we introduce the following

Assumption A Let

2 < p < 2 + 4

N
, λ > −λ�. (11)

We assume that � is such that action ground states exist for every λ > −λ� and
energy ground states exist for every μ > 0.

For the sake of clarity, we state our next result under Assumption A, though it
remains valid as soon as existence is known to hold in certain intervals of frequencies
and masses. In Sect. 5 we will provide concrete classes of domains on which our
analysis applies.

Note that the (possible) non-convexity of J is in contrast with the concavity of E
which entails that E(μ) is differentiable except, at worst, for a countable set of masses.
In [14], we further investigated the differentiability of E , showing that its right and
left derivatives satisfy

E ′+(μ) = −�+(μ), E ′−(μ) = −�−(μ),

where �+ and �− denote, respectively, the maximum and minimum frequency asso-
ciated with an energy ground state of mass μ. Although the results in [14] are derived
in the framework of metric graphs, the methods used therein are general and cover the
case of Eq. (1) in� ⊆ R

N (under a closure assumption analogous to the one discussed
below).
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1550 S. Dovetta et al.

Without relying on convexity, however, we can prove similar differentiability prop-
erties for the function J (λ) as well. To this end, for λ > −λ�, we define the set

Q(λ) :=
{
μ | there exists an action ground state u ∈ Nλ with

1

2
‖u‖2L2(�)

= μ

}
,

(12)

i.e. the set of masses achieved by all action ground states with frequency λ, and we
consider

Assumption B For every pair of sequences λn > −λ� and μn ∈ Q(λn) such that

λn → λ ∈ (−λ�,+∞), μn → μ ∈ R,

there holds μ ∈ Q(λ), where Q(λ) denotes the closure of Q(λ).

Roughly, Assumption B provides a minimum of continuity on the parameters suf-
ficient to deal with differentiability issues. As pointed out in Remark 5.11, it is a
compactness assumption,weaker than other compactness properties of the set of action
ground states in H1

0 (�).

Theorem 1.5 If Assumptions A–B hold, then

(i) the left and right derivatives of J exist for every λ ∈ (−λ�,+∞) and

J ′−(λ) = sup Q(λ), J ′+(λ) = inf Q(λ);

(ii) there exists an at most countable set Z ⊂ (−λ�,+∞) such that, for every
λ ∈ (−λ�,+∞)\Z, the set Q(λ) = {μλ} is a singleton. In particular, J is
differentiable in (−λ�,+∞)\Z, where

J ′(λ) = μλ. (13)

Corollary 1.6 If λ̄ satisfies the assumptions of Theorem 1.4, thenJ is not differentiable
at λ̄.

Remark 1.7 Formula (13)may look familiar in the light of the by-nowstandard stability
theory forNLS equations [13, 21, 22, 37, 42, 43]. However, the key starting assumption
of those works is to consider a C1-curve of solutions to (1), parametrized by the
frequency λ, and all the subsequent differentiability and stability properties are given
along this curve only. When dealing with ground states, the presence of this regular
curve is not granted in general, unless one already knows something more such as the
uniqueness of the solution (as pointed out for instance in [37, Section 6]). As is well-
known, uniqueness issues for semilinear elliptic equations are extremely challenging,
and very few results are available for positive solutions of (1) on radial domains only
(see the celebrated paper [28] for the case of decaying radial solutions in RN , as well
as [32] and references therein for an overview on the topic). On the contrary, Theorem
1.5 exploits the minimality of action ground states only and it does not require any
further assumption.
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To conclude, we show that the property of energy ground states to be action ground
states as well, described in Theorem 1.3, has a local counterpart, that we state as our
last result. The proof relies on an explicit comparison between the second derivatives
of the action and the energy and, for this reason, the result is valid also for L2-critical
and supercritical powers p ≥ 2 + 4/N .

Theorem 1.8 Given μ > 0, let u ∈ Mμ be a nondegenerate local minimum for the
energy E constrained to Mμ, and let λ denote its frequency as in (1). Then u is a
nondegenerate local minimum for the action Jλ on Nλ.

Our results are, to the best of our knowledge, the first insight on the relation between
action and energy ground states in full generality. Of course, stronger results than those
in Theorem1.3 are available on domainswhere uniqueness is known, but this applies to
the case of the ball and few other special cases only. We also mention that, combining
[20, Theorem 3] and [31, Theorem 1.7], in the L2-supercritical regime 2 + 4/N <

p < 2∗ and when � is the unit ball, it is possible to show that the action ground state
is not a local minimum of the energy in the corresponding mass constrained space.
On the one hand, this implies that our Theorem 1.8 on local minimizers is sharp in
general. On the other hand, this does not relate to the comparison between ground
states we developed here, since the definition of energy ground states we consider is
meaningless when p > 2 + 4/N .

Remark 1.9 The space Mμ is usually defined dropping the (inessential) factor 1/2
in (6), but our choice has the advantage of giving a neat Legendre transform in (9):
without the factor 1/2 in (6), one would obtain an equivalent relation in (9), in terms
of suitable rescalings of either J or E .
Remark 1.10 With the only exception of Theorem 1.5, straightforward adaptations
of the arguments presented here allow one to recover all the results of the paper for
Schrödinger equations with combined nonlinearities

�u + |u|p−2u + |u|q−2u = λu, 2 < p < q < 2∗

(see [25, 27, 29, 38, 39] and references therein for some recent developments on the
topic).

After the present work was completed, we became aware of the interesting paper
[26], where the authors obtain results strongly related to ours in the case � = R

N but
for a wide class of nonlinearities.

The paper is organized as follows. Section 2 recalls some preliminary results,
establishes some general properties of the level functions and provides the proof of
Theorems 1.2–1.4. Section 3 discusses the differentiability properties of the action
ground state level as stated in Theorem 1.5, whereas Sect. 4 contains the proof of
Theorem 1.8. Finally, Sect. 5 provides examples of domains where the results of the
paper apply.
Notation Throughout, we denote by ‖u‖q the Lq norm of u, omitting the domain of
integration whenever it is clear from the context.
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1552 S. Dovetta et al.

2 Preliminaries and proof of Theorems 1.2–1.4

We begin our discussion by stating some useful properties of the energy ground state
level E . To this purpose, we recall, for every p ∈ [2, 2∗), the Gagliardo–Nirenberg
inequality

‖u‖p
p ≤ K p‖u‖p−N( p

2 −1)
2 ‖∇u‖N( p

2 −1)
2 , ∀u ∈ H1

0 (�), (14)

where K p is the smallest constant that makes the inequality satisfied, that by invariance
under dilations of (14) is

K p = sup
u∈H1(RN )

‖u‖p
L p(RN )

‖u‖p−α

L2(RN )
‖∇u‖α

L2(RN )

, α = N
( p

2
− 1

)
.

As a consequence, K p is independent of � (and is not attained unless � = R
N ).

The next lemma collects all the properties of E we will need. Most of them are
well-known and we report them here for the sake of completeness.

Lemma 2.1 Let E : [0,+∞) → R be the energy ground state level defined in (8). The
following properties hold:

(i) if p ∈ (
2, 2 + 4

N

)
, then E(μ) > −∞ for every μ ≥ 0, E is concave on [0,+∞)

and lim
μ→+∞ E(μ)/μ = −∞;

(ii) if p = 2 + 4
N , then

E(μ)

⎧⎪⎨
⎪⎩

≥ 0 if 0 < μ < μN

= 0 if μ = μN

= −∞ if μ > μN ,

(15)

where

μN := 1

2

(
p

2K p

)N/2

= 1

2

(
N + 2

N K p

)N/2

, (16)

and E is concave on [0, μN ];
(iii) if p ∈ (

2 + 4
N , 2∗), then E(μ) = −∞ for every μ > 0;

(iv) if p ∈ (
2, 2 + 4

N

]
, then for every λ ∈ R

sup
μ≥0

(λμ + E(μ)) = max
μ≥0

(λμ + E(μ)) .

Proof The boundedness properties of E in (i)–(ii)–(iii) are standard and follow from
(14) (see for instance [12] for the case � = R

N , the general case being analogous).
The fact that the threshold μN in (16) is the same for every open � ⊆ R

N is clear
since K p in (14) does not depend on �.
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When p ∈ (2, 2 + 4/N ), to prove that E is concave on [0,+∞) note that, since for
everyμ > 0 and u ∈ M1 the function

√
μu belongs toMμ, defining fu : [0,+∞) →

R by

fu(μ) := E(
√

μu) = μ

2
‖∇u‖22 − μp/2

p
‖u‖p

p,

we have

E(μ) = inf
u∈M1

fu(μ).

Since fu is concave on [0,+∞) for every u ∈ M1, so is E . Furthermore, for any fixed
u ∈ M1,

E(μ)

μ
≤ E(

√
μu)

μ
= 1

2
‖∇u‖22 − μ

p−2
2

p
‖u‖p

p → −∞

as μ → +∞, thus concluding the proof of (i). When p = 2 + 4/N the concavity of
E on [0, μN ] can be shown as for (i).

It remains to prove (iv). If p ∈ (2, 2 + 4/N ), it is enough to note that λμ + E(μ)

is continuous on [0,+∞) (because E is concave), and by (i)

λμ + E(μ) = μ(λ + E(μ)/μ) → −∞ as μ → +∞.

Similarly, if p = 2 + 4/N , then by (15) it follows λμ + E(μ) = −∞ for every
μ > μN , so that

sup
μ≥0

(λμ + E(μ)) = sup
0≤μ≤μN

(λμ + E(μ)) ,

and we conclude as above. ��
Remark 2.2 Relying on (14), the previous proof exploits the homogeneous Dirichlet
condition at the boundary of �. However, if one is interested in Neumann boundary
conditions, the results of Lemma 2.1 can be proved exactly in the same way, consid-
ering the corresponding Gagliardo–Nirenberg inequality

‖u‖p
L p(�) ≤ K ′

p,�‖u‖p−N( p
2 −1)

L2(�)
‖u‖N( p

2 −1)
H1(�)

.

We now turn our attention to the action ground state level J and to the relations
between J and E . Let us first recall that, for every u ∈ Nλ, one can rewrite the action
functional Jλ(u) as

Jλ(u) = κ‖u‖p
p =: J̃λ(u), κ = 1

2
− 1

p
, (17)
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1554 S. Dovetta et al.

so that

J (λ) = inf
u∈Nλ

J̃λ(u).

This immediately shows that J is nonnegative. Recall also that, by Sobolev embed-
dings, for every λ > −λ� there exists α > 0 (depending on λ) such that J (λ) ≥ α.

The key point in the comparison between the two minimization problems is the
following result.

Proposition 2.3 For every λ ∈ R, v ∈ Nλ and μ ≥ 0, there results

Jλ(v) ≥ E(μ) + λμ. (18)

Equality in (18) holds if and only if μ > 0, v ∈ Mμ and it is both an energy ground
state on Mμ and an action ground state on Nλ.

Proof If μ = 0, then (18) trivially holds (with strict inequality), as E(μ) = 0 and
Jλ(v) > 0 by (17). Let thenμ > 0 and v be any element inNλ, and denotem := ‖v‖22.
By definition of Nehari manifold, for every t > 0 there results Jλ(tv) ≤ Jλ(v), with
strict inequality unless t = 1. Thus, given any μ > 0,

Jλ(v) ≥ Jλ

(√
2μ

m
v

)
= E

(√
2μ

m
v

)
+ λμ ≥ E(μ) + λμ, (19)

since
√
2μ/m v ∈ Mμ, and (18) is proved.

To conclude, note that if v ∈ Mμ and is an energy ground state, then

Jλ(v) = E(v) + λμ = E(μ) + λμ

(here the fact that v is an action ground state is not used).
Conversely, if equality occurs in (18) for some v ∈ Nλ, then (19) is an equality,

showing at the same time that m = 2μ, namely v ∈ Mμ, and that E(v) = E(μ),
namely that v is an energy ground state. Furthermore, v is also a minimizer of Jλ in
Nλ, because if this were not the case then there would existw ∈ Nλ,w �= v, satisfying
Jλ(w) < Jλ(v) = E(μ) + λμ, contradicting (18). ��

Relying also on the above proposition, we can now establish the next general prop-
erties of J . As it will be useful in the following, given λ ∈ R and u ∈ H1

0 (�), we
set

σλ(u) :=
(

‖∇u‖22 + λ‖u‖22
‖u‖p

p

) 1
p−2

. (20)

Note that σλ(u)u ∈ Nλ.

123



Action versus energy ground states in nonlinear… 1555

Lemma 2.4 Let J : R → R be the action ground state level defined in (7). The
following properties hold:

(i) J (λ) = 0 for every λ < −λ�;
(ii) J is increasing on R and continuous on R\{−λ�};
(iii)

lim
λ→+∞

J (λ)

λ
=

⎧⎪⎨
⎪⎩

+∞ if p ∈ (
2, 2 + 4

N

)
μN if p = 2 + 4

N

0 if p ∈ (
2 + 4

N , 2∗) ,

(21)

where μN is the number defined in (16).

Proof The proof is divided into several step.
Step 1: proof of (i). Since λ < −λ�, there exists a bounded subset �′ ⊂ � so that
λ�′ = −λ. Let ϕ1, ϕ2 ∈ H1

0 (�′) be the eigenfunctions associated to λ�′ and to
the second eigenvalue λ2 of the Dirichlet Laplacian on �′, respectively. For ε > 0,
let vε := σλ(ϕ1 + εϕ2) (ϕ1 + εϕ2). Then vε ∈ Nλ by definition of σλ and because
H1
0 (�′) ⊂ H1

0 (�). Moreover, recalling (20), as ε → 0,

σλ(ϕ1 + εϕ2) =
(

‖∇ϕ1 + ε∇ϕ2‖22 + λ‖ϕ1 + εϕ2‖22
‖ϕ1 + εϕ2‖p

p

) 1
p−2

=
(

‖∇ϕ1‖22 + ε‖∇ϕ2‖22 + λ‖ϕ1‖22 + λε2‖ϕ2‖22
‖ϕ1 + εϕ2‖p

p

) 1
p−2

=
(

ε2(λ2 + λ)‖ϕ2‖22
‖ϕ1 + εϕ2‖p

p

) 1
p−2

= o(1),

where we used the fact that ϕ1, ϕ2 are orthogonal in L2(�), ‖∇ϕ1‖22 = λ�′ ‖ϕ1‖22 =
−λ‖ϕ1‖22 and ‖∇ϕ2‖22 = λ2‖ϕ2‖22 by construction. Hence,

0 ≤ J (λ) ≤ lim
ε→0

Jλ(vε) = lim
ε→0

κσλ(ϕ1 + εϕ2)
p‖ϕ1 + εϕ2‖p

p = 0.

Step 2: proof of (ii). In view of (i) and of the nonnegativity of J , it is enough to prove
that J is increasing on [−λ�,+∞) and continuous on (−λ�,+∞).

Let then −λ� ≤ λ < λ′. For every u ∈ Nλ′ , we see from (20) that σλ(u) ≤ 1.
Therefore

J (λ) ≤ Jλ(σλ(u)u) = κσλ(u)p‖u‖p
p ≤ κ‖u‖p

p = Jλ′(u)

Hence, passing to the infimum over u ∈ Nλ′ yields J (λ) ≤ J (λ′).
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As for the continuity of J , note first that for every λ > −λ�, by definition ofNλ,

‖u‖22
‖u‖p

p
≤ 1

λ + λ�

, ∀u ∈ Nλ.

Now let λ, λ′ > −λ� and for u ∈ Nλ′ notice that

J (λ) ≤ Jλ(σλ(u)u) =
(
1 + (λ − λ′)

‖u‖22
‖u‖p

p

) p
p−2

κ‖u‖p
p = (1 + o(1))Jλ′(u)

as λ′ → λ. Passing to the infimum over u ∈ Nλ′ we obtain

J (λ) − J (λ′) ≤ o(1).

Reversing the role of λ and λ′, we also have J (λ′) − J (λ) ≤ o(1), and continuity is
proved.

Step 3: proof of (iii) for p ∈ (2, 2 + 4/N ). For every λ > 0, by passing to the infimum
over v ∈ Nλ in Proposition 2.3, we have J (λ) ≥ E(μ) + λμ for every μ > 0. Note
that E(μ) is finite since p ∈ (2, 2 + 4/N ). Therefore

lim inf
λ→+∞

J (λ)

λ
≥ lim inf

λ→+∞
E(μ) + λμ

λ
= μ.

Since μ is arbitrary, the conclusion follows.
Step 4: proof of (iii) for p ∈ (2 + 4/N , 2∗). Let B = Br (x0) be a ball contained
in � and take a function v ∈ H1

0 (B) satisfying ‖∇v‖2
L2(B)

+ ‖v‖2
L2(B)

= ‖v‖p
L p(B)

(namely, v ∈ N1(B)). For every λ ≥ 1, define

vλ(x) = λ
1

p−2 v(
√

λ(x − x0)).

Now, vλ is supported in Br/
√

λ(x0) and, after extending it to 0 outside the ball, we can

view it as an element of H1
0 (�). By elementary computations, we see that vλ ∈ Nλ

for every λ. Thus

0 ≤ J (λ)

λ
≤ Jλ(vλ)

λ
= κ

λ
‖vλ‖p

p = κλ
p

p−2− N
2 −1‖v‖p

L p(B).

Since p
p−2 − N

2 − 1 < 0 when p > 2 + 4/N , letting λ → +∞, we conclude.

Step 5: proof of (iii) for p = 2 + 4/N . On the one hand, by Lemma 2.1(ii) and
Proposition 2.3 with μ = μN , for every λ ∈ R we have

J (λ) ≥ E(μN ) + λμN = λμN ,
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yielding J (λ)/λ ≥ μN . On the other hand, if λ is sufficiently large, there exists
vλ ∈ Nλ, compactly supported in a ball contained in �, and such that ‖vλ‖22 = 2μN

and E(vλ)
λ

= o(1) as λ → +∞ (to construct vλ it is for instance enough to consider
suitable compactly-supported truncations of the L2-critical solitons in R

N ). Then

lim sup
λ→+∞

J (λ)

λ
≤ lim

λ→+∞
Jλ(vλ)

λ
= lim

λ→+∞
1

λ

(
E(vλ) + λ

2
‖vλ‖22

)
= μN

and the proof is complete. ��
Remark 2.5 Note that, adapting the argument in Step 2 of the previous proof, one
can show that J (λ) is continuous from the right at λ = −λ�. Hence, by Lemma
2.4(i)–(ii), the continuity of J on the whole of R is equivalent to J (−λ�) = 0. This
equality can be easily proved (repeating the argument in the proof of Lemma 2.4,
Step 1) whenever −λ� is attained by a corresponding eigenfunction in H1

0 (�). This
is for instance the case if � has finite measure. Another condition sufficient for the
continuity of J is the existence of energy ground states u ∈ Mμ for arbitrarily small
masses. To see this, suppose (un)n is a sequence of energy ground states with masses
μn → 0 and frequencies λn (of course larger than −λ�). By (14), un is bounded in
H1 and, as μn → 0, ‖un‖p → 0. But ‖un‖p

p = J (λn) by Theorem 1.3 and since
J is increasing, positive for λ > −λ� and J (λn) → 0, it must be λ → −λ�. By
continuity, J (−λ�) = 0, as claimed.

However, as already anticipated in the Introduction, to prove or disprove the validity
of J (−λ�) = 0 in full generality seems to be an open problem. Incidentally, we
observe that the problem is related to certain quantitative versions of the Poincaré
inequality: J is continuous (at −λ�) if and only if there is no constant c > 0 such
that

‖∇u‖22 ≥ λ�‖u‖22 + c‖u‖2p, ∀u ∈ H1
0 (�).

Theorems 1.2–1.3–1.4 are then direct consequences of the above results.

Remark 2.6 Lemma 2.4(i) implies that J ∗(μ) = +∞ for every μ < 0, since

J ∗(μ) = sup
λ∈R

(λμ − J (λ)) ≥ sup
λ<−λ�

(λμ − J (λ)) = sup
λ<−λ�

λμ = +∞

as soon as μ is negative.

Proof of Theorem 1.2 When μ = 0 the theorem is trivial, as E(μ) = 0 and
supλ∈R (−J (λ)) = 0 by Lemma 2.4(i). Let then μ > 0. We split the rest of the
proof into three cases, depending on the nonlinearity power.
Case 1: p ∈ (2 + 4/N , 2∗). In this regime, (9) plainly holds, since for every μ > 0
by Lemma 2.1(iii) we have −E(μ) = +∞, whereas by Lemma 2.4(iii),

sup
λ∈R

(λμ − J (λ)) ≥ lim
λ→+∞ λ

(
μ − J (λ)

λ

)
= +∞.
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Case 2: p ∈ (2, 2 + 4/N ). In this case, by Lemma 2.1(i), −E(μ) < +∞. By Propo-
sition 2.3,

−E(μ) ≥ λμ − J (λ) ∀λ ∈ R,

so that

−E(μ) ≥ sup
λ∈R

(λμ − J (λ)) .

Conversely, let (un)n ⊂ Mμ be such that limn→+∞ E(un) = E(μ). Then un ∈ Nλn ,
for some λn ∈ R, entailing

−E(μ) = − lim
n→+∞ E(un) ≤ lim sup

n→+∞
(λnμ − J (λn)) ≤ sup

λ∈R
(λμ − J (λ)) ,

completing the proof of (9) in the L2-subcritical regime.
Case 3: p = 2 + 4/N . In this case we need to argue depending on the value of μ.
If μ > μN , then by Lemma 2.1(ii) we have −E(μ) = +∞, while Lemma 2.4(iii)
implies

sup
λ∈R

(λμ − J (λ)) ≥ lim
λ→+∞ λ

(
μ − J (λ)

λ

)
= +∞,

and (9) thus holds. On the contrary, if μ ∈ (0, μN ], since Lemma 2.1(ii) ensures
that −E(μ) < +∞, it is enough to repeat the argument already developed in the
L2-subcritical case. ��
Proof of Theorem 1.3 If u is an energy ground state onMμ and u ∈ Nλ, then by (18),
for every w ∈ Nλ,

Jλ(w) ≥ E(μ) + λμ = E(u) + 1

2
λ‖u‖22 = Jλ(u),

namely u is an action ground state on Nλ. Moreover, if v ∈ Nλ is any action ground
state on Nλ, then Jλ(v) = Jλ(u), i.e. (18) is an equality. Proposition 2.3 then implies
that ‖v‖22 = 2μ and v is an energy ground state on Mμ. ��
Proof of Theorem 1.4 We divide the proof in two cases, dealing separately with the
L2-subcritical regime p ∈ (2, 2 + 4/N ) and the critical one p = 2 + 4/N .

Case 1: p ∈ (2, 2 + 4/N ). Note that by (18) we already know that for every λ

J (λ) ≥ sup
μ≥0

(λμ + E(μ)) = J ∗∗(λ).

To prove (10), assume by contradiction that J (λ) = supμ≥0 (λμ + E(μ)) for every
λ, so that in particular equality holds at λ = λ̄. Since by Lemma 2.1(iv) the right-hand
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side of this equality is attained, there exist μ̄ > 0 and an energy ground state u ∈ Mμ̄

such that

J (λ̄) = max
μ>0

(
λ̄μ + E(μ)

) = λ̄μ̄ + E(μ̄) = Jλ̄(u). (22)

The existence of the ground state u above is granted by the fact that � is of finite
measure, which makes the embedding H1

0 (�) ↪→ L p(�) compact, for every p ∈
[2, 2∗). By Proposition 2.3, every action ground state in Nλ̄ belongs to Mμ̄, and this
contradicts the fact that v1 and v2 have different masses.

Finally, since the finite measure of � implies that J is continuous by Remark 2.5,
if J were convex, then we would have J (λ) = J ∗∗(λ) for every λ, and we have just
proved that this is not the case.

Case 2: p = 2+4/N . The line of the proof is almost identical to that of the previous
case. The only difference is that the finite measure of� implies the existence of energy
ground states for every mass μ ∈ (0, μN ). On the contrary, ground states never exist
when μ = μN , since if a ground state at mass μN exists on �, then by Lemma 2.1 it
is also a ground state for the same problem on the whole RN . But this is impossible
if � �= R

N , since ground states on R
N are either strictly positive or strictly negative.

Hence, to repeat the argument in the first part of the proof we need to show that the
mass μ̄ realizing (22) is different from μN . We do this by proving that for every fixed
λ ∈ R

max
μ∈[0,μN ] (λμ + E(μ)) > λμN + E(μN ) = λμN . (23)

As p = 2 + 4/N , the Gagliardo-Nirenberg inequality reads

‖u‖p
p ≤ K p‖u‖4/N

2 ‖∇u‖22.

For μ < μN , let uμ be an energy ground state in Mμ. By the preceding inequality,
keeping in mind (16),

E(μ) = E(uμ) ≥ 1

2
‖∇uμ‖22

(
1 − μ2/N

μ
2/N
N

)
= 1

2
‖∇uμ‖22

(
μ
2/N
N − μ2/N

μ
2/N
N

)

= 1

2
‖∇uμ‖22(μN − μ)

(
2

NμN
+ o(μN − μ)

)

as μ → μN , namely

E(μ)

μN − μ
≥ C‖∇uμ‖22.

Now ‖∇uμ‖2 cannot be bounded as μ → μN , since by the compactness of the
embedding H1

0 (�) ↪→ L p(�) for every p ∈ [2, 2∗) this would imply the existence
of an energy ground state in MμN , which is impossible. Therefore the left-hand side
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tends to +∞ as μ → μN . In other words, for every λ ∈ R, there exists μ ∈ (0, μN )

such that

E(μ) > λ(μN − μ),

which is what we claimed. ��
Remark 2.7 As the above proof plainly shows, working with sets of finite measure
ensures both that J is continuous on R and that there always exists an energy ground
state with mass μ̄ realizing the maximum in (22). Clearly, this assumption can be
relaxed, but then to recover the results of Theorem 1.4 seems to require a careful
analysis of specific properties of the domain under exam. For a glimpse on how the
situation becomesmore involved, note on the one hand thatJ andJ ∗∗ always coincide
if � contains balls of arbitrary radius (the function J coincides with JRN and as JRN

is convex, so is J ). On the other hand, Sect. 5.2 below provides nontrivial examples
of domains with infinite measure where Theorem 1.4 can be recovered by a simple
adaptation of the previous argument.

3 Proof of Theorem 1.5

This section is devoted to the differentiability properties of J as stated in Theorem
1.5.

Proof of Theorem 1.5 We consider the following auxiliary problem. Let

S =
{
v ∈ H1

0 (�) : ‖v‖p = 1
}

and, for every v ∈ S, define hv : (−λ�,+∞) → R by

hv(λ) := ‖∇v‖22 + λ‖v‖22.

Let then h : (−λ�,+∞) → R be

h(λ) := inf
v∈S

hv(λ). (24)

In view of (20), u := σλ(v)v ∈ Nλ and

Jλ(u) = Jλ(σλ(v)v) = κσλ(v)2
(
‖∇v‖22 + λ‖v‖22

)
= κhv(λ)

2
p−2 hv(λ) = κhv(λ)

p
p−2 ,

so that passing to the infimum over v ∈ S

J (λ) = κh(λ)
p

p−2 . (25)

Thus, functions in S achieving h(λ) and action ground states inNλ are in one-to-one
correspondence and, in particular, by Assumption A one can replace the infimum by
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the minimum in (24). Also, recalling (12), if m is the mass of a minimizer for h(λ),

then m = 2h(λ)
2

2−p μ, where μ ∈ Q(λ), namely 2μ is the mass of an action ground
state in Nλ.

The function h(λ), being theminimumof the affine functions hv(λ), is concave and,
as such, it has right and left derivatives everywhere in (−λ�,+∞) and is differentiable
outside of an at most countable set Z .

If λ is a point where h is differentiable and v ∈ S is such that hv(λ) = h(λ) and

‖v‖22 = m, then clearly h′(λ) = m = 2h(λ)
2

2−p μ for some μ ∈ Q(λ). Incidentally,
this also shows that h is differentiable at λ if and only if Q(λ) is a singleton.

We now assume λ ∈ Z and we compute the right derivative h′+(λ). To this aim,
let v be any element of S such that hv(λ) = h(λ), and assume that it has mass

m = 2h(λ)
2

2−p μ for some μ ∈ Q(λ). Then h′+(λ) ≤ m, and since this happens for
every minimizer of h(λ),

h′+(λ) ≤ inf
μ∈Q(λ)

2h(λ)
2

2−p μ = 2h(λ)
2

2−p μ−(λ).

To prove the reversed inequality, let (λn)n be a sequence such that h is differentiable
at every λn , λn > λ for every n and λn → λ as n → ∞. Letting h′(λn) = mn , by the
concavity of h we have for every n ∈ N

h′+(λ) ≥ h′+(λn) = h′(λn) = mn = 2h(λn)
2

2−p μn, (26)

for someμn ∈ Q(λn). Since the sequence mn is bounded, we can assume without loss
of generality that it converges to some m, and hence also μn converges to some μ, as
h is continuous. We thus have sequences λn → λ and (μn)n ⊂ Q(λn) with μn → μ.
By Assumption B, μ ∈ Q(λ), so that μ ≥ inf Q(λ) = μ−(λ). Letting n → ∞ in
(26), we obtain

h′+(λ) ≥ 2h(λ)
2

2−p μ ≥ 2h(λ)
2

2−p μ−(λ).

The computation of the left derivative h′−(λ) is completely analogous.
Finally, recalling (25), we see that J is differentiable in (−λ�,+∞)\Z , where

J ′(λ) = κ
p

p − 2
h(λ)

2
p−2 h′(λ) = h(λ)

2
p−2 h(λ)

2
2−p μ = μ,

where 2μ is the mass of any action ground state inNλ (recall that Q(λ) is a singleton).
The same computation works for the left and right derivatives, obtaining respectively
J ′−(λ) = μ+(λ) and J ′+(λ) = μ−(λ) for every λ ∈ Z . ��
Proof of Corollary 1.6 If λ̄ is such that there exist two action ground states v1, v2 ∈ Nλ̄

with ‖v1‖2 �= ‖v2‖2, then μ−(λ̄) < μ+(λ̄). Therefore, Theorem 1.5 yields J ′−(λ̄) >

J ′+(λ̄) and J is not differentiable at λ̄. ��
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4 Local minima

This section is devoted to the relation between local minima of the energy functional
and local minima of the action functional, namely Theorem 1.8. Its proof relies on
the following propositions that compute and compare the second derivatives of the
functionals.

We start by considering a critical point u of Jλ onNλ. The function u has a certain
mass 2μ = ‖u‖22, and is therefore a critical point of E onMμ. Equivalently, we could
start from a critical point u of E on Mμ and view it as a critical point of Jλ on Nλ,
where λ is the Lagrange multiplier associated with u. To avoid confusion we denote by
J̃λ the functional Jλ considered as a map from Nλ to R and, similarly, Ẽ will denote
E restricted to Mμ. Accordingly, throughout this section the function u we consider
satisfies

J̃ ′
λ(u) = 0 = Ẽ ′(u).

We begin by computing the second derivative of J̃λ at u. Note that the tangent space
to Nλ at u is

TuNλ =
{
v ∈ H1

0 (�) :
∫

�

|u|p−2uv dx = 0

}
.

Proposition 4.1 There results

J̃ ′′
λ (u)v2 =

∫

�

|∇v|2 dx + λ

∫

�

|v|2 dx − (p − 1)
∫

�

|u|p−2v2 dx, (27)

for every v ∈ TuNλ.

Proof Let v ∈ TuNλ. If γ : (−δ, δ) → Nλ is a smooth curve such that

γ (0) = u, γ ′(0) = v,

then

J̃ ′′
λ (u)v2 = d2

dt2
Jλ(γ (t))

∣∣∣
t=0

= J ′′
λ (u)[γ ′(0)2] + J ′

λ(u)γ ′′(0). (28)

To carry out the computation, we set

g(t) := σλ(u + tv) =
(∫

�
|∇u + t∇v|2 dx + λ

∫
�

|u + tv|2 dx∫
�

|u + tv|p dx

) 1
p−2

, (29)

and we define, for δ small, γ : (−δ, δ) → Nλ as

γ (t) = g(t)(u + tv). (30)
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Note that γ (0) = u. Denoting by N (t) and D(t) the numerator and the denominator
in the right-hand side of (29), we see that

g′(t) = 1

p − 2

(
N (t)

D(t)

) 3−p
p−2 N ′(t)D(t) − N (t)D′(t)

D(t)2
.

Now N (0) = D(0) because u ∈ Nλ, and, since u is a critical point of Jλ,

N ′(0) = 2
∫

�

∇u · ∇v dx + 2λ
∫

�

uv dx = 2
∫

�

|u|p−2uv dx = 0,

because v ∈ TuNλ. Likewise, D′(0) = p
∫
�

|u|p−2uv = 0. Hence

g′(0) = 1

p − 2

(
N (0)

D(0)

) 3−p
p−2 N ′(0)D(0) − N (0)D′(0)

D(0)2
= 0,

from which, differentiating (30), we obtain

γ ′(0) = g′(0)u + g(0)v = v, γ ′′(0) = g′′(0)u + 2g′(0)v = g′′(0)u.

Thus (28) becomes

J̃ ′′
λ (u)v2 = J ′′

λ (u)[γ ′(0)2] + J ′
λ(u)γ ′′(0) = J ′′

λ (u)v2 + g′′(0)J ′
λ(u)u = J ′′

λ (u)v2

again because u ∈ Nλ. Computing the last term we finally obtain

J̃ ′′
λ (u)v2=

∫

�

|∇v|2 dx+λ

∫

�

|v|2 dx−(p − 1)
∫

�

|u|p−2v2 dx, for every v ∈ TuNλ.

��
Similarly, we can compute the second derivative of the energy E , considered as a

functional Ẽ on the manifoldMμ, at the same u as above. The tangent space toMμ

at u is

TuMμ =
{
v ∈ H1(�) :

∫

�

uv dx = 0

}
.

Proposition 4.2 There results

Ẽ ′′(u)v2 =
∫

�

|∇v|2 dx + λ

∫

�

|v|2 dx − (p − 1)
∫

�

|u|p−2v2 dx, (31)

for every v ∈ TuMμ.
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Proof Working as in the previous proof, we fix v ∈ TuMμ and we define, for δ small,
a smooth curve η : (−δ, δ) → Mμ as

η(t) =
√
2μ

‖u + tv‖2 (u + tv) =: h(t)(u + tv).

Note that η(0) = u. Differentiating h yields

h′(t) = −√
2μ

(∫

�

|u + tv|2 dx

)−3/2 ∫

�

(u + tv)v dx

and

h′′(t) = 3
√
2μ

(∫

�

|u + tv|2 dx

)−5/2 (∫

�

(u + tv)v dx

)2

−√
2μ

(∫

�

|u + tv|2 dx

)−3/2 ∫

�

|v|2 dx .

Now, since v ∈ TuMμ,
∫
�

uv dx = 0, so that

h′(0) = 0, h′′(0) = − 1

2μ

∫

�

|v|2 dx .

Thus, differentiating η we have

η′(0) = h′(0)u + h(0)v = v, η′′(0) = h′′(0)u + 2h′(0)v = −
(

1

2μ

∫

�

|v|2 dx

)
u

and

Ẽ ′′(u)v2 = d2

dt2
E(η(t))

∣∣∣
t=0

= E ′′(u)[η′(0)2] + E ′(u)η′′(0) = E ′′(u)v2

−
(

1

2μ

∫

�

|v|2 dx

)
E ′(u)u

=
∫

�

|∇v|2 dx − (p − 1)
∫

�

|u|p−2v2 dx − 1

2μ
E ′(u)u

∫

�

|v|2 dx .

As E ′(u)u = −λ
∫
�

|u|2 dx = −2λμ, we obtain (31). ��
Having determined the second derivatives of J̃λ and Ẽ at u, we can now compare

them.

Proposition 4.3 For every v ∈ TuNλ there exists ϕ ∈ TuMμ such that

J̃ ′′
λ (u)v2 = (p − 2)

(∫
�

|u|p−2uϕ dx
)2

∫
�

|u|p dx
+ Ẽ ′′(u)ϕ2. (32)
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In particular, there exists a constant C = C(u) > 0 such that

inf
v∈TuNλ\{0}

J̃ ′′
λ (u)v2

‖v‖22
≥ C inf

ψ∈TuMμ\{0}
Ẽ ′′(u)ψ2

‖ψ‖22
. (33)

Proof If v ≡ 0, then (32) is obvious with ϕ ≡ 0. Conversely, for every v ∈ TuNλ\{0},
there exist α ∈ R and ϕ ∈ TuMμ\{0} such that v = αu + ϕ. Indeed it is sufficient to
write

v =
∫
�

uv dx∫
�

u2 dx
u +

(
v −

∫
�

uv dx∫
�

u2 dx
u

)
=: αu + ϕ (34)

and note that ϕ ∈ TuMμ\{0} by construction, since
∫
�

ϕu dx = 0 and u /∈ TuNλ.
We now insert this expression for v in (27) and compute

J̃ ′′
λ (u)v2 = J̃ ′′

λ (u)(αu + ϕ)2

=
∫

�
|α∇u + ∇ϕ|2 dx + λ

∫

�
|αu + ϕ|2 dx − (p − 1)

∫

�
|u|p−2|αu + ϕ|2 dx

= α2
(∫

�
|∇u|2 + λ|u|2 − (p − 1)|u|p dx

)

+ 2α

(∫

�
∇u · ∇ϕ + λuϕ − (p − 1)|u|p−2uϕ dx

)

+
∫

�
|∇ϕ|2 + λ|ϕ|2 − (p − 1)|u|p−2ϕ2 dx . (35)

Now u ∈ Nλ and is a critical point of J̃λ. Therefore

∫

�

|∇u|2 + λ|u|2 dx =
∫

�

|u|p dx,

∫

�

∇u · ∇ϕ + λuϕ dx =
∫

�

|u|p−2uϕ dx .

Noticing also that the last line of (35) is Ẽ ′′(u)ϕ2, we can rewrite (35) as

J̃ ′′
λ (u)v2 = α2(2 − p)

∫

�

|u|p dx + 2α(2 − p)

∫

�

|u|p−2uϕ dx + Ẽ ′′(u)ϕ2.

But sincev = αu+ϕ,we see that
∫
�

|u|p−2uϕ dx = ∫
�

|u|p−2uv dx−α
∫
�

|u|p dx =
−α

∫
�

|u|p dx , which plugged in the previous equality yields

J̃ ′′
λ (u)v2 = α2(p − 2)

∫

�

|u|p dx + Ẽ ′′(u)ϕ2.

Finally, multiplying (34) by |u|p−2u and integrating we see that

α = −
∫
�

|u|p−2uϕ dx∫
�

|u|p dx
, (36)
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which combined with the previous equality gives (32).
To prove the second part we observe that, for every v ∈ TuNλ\{0}, letting ϕ ∈

TuMμ\{0} be given by (34), from (32) it follows

J̃ ′′
λ (u)v2 ≥ ‖ϕ‖22

Ẽ ′′(u)ϕ2

‖ϕ‖22
≥ ‖ϕ‖22 inf

ψ∈TuMμ\{0}
Ẽ ′′(u)ψ2

‖ψ‖22
,

so that, recalling (34),

J̃ ′′
λ (u)v2

‖v‖22
≥ ‖ϕ‖22

‖αu + ϕ‖22
inf

ψ∈TuMμ\{0}
Ẽ ′′(u)ψ2

‖ψ‖22
. (37)

Therefore it is sufficient to show that the quantity
‖ϕ‖22

‖αu+ϕ‖22
is uniformly bounded away

from zero.
Since ϕ ∈ TuMμ\{0},

‖ϕ‖22
‖αu + ϕ‖22

= ‖ϕ‖22
‖ϕ‖22 + α2‖u‖22

= 1

1 + α2‖u‖22/‖ϕ‖22
and we only have to show that α2‖u‖22/‖ϕ‖22 is uniformly bounded from above. As
u is a critical point of Jλ, it solves the corresponding nonlinear Schrödinger equation
(1) and, by standard elliptic estimates, u ∈ Lq(�) for every q ≥ 2. Thus, by (36),

α2 ‖u‖22
‖ϕ‖22

=
(∫

�
|u|p−2uϕ dx

)2
(∫

�
|u|p dx

)2
‖u‖22
‖ϕ‖22

≤ ‖u‖2p−2
2p−2‖ϕ‖22‖u‖22
‖u‖2p

p ‖ϕ‖22
= ‖u‖2p−2

2p−2‖u‖22
‖u‖2p

p

=: C1

for every ϕ ∈ TuMμ\{0}.
So, from (37), we can write

J̃ ′′
λ (u)v2

‖v‖22
≥ C inf

ψ∈TuMμ\{0}
Ẽ ′′(u)ψ2

‖ψ‖22
, C = 1

1 + C1
,

and taking the infimum with respect to v ∈ TuNλ\{0}, (33) follows. ��
Proof of Theorem 1.8 It is a straightforward consequence of (33). ��
Remark 4.4 Formula (32) seems to suggest that degenerate (local) minimizers of the
energy could be nondegenerate as critical points of the action, due to the presence
of the first term in the right-hand side of (32). This in general is false. For example,
if � = R

N , then the energy ground states of mass μ are the family of solitons
φy = φ( · − y ), where y ∈ R

N and φ is the soliton of mass μ centered at the origin.
The solitonsφy are also the action ground states for J̃λ onNλ withλ being theLagrange
multiplier associated to φ. So each φy is a degenerate minimum for Ẽ on Mμ and
also a degenerate minimum for J̃λ on Nλ.
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5 Applications

This final section discusses the possible application of the preceding results both to
bounded and to unbounded domains of RN . In particular, we provide examples of
domains where J is a continuous function on R and Assumptions A–B are fulfilled.

5.1 Bounded domains

If � ⊂ R
N is bounded, then it is readily seen that when p ∈ (2, 2 + 4/N ) there exist

both an action ground state in Nλ for every λ ∈ (−λ�,+∞) and an energy ground
state in Mμ for every μ ∈ (0,+∞), so that Assumption A is satisfied. By Remark
2.5, we also have that J is continuous on R. Moreover, the validity of Assumption B
is straightforward.

Proposition 5.1 Assumption B holds.

Proof Let λ ∈ (−λ�,+∞) be given and let (λn)n be a sequence satisfying λn → λ

as n → ∞. Let also μn ∈ Q(λn) be such that μn → μ. By definition, for every n
there exists an action ground state un ∈ Nλn such that ‖un‖22 = 2μn . The uniform
boundedness of J on bounded sets of (−λ�,+∞) implies that (un)n is bounded in
H1
0 (�). Hence, there exists u ∈ H1

0 (�) such that un⇀u in H1
0 (�) and un → u

in Lq(�), for every q ∈ [2, 2∗). On the one hand, by the continuity of J one has
J (λ) = κ‖u‖p

p and, since J (λ) > 0, u �≡ 0. On the other hand, by weak lower
semicontinuity, σλ(u) ≤ 1. Moreover, if σλ(u) < 1, then

J (λ) ≤ Jλ(σλ(u)u) = κσλ(u)p‖u‖p
p < κ‖u‖p

p = J (λ),

a contradiction. Thus σλ(u) = 1, that is, u is an action ground state in Nλ. Since

μ = lim
n

μn = lim
n

‖un‖22
2

= ‖u‖22
2

,

we see that μ ∈ Q(λ). ��

5.2 Unbounded domains

If � is unbounded, it can be easily shown that in general there is no action ground
state in Nλ, for any λ. Indeed, since H1

0 (�) ⊂ H1(RN ) (after extending functions to
0 outside �), we immediately see that for every λ > 0

JRN (λ) ≤ J (λ). (38)

Here JRN denotes the minimum of the action on the associated Nehari manifold in
H1(RN ). Suppose now that the unbounded set � contains balls of arbitrary radius.
Then one easily sees that (38) is an equality, so that if J (λ) is attained by some
u ∈ H1

0 (�), then u is also an action ground state for Jλ on RN , namely a soliton. But
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D ⊂ R
N−k

R
k

Ω

Σ

Fig. 1 Example of an unbounded domain � as in Sect. 5.2

since u vanishes in R
N \�, this is impossible, unless � = R

N . The same argument
shows that on such domains there is no energy ground state inMμ for any μ.

Thus, it makes no sense to discuss the problem when � contains balls of arbitrary
radius. The class of domains � that do not satisfy this property is quite large, and we
consider here only a model case, to show that everything we said so far works also
on some unbounded domains. Many more cases could be treated with essentially the
same arguments as those we now outline.

In what follows, we take a bounded open setD inRN−k (for some k ∈ {1, . . . , N −
1}) and we consider the cylinder � ⊂ R

N defined as

� = D × R
k .

Finally, given a bounded set �̂ ⊂ R
N such that �̂ ∩ � �= ∅ and �̂\� �= ∅, we define

(see Fig. 1)

� := �̂ ∪ �. (39)

We begin by recalling some properties of the problem of action ground states on the
cylinder �. To this aim we define

J∞
λ (v) = 1

2
‖∇u‖2L2(�)

+ λ

2
‖v‖2L2(�)

− 1

p
‖u‖p

L p(�),

N∞
λ =

{
v ∈ H1

0 (�)\{0} : ‖∇v‖2L2(�)
+ λ‖v‖2L2(�)

= ‖v‖p
L p(�)

}

and

J∞(λ) := inf
v∈N∞

λ

J∞
λ (v).

The following well-known result can be found for instance in [11, Lemma 2.2] and
[16, Lemma 3].

Lemma 5.2 Let λ1(D) be the first Dirichlet eigenvalue on D. Then

λ� := inf
u∈H1

0 (�)

‖∇u‖2
L2(�)

‖u‖2
L2(�)

= λ1(D).
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Even though λ� is clearly not attained, the action ground state level is continuous
on R. In view of Remark 2.5, this follows from the next lemma.

Lemma 5.3 The action ground state level on � satisfies J∞(−λ�) = 0.

Proof Let ϕ1 ∈ H1
0 (D) be an eigenfunction associated to λ1(D) = λ� and let

ψ ∈ C∞
0 (Rk)\{0}. For θ > 0 define uθ ∈ H1

0 (�) by uθ (x, y) = ψ(θx)ϕ1(y).
By elementary computations,

∫
�

|∇uθ |2 dx dy − λ�

∫
�

|uθ |2 dx dy∫
�

|uθ |p dx dy
= θ2

∫
Rk |∇ψ |2 dx

∫
D |ϕ1|2 dy∫

Rk |ψ |p dx
∫
D |ϕ1|p dy

= Cθ2.

Therefore

0 ≤ J∞(−λ�) ≤ lim
θ→0

J∞−λ�
(σ−λ�

(uθ )uθ ) = Cκ lim
θ→0

θ
2p

p−2 ‖uθ‖p
p = C lim

θ→0
θ

2p
p−2−k = 0

since the exponent of θ is positive for every p < 2∗. ��
Concerning existence of action ground states on �, we have the following result.

Theorem 5.4 For every λ > −λ1(D) there exists an action ground state for J∞
λ in

N∞
λ , namely there exists u ∈ N∞

λ such that J∞
λ (u) = J∞(λ).

We do not provide a proof of this result since it can be carried out with the same
arguments that work to prove the existence of action ground states inRN : compactness
of minimizing sequences is recovered due to the invariance of the problem under
translations along the directions in R

k . Let us remark that the existence of nontrivial
solutions to Schrödinger equations for a wide class of nonlinearities on � has been
addressed for instance in [11, 16], whereas monotonicity and symmetry properties of
positive solutions have been investigated in [7].

We now focus on the domain � defined in (39). Also in this case, we first show that
J is continuous on the whole real line.

Lemma 5.5 The action ground state level on � satisfies J (−λ�) = 0.

Proof Since � ⊂ �, then λ� ≤ λ� . If λ� = λ� , the lemma follows repeating
verbatim the argument in the proof of Lemma 5.3.

If on the contrary λ� < λ� , then we claim that there exists an eigenfunction
ϕ ∈ H1

0 (�) associated to λ�. Note that, given this, the statement of the lemma follows
by Remark 2.5. Let us thus prove the claim. Let (ϕn)n ⊂ H1

0 (�) satisfy ‖ϕn‖2 = 1
for every n ∈ N and ‖∇ϕn‖22 → λ� as n → +∞. Then (up to subsequences)
there exists ϕ ∈ H1

0 (�) such that ϕn⇀ϕ in H1(�). Let m := ‖ϕ‖22. By weak lower
semicontinuity, m ∈ [0, 1]. If m = 1, then ϕ is the eigenfunction we seek. We are thus
left to rule out the case m < 1.

Notefirst thatm �= 0. Indeed, if this is not the case, then in particular‖ϕn‖L2(�̂) → 0
as n → +∞. By a standard cut-off procedure, one can then construct un ∈ H1

0 (�)
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such that un ≡ 0 on �̂, ‖un‖22 = 1+o(1) and ‖∇un‖22 ≤ ‖∇ϕn‖22+o(1) = λ� +o(1)
as n → ∞. But this is impossible, since as un is supported in �,

λ� ≤ ‖∇un‖22
‖un‖22

≤ ‖∇ϕn‖22 + o(1)

1 + o(1)
= λ� + o(1),

contradicting λ� < λ� .
Hence m ∈ (0, 1) and ϕ �≡ 0 on �. By weak convergence, we have ‖ϕn − ϕ‖22 =

1 − ‖ϕ‖22 + o(1) = 1 − m + o(1). Furthermore, ϕn − ϕ → 0 strongly in L2(�̂), so
that just as before ‖∇(ϕn − ϕ)‖22 ≥ λ�‖ϕn − ϕ‖22 + o(1) = λ�(1 − m) + o(1) as
n → ∞. Hence

λ� = ‖∇ϕn‖22 + o(1) = ‖∇(ϕn − ϕ)‖22 + ‖∇ϕ‖22 + o(1) ≥ λ�(1 − m) + λ�m + o(1),

contradicting again λ� < λ� . The proof is complete. ��
Remark 5.6 The previous proof distinguishes the cases λ� = λ� and λ� �= λ� , since
none of them can be ruled out a priori. However, it is easy to construct domains �

as in Fig. 1 for which λ� is actually strictly smaller than λ� . To this end, it is for
instance enough to choose �̂ to be a ball in R

N of radius R large enough, as in the
limit R → +∞ one obtains λ� → 0.

We now show that Assumption B is fulfilled, and to this end we first need to address
existence of action ground states. We have chosen to work with � since it is a first
example where one cannot use directly the invariance under translations to restore
compactness. It is clear that the general reason behind existence proofs resides in
concentration-compactness arguments, of which the results below are no more than
an adaptation to our specific setting. Since however the proofs are rather short, we
carry them out for completeness. Furthermore, as we are specifically interested in
the validity of Assumption B, we limit ourselves to deal with action ground states.
The same type of argument can be naturally adapted to prove existence of energy
ground states (see Remark 5.12 at the end of the section), thus showing the validity of
Assumption A.

From now on, it is understood without further notice that we will always consider
λ > −λ�. The following preliminary lemmas characterize the behaviour of action
minimizing sequences.

Lemma 5.7 Let (un)n ⊂ Nλ be a sequence such that un⇀0 in H1
0 (�) as n → ∞.

Then

lim inf
n

Jλ(un) ≥ J∞(λ).

Proof Since each un is in H1
0 (�), we can view it, whenever necessary, as an element

of H1
0 (RN ), without repeating it every time. Moreover, recall that the sequence un ,

being in Nλ, cannot tend to 0 strongly in L p(�).
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Let R > 0 be so that �̂ ⊂ BR and define φ : [0,+∞) → [0, 1] as

φ(t) =

⎧⎪⎨
⎪⎩

0 if t ∈ [0, R]
t − R if t ∈ [R, R + 1]
1 if t ≥ R + 1.

Note that |φ′(t)| ≤ 1 for every t . Since un⇀0 in H1
0 (�), we also have un → 0 in

Lq
loc(R

N ) for every q ∈ [2, 2∗).
Therefore, defining vn ∈ H1

0 (�) as (the restriction to � of) φ(|x |)un(x), it is
straightforward to check that as n → ∞,

‖vn‖q
Lq (�) = ‖un‖q

Lq (�) + o(1), q ∈ [2, 2∗),

‖∇vn‖2L2(�)
≤ ‖∇un‖2L2(�)

+ o(1).

Then we see that

‖∇vn‖2L2(�)
+ λ‖vn‖2L2(�)

≤ ‖∇un‖2L2(�)
+ λ‖un‖2L2(�)

+ o(1) = ‖un‖p
L p(�) + o(1)

= ‖vn‖p
L p(�) + o(1),

or, as ‖vn‖p
L p(�) is bounded away from zero,

σλ(vn) ≤ 1 + o(1).

Notice now that, as σλ(vn)vn ∈ N∞
λ ,

J∞(λ) ≤ J∞
λ (σλ(vn)vn) = κσλ(vn)p‖vn‖p

L p(�)
≤ κ‖un‖p

L p(�)
+ o(1) = Jλ(un) + o(1),

and letting n → ∞ the conclusion follows. ��
Lemma 5.8 Assume that J (λ) < J∞(λ). Let (un)n ⊂ Nλ be a minimizing sequence
for Jλ such that un⇀u in H1

0 (�) and a.e. in � as n → ∞. Then

un → u in L2(�) as n → ∞.

Proof Note first that, since λ > −λ� and J (λ) < J∞(λ), then u �≡ 0 by Lemma
5.7. Assume by contradiction that

lim inf
n

‖un − u‖22 > 0. (40)

Since un⇀u in L p(�), we first see that

κ‖u‖p
p ≤ κ lim inf

n
‖un‖p

p = lim
n

Jλ(un) = J (λ) ≤ Jλ(σλ(u)u) = κσλ(u)p‖u‖p
p,
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which shows (as u �≡ 0) that σλ(u) ≥ 1.
Now by the Brezis–Lieb Lemma [10] we can write, as n → ∞,

λ = ‖un‖p
p − ‖∇un‖22
‖un‖22

= ‖un − u‖p
p − ‖∇un − ∇u‖22 + ‖u‖p

p − ‖∇u‖22 + o(1)

‖un − u‖22 + ‖u‖22 + o(1)
=: an + b + o(1)

cn + d + o(1)
.

Notice that d �= 0 and that b/d ≤ λ, since σλ(u) ≥ 1. Therefore

λcn + λd + o(1) = an + b + o(1) ≤ an + λd + o(1),

namely λcn ≤ an + o(1), which reads

σλ(un − u) ≤ 1 + o(1)

as n → ∞ (notice that ‖un − u‖p
p cannot tend to zero by λcn ≤ an + o(1) combined

with (40)).
We now define vn = σ(un −u)(un −u) ∈ Nλ for every n and we notice that vn⇀0

in H1
0 (�). By Lemma 5.7,

lim inf
n

Jλ(vn) ≥ J∞(λ),

so that (using σ(un − u) ≤ 1 + o(1))

J (λ) = κ lim
n

‖un‖p
p = κ lim

n

(‖un − u‖p
p + ‖u‖p

p
)

≥ κ lim
n

σ(un − u)p‖un − u‖p
p + κ‖u‖p

p ≥ κ lim
n

‖vn‖p
p = lim

n
Jλ(vn) ≥ J∞(λ),

which contradicts the assumption and concludes the proof. ��
The next theorem provides existence for action ground states on �.

Theorem 5.9 For every λ ∈ (−λ�,+∞) there exists an action ground state in Nλ.

Proof We first note that λ� ≤ λ� = λ1(D), simply because � ⊂ � and by Lemma
5.2. Next we observe that for every λ ∈ (−λ�,+∞), there results

J (λ) < J∞(λ). (41)

Indeed, the weak inequality is trivial by the inclusion � ⊂ �. If we had equality, then
an action ground state in � (provided by Theorem 5.4, recalling that λ� ≤ λ1(D))
would be an action ground state in �, which is impossible since it would vanish in
�\�.
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Let (un)n ⊂ Nλ be a minimizing sequence for Jλ. As such, (un)n is bounded in
H1
0 (�), and we can assume that (up to subsequences)

un⇀u in H1(�), un → u in Lq
loc(�) for every q ∈ [2, 2∗) and a.e. in �.

Now, u cannot vanish identically since in this case by Lemma 5.7

J (λ) = lim
n

Jλ(un) ≥ J∞(λ),

contradicting (41). Hence, by Lemma 5.8, un → u strongly in L2(�). By (14) we
also have un → u strongly in L p(�). Hence

‖∇u‖22 + λ‖u‖22 ≤ lim inf
n

(
‖∇un‖22 + λ‖un‖22

)
= lim inf

n
‖un‖p

p = ‖u‖p
p,

showing that σλ(u) ≤ 1. Now σλ(u) < 1 is impossible, since if it were so,

J (λ) ≤ Jλ(σλ(u)u) = κσλ(u)p‖u‖p
p = κσλ(u)p lim

n
‖un‖p

p = σλ(u)pJ (λ) < J (λ),

which is false. Hence it must be σλ(u) = 1, that is u ∈ Nλ which, coupled with

Jλ(u) = κ‖u‖p
p = κ lim

n
‖un‖p

p = J (λ),

shows that u is the required ground state. ��
Proposition 5.10 Assumption B holds.

Proof The proof is analogous to that of Proposition 5.1, the only difference being
that we cannot rely on Sobolev embeddings to obtain strong compactness in L p(�).
Fix λ > −λ�, let λn → λ as n → ∞ and μn ∈ Q(λn) be such that μn → μ. As
before, take an action ground state un ∈ Nλn with ‖un‖22 = 2μn for every n, and let
u ∈ H1

0 (�) be its weak limit in H1
0 (�) as n → +∞, so that un → u in Lq

loc(�), for
every q ∈ [2, 2∗). Since

σλ(un) =
(
1 + (λ − λn)

‖un‖22
‖un‖p

p

) 1
p−2

= 1 + o(1)

as n → ∞, by the continuity of J we have

Jλ(σλ(un)un) = (1 + o(1))κ‖un‖p
p = (1 + o(1))Jλn (un) = (1 + o(1))J (λn) → J (λ),

i.e. σλ(un)un ∈ Nλ is a minimizing sequence for Jλ. Also, σλ(un)un⇀u in H1
0 (�).

By Lemma 5.7, u cannot vanish identically (since we would have J (λ) ≥ J∞(λ)),
and by Lemma 5.8, σλ(un)un , and hence un , converges strongly to u in L2(�), and
then in L p(�) by (14). As in the proof of Theorem 5.9, this shows that u is an action
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ground state in Nλ and, arguing as in the last part of the proof of Proposition 5.1, we
conclude. ��
Remark 5.11 Note that, both for bounded domains and for the unbounded set above,
one can easily refine the previous arguments to show that the set of action ground
states in Nλ is strongly compact in H1

0 (�). It is clear that compactness for every
λ guarantees the validity of Assumption B. However, there are cases where one
can obtain Assumption B even though the set of action ground states is not com-
pact. For example, if � = R

N , then the set of action ground states in Nλ is the
family of solitons, which is not compact. Nevertheless, it is immediate to see (and
well known) that Assumption B holds. Another example along these lines is the
cylinder �.

Remark 5.12 As anticipated before, one can easily adapt the above discussion to prove
existence of energy ground states on � for every mass μ > 0 and p ∈ (

2, 2 + 4
N

)
. To

this aim, one should introduce the corresponding problem on �

E∞(v) := 1

2
‖∇v‖2L2(�)

− 1

p
‖v‖p

L p(�)

M∞
μ :=

{
v ∈ H1

0 (�) : 1

2
‖v‖2L2(�)

= μ

}

E∞(μ) := inf
v∈M∞

μ

E∞(v)

and show first that energy ground states on � exist for every μ > 0. Exploiting the
symmetry of �, such a preliminary result can be easily obtained once it is proved that

E∞(μ) < μλ1(�),

which is enough to avoid loss of compactness by vanishing. This can be achieved by
considering for instance vω(x) := ωk/2ζ(ωz)ϕ1(y) for x = (y, z) ∈ � = D×R

k and
ω → 0, where ζ ∈ C∞

0 (Rk) satisfies ‖ζ‖2
L2(Rk)

= 2μ and ϕ1 is the first eigenfunction

in H1
0 (D) of −�D with ‖ϕ1‖L2(D) = 1. The problem on � can then be treated just

as we did for action ground states. As in Lemma 5.7 above, one proves first that
if (un) ⊂ Mμ converges to 0 weakly in H1

0 (�), then lim infn E(un) ≥ E∞(μ).
Mimicking Lemma 5.8, this ensures that if E(μ) < E∞(μ), then any minimizing
sequence for E(μ) has a strong limit in L2(�). As we already pointed out that E∞(μ)

is always attained, one finally recovers the existence of energy ground states on �

with the analogue of Theorem 5.9.
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