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A Multi-Task-Learning-based Transfer Deep
Reinforcement Learning Design for Autonomic

Optical Networks
Xiaoliang Chen, Roberto Proietti, Che-Yu Liu, S. J. Ben Yoo, Fellow, IEEE, Fellow, OSA

Abstract—Deep reinforcement learning (DRL) enables auto-
nomic optical networking by allowing the network control and
management systems to self-learn successful networking policies
from operational experiences. This paper proposes a transfer
learning approach for effective and scalable DRL in optical
networks. We first present a modular DRL agent design to
facilitate retrieving and transferring relevant knowledge between
tasks requiring different dimensions of network state data.
In particular, we partition network state data into common
states, which contain generic information critical to multiple
tasks (e.g., the spectrum utilization on fiber links), and task-
specific states that are only used by a specific task (e.g., the
utilization of virtual network functions). Separate neural network
blocks are employed to process different state data. Based
on the modular agent design, a multi-task learning (MTL)
aided knowledge transferring scheme is proposed. The proposed
scheme trains an MTL agent that can master multiple tasks
simultaneously and thus enables to learn and transfer better-
generalized knowledge across tasks. We perform case studies on
the proposed transfer DRL approach considering two scenarios,
namely, knowledge transferring between routing, modulation and
spectrum assignment (RMSA) tasks for different networks and
knowledge transferring from RMSA tasks to anycast service
provisioning tasks. The DRL designs for RMSA and anycast
service provisioning, including the state, action, and reward
formulations and the training mechanisms, are also elaborated.
Performance evaluations under both scenarios show that the
proposed approach can effectively expedite the training processes
of the target tasks and improve the ultimate service throughput.

Index Terms—Deep reinforcement learning, autonomic opti-
cal networking, transfer learning, multi-task learning, routing,
modulation and spectrum assignment, anycast.

I. INTRODUCTION

THE imminent era of 5G networking, along with the
emerging edge computing technologies, are posing more

stringent capacity, latency, and availability requirements on
the underlying optical transport networks. These requirements
entail a next-generation optical networking paradigm that can
support dynamic and adaptive service provisioning with high
resource efficiency and guaranteed quality of service. By
virtue of the capability of flexible spectrum manipulation
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in the physical layer, elastic optical networking (EON) has
become an appealing solution [1]. The past few years have
witnessed a tremendous amount of research efforts invested
in the control, management, and service provisioning design
for EON, with various mathematical optimization models and
heuristic algorithms being proposed [2]–[5]. While these opti-
mization models are typically too complicated to be applied in
practical network operations, the heuristic designs mostly rely
on fixed and artificially defined rules, which can suffer from
poor adaptability (i.e., unable to adapt to evolving network
conditions) or lead to suboptimal resource utilization.

Recently, thanks to a number of exciting breakthroughs
[6], machine learning (ML) has become a cynosure of the
communication and networking community. By allowing ma-
chines to learn complex functions automatically from big data
without being explicitly programmed, ML makes it possible
to revolutionize the current fixed-rule-based networking prin-
ciples and to pursue data and knowledge-defined cognitive
optical networking [7]. Driven by this goal, researchers have
investigated ML designs for a variety of tasks in optical
networks, such as optical performance monitoring (OPM) [8]–
[10], fault management [11]–[13], and resource allocation
[14]–[17]. Most of these existing works apply supervised or
unsupervised learning schemes, focusing on learning a specific
network or system rule (e.g., quality-of-transmission (QoT)
modeling [8], traffic dynamics [14]). As a result, the ML
designs serve as a complement to the traditional approaches,
and cognitive networking operations are eventually achieved
through the combination of them. For instance, the work
presented in [15] makes use of an integer linear programming
(ILP) model to compute impairment-aware routing, modula-
tion, and spectrum assignment (RMSA) solutions in elastic
optical networks (EONs), where impairments are evaluated
by an ML-based QoT estimator. Other works, for instance,
the one demonstrated in [17], take advantage of the optimal
network configuration policies returned by traditional opti-
mization tools (e.g., ILP) to train supervised ML models that
can respond quickly during online operations. However, such
approaches typically suffer from scalability issues owing to
the high complexity of the optimization tools.

Unlike supervised or unsupervised learning, which requires
a large amount of data available for training, deep reinforce-
ment learning (DRL) parameterizes operational policies by
deep neural networks (DNNs) and learns the optimal policies
through direct interactions with the system environments [18],
[19]. This makes DRL particularly useful for tackling complex
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online decision-making problems. The application of DRL to
optical networks enables development of autonomic service
provisioning schemes that can self-learn and adapt networking
policies from repeated operation experiences [20]–[27]. Thus,
DRL can potentially facilitate enhanced network adaptability
and resource efficiency while largely eliminating human inter-
ventions. Nevertheless, training DRL models is never a trivial
task, often demanding a significant amount of computing
power or being very time-consuming [18]. Besides, DRL
models are vulnerable to converging to suboptimal solutions
when confronting complex and unstable systems. It is desirable
to address such challenges for improving the applicability of
the autonomic applications in optical networks.

Among the various ML techniques, transfer learning (TL)
was proposed to improve the effectiveness and to reduce
the cost of the training of ML models, by exploiting and
reusing relevant knowledge obtained from similar tasks [28].
In particular, recent studies have reported several TL designs
in the DRL domain (i.e., transfer DRL) and demonstrated
promising benefits from the TL designs in facilitating robotic
[29], [30] or computer gaming tasks [31]. Therefore, we
envision transfer DRL to be a key enabling technology for
realizing scalable autonomic optical networking, which, how-
ever, remains underexplored.

In this paper, we extend our previous conference paper
in [32] and propose a more comprehensive transfer DRL
design for optical networks. First, we present a modular
agent structure, where network state data are divided into
common and task-specific states and a separate neural network
block is used to processes each state partition. The modular
structure thereby facilitates retrieving and transferring relevant
knowledge between tasks requiring different dimensions of
state information. Then, we developed a multi-task learning
(MTL) aided knowledge transferring scheme for transferring
better-generalized knowledge. This is achieved by training
an MTL agent exploiting the knowledge obtained from mul-
tiple source tasks simultaneously. Besides the scenario of
knowledge transferring between RMSA tasks for different
networks, which has been studied in [32], we also investigate
the application of the proposed transfer DRL design to a more
challenging scenario where knowledge is transferred from
RMSA tasks to anycast service provisioning tasks. We present
the detailed DRL design for RMSA, including the state, action,
and reward formulation and the training mechanism, and
further extend the design to enable autonomic anycast service
provisioning by devising a dual-agent cooperative learning
scheme. We have augmented the simulation setup presented in
[32] with more exhaustive numerical simulations that evaluate
i) the performance of transferring human knowledge to RMSA
agents, ii) the sensitivity of the proposed design to the selection
of source and target tasks, and iii) the performance of the
proposed design in transferring knowledge from RMSA to
anycast service provisioning tasks.

The rest of the paper is organized as follows. In Section
II, we provide a brief review of related works. In Section
III, we present an autonomic optical networking architecture
enabled by DRL. Based on the architecture, we formulate the
problem of transfer DRL and elaborate on the modular agent

structure as well as the MTL-aided knowledge transferring
scheme in Section IV. In Section V, we show the case studies
on the proposed design. Finally, we provide the performance
evaluations and related discussions in Section VI and conclude
the paper with Section VII.

II. RELATED WORK

Existing works on ML-aided cognitive optical networking
mostly focus on QoT estimation, OPM, fault management, and
resource allocation. In [8], the authors developed a Random
Forest classifier that can accurately predict whether the bit-
error-rate of an unestablished lightpath can satisfy the system
requirement, taking as input various network configurations,
such as the traffic volume, the desired routing path and modu-
lation format. In [9], the effectiveness of different ML models,
i.e., K-nearest neighbors, logistic regression, support vector
machines (SVM), and artificial neural networks (ANNs), on
QoT estimation were evaluated. The results indicate that all the
ML models can achieve high estimation accuracy while ANNs
offer better generalization capabilities. Vela et al. developed
two cognitive algorithms in [11] for detecting and identifying
the root causes of bit-error-rate degradations due to signal
overlap, tight filtering, gradual drift, and cyclic drift. The
authors of [12] evaluated two ML models, based on SVM
and ANNs, respectively, in detecting and identifying jamming
signal attacks with different power intensities. Our previ-
ous work in [13] proposed a hybrid supervised/unsupervised
learning scheme for anomaly detection in optical networks.
Specifically, a data clustering module is first used to screen out
abnormal network behaviors from a large amount of unlabeled
OPM data, whereafter, a DNN-based data regression module
is trained with the obtained knowledge for online anomaly
detection. In [14], the authors proposed to realize adaptive
virtual network topology reconfiguration by leveraging a data
analytics model for predicting the traffic dynamics of optical
core networks. A traffic predictor based on long/short-term
memory neural networks was developed in [16]. Taking ad-
vantage of the traffic predictor, the authors then devised cross-
layer orchestration algorithms to optimize lightpath reconfig-
uration decisions. More recently, in [17], [33], the authors
proposed an ML-based classifier design that can learn near-
optimal routing and wavelength assignment policies from data
generated by ILP models and experimentally demonstrated
the integration of the design with an ONOS-based software-
defined networking (SDN) testbed.

The aforementioned works mostly apply supervised or
unsupervised learning schemes. Lately, several works have
studied DRL designs for autonomic optical networking. In
[20], we proposed an autonomic RMSA framework based
on the asynchronous advantage actor-critic (A3C) algorithm
and demonstrated performance superior to that of the state-of-
the-art heuristic approaches. The authors of [21] developed
a reinforcement learning scheme for predictive bandwidth
allocation in EON, i.e., learning the policies of determining the
number of frequency slots (FS’s) to allocate. In [22], Luo et al.
targeted a survivable EON design with DRL and proposed a
double-agent scheme for mastering the working and protection
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Fig. 1. (a) Autonomic optical networking architecture, and (b) operation principle of an autonomic networking application.

lightpath configurations. In [23], the authors investigated a
DRL approach for dynamic slice admission in 5G flexible
radio access networks, to maximize network revenue gains. An
ingenious network state representation scheme for DRL-based
routing in optical transport networks (OTNs) was developed in
[24]. The same team later extended the work by incorporating
graph neural networks to enhance the generality of the DRL
design over different OTN topologies [25]. In [27], Li et al.
employed a DRL design similar to that in [20] for determining
the duration of service cycles in provisioning virtual network
function (vNF).

There have been a few studies on TL for optical networks,
but all based on supervised learning. In [34], Yu et al. adopted
an ANN-based QoT estimator design, and investigated TL
schemes for optical systems with different modulation formats.
The results show that TL can remarkably reduce the number
of additional data instances required for training a new QoT
estimator. A similar research can be found in [35]. The authors
of [36] applied TL to assist the training of ML models used
to predict the spectrum defragmentation time in space-division
multiplexing EONs. In [37], we proposed an evolutionary
TL approach to facilitate the QoT estimation tasks for inter-
domain lightpaths, where a genetic algorithm is devised to
explore the proper sets of knowledge to transfer.

For more comprehensive surveys or tutorials on the appli-
cation of ML in optical networking and systems, the readers
can refer to [38]–[40].

III. AUTONOMIC OPTICAL NETWORKING ARCHITECTURE

Fig. 1(a) depicts an autonomic optical networking archi-
tecture, which is built upon SDN-based network control and
management. In the data plane, an optical backbone network
carries the traffic aggregated from metro networks to provide
interconnectivity among access users, data centers (DCs), and
research facilities at different geographical locations. An SDN
controller is employed to control the data plane equipment
(e.g., optical switches, transponders) of the backbone in a
centralized manner. The SDN controller can fetch network
state data (e.g., spectrum utilization status, OPM data) on
demand using telemetry services [41] and distribute device

configuration commands according to the instructions from
the service provisioning manager. The SDN controller can also
work with metro, access, and DC controllers to realize end-
to-end service provisioning across heterogeneous domains. On
top of the SDN controller, a set of autonomic networking
applications are deployed, forming a knowledge plane. Each
autonomic application makes use of a DRL agent to learn the
policies for a particular networking task, for instance, RMSA.

Fig. 1(b) shows the operation principle of an autonomic
networking application. Specifically, at each operation step
(e.g., upon receiving a service request), the service provi-
sioning manager retrieves necessary network state data from
the traffic engineering database and invokes the corresponding
DRL agent. The feature engineering module of the agent
first transforms the data into a state representation that can
be recognized by the DNNs employed. The DNNs read the
state representation and compute an action policy and a value
estimation. The action policy can be a probability distribution
over a set of possible actions (e.g., candidate routing paths), or
can return an action directly (e.g., determining the amount of
bandwidth to allocate), depending on the DRL approach used.
The value estimation is used for the training purpose, which
will be discussed in the subsequent Sections. The service
provisioning manager hereby decides a service scheme to use,
whereafter, the controller configures the data plane equipment
accordingly (if necessary). Afterwards, the controller provides
feedback to the reward system (i.e., indicating key network
performance indicators related to the task), which in turn
computes a numerical reward for the agent. The agent records
the operation experience in a buffer and constantly trains
the DNNs by reinforcing actions leading to higher long-term
rewards. As such, the agent can progressively learn effective
policies and meanwhile adapt to gradual network changes1.

IV. TRANSFER DRL DESIGN

In this section, we formulate the problem of transfer DRL
for autonomic optical networking and elaborate on the modular

1A practical way of deploying autonomic networking applications could be
pretraining the DRL agents with network emulators prior to adopting them in
online operations [42].
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agent structure and the MTL-aided knowledge transferring
scheme proposed.

A. Problem Formulation

Let Msrc and Mtar represent the sets of source and target
DRL tasks (autonomic networking applications), respectively.
Each task Mi(Si,Λi, ri,Pi) ∈ {Msrc,Mtar} can be modeled
as a Markov decision process, with Si, Λi, ri, and Pi denoting
its unique state space, action space, reward function, and state
transition function, respectively. More specifically, ri(st, at)
defines the reward a DRL agent can obtain by taking action
at ∈ Λi given state observation st ∈ Si at system time t.
Pi(st+1|st, at) characterizes the system dynamics, indicating
the distribution of a next state st+1 as a function of st
and at. Each DRL agent parameterizes a policy function
πi = fθπi (a, st) (a ∈ Λi) and a value function Qi = fθQi (st)
with DNNs, where θπi and θQi signify the respective sets
of parameters of the DNNs. πi guides the action selection
by the agent upon each observation st, while Qi provides
an estimation of the long-term reward expectation following
the state transition function of the task (st+τ ∼ Mi) and the
current policy (at+τ ∼ πi), i.e.,

Qi(st) = Est+τ∼Mi,at+τ∼πi

[
∞∑
τ=0

γτri(st+τ , at+τ )

]
, (1)

Here, γ ∈ [0, 1] is a discounting factor used for reducing the
values of future rewards (τ > 0). The goal of each DRL
agent is to learn the optimal sets of parameters (denoted as
θ∗πi and θ∗Qi ) so that Qi(st) is maximized. Different training
algorithms can be used to achieve such a goal. For instance,
with the state-of-the-art A3C algorithm [19], θ∗πi and θ∗Qi can
be approximated by minimizing the following policy and value
loss functions every time N instances (e.g., t0 → t0 +N − 1)
are collected.

Lθπi =−
1

N

∑
t∈[t0,t0+N−1]

δt log fθπi (at, st)

− α

N

∑
t∈[t0,t0+N−1]

∑
a∈Λi

fθπi (a, st) log fθπi (a, st),
(2)

LθQi =
1

N

∑
t∈[t0,t0+N−1]

(
∑

τ∈[t,t0+N−1]

γτ−tri(sτ , aτ )

+ γt0+N−tQi(st0+N )− fθQi (st))
2.

(3)

Wherein, fθπi (a, st) returns a probability of taking action a,
and δt is the advantage of the action taken, which can be
calculated as,

δt =
∑

τ∈[t,t0+N−1]

γτ−tri(sτ , aτ ) + γt0+N−tQi(st0+N )−Qi(st).

(4)
In other words, δt indicates how much an action turns
out to be better than expected. By minimizing the policy
loss, the probabilities of actions with larger advantages are
increased. Meanwhile, the average policy entropy weighted
by α(0 < α � 1) (i.e., the second term of the policy
loss) is used to encourage exploration. The value loss is
defined straightforwardly as the mean square error between
the estimated and the observed rewards.

Let us assume that θ∗πi and θ∗Qi have been successfully
learned for tasks in Msrc and that tasks in Mtar share certain
similarities with those in Msrc. For instance, the source
and target tasks all involve routing and spectrum allocation
procedures. The goal of this work is to investigate effective
transfer DRL designs to facilitate the training of Mtar by
exploiting the knowledge learned for Msrc (i.e., θ∗πi and θ∗Qi ).

B. Modular Agent Structure

Different autonomic networking applications can require
different amounts of network state information, leading to
different dimensions of state spaces for the DRL agents.
For instance, compared with an RMSA agent that principally
works with the link spectrum utilization information, a DRL
agent for service function chain provisioning also demands
the utilization states of vNFs deployed at various network
locations. In principle, extracting useful features from hetero-
geneous state information entails different knowledge. Thus,
it is essential to distill relevant (and right) knowledge for
realizing effective knowledge transferring, which is, however,
difficult with a conventional DRL agent design that makes
use of a unified neural network block to process all the
state inputs jointly. In this context, we propose to leverage
a modular agent structure as shown in Fig. 2(a). In particular,
we partition the state space of each task (without loss of
generality, task MA) into a common space SA,O and a task-
specific space S−A,O. Each sA,O ∈ SA,O conveys common
information used by multiple tasks (e.g., spectrum utilization),
whereas s−A,O ∈ S−A,O carries state data that are only to
be mined by the specific task (e.g., vNF utilization). State
partitioning can be conducted manually by network experts,
or, through an automated process where we model each type
of state data as an element and find the maximal set of shared
elements between tasks to form the common space. Separate
neural network blocks, fθA,O (·) and fθ−A,O (·), are employed to

extract high-level features from sA,O and s−A,O, respectively,
where θA,O and θ−A,O represent the corresponding sets of
parameters. Note that, the architecture of fθi,O (·) of every task
Mi ∈ {Mtar,Mtar} should be identical. On top of fθA,O (·)
and fθ−A,O (·), we add another two neural network blocks as the
policy and value heads, which combine the extracted features
to compute πA and QA. Alternatively, we can decouple the
policy and value functions by structuring separate DNNs with
architectures similar to that in Fig. 2(a) but only having a
single policy or value head. The modular agent structure allows
us to easily identify the correct knowledge (e.g., θ∗A,O) to
transfer between tasks.

C. Knowledge Transferring Schemes

With the modular agent structure, a straightforward knowl-
edge transferring scheme is directly copying θ∗A,O of a source
task MA ∈ Msrc to θB,O of a target task MB ∈ Mtar

while leaving the rest of the parameters randomly initialized.
Afterward, MB can be trained with a classic training algorithm
taking the derived DNN(s) as a starting point. Note that, the
weights copied from θ∗A,O can either be locked or unlocked
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Fig. 2. An illustrative example for the proposed transfer DRL design: (a)
straightforward knowledge transferring between two DRL agents (from MA

to MB), and (b) multi-task learning aided knowledge transferring (from MA

and MC to MB).

(i.e., trainable) during the training of MB , and in this work, we
make all the weights unlocked for performance considerations
[43]. Fig. 2(a) shows an illustrative example of the straightfor-
ward knowledge transferring scheme. Since the optimal feature
extractors of different tasks for the same state information
(i.e., fθ∗A,O (·) and fθ∗B,O (·)) will likely share certain structural
similarities, we can potentially approach θ∗B,O more quickly
by fine-tuning θ∗A,O with fewer samples. On the other hand,
it should be noted that the knowledge learned for a source
task can be overfitted or biased. In the situations where the
differences between source and target tasks are significant, for
instance, sA,O and sB,O have very different distributions, the
benefit of transferring θ∗A,O can be marginal or even negative.

To overcome the deficiency of the straightforward knowl-
edge transferring scheme, we devise an MTL-aided knowledge
transferring scheme as illustrated by Fig. 2(b). We slightly
extend the agent structure in Fig. 2(a) by integrating the DNNs
of multiple source tasks (tasks MA and MC in the example)
into a single MTL agent. In particular, we let MA and MC

share a common neural network block fθA/C,O (·) for sA,O and
sC,O, while the task-specific neural network blocks (including
the policy and value heads) remain unchanged. The MTL
agent is first trained to master both MA and MC , whereafter,
θ∗A/C,O is transferred to MB in a way similar to that of the
straightforward transferring scheme. By leveraging MTL to
exploit the knowledge obtained from multiple source tasks, we
can potentially learn and transfer better-generalized knowledge
across tasks for improved transferring effectiveness.

The MTL agent can be trained through either a DRL or a
supervised learning approach. With a DRL approach, we can
make the agent interact with the system environments of MA

and MC in parallel while applying a classic training algorithm
used for the single-agent scenario. More specifically, the MTL
agent can maintain a separate experience buffer for each task.
At every training step, the agent picks samples related to MA

or MC and only tunes the set of associated parameters. How-
ever, successfully training an MTL agent with a DRL approach

can be challenging. This is because the gradients from one task
can interfere with the training of other tasks, compromising the
performance of individual tasks or even leading to tasks being
dominated [44], [45]. Moreover, such an approach requires
a specific MTL environment (often unavailable) where the
multiple source tasks are present simultaneously and learn at
roughly the same pace (i.e., generating gradients of the same
order of magnitude during each period). Therefore, in this
study, we alternatively apply a more flexible supervised learn-
ing scheme inspired by the actor-mimic approach presented
in [31]. In particular, we first train DRL agents for MA and
MC independently. Then, we sample a long state trajectory
over the learned policy from each of the source tasks, i.e.,
Di = {(s, πi, Qi)|s∼Mi,a∼πi} (i ∈ {A,C}). We augment the
obtained data instance with proper paddings to fit them to the
DNN structure of the MTL agent. For instance, we expand
an instance (s, πA, QA) to be ([s, s−C,O = 0], [πA, πC =
0], [QA, QC = 0]) with zero paddings for all the elements
with respect to MC . Similarly, we obtain an augmented
instance ([s−A,O = 0, s], [πA = 0, πC ], [QA = 0, QC ]) from
(s, πC , QC(s)). Let D = {DA,DC}, we train the DNN in
Fig. 2(b) with D by minimizing the overall loss given by,

Lθ(D) = α1 · LθπA ,θπC (D) + α2 · LθQA ,θQC (D), (5)

where, the first and second terms signify the policy and value
losses, respectively, α1 and α2 are weighting factors, θ is the
set of all the parameters, θπi = {θA/C,O, θ−i,O, θπi,H}, and
θQi = {θA/C,O, θ−i,O, θQi,H}, i ∈ {A,C}. θπi,H and θQi,H
represent the sets of parameters of the respective policy and
value heads. The policy and value losses can be calculated as,

LθπA ,θπC (D) = 1

|D|

|D|∑
n=1

∑
i∈{A,C}

∑
a∈Λi

−gni πni (a) log fθπi (a, s
n),

(6)

LθQA ,θQC (D) = 1

|D|

|D|∑
n=1

∑
i∈{A,C}

gni

(
Qni − fθQi (s

n)
)2

, (7)

where, gni is an indicator which is equal to 1 if the instance
belongs to Di, and 0 otherwise. We can see that by minimizing
Eq. 5, we make the MTL agent mimic the learned policy
and value functions of MA and MC simultaneously, and thus,
master both tasks. The supervised learning approach enables
us to rely on simply the existing DRL frameworks and to
freely combine different source tasks. Note that, an appro-
priate source task selection is critical to the performance of
knowledge transfer as the usefulness of the learned knowledge
is highly dependent on the similarities between source and
target tasks. A potential solution for effective source task
selection could be devising metrics to quantitatively measure
the similarities between tasks and select tasks having higher
similarity scores to a target task as the source tasks, similar
to the idea presented in [46]. Meanwhile, it is desirable
to maintain the diversity of source tasks as otherwise, the
problem reduces to a single source task one. We will consider
and investigate a more comprehensive design for source task
selection as one of our future research tasks.
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V. CASE STUDIES

In this section, we present the case studies on the proposed
transfer DRL design with two agent-to-agent knowledge trans-
ferring scenarios, i.e., knowledge transferring between RMSA
agents for different networks and knowledge transferring from
RMSA agents to agents for anycast service provisioning
(between applications).

A. Knowledge Transferring between RMSA Agents

Learning effective RMSA policies is imperative for achiev-
ing spectrum-efficient service provisioning in EONs. In our
previous work [20], we have demonstrated a successful DRL-
based RMSA agent design outperforming the state-of-the-
art heuristic approaches. However, training the RMSA agents
can be time-consuming. It is necessary to study knowledge
transferring between RMSA agents to enable prompt training
of agents for new networks, for instance, in the case of network
upgrades or failures/disasters where the effectiveness of the
learned RMSA policies can deteriorate remarkably (due to the
dramatic changes of network conditions, e.g., topology), or,
when an operator provisions virtual optical networks (VONs)
with different topologies and traffic profiles [3], [47].

Agent design: we slightly modify the RMSA agent design
in [20] based on the modular agent structure discussed in
Section IV-B. Let G(V,E) denote the network topology of Mi,
where V and E represent the sets of nodes and links, respec-
tively. Meanwhile, let R(vorig, vdst, bw, µ) denote a lightpath
request, with vorig and vdst being the origin and destination
nodes, bw being the required bandwidth (in Gb/s), and µ
being the service duration. Based on the fact that the spectrum
utilization information is the most fundamental state in EON
[2], [3], [15], [27], we make si,O containing the information
of the spectrum utilization state on K shortest candidate
routing paths, while s−i,O is composed of the information of R
(vorig and vdst in one-hot forms). Therefore, the scale of s−i,O
depends on |V |. For each path, we compute five key features
of spectrum state, including i) the number of FS’s required
based on the modulation format determined according to the
impairment-aware model in [48] and the calculation of Eq. 1 in
[20], ii) the total number of available FS’s, iii) the average size
of available FS blocks (i.e., blocks of consecutive available
FS’s), and iv) the size and v) starting position of the first
available FS block. In total, si,O contains 5K elements. We
adopt a fully-connected neural network block of five hidden
layers ([128, 128, 128, 128, 128]2) for fθi,O (·) and single-layer
(also fully-connected) policy and value heads taking as input
the concatenation of s−i,O and fθi,O (si,O). The hidden layers
use ELU as the activation function. An RMSA agent selects
one from the K path candidates as the routing path for R and
applies the first-fit spectrum allocation scheme afterward.

Reward function: the objective of an RMSA task is to
maximize the number of requests successfully serviced during
long-term network operations. Thus, we assign an agent a
reward of 1 if R is successfully serviced, and otherwise −1.

2The neural network architecture is decided based on the architectural study
performed in [20].

Training: the DeepRMSA-FLX algorithm in [20] is used
for training. We apply the A3C algorithm (see Eqs. 1-4) and
adopt the following modifications. First, we make an RMSA
agent optimize the total discounted reward within a window
of length N (instead of ∞ as in Eq. 1) at each step t. The
reason for doing so is two-fold: i) we make the objective value
bounded, ii) we eliminate the term Qi(st0+N ) from Eqs. 3 and
4, as the future state st0+N is unknown (due to the uncertainty
of further requests). Then, we perform training every time
2N − 1 samples are recorded but only the first N samples
will contribute to the policy and value losses. This way, we
can easily obtain the target value and advantage regarding each
sample using the observed rewards.

Knowledge transferring: given the aforementioned RMSA
agent design, we apply knowledge transfer from RMSA agents
which have been trained to RMSA agents for unseen networks.

B. Knowledge Transferring between Applications

A more challenging scenario is knowledge transferring
between applications where the differences between tasks are
more prominent. In this work, we investigate specifically the
case where we leverage the knowledge learned by RMSA
agents to facilitate the training of DRL agents for anycast
service provisioning tasks in EONs. The problem of anycast
service provisioning can be defined as follows. Let Vdc be
the set of DC nodes where computing resources are deployed
and Rac(vorig, bw, cp, µ) denote an anycast service request
demanding cp units of computing resources. The network
operator provisions each Rac by allocating sufficient amount
of computing resources at a DC node v ∈ Vdc and by
establishing a lightpath with bandwidth of bw to connect
vorig and v [49]. Either cp or bw not being able to be
satisfied will lead to service blocking. Therefore, an anycast
service provisioning task can be seen as composed of two
correlated subtasks, i.e., DC node (or destination) selection
and RMSA. Realizing effective anycast service provisioning
in EONs requires the joint optimization of routing, spectrum
and computing resource allocations.

Agent design: the state space of an anycast service provi-
sioning task is much larger than that of an RMSA task as
we need to feed the related agent the spectrum utilization
information on routing paths to multiple potential destinations
(in contrast, a single destination for an RMSA task). To facili-
tate knowledge transferring from RMSA agents and to achieve
enhanced model scalability to the size of Vdc, we propose a
dual-agent cooperative learning scheme for autonomic anycast
service provisioning. In particular, we divide the provisioning
of Rac into two stages. First, an RMSA agent is used to
determine a routing path for each vorig and v ∈ Vdc pair
by selecting one from the K candidates. The RMSA agent
essentially elects a set of most promising solutions according
to the spectrum utilization state, reducing the size of the
action space from K × |Vdc| to |Vdc|, where |Vdc| represents
the number of nodes in Vdc. Then, in the second stage, we
employ a master agent aiming at learning an optimal policy
over the |Vdc| candidate solutions generated by the RMSA
agent, with which the eventual service scheme for Rac can
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be decided. The architecture of the master agent resembles
that of the RMSA agent, with si,O conveying the resource
utilization state on the |Vdc| candidate paths and s−i,O carrying
the information of Rac and the computing resource utilization
of each v ∈ Vdc. We adopt a fully-connected architecture with
five hidden layers of 128 neurons for both fθi,O (·) and fθ−i,O (·).
Slightly different from the RMSA agent design, we stack
fθi,O (si,O) and fθ−i,O (s−i,O) to get a feature matrix of 2× 128

and process the feature matrix using a convolutional layer with
one filter (size = 2×1, stride = 1) before employing the final
fully-connected policy and value layers. The convolutional
layer acts as a coupler that combines the features extracted
from the spectrum and computing resource utilization states to
produce useful features for joint resource optimization. Again,
ELU is used as the activation function for all the hidden layers.

Reward function: we assign the master and RMSA agents
the same team reward of 1 if Rac is correctly provisioned
(otherwise, −1), to make the two agents learn cooperatively
toward maximizing the long-term throughput of anycast ser-
vice provisioning.

Training: we extend the DeepRMSA-FLX algorithm to
the dual-agent setting by applying an independent learning
scheme, where each agent learns with the DeepRMSA-FLX
algorithm while treating the behavior of the other agent as part
of the system environment. In other words, the agents learn
implicit cooperative policies driven by only team rewarding.
Meanwhile, we adopt the following tricks to facilitate the
successful training of the agents. First, we sort the candidate
paths selected by the RMSA agent in the ascending order
of path lengths and arrange si,O and s−i,O for the master
agent accordingly. By doing this, we intend to stabilize the
distribution of state data for the master agent when the be-
havior of the RMSA agent continuously evolves. Besides, this
processing makes the distribution of si,O for the master agent
more similar to that for an RMSA agent (for which, candidate
paths are also ordered according to path lengths), and thereby
can potentially benefit knowledge transferring. Second, among
the |Vdc| samples (each for a DC node v ∈ Vdc) generated
by the RMSA agent upon provisioning Rac, only the sample
related to the DC node ultimately selected by the master agent
is retained and used for training afterward. This is because
the other samples do not have direct correlations with the
reward received and can be too noisy for training. For instance,
a wrong decision made by the master agent can lead to a
negative reward even when some of the actions taken by the
RMSA agents are correct.

Knowledge transferring: We apply the proposed transfer
DRL design to transfer the knowledge obtained by RMSA
agents to both the master and RMSA agents for anycast service
provisioning.

VI. PERFORMANCE EVALUATION

We evaluated the performance of the proposed transfer DRL
design with dynamic service provisioning simulations using
the topologies depicted in Fig. 3. The capacity of each fiber
link was set as 100 FS’s. We generated dynamic service
requests (i.e., lightpath and anycast service requests) follow-
ing Poisson processes. Each request demands a bandwidth
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Fig. 3. EON topologies used in the simulations: (a) six-node, (b) 14-node
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randomly distributed within [25, 100] Gb/s. The computing
resource requirement from an anycast service request was set
to be equal to the bandwidth requested [49]. We varied the
traffic loads from task to task so that the request blocking
probabilities could fall into a reasonable range (i.e., around
0.01). For all the tasks, K was set to be 5. We trained RMSA
agents for the six-node and the 14-node Japan topologies
separately using the approach discussed in Section V-A as
the two source tasks, while the remaining three topologies
were used for target tasks. For the anycast service provisioning
tasks, we set Vdc to be [3, 4, 5, 6, 10], [3, 5, 8, 10, 12], and
[3, 6, 10, 16, 17] for the COST 239, the NSFNET, and the US
Backbone topologies, respectively. Meanwhile, each DC node
v ∈ Vdc was assumed to be equipped with 3, 600, 3, 600, and
4, 000 units of computing resources for the three topologies,
respectively. In training each target task, we used three actor-
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Fig. 5. Performance comparison between TL-KSP-FF and w/o TL.

learners3 [19]. The number of samples used in each training
step was set as 200. The rest of the parameter setups for
training were the same as those in [20]. We sampled a state
trajectory of 150, 000 instances from each source task with the
learned policies for training the MTL agent, where the Adam
optimizer was used [50]. Fig. 4 shows the evolution of policy
losses in training the MTL agent, which suggests a successful
training without the presence of noticeable overfitting (as the
validation loss converges with the training loss).

For each target task, we evaluated agents applying different
knowledge transferring schemes and an agent learning from
scratch without transferring learning (denoted as w/o TL). In
particular, we denote the agents that learn with the knowledge
transferred from the MTL agent and the RMSA agents for
the six-node and the 14-node Japan topologies as TL-MTL,
TL-Six-Node, and TL-14-Node, respectively. Since we were
interested in understanding whether human knowledge would
be beneficial, we also evaluated the scenarios where agents
learned on top of heuristic policies for RMSA tasks. Specif-
ically, we selected the K-shortest path routing and first-fit
spectrum allocation (KSP-FF) algorithm (K = 5), which has
been shown to achieve the state-of-the-art performance [51],
and trained RMSA agents for the target tasks by generating
large sets of data instances (i.e., 100, 000) with KSP-FF and
by using a supervised learning approach similar to that for
training an MTL agent (see Section IV-C). Note that, KSP-
FF adopts a deterministic policy, i.e., we will get from each
sample a policy πi(a) = 1,∃a ∈ Λi and πi(a

′) = 0,∀a′ ∈
Λi \ a. To enable exploration capabilities, we added a random
noise with a mean of 0.05 to πi. The supervised learning
approach embedded the heuristic policies in the trained agents,
whereafter, we made the agents continue to learn with DRL.
We denote such agents as TL-KSP-FF. Meanwhile, we selected
KSP-FF and the BL-Single-DC-4 algorithm from [49], which
has the best performance, as the heuristic baselines for the
RMSA and the anycast service provisioning tasks, respectively.

A. Human Knowledge Transferring to RMSA Agents

We first evaluated the performance of transferring human
knowledge. Fig. 5 shows the performance comparison between

3The A3C algorithm makes use of multiple actor-learners with the same
structure, which can be virtually seen as multiple incarnations of a DRL agent.
Each actor-learner interacts with its own copy of the environment and updates
the global DNNs asynchronously.

TL-KSP-FF and w/o TL, where the value of each data point
corresponds to the request blocking probability of a provi-
sioning period of 100, 000 lightpath requests. At the initial
stages, w/o TL has much higher blocking probabilities because
of the randomly initialized policy and value functions. TL-
KSP-FF also performs slightly worse than KSP-FF due to the
random noises introduced. However, for all the three target
tasks, TL-KSP-FF can quickly achieve performance close to
that of KSP-FF through training (recall that a training step
is invoked every 200 requests being simulated). On the other
hand, the performance of TL-KSP-FF can hardly be further
improved with training afterward and starts to oscillate around
that of KSP-FF. We presume that the agents have been trapped
in local optima. In contrast, after certain amounts of training
performed, w/o TL can outperform KSP-FF in the NSFNET
and the US Backbone topologies. The results suggest that the
real effective policy functions are much more sophisticated
than what can be fine-tuned from the fixed heuristic policies,
which motivates the studies of more comprehensive transfer
DRL designs.

B. Knowledge Transferring between RMSA Agents

Next, we evaluated the performance of the proposed transfer
DRL design. Figs. 6 (a)-(c) show the evolutions of request
blocking probability related to the different knowledge trans-
ferring schemes. First, we can see that TL-Six-Node and TL-
14-Node can effectively expedite the learning processes from
random policies to policies having performance comparable
to that of KSP-FF, when compared with w/o TL. Note that,
even assisted by knowledge transferring, the initial policies of
agents tend to be random because the policy and value heads
are still randomly initialized. Quantitatively, TL-Six-Node and
TL-14-Node can reduce the number of requests simulated from
around four (for the COST 239 topology) or two million (for
the NSFNET and the UC Backbone topologies) as required by
w/o TL to less than 400 thousand. The initial learning curves
from TL-MTL are less sharp than those from TL-Six-Node
and TL-14-Node as the agents start with more generalized
knowledge. Such knowledge, on the other hand, allows TL-
MTL to achieve much better ultimate blocking performance,
while the advantages of TL-Six-Node and TL-14-Node over
w/o TL are not evident. Figs. 6 (d)-(f) show the plots of
complementary cumulative distribution function (CCDF) for
blocking reduction against KSP-FF from the different schemes
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Fig. 6. Results for knowledge transferring between RMSA agents: (a)-(c) evolutions of request blocking probability in training, and (d)-(f) complementary
cumulative distribution function (CCDF) of performance gain (blocking reduction) against the KSP-FF algorithm after 5, 000, 000 requests simulated.
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NSFNET topologies as the source tasks.

after training with five million requests. To obtain the plot
for each scheme, we measured the blocking probability of
every 10, 000 requests and counted the frequency of achieving
performance gain larger than each considered value (the hori-
zontal axis). For the COST 239 topology, TL-MTL assists in
achieving blocking reduction of at least 22%, whereas there are

probabilities of around 68%, 54%, and 9% to get performance
worse than that of the baseline with w/o TL, TL-Six-Node and
TL-14-Node, respectively. Similar trends can be observed for
the NSFNET and the UC Backbone topologies. On average,
TL-MTL can achieve 42.7%, 50.6%, and 28.9% blocking
reductions with the three target tasks, respectively, which are
2× of those from TL-Six-Node and TL-14-Node.

We also evaluated the sensitivity of the proposed design
to the selection of source and target tasks. Specifically, we
transferred the knowledge learned by the RMSA agents for the
COST 239 and the NSFNET topologies (which we denote as
TL-COST239 and TL-NSFNET, respectively) to the training
of RMSA agents for the six-node and the Japan topologies.
The results of blocking probability are plotted in Fig. 7, which
show trends consistent with those we can see from Fig. 6. TL-
COST239 and TL-NSFNET facilitate faster convergence of the
learning processes while TL-MTL achieves the best ultimate
learning performance. After training with five million requests,
TL-MTL achieves blocking reductions of > 18% and > 3%
against the baseline for the six-node and the Japan topologies,
respectively. Whereas the blocking probabilities with w/o TL,
TL-COST239, and TL-NSFNET are on average 17%, 22%,
and 20% higher than those with the baseline. The results
confirm the effectiveness of TL-MTL, and, to a certain extent,
verify its robustness to the selection of tasks.

C. Knowledge Transferring between Applications

Lastly, we evaluated the performance of the proposed de-
sign with the anycast service provisioning tasks. Figs. 8 (a)-
(c) show the evolutions of request blocking probability in
training. Without knowledge transferring, the agents cannot
converge to policies with performance close to that of BL-
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Fig. 8. Results for knowledge transferring from RMSA agents to anycast service provisioning agents: (a)-(c) evolutions of request blocking probability in
training, and (d)-(f) CCDF of performance gain (blocking reduction) against the BL-Single-DC-4 algorithm after 6, 000, 000 requests simulated.

Single-DC-4. The reason is that with the independent learning
scheme, both the master and RMSA agents need to deal with
changing and unstable system environments, making learning
effective cooperative policies very challenging. Similar to the
observation that can be drawn from the evaluations for the
RMSA tasks, TL-Six-Node and TL-14-Node facilitate faster
policy improvements at the initial training stages compared
with w/o TL (with the exception that TL-Six-Node performs
the worst under the COST 239 topology), while their ultimate
performance gains are hardly noticeable or even negative. TL-
MTL is the only scheme that can eventually achieve better
or comparable performance compared with BL-Single-DC-4.
Figs. 8 (d)-(f) show the CCDF plots of blocking reduction
against BL-Single-DC-4 after training with six million re-
quests. For the COST 239 and the NSFNET topologies, TL-
MTL outperforms the baseline in 70% and 80% of the cases,
with the average performance gains being 10.6% and 19.6%,
respectively. In contrast, the average performance with w/o
TL, TL-Six-Node and TL-14-Node is worse than that of the
baseline, and their frequencies of achieving positive gains are
less than 30% and 40%, respectively. Similarly, the results
under the US Backbone topology show significant advantage
of TL-MTL over the rest three schemes, despite that TL-
MTL outperforms the baseline in only 24% of the cases. Note
that, the goal of this work is to develop effective knowledge
transferring schemes for DRL applications in optical networks
while not optimizing the DRL design for a specific applica-
tion. Developing more advanced agent designs and training
algorithms for autonomic anycast service provisioning will be
left as one of our future research tasks.

VII. CONCLUSION

In this paper, we proposed an MTL-aided transfer DRL
design for autonomic optical networking. Cases studies under
two scenarios, i.e., knowledge transferring between RMSA
agents for different topologies and knowledge transferring
from RMSA agents to anycast service provisioning agents,
verified the effectiveness of the proposed design. Future re-
search directions include: (1) designing more universal state
representation and feature extraction schemes, for instance,
using graph neural networks to process the original per-link
FS state matrices with connectivity information, to extend
the applicability of the proposed design to a wider range
of applications in optical networks (e.g., service function
chain provisioning), (2) studying more comprehensive transfer
DRL design exploiting the similarities between tasks (e.g.,
similarities in state distributions and reward structures), and
(3) studying transfer DRL design for multi-domain networks
where domain privacy must be secured.
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