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A B S T R A C T

A suboptimal management or system malfunction can often lead to abnormal energy consumptions in buildings,
which result in a significant waste of energy. For this reason, the adoption of advanced monitoring systems,
based on Machine Learning (ML) and visualization techniques, is crucial to avoid possible deviations from
the baseline energy consumption. However, the historical data on which analyses are based generally do
not report the occurrence of anomalies. Therefore, the application of supervised ML techniques is limited
and unsupervised approaches are favored. Moreover, domain experts find most Machine Learning (ML)
techniques hard to interpret, and thus find it difficult to contextualize anomalies. To overcome these issues,
this work proposes a machine learning-based Anomaly Detection Framework (ADF) that involves the use of
two complementary semi-supervised ML applications to obtain a highly interpretable and accurate detection
of anomalies. Both techniques use Symbolic Aggregate approXimation (SAX) encoding to extract the most
relevant information from load profiles. The aim of the first approach is to maximize the interpretability of
the definition and distinction between anomalous and normal behavior. This is achieved using a Classification
And Regression Tree (CART), albeit at the expense of a coarser output granularity. The second approach
exploits an Multi-Layer Perceptron (MLP) algorithm to obtain a higher and more accurate output resolution,
although it leads to a less interpretable definition of any anomalous behavior. The ADF has been applied to a
real case study using electricity consumption data provided by a large telecommunications service provider.
The results show that combining both ML models enhances the accuracy and interpretability of the detected
anomalies.
1. Introduction

Buildings contribute to global energy consumption to a significant
extent, with around one-third of electricity final use and about a
quarter of global CO2 emissions being attributed to their operation [1].
Commercial and industrial buildings were found to account for 8%
of the total energy consumption in 2018 [2]. Therefore, enhancing
energy efficiency and a rational resource management in these sectors
are imperative to reduce the energy footprint and greenhouse gas
emissions.

Academic research has focused on two primary approaches to tackle
the aforementioned issues: (i) retrofitting building envelopes and sys-
tems, and (ii) optimizing the control and management of building
energy systems. Moreover, a significant portion of the energy inefficien-
cies of buildings results from a poor energy management rather than
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inefficient building envelopes and systems [3]. Therefore, improving
building energy monitoring systems is essential in order to address
the aforementioned challenges [4]. Such monitoring systems can be
classified into two main types: low-level monitoring systems and high-
level monitoring systems. Low-level monitoring systems oversee energy
consumption on a machine-by-machine basis and exploit dedicated sen-
sors. However, this approach requires highly specialized applications
in each individual building, thus resulting in high costs. On the other
hand, high-level monitoring systems exploit energy consumption data
from smart meters, thereby allowing for a more generalized approach
that is not intrusive or specific to individual buildings. However, in
order to obtain an effective high-level monitoring system, the con-
sumption data analysis and anomaly alerting should be accurate and
interpretable and should inform on how the consumption diverges from
typical responses to external drivers. Moreover, the user interface plays
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a fundamental role, especially for high-level monitoring systems. These
systems are not directly interfaced with the sensors or actuators of
the plant and cannot act directly on the control systems. Furthermore,
identifying any abnormal behavior within historical consumption time
series can be a challenging task since there are no clear boundaries
to distinguish such behavior from normal behavior. Therefore, it is
crucial to offer additional assistance to analysts/domain experts/energy
managers, apart from simply alerting them about anomalies. This result
to be fundamental to persuade stakeholders about the need to take
action to restore consumptions to normal levels.

This work extends a previous work of ours [5], by proposing an
Anomaly Detection Framework that is based on combining two differ-
ent semi-supervised ML approaches to emphasize the accuracy, interop-
erability and graphical representation of any detected anomalies. The
method [5] is here extended to extract the SGT from a raw dataset by
improving the accuracy of anomaly detection algorithms through two
semi-supervised model trainings. The first developed algorithm, named
SAX-CART, uses SAX encoding as a method to extract relevant features
of load profiles and a Classification And Regression Tree (CART) model
to reconstruct profiles from exogenous variables and define instances
classified incorrectly as anomalous. The key feature of the SAX-CART
approach is the interpretability of the model outputs, albeit at the
expense of accuracy. The second algorithm, named SAX-MLP, uses an
MLP that is trained in estimating electricity consumption and defines
anomalies by imposing an upper limit on the magnitude of the errors
committed by the model beyond which observations are considered
anomalous. In this case, the use of SAX encoding is reserved for only
the steps related to extracting the SGT from the dataset. This approach,
unlike the SAX-CART approach, is aimed at privileging the accuracy of
model outputs rather than their interpretability. This proposed frame-
work introduces a novel approach to data selection, which has the aim
of extracting SGT from raw time series data. In order to extract the SGT,
we applied the Pareto principle to the appropriately clustered dataset.
The Pareto principle, also known as the 80/20 rule, allows to distin-
2

guish the portion of useful and generalizable information from the noise
present in the dataset. Furthermore, the study conducts a comprehen-
sive comparison between two distinct types of algorithms, highlighting
their precision performance, and evaluating the type of output with
a focus on extracting useful information for identifying the possible
causes of the detected anomalies. Another significant contribution lies
in the application of the proposed framework to a real-world case study,
thereby extending the applicability of the adopted methodologies to
the analyzed scenario and enhancing the framework’s significance and
robustness. The data used in this study originate from smart meters
installed in various buildings of a prominent telecommunication service
provider in Italy. For Non-Disclosure Agreements (NDA) reasons, the
organization restricts the dissemination of research data. The remainder
of this work is structured as follows. Section 2 introduces the anomaly
detection process in building electricity consumption data and presents
a review of the relevant solutions in the literature. Section 3 outlines
the proposed Anomaly Detection Framework in detail. Section 4 re-
ports the experimental results obtained by analyzing a real dataset
consisting of hourly measurements of the aggregate power data of the
aforementioned Telecommunication (TLC) stations. Finally, Section 5
presents the concluding remarks and discusses potential avenues for
future works.

2. Related work

Improving energy monitoring systems in buildings, especially in the
highly energy-intensive commercial and industrial sectors, is of crucial
importance to increase energy efficiency and reduce operating costs.
One effective method that can be used to identify abnormal energy
consumption patterns in various locations and at various times involves
the use of anomaly detection and visualization techniques. These tech-
niques help a energy manager interpret and contextualize patterns and
anomalies. They also allow a better understanding of the root causes
and more effective actions to be introduced. It is worth noting that,
in the context of power consumption data, it is fundamental to exploit
domain knowledge in order to define what outliers actually represent
real anomalies of the system being monitored and what one instead
represent only inconsistencies in the dataset. Indeed, anomalies can
be classified on the basis of three different characteristics: (i) punctual
anomalies, (ii) collective anomalies, and (iii) contextual anomalies [6].
Punctual anomalies are anomalies that are characterized by the in-
volvement of only a few observations, if not just a single one, within a
dataset, which deviate significantly from the characteristic value ranges
assumed by the other observations. Collective anomalies are instead
characterized by a set of observations which, taken individually, do not
constitute an anomaly but which, when observed in a comprehensive
way, do not conform to the typical patterns found in the dataset.
Punctual anomalies and collective anomalies are deduced exclusively
through the analysis of historical series. On the other hand, contextual
anomalies can be deduced by correlating a monitored variable with
the explanatory variables. For instance, energy consumption patterns
may be deemed anomalous if they do not reflect the typical corre-
lation with temperature or if they do not conform to seasonality or
weekly scheduling patterns or more generally exogenous variables that
represent drivers of energy consumption. Defining anomalies through
context in power consumption data is the most robust and advanta-
geous approach, as it can provide initial elements that can then be used
to investigate the causes of the anomalies.

2.1. Anomaly detection techniques

The choice of the algorithm to use for anomaly detection depends to
a great extent on the dataset that is available for training, and particu-
larly on the availability of labels for anomalous observations [6]. Three
categories of algorithms can be identified: supervised, unsupervised,
and semi-supervised. Supervised algorithms exploit the labels assigned
to each dataset element to learn the difference between normal and
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anomalous behaviors. A high performance is generally guaranteed,
but acquiring a labeled dataset requires a significant effort and a
significant expenditure of resources. Moreover, the performances are
closely related to the preprocessing of the dataset, as errors in the labels
can lead to ineffective models. In addition, it is often a challenging
task to identify anomalies in complex systems during a manual labeling
process, and labeled data are not always readily available. For these
reasons, to the best of our knowledge, there are currently no studies in
the literature that have utilized a supervised approach in this particular
research field.

A new and innovative way of tackling the challenge of using labeled
datasets is by resorting semi-supervised algorithms. This approach has
not been widely explored yet and is often referred to as unsuper-
vised [7]. The substantial difference between the two approaches lies in
how the training dataset is preprocessed. The training dataset in semi-
supervised approaches undergoes filtering and any anomalous behavior
is removed. This filtering can greatly improve the robustness of a model
by training it on ground truth [8]. For example, a semi-supervised
techniques was exploited in [9] to train a Long Short-Term Memory
(LSTM) on a filtered dataset. Although this method leads to appreciable
results, the adopted filter relies only on a statistical approach that is
more suitable for removing noise from observations than detecting real
anomalies. In [10], a hybrid approach is proposed that cascades an
unsupervised algorithm to label the dataset and a supervised Two-Class
Boosted Decision Tree algorithm in order to accurately classify anoma-
lous observations. In [11], the authors used the Self-Organizing Map
(SOM) to identify consumption profiles characterized by anomalous
consumption and leveraged on the obtained results to enhance load
forecasting through a Neural Network (NN).

Finally, unsupervised anomaly detection algorithms use unlabeled
datasets and are based on the implicit assumption that normal instances
are much more frequent than anomalies in the tested data [12,13].
If this assumption is verified, the model that is trained by these al-
gorithms can accurately model normal behavior but may encounter
significant errors when dealing with anomalous behavior. Unsuper-
vised approaches are undoubtedly the most widespread in the litera-
ture. A significant amount of research has focused on autoregressive
techniques. For example, the authors of [13], the authors used an
Autoregressive Integrated Moving Average (ARIMA) model to identify
anomalous load profiles in an office building. An approach based
on a Recurrent Neural Network (RNN) was tested in [14] to predict
consumptions and define consumption patterns that did not conform to
patterns forecast as anomalous. An approach based on LSTM was tested
in [15] through the artificial introduction of anomalies into a dataset,
and then considering observations that were certainly anomalous. An
improvement in model precision, compared to an ARIMA-type model
was observed. Finally, an anomaly detection approach, based on a
Support Vector Regression (SVR) model, was presented in [12] and
a decomposition of the time series was exploited to auto-correlate
the consumption time series with specific characteristics of the load
profiles. Several studies in the literature have shown the effectiveness
of clustering algorithms in identifying anomalous profiles. In [16], a
k-medoids algorithm was adopted to identify homogeneous consump-
tion clusters, within which anomalous observations were identified
through a Local Outlier Factor (LOF)-type algorithm. The same algo-
rithm was also adopted in [17], although in this case, the time series
was transformed into a frequency domain before being processed by
the clustering algorithm. A Principal Component Analysis (PCA)-type
dimensionality reduction technique was used in [18] coupled with a
clustering techniques to identify anomalous consumption profiles.

In conclusion, it is worth noting that autoregressive and clustering
algorithms rely solely on the analysis of the recurrence of consumption
patterns. Therefore, they are able to identify anomalies of both punctual
and collective type but are not effective in detecting contextual anoma-
lies. This leads to difficulties in interpreting the anomalies identified
3

by these algorithms. In fact, in order to develop more interpretable
algorithms, it is crucial to identify the key factors that drive consump-
tion and to define anomalous behaviors in relation to such factors.
Therefore, non-autoregressive algorithms should be introduced along
with efficient visualization systems to obtain better results.

2.2. Anomaly visualization techniques

Anomaly detection models are frequently used as information sys-
tems by energy managers in the industrial or commercial sectors.
However, detecting an anomaly without contextualizing it does not
always involve a physical intervention to the system. Therefore, the al-
gorithms of these models should not only differentiate between normal
and anomalous behaviors but should also provide clear and dependable
information to the stakeholders.

A technique that can be used to aid energy managers in making
sense of anomaly detection model results is to integrate these models
with visualization tools. This approach allows a more comprehensive
understanding of the data to be obtained. The importance of visual
analysis was emphasized In [19], because the absence of pre-labeled
datasets and the need to define anomalous behavior, not only with
respect to the data but also in the context in which it occurs, make it
essential to develop approaches that can provide a reason to consider
an observation as being anomalous. Moreover, it is of fundamental im-
portance to develop an effective graphical representation that enables
an analyst to evaluate the anomalies identified by the algorithm on
basis of their domain knowledge. The above was also supported in [20],
which emphasized the importance of using visualization tools to sup-
port analysts in analyzing unlabeled datasets. The work conducted
in [21,22] described practical applications of time series visualization
systems aimed at improving the monitoring capabilities of energy
managers. The role of the user was found to have a strategic level of
importance in [23], in which outputs were evaluated through satisfac-
tion questionnaires, which were administered to a sample of energy
managers.

A complementary approach to the use of graphic visualization to im-
prove the interpretability of anomaly detection systems is the adoption
of algorithms that provide simple and self-explanatory outputs. One ML
method which, according to the literature, is highly interpretable, is
the decision tree technique, which include CART algorithms. This type
of algorithm divides the domain of input variables to identify regions
of the domain that are characterized by the highest possible purity
of the output variable. The partition rules of the domain are explicit
and can therefore be easily extracted from the model. Moreover, CART
models are able to handle multiple variables and were adopted in [24,
25] to identify homogeneous consumption conditions. Multiple types
of CART visualization were described In [26], and the possibility of
analysts interacting easily with the rules extracted from the models
and, consequently, of deducing new knowledge was highlighted. The
possibility of structuring an anomaly detection tool, based on deci-
sion trees, was demonstrated In [27]. The methodology was based
on the use of k-means to identify typical consumption profiles and,
subsequently, CART was used to determine the external conditions that
determined the consumption patterns. However, clustering algorithms
exploit the daily periodicity of a time series to categorize consumption.
Therefore, they can only provide information on whether a particular
day is anomalous or not, without specifying the exact time of the
anomalous observation, and a further analysis is required to obtain such
details. A solution to this limitation was identified in [28,29] where
SAX encoding was applied to time series of building consumptions.
SAX encoding [30] allows consumption profiles to be categorized at
a sub-daily level, thus enabling greater detail to be obtained in iden-
tifying anomalous periods. SAX transformation allows the profiles of
the dataset to be grouped according to the word through which they
are encoded [31]. In literature, it is possible to identify two different
types of approaches aimed at improving the encoding of SAX. The first

approach, found in [32–34], involves extracting a larger number of
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features from the upstream data set before the SAX encoding. While
this approach allows for a more accurate description of the data, it
significantly increases the complexity of the encoding, thereby resulting
in a clear reduction in the possibility of implicitly defining meaningful
clusters within the dataset. On the other hand, the second approach
aims to optimize the encoding itself, making it more flexible and
adaptable to the dataset under examination [28,35]. Additionally, the
SAX methodology introduces another innovative aspect, that is a self-
determination of the parameters that characterize its application [36].
However, the methodology is not generally applicable, because it uses
an objective function extracted from the knowledge context to provide
the best clustering of the dataset.

2.3. Proposed contribution

This paper tackles the challenge of applying anomaly detection
algorithms to various types of anomalies while ensuring high inter-
pretability. An Anomaly Detection Framework, in which two semi-
supervised algorithms based on the SGT extraction process introduced
in [5], are combined and expanded to address this issue. The purpose
of these algorithms is on identifying anomalies in historical electricity
consumption data, by means of contextual logic with a good accuracy.
The adopted algorithms within the proposed framework fell on a CART
decision tree and a MLP neural network. The decision tree was adopted
due to its ability to provide explicit correlations between inputs and
outputs once trained. On the other hand, the neural network was
chosen to explore the complex and non-linear relationships between
inputs and outputs. Although the correlations in the case of the NN
may not be directly extractable and interpretable, its more accurate
output will allow for the identification of anomalous periods with
greater confidence. The main contributions and novelties of this paper,
compared with our previous work [5], are:

• A further improvement is made to the SAX encoding algorithm
through the use of partitive clustering as a means of fine-tuning
the definition of the consumption intervals, which in turn will
result in a more accurate fit with the dataset.

• A framework is formulated to train anomaly detection algorithms
through a semi-supervised approach, which was consequently
applied to a real case study.

• An anomaly detection method based on decision tree, has been
applied. This approach was structured with the objective of ex-
tracting more information than just the anomaly notification.
In fact, CART allows visualizing the domain of existence of the
variables that characterize the predicted level of consumption
and the investigation of the context of the occurrence of the
anomalous behavior.

• A second anomaly detection algorithm, based on a non-self-
regressive NN, is introduced. This approach was chosen as it offers
a finer granularity than the SAX-CART approach.

• The two structured anomaly detection models have been com-
pared and cooperative strategies necessary for the combined use
of the two models have been identified in order to include the
accuracy of the NN with the interpretability of the CART models.

. Anomaly detection framework

This paper proposes an ADF that is based on two semi-supervised
L techniques, named SAX-CART and SAX-MLP, to identify anomalous

onsumption profiles in the time series of a building portfolio. The
orkflow of the methodology is illustrated in Fig. 1 and comprises

hree primary modules: (i) Dataset Preprocessing, (ii) Data Reduction,
nd (iii) Anomaly Detection. The modules are described in the following
4

ubsections.
.1. Data preprocessing

In order to detect anomalies, the ADF uses certain raw data, such
s the electricity consumption data of buildings collected at the smart-
eter level, information on buildings related to their final uses and

heir geographical positions, and meteorological data related to the
uilding sites. Electricity consumption time series often suffer from sev-
ral inconsistencies, for example, they may contain outliers or missing
alues. For this reason, the data need to be preprocessed so that they
an be used by the ML algorithms of the ADF.

The Data Preprocessing module consists of three distinct tasks, that
re: Filtering, Clustering and Normalization. The aim of these tasks is
o remove outliers by selecting a uniform subset of the electricity
onsumption dataset. This ensures that the subset is ready for use by
ubsequent modules.

Consumption data extracted directly from smart meters often con-
ain some inconsistencies, such as observations characterized by out-of-
cale consumption. These can be attributed to errors made during the
ata collection or to short maintenance activities. Therefore a Filtering
ask is introduced to make the methodology more robust and exclude
hese types of outliers, which are characterized by a short duration
nd high deviation, as they are irrelevant for the detection of anoma-
ies. During this process, the historical time series of each building is
canned by applying a moving window of 15 days’ width, which means
60 observations, and identifying those measurements that deviate
rom the mean by more than 1.5 of the standard deviation of the sample
s outliers. If the identified outliers have a duration of less than 3 h,
he filtered observations are excluded and subsequently reconstructed
y means of linear interpolation. Conversely, if the filtered period
asts longer than 3 h, it is considered unprofitable to exclude these
bservations in the subsequent analysis. By following this procedure, it
s possible to eliminate statistical anomalies from the dataset. However,
ollective anomalies cannot be excluded, and they need to be further
nalyzed through the methodology that is presented in Section 3.3.

The Clustering task groups the homogeneous buildings that have to
e used for the following steps. Homogeneity is defined by two factors:
he final use of the building and its geographic proximity. Indeed,
he amount of energy a building uses is closely linked to its purpose
nd the surrounding weather conditions. Therefore, the factors that
rive energy consumption and building systems schedules are often
hared among buildings with similar purposes and weather conditions.
reating homogeneous categories to make further inferences is crucial

n this regard. In this case, an ML algorithm and sample checks were
tilized to ensure the correctness of the labeled final uses, following
he approach described in [37]. A radius of 15 km was defined for each
vailable meteorological station to define the geographical proximity,
nd it was assumed that the ambient conditions was constant at each
oint inside the circle. This is, of course, a simplification that does
ot consider specific irregularities. These aspects are more relevant for
ome variables, such as irradiance, due to the presence of clouds or
he horizon shade profile of a building, which can vary significantly
ithin an area considered homogeneous. Therefore, this information

s excluded from the dataset, and only the temperature and relative
umidity are considered, for which the hypothesis of homogeneity has
een verified. In fact, if any non-uniform variables across geographic
reas were to be included in the study, the dataset would be incon-
istent. These variables do not reflect the actual conditions to which
ach building is subjected and, therefore, would produce an unequal
erformance comparison.

After identifying the homogeneous groups, the Normalization task
s performed to facilitate the comparison of buildings of various sizes
nd electricity consumption levels and to adapt the input data to the
L techniques. The min–max normalization type is chosen to maintain

he original shape of the consumption of each building. The normal-
zed power consumption (𝑃𝑛𝑜𝑟𝑚) is calculated through the following
athematical formulation:

𝑛𝑜𝑟𝑚(𝑡) =
𝑃 (𝑡) − 𝑃𝑚𝑖𝑛 (1)

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛
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Fig. 1. Workflow representation of the proposed Anomaly Detection Framework.
where 𝑃 (𝑡) is the power consumption at time 𝑡, while the maximum and
minimum power (𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛, respectively) are calculated for each
building considering the entire available time series.

3.2. Data reduction

The Data Reduction module, shown in Fig. 1, involves four primary
tasks: (i) Time Interval Identification, (ii) Energy Interval Identification,
(iii) SAX Transformation, and (iv) SAX Optimization.

The aim of the Time Interval Identification task is to represent the
daily load profiles using a variable number of 𝑛𝑡 time periods. This task
is generally accomplished by dividing the hours of the day into 𝑛𝑡 equal
time intervals. However, this method is not always effective since the
5

load profiles may have periods in which the load varies suddenly and
periods in which the consumption remains constant. To address this
issue, a CART is applied to identify variable-width temporal windows
by optimally defining their boundaries, as proposed in [28]. However,
the selection of the number of intervals 𝑛𝑡 is constrained by the CART
pruning functions. In order to tackle this problem, this paper proposes
to determining the 𝑛𝑡 intervals in the SAX Optimization task through a
sensitivity analysis that involves the entire SAX encoding process.

The Energy Interval Identification task considers each time split case
as input and calculates the mean value of the electricity consumption
pattern for all the 𝑛𝑡 time periods. This task reduces all the daily
consumption patterns to 𝑛𝑡 mean power consumption values. The PDF
of the mean values of the homogeneous group is then computed.
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Different energy split cases are generated for each time split case by
ividing the PDF into a variable number 𝑛𝑒 of equally probable energy
ntervals. The mean calculation helps to reduce the effect of large
ime intervals that have a constant consumption, which could cause
nbalanced weights in the Energy Interval Identification task. A fair
robability of the intervals is ensured by calculating the quantiles of
he dataset population. This procedure therefore generates balanced
nergy intervals. However, to ensure equiprobability, it results that the
ower intervals are significantly skewed for any data that show dis-
ributions that deviate significantly from a Gaussian-type distribution.
n additional step has been introduced to mitigate this issue, using
k-means algorithm to find a domain subdivision by minimizing the

nternal variance of each cluster. The k-means algorithm is initialized
y providing the homogeneous clusters that were previously identified
hrough quantiles as the starting clusters. This procedure is crucial as it
emoves the randomness of the process and allows the prior subdivision
o be optimized with respect to the variance of the data.

The SAX Transformation task converts each daily load profile into
ords composed of 𝑛𝑡 letters using a dictionary of 𝑛𝑒 characters, which

epresent the (𝑛𝑡, 𝑛𝑒) combination. Indeed, the daily load profiles are
rouped in a particular word to determine a cluster.

The SAX Optimization exploits the three aforementioned tasks to
dentify the optimal combination of time and energy intervals among
he (𝑛𝑡, 𝑛𝑒) combinations. After conducting multiple tests, it was deter-
ined that the optimal domain to search for the ideal combination of

𝑛𝑡, 𝑛𝑒) lies within the [3, 7] range. This ensures an exhaustive search
ithout any unnecessary burden on the optimization process. The
ptimal combination is determined by comparing each combination
sing the MIA index [38] in accordance with the elbow method. The
IA index expresses the goodness of the cluster (𝑛𝑡, 𝑛𝑒) being examined

s the average of the intra-cluster homogeneity, as known as the Within
luster Sum of Squares (WCSS). The MIA index is expressed by Eq. (2)

𝐼𝐴 = 1
𝑁𝑘

𝑁𝑘
∑

𝑘=1
𝑊𝐶𝑆𝑆𝑘 (2)

here the 𝑁𝑘 is the number of clusters corresponding to the number
f different words detected by the SAX. 𝑊𝐶𝑆𝑆𝑘 is calculated for each
luster 𝑘 and it is equal to the daily average of the Euclidean distance
f each profile from the cluster centroid, as expressed in (3)

𝐶𝑆𝑆𝑘 = 1
𝑁𝑑𝑘

𝑁𝑑𝑘
∑

𝑑𝑘

(

1
24

24
∑

𝑡=1
|𝑐𝑘,𝑡 − 𝑃𝑑𝑘 ,𝑡|

2

)1∕2

(3)

here 𝑁𝑑𝑘 is the number of days classified by SAX within the same
luster, i.e. distinguished by the same sequence of letters, while 𝑐𝑘,𝑡 and
𝑑𝑘 ,𝑡 are the hourly power values of the centroid of the 𝑘th cluster and

the daily load profile, 𝑑𝑘, belonging to the cluster, respectively.

3.3. Anomaly detection

After defining the optimal combination of time windows and con-
sumption intervals (𝑛𝑡, 𝑛𝑒), the next step is to move on to the Anomaly
Detection module shown in Fig. 1. This module includes a preliminary
task, that is, SGT Identification. This task involves using a purely sta-
istical approach to exclude any profiles that are not significant for
he structure under examination from the dataset. SGT is used for the
ubsequent applications of the semi-supervised ML approaches to detect
nomalies, i.e., the SAX-CART and the SAX-MLP algorithms.

3.3.1. Synthetic Ground Truth
The SGT Identification task applies the Pareto principle [39] to

eliminate less significant clusters from the optimal combination (𝑛𝑡, 𝑛𝑒)
identified in the previous module. This principle is commonly adopted
for quality analysis in such fields as Total Quality Management, Six
Sigma, and ISO9000 [40]. In this paper, the methodology developed
6

Table 1
Input variables used for the CART models.

Type Name Value/Unit

Categorical Day type 0 Weekdays, 1 Saturdays,
2 Sundays and Holidays

Season 0 Winter, 1 Spring,
2 Summer, 3 Fall

Month [1, 12], where 1 represents
January and 12 represents December

Numerical Outdoor temperature [◦C]
Relative humidity [%]

in a previous work [5] is extended and included in the proposed ADF.
The Pareto principle has been employed to assess the significance of
a load profile. Therefore, a dataset is ordered on the basis of the
recurrence of the SAX encoding, i.e., the magnitude of each cluster.
Indeed, 20% of the clusters with the most recurrent words are expected
to contain around 80% of the dataset, thus representing significant load
profiles of the analyzed buildings. On the other hand, the remaining
part of the dataset is distributed over minor clusters, which are sparse
and could probably contain anomalous observations. These infrequent
profiles are marked as outliers and removed from the dataset, as their
inclusion in the training of ML models could worsen the accuracy
of the models. Although this approach yields noticeable results, it
suffers from certain limitations, in terms of defining the occurrence of
a consumption anomaly. Nevertheless, it allows somewhat insignificant
data to be excluded although it does not provide a robust definition of
the occurrence of consumption anomaly.

The SGT Identification task provides the SAX profiles of days judged
reliable for the semi-supervised training of the anomaly detection
models as output. This output can be used directly by the SAX-CART
algorithm, which was specifically designed to handle inputs encoded
through SAX. The SGT Identification task can instead be exploited to
exclusively extract the dates of the days belonging to SGT by re-
adopting the original sampling of the dataset. This second approach is
generalizable to various anomaly detection algorithms and was adopted
to train the SAX-MLP algorithm.

3.3.2. SAX-CART
To provide a clear definition of anomalous consumption, the im-

plementation of the CART algorithm by scikit-learn [41] has been
adopted. This type of ML algorithm provides a substantial advantage
in anomaly detection over other types of approaches, such as NN.
Indeed, although NN often achieves higher accuracy values, it does not
provide any information about the correlation between the input and
output variables, which lead to a more difficult understanding of the
phenomena. CART, on the other hand, makes the correlations identified
between the dependent and independent variables explicit in a clear
and intelligible way. The proposed framework adopts a decision tree
that is trained for each time window as a classifier. The model predicts
the level of consumption for each day by identifying the correct SAX
coding. Table 1 reports the input variables used for the 𝑛𝑡 trees. The
variables are divided into categorical variables (i.e., Day Type, Seasons,
Months) and numeric ones (i.e., Outdoor Temperature and the Relative
Humidity).

The numerical variables are transformed through Piecewise Aggre-
gate Approximation (PAA) coding. They are averaged over the same
time windows that were identified during the Time Interval Identification
task. The partitioning of the dataset into a training sample (70%) and
a validation sample (30%) ensures homogeneity of the two samples as
it imposed that the proportion of symbols remains the same within the
two samples.

A grid search, with cross-validation of the trained models, is im-
plemented to optimize the selection of the hyperparameters. Table 2
reports the hyperparameters that were tested by the grid search al-
gorithm. The Criterion defines the objective function through which
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Table 2
Hyperparameters tested for the CART optimization.

Hyperparameter Tested value

Criterion [gini, entropy]
Class weight [None, balanced]
Max depth [2, 3, 4, 5, 6]
Min impurity decrease [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]
CCP-𝛼 [0.1, 0.15, 0.2, … , 0.4, 0.45, 0.5]

the model is trained. The objective functions that were tested for this
type of analysis were the gini and entropy indexes. The Class weight
hyperparameter modifies the calculation of the objective function, par-
ticularly when it is set to ‘‘balanced’’, thereby allowing the SAX symbols
to be weighted according to their probability of occurrence. In this way,
single errors made for less frequent classes are penalized more, which
sometimes leads to a better balance in the tree structure. Conversely,
in strongly unbalanced cases, if the ‘‘balanced’’ parameter were not
adopted, the tree algorithm could result in the misclassification of
less densely populated consumption classes. In other words, the rarest
classes would never be predicted at any leaf node and would therefore
be incorrectly classified as anomalies. The remaining three hyperpa-
rameters tested do not modify the tree structure but do contribute to
tree pruning. The max depth and min impurity decrease parameters define
the maximum number of tree subdivisions and the minimum value
of the Gini, or of the Entropy, index improvement following a split,
respectively. The CCP-𝛼 parameter or Cost Complexity Pruning, which
is similar to min impurity decrease, limits the introduction of a new split
to those that exceed a minimum improvement value of the objective
function. However, in the case of CCP-𝛼, the improvement will not
be made in absolute terms but weighed according to the complexity
reached by the tree, i.e., the number of leaf nodes.

Once the tuning of the model parameters has been performed, a ro-
bust tool that is capable of identifying the level of consumption within
each time window is obtained. However, the accuracy of the model
predictions is not linked directly to its ability to detect anomalies. In
fact, any level of consumption that differs from the one predicted by
the leaf node is not necessarily defined as anomalous, because this
condition would be overly strict in many cases. Conversely, anomalous
consumption levels are defined as those that occur with a frequency
of less than 20% within a leaf node, on the basis of specific boundary
conditions. This approach allows anomalies to be defined according to
the context in which they are detected.

3.3.3. SAX-MLP
The second approach used to detect abnormal consumptions ex-

ploits the effectiveness of Multiple Layer Perceptron MLP algorithms
to estimate electricity consumption through exogenous variables. In
particular, the MLP algorithm developed by scikit-learn [41] has been
adopted. In order to combine the results of the two ML approaches, the
inputs provided to the MLP algorithm are the same as those provided
to the previously described SAX-CART algorithm. The only additional
variable provided to MLP is the time of day. However, it can be
observed that this variable was also used intrinsically in the SAX-CART
methodology to identify the SAX time windows. The input data to
the NN are preprocessed on the basis of the data type, distinguishing
between categorical data, such as the day of the week and month, and
numerical data. Categorical data cannot be directly introduced into an
NN, and the one-hot encoding technique is therefore used. Numerical
data are standardized through a z-score transformation to improve the
stability of the model at different input variable scales.

The anomalies in the SAX-MLP approach are defined on the basis
of the assumption that the algorithm makes more pronounced errors
in estimating anomalous consumptions than normal consumption. The
definition of anomalies through this assumption is further supported
by the fact that, during learning, the NN is exposed exclusively to
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Table 3
Hyperparameter tested for the MLP optimization.

Hyperparameters Tested value

Loss function MSE
Optimizer adam
Initialization mode uniform
Activation ReLu
Decay [0, 1e−6, 1e−5, 1e−4, 1e−3]
Dropout rate [0.0, 0.1, 0.12, 0.14, 0.2]
Learning rate [0.0001, 0.001, 0.01, 0.1, 0.3]
Neurons HL1 [26, 50, 100, 150]
Neurons HL2 [25, 45, 65]
Batch size [24, 168]

the dataset extracted by means of the ground-truth identification pro-
cess [22]. All the observations for which the NN commits a larger error
than 3 times the standard deviation obtained by the model during the
training phase are considered anomalous [17], as expressed in Eq. (4)

𝛥 = max(0, |𝑌 − 𝑌 | − 3𝜎) (4)

where 𝛥 is the score of the anomaly, 𝑌 is the electricity consumption
recorded by the meter, 𝑌 is the electricity consumption estimated by
the NN, and 𝜎 is the standard deviation of the errors (𝑌 − 𝑌 ) made by
the model on the training dataset. This formulation makes it possible to
exploit the predictions of the NN to detect the occurrence of abnormal
consumptions.

The proposed SAX-MLP algorithm exploits a simple NN topology
that is based on two hidden layers. Various hyperparameters were
tested to identify an optimal configuration of the NN, as reported in
Table 3.

The loss function is the function by which the model is evaluated
and it influences the optimization algorithm by assigning values to the
weights and biases. The loss function adopted is the Mean Squared
Error. The reason for selecting this function was to highlight how
sensitive the algorithm is to significant point errors. This approach is
necessary to create a model that can accurately depict the dynamic
nature of the real system. The used optimization algorithm is Adam,
which uses the gradient calculation of the loss function to find the
minimum point along its slope. The batch size parameter determines
the number of elements after which the loss function is calculated
and the weights and biases of the network are updated. This is a
fundamental parameter that affects the learning time and stability of
the network results to a great extent. The learning rate represents
the percentage of weights that are updated at each epoch. When the
learning rate value is low, the learning process slows down, which
means it requires more epochs for the problem to reach convergence.
On the other hand, if this parameter has high values, the model may
converge quickly, but it could lead to low-quality solutions due to the
presence of local minima. Finally, the decay hyperparameter is closely
related to the Learning Rate (LR), as it modifies the latter by updating
it after each epoch 𝑒 through Eq. (5)

𝐿𝑅 = 𝐿𝑅𝑒=0 ∗
1

1 +𝐷𝑒𝑐𝑎𝑦 ∗ 𝑒
(5)

Therefore, high learning rates are permitted during the initial
epochs, and this allows a faster learning. However, lower learning
rates are also possible in the final learning stages, and these result in
better refinement. The drop-out parameter is introduced to encourage
the NN to adopt low values for the weights of each connection,
thereby avoiding overfitting the dataset. A percentage of neurons that
is equal to the parameter value is randomly excluded during each
epoch through this parameter. This practice prevents a neuron from
acquiring excessive importance within the network and makes learning
more diffused. Finally, the HL1 and HL2 parameter Neurons establish
the different combinations of the number of neurons between the two
hidden layers.
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Fig. 2. Examples of typical outliers identified through the Filtering task of the Data Preprocessing module.
The dataset is split by respecting the proportions used for training
(70%) and for testing (30%). The two samples are split in a semi-random
manner by imposing that the two samples are balanced with respect to
the months to which the observations belong. This expediency reduces
the risk of inducing seasonality-related bias into the model. All the
possible combinations of the hyperparameters listed in Table 3 were
tested by applying the cross-validation. The latter was achieved by
dividing the training dataset into three folders and using two folders
alternately for model training and one for testing. The optimal com-
bination of hyperparameters was defined on the basis of the Mean
Absolute Percentage Error (MAPE) calculated from the three splits of
the designated test folder.

4. Experimental results and analysis

The proposed Anomaly Detection Framework (ADF) has been ap-
plied to a real case study of around 1000 buildings distributed through-
out the Italian territory from the national TLC provider. The dataset
consists of a collection of records taken from smart meters at an
hourly resolution. Moreover, the dataset contains a unique identifier
for each building, the final use (e.g., CO, data center, radio base
stations or offices), and the geographic location. It is worth noting
that the data were all anonymized to preserve private and confidential
information about the TLC provider, due to the presence of NDA.
Therefore, all the identifiers were masked, and the consumption profiles
were normalized. In order to present the dataset, within the limits of
NDA agreements, the following statistical parameters were reported.
The mean value of normalized annual consumption 0.289 suggested
that, on average, the CO exhibits relatively low consumption levels.
This can be attributed to two main factors: limited full load operation
hours of the power plants and the distribution of power plant sizes
within the population. The median value of 0.192 is noticeably lower
than the mean, indicating an asymmetrical distribution towards lower
consumption values. This suggested that a significant proportion of
power plants had consumption levels below the mean, contributing
to the skewness of the distribution. The first percentile (Q1) value of
0.0744 was significantly closer to the median than the third percentile
(Q3) value of 0.506. This further confirmed the asymmetry in the
consumption distribution, with a larger spread of power plants falling
between the median and the third quartile compared to those with
the lowest consumption. The dataset presented was accompanied by a
meteorological dataset, which included hourly data on the temperature
and, relative humidity, was also used.

As described in Section 3, and depicted in Fig. 1, the first step of
the ADF involves the Data Preprocessing module, which performs the
filtering, clustering and normalization of the dataset. Fig. 2 depicts
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the typical point anomalies identified in the dataset. After conducting
further investigations and consulting domain experts, two primary
reasons were identified for these anomalies: (i) scheduled maintenance
interventions and (ii) errors in the hourly power accounting. The con-
ducted verifications confirmed that the filtering task led to the expected
results, which means that any anomalies that were representative of
a malfunctioning of the systems were not excluded from the analy-
sis. Fig. 2(a) shows a typical case of anomalies related to the data
acquisition system. An anomaly related to scheduled maintenance is
shown in Fig. 2(b), which is characterized by a specific shape that
indicates a sudden reduction and an increase in load over intervals of
a maximum of three hours. These types of anomalies do not constitute
opportunities for energy savings or energy management optimization,
and they were therefore deemed of little interest for the subsequent
analyses and consequently excluded from the dataset.

The dataset was clustered to identify several building groups to
which the anomaly detection process was applied. A total of 160
homogeneous building groups were identified on the basis of their
geographical location and the final use of the building. For the sake
of simplicity, the following analyses focuses on only of those clusters,
which consists of 6 COs in the area of Turin. Fig. 3 shows carpet plots
of the normalized hourly load profiles of the selected building group.
These plots provide a concise representation of the entire dataset, and
highlight typical seasonal trends, such as the effect of cooling loads on
summer days, which increase the load consumption patterns from about
12 to 19. Looking at the consumption graphs of these buildings as a
whole, it can be seen that they show the same behavior in the months
from June to September. In other words, it can be observed that the
peak energy demand for the six buildings occurs on the same days in
June and August. It can be seen, when comparing the buildings, that
the consumption patterns instead vary more during the colder months.
Buildings 2 and 5, unlike the other buildings in the cluster, do not show
a low level of consumption during the months of January to April, and
instead maintain an intermediate level of consumption. This may be a
first sign of the possibility of an improvement in the management of
the two buildings.

The Data Reduction module involves SAX optimization, which is
achieved by testing different time and energy intervals to identify
the optimal combination (𝑛𝑡, 𝑛𝑒) of the SAX encoding. As detailed in
Section 3, the MIA index is calculated for each combination. Therefore,
the resulting matrix of MIA indices, which is depicted in Fig. 4 as a
three-dimensional histogram, is thus obtained. The optimal combina-
tion is obtained from the elbow point identification of the MIA matrix,
which results in (4, 4) the best time and energy interval parameter
configuration.
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Fig. 3. Carpet plot representation of the selected homogeneous group of six COs. The color scale shows the power consumption of each CO.
Fig. 4. Graphical representation of the MIA matrix considering the different combinations (𝑛𝑡 , 𝑛𝑒).
For the sake of clarity, the following two paragraphs only report the
procedure used to obtain the SAX encoding of the identified optimal
combination (4, 4):

• The Time Interval Identification task identifies four-time intervals,
i.e., [00–09], [10–11], [12–19], [20–23] considering the 24-hour
clock system, by exploiting a CART algorithm implementation.
At the end of the task, the load profiles are reduced in size by
calculating the average power consumption for each identified
time window. In this way, each daily observation is no longer
composed of 24 variables but only of 4 mean energy consumption
values. The resulting segmentation effectively characterizes the
consumption pattern of a CO. The first time interval corresponds
to a low consumption range. The next window [10–11] identifies
a period of sudden load variations, which is commonly called
system rump-up. The central time interval [12–19] represents the
9

period of maximum consumption of the CO. Finally, the [20–23]
window represents the period in which the consumption settles
at low levels.

• The Energy Interval Identification task identifies four equiprobable
power intervals, as reported in Fig. 5(a). It can be noted that
the distribution of the power sampling is markedly unbalanced
toward low values. Therefore, the energy intervals are denser for
low values and sparser for high consumption values. This aspect
represents a weak output to be used for SAX transformation,
as it could lead to inadequately detailed the high consumption
intervals. A k-means division of the domain is adopted to avoid
this type of coding weakness. The new subdivision of the domain,
as depicted in Fig. 5(b), shows more balanced intervals. It can
be observed that the high consumption interval has been reduced
by almost a third, while the low and medium–high consumption
intervals have been increased, accordingly.
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Table 4
Result of the top 5 combinations of the hyperparameters tested through a grid search for the CART models applied in the SAX-CART algorithm.

CART Hyperparameters KPIs

CCP-𝛼 Class
weight

Criterion Max
depth

Min impurity
decrease

Split0
accuracy

Split1
accuracy

Split2
accuracy

Mean
accuracy ▿

Std
accuracy

CART 1
[00–09]

0 balanced entropy 4 0.05 0.871 0.859 0.918 0.882 0.025
0 None entropy 4 0.05 0.871 0.882 0.871 0.875 0.006
0.35 None entropy 3 0.15 0.871 0.871 0.859 0.867 0.006
0.25 None entropy 3 0.1 0.871 0.871 0.847 0.863 0.011
0.05 None gini 5 0.05 0.859 0.871 0.847 0.859 0.01

CART 2
[10–11]

0 None entropy 5 0.05 0.718 0.765 0.776 0.753 0.025
0.1 balanced entropy 4 0.05 0.753 0.765 0.729 0.749 0.015
0.05 balanced entropy 4 0.1 0.753 0.765 0.718 0.745 0.02
0.05 None gini 2 0.05 0.682 0.753 0.788 0.741 0.044
0 balanced entropy 2 0.05 0.718 0.753 0.718 0.729 0.017

CART 3
[12–19]

0 None gini 2 0.05 0.847 0.847 0.8 0.831 0.022
0.05 None entropy 5 0.05 0.824 0.824 0.776 0.808 0.022
0.05 balanced entropy 4 0.15 0.859 0.776 0.765 0.8 0.042
0.05 balanced gini 2 0.05 0.859 0.741 0.765 0.788 0.051
0 balanced gini 3 0.05 0.835 0.741 0.776 0.784 0.039

CART 4
[20–23]

0.2 balanced entropy 4 0.15 0.812 0.776 0.729 0.773 0.034
0.05 balanced gini 2 0.1 0.788 0.776 0.729 0.765 0.025
0.2 None entropy 4 0.25 0.776 0.741 0.765 0.761 0.015
0 None gini 2 0.05 0.765 0.741 0.765 0.757 0.011
0 None entropy 5 0.05 0.788 0.718 0.753 0.753 0.029
Fig. 5. Graphical representation of the Probability Density Function (PDF) of the
population of power demand values averaged over the time windows. (a) shows the
equiprobable subdivision while (b) shows the domain subdivision obtained through the
application of k-means.

A comprehensive graphical representation of the information that
can be extracted from the selected SAX encoding is illustrated in Fig. 6.
The figure depicts a Sankey chart that show the sequential generation
of the load profiles obtained through concatenation of the symbols of
each time window. Each block represents a time window and reports
two types of information: the consumption level and the number of days
described by the same code. The consumption level of the considered
window can be deduced either through color code of the block or by
considering the last letter of the code placed next to each block. The
number of load profiles belonging to each block can instead be deduced
by considering the thickness of each block or path connecting two
blocks. Moreover, Fig. 6 shows the carpet graph of the load profiles
for each of the 57 letter sequences identified by the SAX codes of
the homogeneous building cluster. By analyzing the carpet plot, it
is possible to see that the most significant cluster, i.e., the densely
10
populated ones, report consistent information. This shows that the SAX
encoding process is able to preserve the most relevant information of
the analyzed load profiles. Moreover, it is possible to see that each
cluster presents consistent load profiles. Furthermore, it is also possible
to notice differences between the clusters. This is particular evident
when looking at the clusters related to high consumption, e.g., the
days coded as ‘CCDD’ differ considerably from those described by the
‘CDDD’ term, although only the second letter between the two codings
varies. It is also worth noting that the first cluster, ‘AAAA’, shows some
behaviors that could be presented in more detail, thus representing a
constraint of the proposed approach. This aspect is related to a trade-off
in the representation of the SAX. However, it is necessary to accept this
inaccuracy in order to achieve a codification that generalizes building
behavior and which is not overly specific. However,cataloguing the
different consumption patterns of buildings in a reduced set would in
fact be unattainable.

Once the SAX coding of the data set has been obtained, the Anomaly
Detection analysis is conducted. First, the SGT from the historical con-
sumption series is obtained. The results of this process can already
be observed in Fig. 6, where it can in fact be seen that all the paths
are separated into two groups: the SGT and the filtered data. The
Pareto diagram is represented in Fig. 7 to explicate the details of the
procedure.

The Pareto diagram shows the daily encodings for each of the 57
resulting words on the 𝑥-axis, ordered according to the recurrence of
each code within the dataset. The recurrence of each word is reported
quantitatively on the left axis. The right axis shows the cumulative
percentage of the selected words. The 13 most recurrent symbols,
which account for around 20% of the 57 identified words, represent
approximately 80% of the dataset. The remaining part of the dataset
(20%) is instead represented by 45 different symbols. Consequently, the
dispersion of this part of the dataset poses a learning challenge to the
ML algorithms, which may lead to a deterioration of their performance.

Taking advantage of the results obtained so far, it is possible to
extend the applications of the SAX coding from the definition of SGT to
the detection of anomalies, as described in Section 3, through the ap-
plication of semi-supervised ML algorithms. The training results of the
two SAX-CART and SAX-MLP algorithms are presented in the following
paragraphs. The outputs of the two anomaly detection algorithms are
compared using the carpet plots outlined in Section 4.1.

Since the optimal number of time windows in the SAX-CART ap-
plication is four, an equal number of decision trees was initialized,
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Fig. 6. Sankey chart of the SAX encoding. Each day is represented in the graph by the sequence of symbols assigned to it for each time window. The thickness of each path is
related to the number of days belonging to such a pat. The figure also reports, for each path, the carpet graph of the consumption profile. The SGT is obtained by following the
Pareto principle.
and a grid search with cross-validation was performed for each of
them. The results of the grid search are reported in Table 4, where
the optimal hyperparameters identified through grid search and the
Key Performance Indicators (KPIs) achieved for each time window are
shown. It is possible to compare the accuracy values achieved for the
three different split tests, as described in Section 3.3.2, and also the
mean and standard deviation values calculated for them.

The average prediction accuracy over the four time windows is
80.9%. Any anomalous periods can be identified on the basis of this
result. For example, the CART obtained for the second time window
[10–11], is depicted in Fig. 8. In this case, five leaf nodes can be
identified, which are analyzed from left to right. The first leaf node
belongs to days characterized by an average temperature that is less
than or equal to 14.4 ◦C. According to the results obtained from CART,
consumption levels A and B within this category can be considered
acceptable as they exceed the support threshold of 20%. These levels
11
are therefore deemed normal under these specific circumstances. On
the other hand, consumption level C is only expected with a probability
of 7%, and can therefore be considered anomalous in these particular
circumstances, as can the consumption level D. The second leaf node
is defined by a higher external temperature than 14.4 ◦C and for the
days of the months between January and May. Again, two consumption
levels (B and C) are identified as normal. What was done for the two
previously described leaf nodes can now be extended to all the leaf
nodes and all the trees, and this allows all the different scenarios to be
mapped. Therefore, by exploiting the identified rules, it is possible to
distinguish any abnormal consumption from normal consumption.

As far as the SAX-MLP application is concerned, the NN was trained
following a similar methodology to what had previously been used for
CART. The optimal parameters for the network were defined through
a grid search, the domain of which is explicitly stated in Section 3.
Table 5 reports the hyperparameters and KPIs that were tested for the
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Table 5
Result of the top 5 combinations of the hyperparameters tested through a grid search for the MLP models.

Hyperparameters KPIs

Decay Dropout
rate

Learning
rate

Ns
HL1

Ns
HL2

Batch
size

Split0
MAPE

Split1
MAPE

Split2
MAPE

Mean
MAPE ▵

Std
MAPE

Mean
fit time

0.001 0 0.3 150 45 24 14.99 14.19 14.29 14.49 0.4 114
0 0 0.001 150 45 24 14.17 14.94 14.45 14.52 0.3 140
1.00E−06 0 0.1 150 45 24 14.83 13.91 14.84 14.52 0.4 138
1.00E−05 0 0.0001 150 45 24 15 14.32 14.4 14.57 0.3 131
0.001 0 0.001 150 45 24 14.02 15.61 14.19 14.61 0.7 114
Fig. 7. Pareto diagram of the resulting (4, 4) Clustering step.

Fig. 8. Graphical representation of the CART obtained for the [10–11] time window.

different configurations. The optimal configuration is the one with the
lowest mean MAPE, which is equal to 14.49%. Finally, the anomaly
score can be calculated from the optimal configuration using Eq. (4).

4.1. Anomaly detection analysis

If only the performance indices of the two models are compared, it
could be argued that the performance of the SAX-MLP exceeds that of
12
the SAX-CART approach. However, the score obtained when predicting
consumption is not completely indicative of the performance of the
same model in defining anomalous behavior. In fact, it should be
pointed out that the ultimate goal of the analysis was not to obtain
an accurate consumption estimation but was rather the dual task of
identifying anomalies and supporting energy managers in verifying the
authenticity of an alarm by combining both approaches. For this reason,
the first characteristic that should be evaluated for the two models is
the type of output they provide. The NN-based method only provides
the distance between the prediction and the actual consumption value,
whereas the SAX-CART approach not only provides a warning about
possible anomalies and the most likely consumption level for a specific
condition, but also the variables that appear for the drivers that best
characterize a given context. This latter aspect is undoubtedly helpful
for those stakeholders who want to identify the incidents that have
triggered a specific outlier.

The analysis carried out for CO 2 is reported as an example of the
application of the developed ADF. The anomaly detection analysis was
conducted for the year following the one used for model training. Fig. 9
depicts four carpet plots that depict, from left to right: (i) the external
temperature, which represent the primary consumption driver, (ii) the
normalized consumption demand, (iii) the anomaly score defined by
means of SAX-MLP, and (iv) the identified anomalies extracted from
SAX-CART. When the two methods used to define anomalies are ana-
lyzed, the presence of more noise in SAX-MLP is immediately evident,
which indicates that several individual hours are anomalous. Instead,
the output derived from SAX-CART appears more defined. However,
even in this case, there are some warnings that do not correspond to
actual anomalies but instead refer to biases related to the encoding of
the leaf nodes for which conditions very close to existence domain of a
leaf node can lead to a misclassification. However, these types of errors
are easily verifiable and bypassable thanks to the interpretability of the
tree rules.

The period with the largest number of anomalies identified by both
algorithms covers the period from the last days of March to the first
half of April, as depicted in Fig. 9. In this period, it can be noted that
the consumption does not follow the load profiles that are typical of
those specific temperatures. This type of information can be deduced
through the SAX-CART approach, which allows the most significant
variables to be clearly highlighted in order to define a specific context.
For example, by analyzing one of the days marked as abnormal by both
models, i.e., 03/29, it is possible to interpret the causes that produced
the alarms in the [00–09] and [20–23] time windows. Table 6 can
be used to support analysts as it shows the main outputs that can be
obtained from the application of SAX-CART. According to Table 6, the
SAX reports a high average consumption level, which has the symbol
C, for both of the indicated windows, i.e. with an anomaly score equal
to one. If we consider the [00–09] time window, the rules obtained
from SAX-CART suggest that, the most probable consumption level for
temperature levels below 10 ◦C is the lowest one, i.e., symbol A. This
estimate is supported by 80% of the trained dataset. Therefore, the
actual consumption level recorded (symbol C) may not be related to
the external temperature, and the algorithm targets it as anomalous.
On the other hand, only SAX-MLP identifies anomalous behaviors on
the days 07/03 and 07/07, which SAX-CART does not identify. This
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Fig. 9. Carpet plot representation of the External Temperature, Normalized Power Consumption, and the Anomaly Scores for the SAX-MLP and SAX-CART models regarding the
building CO 2.
Table 6
SAX-CART output related to day 03/29 to support the analysis of the detected anomalies. Abbreviation: DT (Day Type), M (Month), S (Season), T
(Temperature), RH (Relative Humidity).

Cart
window

Anomaly
score

SAX SAX-CART inputs CART
symbol prob. [%]

CART rules

DT M S T [◦C] RH [%] A B C D

[00–09] 1 C 0 3 1 7.9 63 80 20 0 0 𝑇 < 10

[10–11] 0 C 0 3 1 15.5 39 7 52 41 0 14.4 < 𝑇 ≤ 22.2
𝑀 ≤ 5

[12–19] 0 C 0 3 1 16.7 35 6 55 39 0 13.6 < 𝑇 ≤ 18.7
𝑀 ≤ 6

[20–23] 1 C 0 3 1 13.5 44 72 28 0 0 5 < 𝑇 ≤ 16.8
𝑀 ≤ 5
inaccuracy is not due to an error of the CART process, but is instead
a feature related to the implementation of theSAX encoding, for which
the maximum power interval is still too wide, even after applying k-
means, as almost 40% of the existence domain of the normalized power
variable is included within this interval. In conclusion, the combined
use of these approaches allows the limitations of SAX-CART, pertaining
to the accuracy of anomaly detection, to be overcome, and vice versa, it
extends the information obtained from the SAX-MLP approach. Indeed,
even in cases where the SAX-CART approach fails to identify anomalous
behavior, it can still provide information about which drivers are the
most significant for the particular case under examination. In summary,
the conducted study has successfully identified anomalous behaviors
within the historical consumption series of a CO, highlighting instances
of excessive consumption compared to climatic and temporal condi-
tions. While the level of detail attained may not precisely pinpoint
the origin of the anomaly, it does allow for the formulation of initial
hypotheses on the operating state of the air-conditioning system.

5. Conclusion

This work proposes an Anomaly Detection Framework that is based
on two complementary semi-supervised machine-learning approaches
which can be used for building electricity consumption data. The aim
of both approaches is to detect contextual anomalies and they attain
this goal through the adoption of non-autoregressive algorithms. In this
study, emphasis is placed on the type of output that the algorithms
return to the end user, as the interpretability of anomaly detection is
fundamental. These types of algorithms are often used in information
13
systems, and the intelligibility of the outputs is therefore crucial to fully
exploit them. The application of the framework defined in Section 3
allowed for the identification of anomalous consumption occurrences
in the historical series of a CO, validating the effectiveness of the
method for the specific case study. However, this same application
also revealed the main limitations of the methodology. The approach
defined as SAX-CART can lead to both false alarms and missed alarms,
which is why it was complemented with the SAX-MLP method, that pro-
vides higher accuracy. Nonetheless, excluding the SAX-CART method
from the monitoring system is not a viable choice, as it is crucial
for verifying the typical behavior of the power plant under certain
conditions. Therefore, it is believed that the greatest benefits can be
achieved through a combined approach of both methodologies. By
comparing the results from both methods, one can quickly determines
which alarms are unequivocally false positives and which ones require
further investigation. The integration of both methods allows for a more
efficient and effective monitoring system. In conclusion, it is deemed
that the best approach involves the use of both methodologies together,
as it provides a more comprehensive understanding of the system’s
behavior. Furthermore it helps to improve the accuracy of anomaly
detection while retaining the ability to assess the power plant’s typical
behavior easily and effectively.

Future work will be directed toward attempt to validate the iden-
tified techniques by using them in the field and evaluating the alarms
provided by the algorithms, in order to be able to detect the presence of
false alarms and consequently identify and test possible improvements
to the tested algorithms.
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