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Abstract—We propose a transfer learning-based technique
that assists in estimating the Quality-of-transmission (QoT) of
the lightpaths in an extended C-band network on 400ZR. The
proposed scheme develops the cognition using the traditional C-
band operating network knowledge.

Index Terms—Transfer learning, Wide-band Optical Networks,
QoT-Estimation

I. INTRODUCTION

The modern optical network exploits various technologies
such as Elastic optical networks (EONs) and Software-defined
networking (SDN) to allow the dynamic and adaptive pro-
visioning of network resources. The introduction of these
technologies paved a path towards partially or fully disag-
gregated optical networks. The main step towards flexible and
disaggregated optical networks is to provide the abstraction of
the WDM transport as a topology graph weighted by the Gen-
eralized signal-to-noise ratio (GSNR) degradation on transpar-
ent Lightpaths (LPs) introduced by each traversed Network
element (NE), mainly by Optical line systems (OLSs) [1].
Typically, the OLS controller [2] sets the amplifier operating
point and subsequently defines the GSNR degradation. The
more correct the nominal operating point is set, the more is
the potential to depend on the overall LP GSNR. Thus, a
smaller system margin is demanded, and, subsequently, larger
traffic can be deployed. The NEs are mainly influenced by
variations on the working point vs. the nominal values due to
the aging effect, change in spectral load, and different effects
of infield operations. These induced fluctuations create a
difference between the actual vs. the nominal GSNR computed
by the QoT-Estimation engine [3]. The main sources of GSNR
uncertainties are ripples on amplifiers’ gain and Noise figure
(NF), to cater to these uncertainties, a system margin must be
deployed to avoid network Out-of-service (OOS) [4]. In this
work, we propose a Transfer learning (TL) scheme utilizing
the dataset of the traditional C-band fully operational network
to train a Machine learning (ML) agent operating together with
a reliable QoT-Estimation engine in the network controller of
the extended C-band sister network. The ML agent’s scope is
to correct the GSNR uncertainties due to Erbium-doped fiber
amplifiers (EDFAs) ripples and spectral load dependence, for

LP on the extended C-band sister network whose nominal NE
parameters have been perturbed to include a realistic degree
of uncertainty reduced by the TL scheme. The two considered
networks have different topologies based on the same hard-
ware: fiber type and EDFAs. The perturbed uncertainty in this
work is only EDFA ripples and varying spectral load.

II. SIMULATION MODEL AND DATASET ANALYSIS

A software-defined optical network is considered where the
edges are modeled by OLSs, while nodes are characterized
as Reconfigurable optical add-drop multiplexing (ROADM)
sites. The OLSs are supposed to work at the optimal working
point, and the random behavior of the physical layer is only
considered through amplifier gain ripple. The GSNR of any
LP traversed through all the OLSs is given by 1/GSNR =∑

n 1/GSNRn, where n is the traversed number of OLSs
for the routing of given LP. The GSNR metric provides
the effect of both Amplified spontaneous emission (ASE) and
Non-linear interference (NLI). The OLSs of traditional C-band
carry 80 channels over the standard 50 GHz grid with a total
bandwidth ≈ 4THz. The transceivers of the traditional C-band
operate at 32 GBaud. In contrast, the extended C-band carries
64 channels over the 75 GHz grid with a total bandwidth of
≈ 4.8THz. The transceivers of the extended C-band operate
at 64 GBaud. The considered EDFAs of both the networks
are set to work at a constant output power model having
0 dBm power/channel by OLSs controller. The links of both
networks are supposed to operate on standard Single-mode
fiber with a span length of 80 km. The In-line amplifiers (ILA)
of both networks are supposed with NF randomly selected for
each amplifier between a range of 3.5 to 4.5 dB along with
random gain ripple having a variation of 1 dB. The above
scenario is mimicked to generate synthetic datasets using an
open-source GNPy library, which provides the physical layer’s
abstraction [5]. The dataset retrieved against traditional C-band
is the subset of 280, total possible realizations of spectral
load given by 80 channels. The traffic variation from 34%
to 100% of total bandwidth utilization is considered. The
traditional C-band dataset is mimicked against the European
(EU) network topology, used as an operating network, and for
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Fig. 1: GSNR statistics and ∆GSNR distribution: USA Network Paths

newly deploying network case, the dataset is produced against
the USA network. The knowledge of different paths of the EU
network is used to train the TL agent fabricated in the USA
network’s controller, assisting in correcting the estimation of
GSNR by its QoT-Estimator engine.

III. TRANSFER LEARNING AGENT AND RESULTS
During the initial deployment of the USA network, to

estimate the GSNR, the network controller can rely only on the
nominal description of system parameters (Flat EDFA ripple
gain, NF = 4dB). This estimated nominal GSNR has some
degree of uncertainty due to the variation in NEs’ working
points. In Fig. 1 upper three plots illustrate the dataset GSNR
statistics of the three paths of the newly deployed sister
network. In this figure, the GSNR statistics against all the
64 channels and all the samples of the three USA test paths is
demonstrated in the frequency domain. The precise ranges of
variations are depicted in the figure. The red points represent
the mean (µ) value of the entire realization for each channel;
the error bars exhibit the standard deviations (σ). The blue
curve represents the nominal GSNR values for each particular
path. The upper (orange) and bottom (green) curves outline
each channel’s maximum and minimum GSNR. The dashed
red and dashed blue lines exhibit the overall maximum and
minimum GSNR, respectively. Observing the GSNR variations
in Fig. 1, it can be seen that the actual GSNR fluctuates
across the nominal GSNR values. In general, the system
encounters uncertainties or error in GSNR estimation given
by ∆GSNR = GSNRnominal − GSNRactual. In particular,
case when ∆GSNR > 0, the actual GSNR is smaller than
the estimated one and so relying on the QoT-E computation
leads to unwanted OOS while when ∆GSNR < 0 leads to
underutilization of available capacity. To cater to these effects,
a TL agent is used to predict the uncertainties or errors in
actual GSNR estimation, i.e., ∆GSNR.

The proposed TL agent in the SDN controller is based on
a homogeneous Artificial neural network regression model.
It comprises an input layer, two hidden layers (64 neu-
rons/layer), a dropout layer, and an output layer. The input
layer is fed with the features data of 80 channels along
with the delta GSNR of the target channel. We considered
power, ASE noise, NLI, number of spans, and total dis-

tance in feature space as input features. The hyper-parameters
are optimized with minimized Mean square error (MSE)

= 1
n

∑n
i

(
∆GSNRpredicted

i −∆GSNRactual
i

)2

. The agent is
trained on 12000 training samples, validated on 6000 samples
acquired from the traditional C-band (EU network dataset)
to estimate the error in QoT (∆GSNR) of the channel, and
testing is performed on 6000 data samples (EU network).
The well-trained and tested model acquired from the C-band
dataset is then used to start the TL scheme with the small
supplementary dataset retrieved from the extended C-band
network to tune the weights of the hidden layers. A new input
layer is added as the number of input features is less in the
extended C-band network.

After defining the TL agent, we evaluated the agent per-
formance on three test paths of (3000 samples) extended C-
band network. The performance of the TL agent on the USA
network’s three paths is demonstrated as a distribution plot
in Fig. 1. The distribution of ∆GSNRactual (green) and
∆GSNRpredicted (red) with a µ and σ is illustrated in the
second row of Fig. 1. Looking over the statistics µ and σ
in Fig. 1, it is observed that the TL agent exhibits excellent
performance by reducing uncertainty or total error. The total
error in GSNR estimation is dramatically reduced using a TL
agent. The MSE is 0.032 dB for the path Birmingham →
Bismarck, 0.019 dB for Louisville → Memphis, and 0.021 dB
for Billings → Birmingham of the USA network.

In conclusion, observing these preliminary results, it is
pretty clear that the proposed TL agent can reduce the un-
certainties in QoT-E in the extended C-band network by using
the ”learned knowledge” of the traditional C-band operating
network. The proposed TL work synergically with the QoT-
estimator engine of extended C-band to assist it in correcting
the GSNR estimation. REFERENCES

[1] V. Curri, “Software-defined WDM optical transport in disaggregated open
optical networks,” in ICTON, (2020).

[2] R. Pastorelli, “Network optimization strategies and control plane impacts,”
in OFC, (OSA, 2015).

[3] A. D’Amico et al., “Using machine learning in an open optical line system
controller,” JOCN 12, C1–C11 (2020).

[4] I. Khan et al., “Lightpath qot computation in optical networks assisted
by transfer learning,” JOCN 13 (2021).

[5] A. Ferrari et al., “Gnpy: an open source application for physical layer
aware open optical networks,” JOCN 12 (2020).


