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g of CO adsorption on Cu1−xMx

bimetallic alloys via machine learning†

Mattia Salomone, *a Michele Re Fiorentin, a Francesca Risplendi, a

Federico Raffone, a Timo Sommer, b Max Garćıa-Melchor *b

and Giancarlo Cicero*a

The electrochemical reduction of CO2 (CO2RR) has the potential to allay the greenhouse gas effect while

also addressing global energy challenges by producing value-added fuels and chemicals (mostly C2

molecules such as ethylene and ethanol). However, due to the complicated chemical pathways involved,

achieving high selectivity and efficiency towards specific reduction products remains challenging. In fact,

the design of more selective and efficient catalysts often relies on trial-and-error approaches, which are

very time consuming and resource intensive. In response, driven by the inherent importance of CO

adsorption energy in the conversion of CO2 into C2+ hydrocarbons and alcohols, we propose a two-step

approach employing machine learning classification and regression algorithms to predict CO binding

energies on CuM(111)/(100) (M = Al, Ti, V, Fe, Co, Ni, Zn, Nb, Mo, Ru, Pd, Ag, Cd, Sn, Sb, Hf, W, Ir, Pt, Au)

bimetallic surfaces. Firstly, we assess the stability of each adsorption site by utilizing classification

algorithms. Subsequently, focusing exclusively on the stable sites, we employ regression models to

predict the adsorption energies of CO. Remarkably, by employing a Gradient Boosting Classifier for

classification, together with a Gradient Boosting Regressor for regression, we predict CO binding

energies with a high level of robustness and accuracy for Cu bimetallic alloys with up to 17% surface

impurity concentrations. The accuracy of our models is demonstrated by F1 scores exceeding 96% and

a mean square error below 0.05 eV2 for the classification and regression parts, respectively. These

remarkable results highlight the adaptability of our approach and its capability for efficiently screening

Cu-based CO2RR electrocatalysts, enabling rapid evaluation of promising candidates for future in-depth

explorations.
1 Introduction

The development of technologies for the capture and conver-
sion of CO2 to value-added compounds has been driven by the
drastic environmental consequences of anthropogenic climate
change.1 The electrochemical reduction of CO2 (CO2RR) to
industrially relevant chemicals using reasonably priced renew-
able energy sources is one of the most promising strategies.2

Currently, this process has reached a high degree of technical
readiness in the production of single-carbon molecules like CO
and formic acid.3,4 However, due to undesirable side reactions
and relatively limited selectivity, the CO2RR to C2+ products
(such as ethylene and ethanol) with higher market potential
faces many challenges.5 To date, this process has mainly been
reported for copper-based catalysts in alkaline media.6
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However, while alkaline conditions promote the synthesis of
desirable C2+ products, high pH values dramatically reduce the
CO2 utilization efficiency due to hydroxide ion reactivity and the
consequent precipitation of (bi)carbonate.7 Shiing to more
acidic conditions would lower (bi)carbonate formation, but also
suppress the already low faradaic efficiencies towards C2+

products, as it would favour the competing hydrogen evolution
reaction.8 Several studies have demonstrated that the reduction
of CO on Cu leads to a product distribution comparable to that
of the CO2RR on Cu, revealing that CO is an important reaction
intermediate.9–14 Consequently, the binding energy of adsorbed
CO (*CO) is considered as a key reaction descriptor for the
production of C2+ chemicals.15–17 Metals that bind CO too
strongly will be poisoned by this intermediate, while metals that
bind CO too weakly will release it before it can react further,
following the Sabatier principle.18 The awareness of CO being
a key intermediate in the CO2RR to hydrocarbons and alcohols
has led to increasing interest in studying CO electroreduction
(CORR) as a proxy for understanding CO2RR trends. This
approach is advantageous because it considers fewer reaction
steps/intermediates. In addition, a better understanding of
J. Mater. Chem. A
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CORR catalysis is important because it could provide an alter-
nate route for the CO2RR that can potentially overcome selec-
tivity problems if the process is split into two separate steps: (1)
CO2 reduction to CO and (2) CO reduction to the desired
products (tandem approach).19,20 To avoid (bi)carbonate
precipitation and efficiency losses, CO2 is rst reduced to CO
under mildly acidic conditions, followed by the reduction of CO
to the required C2+ product(s) in alkaline media. However,
despite this tandem process being very promising, a deeper
understanding of the second step is required since many C2+

reaction intermediates exhibit similar binding energies,
compromising CORR selectivity. Altering the local environment
surrounding the active sites can improve the catalytic activity,
selectivity, and stability of electrocatalysts. For example, alloy-
ing,21,22 surface doping,23 ligand modication,24 and interface
engineering25 have been adopted as catalyst engineering strat-
egies. Among these methods, copper alloying has proven
particularly useful in improving catalytic performance while
retaining long-term stability.

In this context, density functional theory (DFT) is a powerful
and predictive tool for guiding catalyst design and
synthesis.26–28 However, DFT simulations require a signicant
amount of time to be performed and considering that the
designing of novel catalysts generally depends on a trial-and-
error approach,29 this aspect represents a considerable bottle-
neck when investigating a large number of metal alloys with
different concentrations and types of impurities.30–33 Recent
advancements in the integration of machine learning (ML) with
ab initio-obtained data have provided an opportunity to accel-
erate the high-throughput screening of electrocatalysts. In
supervised learning, the algorithm learns a predictive function
from a dataset of labeled data, enabling it to make predictions
on new, unlabeled data – the term label denotes the target
property of interest, e.g. the binding energy of a reaction inter-
mediate. The goal is to identify complex patterns and correla-
tions within the known data, which can then be extrapolated to
accurately forecast unexplored data. Once the training set is
sufficiently large and representative of the catalytic property of
interest, the trained model can be used to predict this quantity
also for systems not considered during the training
process,29,34–37 without the need for further DFT simulations.
This approach has seen applications in various chemical
elds,38–40 including catalysis.15,41,42 Different models exist
depending on the structure of the learned function and the
associated learning algorithm, offering a range of possible
approaches to address different learning tasks. ML models can
be used both for classication and regression tasks. In classi-
cation, the learner is required to map the input space into
predened classes, i.e. the label (target property) is discrete. In
contrast, within regression, the model maps the input space
into a real-value domain, thus leading to a continuous label.43,44

In this work we present an ML-based model to predict CO
binding energies on various Cu bimetallic surfaces
Cu1−xMx(111)/(100), with 0.028 # x # 0.168 (ca. 3–17%) and M
= Al, Ti, V, Fe, Co, Ni, Zn, Nb, Mo, Ru, Pd, Ag, Cd, Sn, Sb, Hf, W,
Ir, Pt, Au. Our investigations focus on metallic Cu surfaces as
host matrices, owing to the favorable reduction of copper oxides
J. Mater. Chem. A
to metallic Cu under applied potentials and pH values pertinent
to the CO2RR.45–48 The novelty of our approach lies in dividing
the surface analysis into two separate steps. First, with classi-
cation algorithms we evaluate the stability of a given binding
site, then, focusing solely on the stable sites, we employ
regression models to predict CO adsorption energies. To obtain
realistic generalization errors,49 we compare the performance of
multiple ML algorithms, developed using readily available
chemical and geometrical properties as features. In most cases,
the ML models show excellent performances for both classi-
cation and regression tasks. In particular, we nd the Gradient
Boosting50,51 Classier to be the best model to predict the
stability of CO binding sites, while the Gradient Boosting
Regressor performs best in the prediction of CO adsorption
energies. Adopting the same two-step approach, we employ
these algorithms to predict CO binding energies on Cu1−xAgx
and Cu1−xAux bimetallic alloys with relatively high surface
impurity concentrations (x # 0.168). Despite training our
algorithms at low concentrations, the overall performance of
the ML models remains comparable to those obtained with the
original test set, highlighting the versatility and transferability
of our ML models. According to our ndings, our two-step ML
approach can accurately capture the CO behavior on a wide
range of bimetallic alloys, considering the different impurity
concentrations as well as different surface facets of various
guest species. Hence, this method is envisioned to enable the
high throughput screening of CORR electrocatalysts for the
sustainable and selective production of chemicals and fuels.
2 Methods
2.1 DFT computational approach

ML models were trained on DFT-calculated CO adsorption
energies (DECO) on Cu-based bimetallic alloys, namely
Cu0.972M0.028(111)/(100) surfaces. The DECO values (considering
C as the atom binding to the surface) were calculated with the
Quantum Espresso package52,53 using ultraso pseudopoten-
tials54 and the Perdew–Burke–Ernzerhof (PBE) exchange–corre-
lation functional.55,56 Although this exchange–correlation
functional tends to overestimate the binding energies of
adsorbates on metal surfaces, it consistently captures the
adsorption trends of molecules. This ensures a faithful depic-
tion of the overall behavior of the CO molecule. Valence elec-
trons were described using plane waves with a cutoff energy of
40 Ry, while a cutoff of 400 Ry was adopted for the charge
density and pseudopotentials. Four-layered Cu(111)/(100)
surface slabs were constructed with a vacuum layer of 12 Å.
Structures were subsequently relaxed by minimizing the atomic
forces with a convergence threshold of 10−5 Ry per Bohr and
sampling the Brillouin zone using a 10 × 10 × 1 Monkhorst–
Pack (MP) k-point grid.57 Using these models, we built
Cu0.972M0.028(111)/(100) surface slabs with a 6 × 6 periodicity by
substitutional alloying 1 surface Cu atom with 20 different M
species (i.e. Al, Ti, V, Fe, Co, Ni, Zn, Nb, Mo, Ru, Pd, Ag, Cd, Sn,
Sb, Hf, W, Ir, Pt and Au). For these surfaces, the k-point grid was
reduced to 2 × 2 × 1 to keep the same k-point density. In all the
This journal is © The Royal Society of Chemistry 2024
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calculations, the bottom two layers were xed, while the
topmost layers were allowed to relax.
2.2 Structure of the dataset: labels and features

To generate the dataset, we adsorbed a COmolecule onto all the
unique binding sites within the rst and second nearest
neighbor positions adjacent to the guest species M in the
Cu1−xMx(111)/(100) surfaces, shown in Fig. 1c and d. Subse-
quently, for each binding site we calculated the corresponding
CO adsorption energy, dened as

DECO = Eslab+CO − Eslab − ECO,

where Eslab+CO, Eslab and ECO are the energies of the Cu slab with
the adsorbed CO, the pristine surface, and an isolated CO
molecule, respectively. In the case of the pristine surfaces, the
possible binding sites are shown in Fig. 1a and b. In particular,
for the Cu(111) surface, the CO molecule can adsorb on top (T)
and bridge (B) sites, as well as two different hollow sites, namely
fcc (H1) and hcp (H2) (see Fig. 1a). However, the B site was
found to be unstable, and the CO molecule moved into an H1
site, which is the most stable adsorption on Cu(111).58 This
behavior was also observed on all (111) surfaces, and therefore
the B sites were not included in the (111) surface dataset.
Similarly, for the Cu(100) surface, CO can bind on T and B sites,
as well as a hollow site (H), as depicted in Fig. 1b. Upon intro-
duction of the guest M species, the number of unique
Fig. 1 Labeling of adsorption sites for the pristine (a) Cu(111) and (b)
Cu(100) surfaces. Binding sites for the defective (c) Cu0.972M0.028(111)
and (d) Cu0.972M0.028(100) surfaces. Atom numbers from 1 (impurity) to
9 are used to distinguish atoms. Atoms 2, 4, and 5 are nearest
neighbors to guest species, while 3, 6, 7, 8, and 9 are next-nearest
neighbors. The presence of the impurity introduces new non-equiv-
alent adsorption sites, namely 3 per atom in Cu(111) and 4 in Cu(100).
Cu(111): light red and red dots represent hollow fcc (H1) and hcp (H2)
binding sites. Cu(100): dots in light blue/blue and light red denote
bridge (B1/B2, resulting from their different distance from the guest
atom) and hollow sites, respectively. Yellow dots represent top sites
and white dots symmetrically equivalent sites not included in the
dataset.

This journal is © The Royal Society of Chemistry 2024
adsorption sites signicantly increases, giving rise to the two
patterns shown in Fig. 1c and d for Cu(111) and Cu(100),
respectively. We note that the presence of the guest atom in
Cu(100) gives rise to two distinct bridge sites per atom (B1 and
B2 in light/dark blue) because of their varying distances from
the impurity. The rest of the sites for both (111) and (100)
surfaces remain either unchanged (T in yellow and H in light/
dark red) or are equivalent (white dots in Fig. 1c and d) due to
surface symmetry. Overall, this leads to 25 and 21 unique sites
for the Cu0.972M0.028(111)/(100) surfaces, respectively. These,
combined with the 20 guest atoms considered in this work,
result in 920 entries in our dataset (20 × 21 + 20 × 25 = 920).

Next, each adsorption energy was represented by a vector of
15 features, of which 13 are related to the chemical properties of
the M atom,59,60 and 2 are associated with the geometrical
aspects of the CO binding site. To create a highly interpretable,
general, accessible and computationally efficient MLmodel, the
13 chemical features were chosen to be properties readily
available in the literature which do not require any further DFT
simulations. These features include the atomic number
(AtNumb), periodic table group and period (AtGroup and AtPer),
atomic radius (AtRad), atomic mass (AtMass), electron affinity
(ElecAff), Pauli electronegativity (PaElec), and ionization energy
(IonEn), density (Density), melting point (MeltPoint), boiling
point (BoilPoint), surface energy (SurfEn), and work function
(WorkFun) of the M species. The last two features refer to the
hexagonal surface of the guest atom in its crystalline phase. The
remaining 2 geometrical properties are the distance between
the CO adsorption site and the substitutional impurity, and the
generalized coordination number (GCN)61 of the adsorption site
proposed by Calle-Vallejo et al. To make the model more
general, these features were calculated on the ideal surface
geometries of the pristine Cu(111)/(100) surfaces. This assumes
that the distance between a binding site and the M atom is not
inuenced by the impurity type. In addition, when calculating
the GCN for a specic adsorption site, the local strain was not
included. Finally, we note that Cu features were not included in
the models as they would be constant for all the elements in the
dataset.
2.3 Implementation of the ML models

The CO adsorption energies on the given Cu1−xMx(111)/(100)
surfaces were obtained in two steps: (1) determining if
a binding site is stable or unstable, and (2) calculating the CO
adsorption energy on stable sites. A binding site was deemed
stable if the CO molecule remains adsorbed on the surface and
does not migrate to a different site during the DFT relaxation,
otherwise the site was labelled as unstable. To address this
issue, we sampled a wide range of ML algorithms belonging to
several different categories, namely linear and distance-based
models, support vector machines, kernel methods, decision
tree, tree ensemble methods and feedforward NNs. In partic-
ular, we trained eight different supervised models (most of
them used both for classication and regression), namely
Gradient Boosting50,51 Classier and Regressor (GBC and GBR),
Support Vector62 Classier and Regressor (SVC and SVR, with
J. Mater. Chem. A
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Table 1 Hyperparameters used for the classification (upper table) and regression (lower table) algorithms, optimized considering a 4-fold cross
validation

Classication algorithm Hyperparameters

Gradient boosting n_estimators = 300, max_depth = 5, learning_rate = 0.7
Support vector kernel = linear, class_weight = {0 : 1.1, 1 : 0.4}, kernel = poly, degree = 25, coef0 = 5.0
Random forest n_estimators = 100, max_depth = 10
Decision tree max_depth = 10
Neural networks number of layers = 4, neurons = 50/50/50/1, activation = sigmoid, loss =

binary_crossentropy, optimizer = Adam
Logistic regression solver = liblinear, C = 2, class_weight = {0 : 1.1, 1 : 0.4}
K-nearest neighbors n_neighbors = 2, algorithm = auto, p = 2

Regression algorithm Hyperparameters

Gradient boosting n_estimators = 314, max_depth = 4, learning_rate = 0.15
Support vector kernel = rbf, C = 4, gamma = 0.06, epsilon = 0.001
Random forest n_estimators = 6
Decision tree max_depth = 67
Neural networks number of layers = 4, neurons = 80/80/80/1, activation = relu, loss = mae,

optimizer = rmsprop
Gaussian process kernel = RBF()$RQ (length_scale = 1), alpha = 1, n_restarts_optimizer = 15,

length_scale_bounds = (1 × 10−5 , 100)
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linear, polynomial and rbf kernels), Random Forest63 Classier
and Regressor (RFC and RFR), Decision Tree64 Classier and
Regressor (DTC and DTR), Neural Networks42 (NNs) for both
tasks, Logistic Regression65 (LR) for classication, K-Nearest
Neighbor Classier66 (KNN) for classication and Gaussian
Process Regressor67 (GPR) for regression. With the exception of
NNs, which were implemented using Keras68 with a Tensor-
Flow69 back-end, all ML algorithms were developed using the
open-source library Scikit-Learn.70 In training our models and
optimizing hyperparameters, we employed the function Ran-
domizedSearchCV with a 4-fold cross-validation, as imple-
mented in Scikit-Learn, utilizing 75% of our dataset. While our
original plan designed the remaining 25% for testing, we noted
that the train/test split signicantly inuenced the resulting
metrics, likely due to the constrained size of our dataset. To
mitigate this variance and bolster the robustness of our results,
Fig. 2 Matrix representation of the adsorption energy dataset. The left pa
reports their values on Cu(111). The adsorption energy is 0 eV for non-s

J. Mater. Chem. A
we opted to employ the complete dataset for metric computa-
tion. This was accomplished through 100 randomized train/test
splits (75 : 25), applying the previously determined hyper-
parameters. The predictive accuracy was then ascertained by
averaging across various metrics from these 100 trials, a method
adopted from Saxena et al.41 In Table 1 we report the hyper-
parameters considered for the classication and regression
algorithms. To implement the feature scaling, features are
centered by removing the mean and then scaled to unit
variance.
3 Results and discussion
3.1 Dataset analysis

ML models were trained and implemented using the dataset of
920 entries as described in Sections 2.2 and 2.3. In Fig. 2, we
nel shows the CO adsorption energies on Cu(100), while the right panel
table sites.

This journal is © The Royal Society of Chemistry 2024
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Table 2 F1 (upper table), MSE and R2 values (lower table) obtained in
the assessment of the performance of the different ML algorithms on
the majority (Maj) and minority (Min) classes. These results correspond
to averages over 100 random training/test data splits

Classication F1 training set F1 test set

Algorithm Maj Min Maj Min

GBC 1.000 1.000 0.988 0.934
SVClinear 0.952 0.791 0.949 0.781
SVCpoly 1.000 1.000 0.967 0.827
RFC 1.000 1.000 0.966 0.812
DTC 1.000 0.998 0.985 0.915
NNs 0.976 0.870 0.965 0.815
LR 0.953 0.783 0.948 0.760
KNN 0.969 0.856 0.926 0.672

Regression MSE (eV2) R2

Algorithm Training Test Training Test

GBR 0.000 0.003 1.000 0.970
SVCrbf 0.005 0.017 0.949 0.827
RFR 0.001 0.007 0.985 0.933
DTR 0.000 0.006 1.000 0.938
NNs 0.004 0.010 0.942 0.848
GPR 0.000 0.049 1.000 0.533
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show the CO adsorption energies (DECO) obtained on all the
unique sites of the substitutionally doped Cu1−xMx(111)/(100)
surfaces. From these data, we observe how sites located far
from the impurity (these are positions 3, 6, 7, 8 and 9 in Cu(111),
and 5, 7, 8 and 9 in Cu(100)) are only slightly affected by the
guest atom. Consequently, their adsorption energies behave
like the pristine surfaces, i.e. DETCO < DEH1

CO < DEH2
CO for Cu(111)

and DETCO < DEB1CO z DEB2CO < DEHCO for Cu(100). In addition, we
note that CO binds stronger on Cu(100) compared to Cu(111), in
agreement with previous theoretical studies.71,72 In general,
adsorption energies far from the impurity were found to be
within the range of −0.60 to −0.90 eV.

On the other hand, binding energies in the vicinity of the
guest atom are strongly inuenced to the extent that some
adsorption sites become unstable. For the stable sites, binding
energies span from thermoneutral (T sites with M = Al, Zn, Ag
and Au) to ca. −2.4 eV (T sites with M = Fe, Co, Ru, W and Ir).
Altogether, it is evident that predicting site stability and CO
binding energies is a complex non-linear challenge to address
where ML algorithms can have a major impact.

3.2 Performance of ML models

It has been demonstrated that there is no single optimal ML
model that works for any problem.41,73 Hence it is always
advisable to test different ML algorithms to assess which one
performs best for a specic application. In this work, we trained
the ML models summarized in Table 1 and evaluated their
performance following the procedure described in Section 2.3.
The estimation of their accuracy is based on two indices for the
classication part (i.e. F1 scores on the stable/majority and
unstable/minority classes), and two different indices for the
This journal is © The Royal Society of Chemistry 2024
regression part (i.e.mean squared error, MSE, and coefficient of
determination, R2). The results of this analysis are summarized
in Table 2 and Fig. 3. The closer the F1 and R2 scores are to 1, the
better the performance of the classication and regression,
respectively.

For the classication part, it is important to highlight that
the dataset is strongly asymmetric since most of the adsorption
sites are stable (780/920 z 85% of the dataset). This however
does not inuence tree-based algorithms and NNs. In fact, GBC,
RFC, DTC, and NNs perform extremely well both on themajority
and minority classes (Fig. 3a). SVC with the polynomial kernel
and KNN also exhibit high F1 scores for both classes, while the
imbalance of the dataset compromises the accuracy of simpler
models, such as LR and SVC with a linear kernel. To overcome
this issue, we applied a penalty which weighs differently the two
classes, i.e. 0 and 1 for minority and majority classes, respec-
tively. With this correction, the performance of the LR and SVC
algorithms improves signicantly on theminority class. Overall,
we nd the GBCmodel to be the best performing algorithmwith
an average F1 score of 0.96.

Regarding the regression part, based on the MSE and the R2

values computed for the training (le columns) and test (right
columns) datasets (see Table 2 and Fig. 3b) we conclude that all
methods perform remarkably well, except GPR. This is due to
the strong dependence of GPR on the random split used for
training. Indeed, from the 100 different random splits used for
this model, we observe very good performances (R2 = 0.89, MSE
= 0.005 eV2), as well as some poor results (R2= 0.25, MSE= 1.98
eV2). Analyzing the parity plots for the four best algorithms
(GBR, RFR, NNs, and DTR), shown in Fig. 4, we conclude that
these models exhibit a high level of accuracy in the prediction of
CO binding energies on both Cu(111) and Cu(100) surfaces.
Furthermore, these models have the capability of making
forecasts across a wide range of values, which is crucial to
accurately describe CO adsorption in the sites near the impu-
rity. These sites are particularly important for ne tuning
catalytic performance, and therefore their behavior is the most
important aspect to be captured in the ML models. Despite the
excellent performance displayed by DTR, RFR, and NNs, the
GBR algorithm shows overall the most promising predictive
power for regression.

Based on all the results discussed above, we propose the GBC
model for the classication part, and the GBR algorithm for the
regression task.
3.3 Feature sensitivity analysis

Aer training the MLmodels, it is possible to obtain the relative
feature importance. As an example, we have examined the
feature importance in the GBC/GBR algorithms based on two
metrics, namely the frequency of its usage for node splitting in
the decision tree, and the performance improvement resulting
from that split. These metrics are then averaged over all the
trees within the model to assess the nal feature importance,41

as depicted in Fig. 5. As far as the stability of a specic
adsorption site is concerned, it can be observed that the
distance from the impurity DIm (the feature ‘Distance’) plays
J. Mater. Chem. A
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Fig. 3 (a) F1 scores obtained on the test set using different ML classification algorithms. The F1 scores on themajority/stable (minority/not stable)
class are reported on the left (right) panel. (b) MSE (left) and R2 scores (right) obtained with the different ML regressionmodels. Bars with diagonal
lines indicate the values in the training set, while solid bars identify the values in the test set.

Fig. 4 Parity plots with the four best performing algorithms. Blue dots
indicate CO adsorption energies on the Cu(111) surface, while orange
dots denote the binding energies on Cu(100). The y axis represents the
adsorption energies predicted by the ML algorithms, while the x axis
the DFT-calculated values. The closer the dots are to the black dashed
line (y = x), the better the model performs.
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a fundamental role (Fig. 5, le panel), as beyond a certain value
(ca. 2.7 Å) all the sites considered in the dataset are predicted to
be stable. Hence this feature holds substantial signicance
since it seems to correlate positively with stable adsorptions.
However, from Fig. 2 we can also see that the stability of
adsorption sites also depends on other factors, since some sites
behave differently even when they are at the same distance from
the impurity (different DECO within a given row, Fig. 2). The
relative feature importance obtained with GBC also reveals that
properties such as the group, surface energy, work function,
ionization energy, and electron affinity of the guest species
contribute to the predictive power of the ML algorithm. Inter-
estingly, none of these features emerge as being more relevant
than the others, indicating a complex relationship among them
in determining whether a site is stable for CO adsorption or not.
The GCN does not signicantly enhance the description of site
stability as this is well described by the chemical properties
previously discussed when DIm # 2.7 Å. This outcome is
accentuated by the observation that identical site types can
exhibit different stabilities contingent upon the impurity
J. Mater. Chem. A This journal is © The Royal Society of Chemistry 2024
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Fig. 5 Relative feature importance of the GBC (left) and GBR (right)
models. The 13 chemical features are represented by blue bars, while
the 2 geometrical properties are in orange.

Fig. 6 Relationship between CO adsorption energies, guest atom
surface energies, and distance (DIm) of the adsorption site from the
guest atom. Blue points (orange points) are forDIm# 2.7 Å (DIm > 2.7 Å).
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involved. In contrast, for DIm > 2.7 Å, all sites are found to be
stable, reinforcing the premise that proximity to the impurity is
the dominant factor in describing this behavior, irrespective of
the type of binding site.

Regarding the regression part, we nd that the distance from
the impurity is also important for the prediction of CO binding
energies. In fact, we observe that when DIm is ca. # 2.7 Å the
adsorption energies exhibit substantial variability, whereas
when DIm > 2.7 Å, there are less uctuations. However, we note
that the labels also depend on the guest atom's surface energy,
as shown in Fig. 6, consistently with other studies.74,75 In
particular, an interesting linear relationship between surface
and binding energies is observed for adsorption sites around
the M species (blue dots), with higher surface energies resulting
in increased CO adsorption strengths, while the two quantities
become uncorrelated for DIm $ 2.7 Å (orange dots). Other
important chemical characteristics including group, ionization
energy, and boiling temperature exhibit comparable behaviors
(see Fig. S1†), supporting the idea that the effect of the
This journal is © The Royal Society of Chemistry 2024
substitutional impurities is very local. Consequently, the GCN
feature becomesmore important in the regression part, because
this is the only feature which provides relevant information for
predicting CO adsorption energies far from the impurity.

Overall, we conclude that the most important chemical
features to predict stability and CO binding energies on the
surfaces investigated in this work are the surface energy, ioni-
zation energy, electron affinity, group, and boiling and melting
points of the guest species M, which we rationalize as follows.

� Surface energies describe surface reactivity; the higher the
surface energy, the higher the reactivity.

� The ionization energy and electron affinity dictate how
easily an electron can be transferred between the surface metal
atoms and the adsorbate.

� The group is related to the number of electrons in the
outermost electron shell, and hence determines the chemical
behaviour of an element.

� Boiling and melting points, on the other hand, are indic-
ative of the strength of chemical bonds between atoms.

Based on these observations, we can conclude that GBC and
GBR models successfully capture the underlying physics and
intricate interactions within our systems. Therefore, the
exceptional predictive performance of the GBC and GBR
models, coupled with the understanding of the key chemical
features, allows us to gain valuable insights into the CO
adsorption trends on different Cu surfaces.

With this knowledge, we next evaluated the impact of feature
selection on the model performance. For this, we removed the
least important features from the dataset to create a reduced
feature vector consisting of 7 elements, namely 5 chemical
properties of the alloying materials (i.e. IonEn, AtGroup, Boil-
Point and MeltPoint, and SurfEn) and 2 geometrical properties
(i.e. Distance and GCN). The results from this analysis are
summarized in Table S1.† GBC shows slightly improved F1
scores, increasing from 0.934 to 0.941 and from 0.988 to 0.989
for the minority andmajority classes, respectively. Similarly, the
GBRmodel displays an enhanced performance with the R2 score
increasing from 0.970 to 0.978 and the MSE decreasing from
0.003 to 0.002 eV2. This suggests that the selected features
contain the most relevant information needed for the predic-
tion of CO binding energies, and therefore removing the least
important features does not signicantly affect the models'
accuracy. Importantly, this feature selection process can
potentially reduce the risk of overtting, leading to more robust
and generalizable predictions across different catalyst surfaces,
while enhancing the efficiency of the ML models in terms of
computational cost and interpretability.
3.4 Data scalability

We next evaluated the impact of the number of available data
points on the performance of the GBC and GBR models. While
maintaining the test set xed at 25% of the entire dataset, we
varied the number of points in the training set by selecting
different percentages from the remaining 75% of the dataset,
specically 50%, 60%, 70%, 80%, and 90%. Data points in these
subsets were randomly sampled. Results are shown in Fig. 7.
J. Mater. Chem. A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ta06915j


Fig. 7 Evaluation of the (a) GBC and (b) GBR models performance
across varying percentages of training set points. (c) Logarithmic
relationship between MSE and the percentage of training set points.
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In the classication part, the F1 score for the majority class
(stable sites) sees marginal improvements in comparison to the
minority class, as depicted in Fig. 7a. This observation likely
stems from the relatively large number of data points for stable
sites, even when only a small portion of the training set is
utilized. In contrast, the dataset for unstable sites is much
smaller, which introduces more variability in the model's
predictions as different percentages of the training set are
sampled.

Regarding the regression part, as shown in Fig. 7b, the
performance metrics signicantly improve with the addition of
more data, aligning with our expectations. Furthermore, the
log–log plot presented in Fig. 7c details the relationship
between the MSE and the number of training data points.
Typically, these plots reveal a linear trend that can be extrapo-
lated to estimate the data volume required to achieve a certain
performance level. The linear arrangement of the data points on
our plot suggests a consistent training process. By extrapola-
tion, we estimate that to reduce the MSE by a factor of e
(approximately 2.718), the volume of training data would need
to increase by approximately 50%. For our dataset, this equates
to an additional 300 data points (calculated as 0.5 × 0.75 ×

780). However, given the high accuracy already demonstrated by
our models, and the marginal improvement anticipated from
expanding the dataset, we have opted to maintain the current
dataset size.
Fig. 8 Parity plot obtained with GBR at varying impurity concentra-
tions in the Cu(111) and Cu(100) surfaces. Different colors correspond
to the different structures considered.
3.5 CO binding energy predictions on higher stoichiometry
Cu1−xMx alloys

Given the strong inuence of DIm, both in the classication and
the regression parts, we next explored the possibility of
exploiting our models to describe Cu1−xMx(111)/(100) surfaces
J. Mater. Chem. A
with a higher impurity content compared to the dataset (i.e.
0.028 # x # 0.168). For this, we consider Au and Ag as guest
species since these alloys have been widely studied for CO2RR
applications.76–80 Firstly, we predicted the ground state struc-
tures of Cu1−xAgx and Cu1−xAux alloys in the range 0 # x # 0.3
by means of a cluster expansion method81–86 (see the ESI†).
Then, we selected three of the ground state structures with
intermediate impurity concentrations and predicted the CO
adsorption energies using the two-step ML method described
above. Specically, we focused on Cu(111) surfaces with 11.1%
Au (Cu0.889Au0.111) and 16.7% Ag (Cu0.833Ag0.167), and a Cu(100)
surface with 12.5% Au (Cu0.875Au0.125), shown in Fig. S2 and S3,
and S9a and b,† respectively.

Notably, despite training our ML models on structures with
very low surface impurity concentrations (ca. 3%), we were
pleased to see that they also perform remarkably well for higher
concentrations. In particular, for the CuM(111) surfaces, GBC
predicts the stability of Ag and Au binding sites with 100%
accuracy, while for the CuM(100) surface, the average F1 score is
0.90. We attribute this difference to the fact that the (100)
surface is inherently less stable than the (111), and therefore,
the introduction of a larger number of substitutional impurities
has a larger negative impact on the former, thus reducing the
predictive power of the ML algorithms. Nevertheless, we note
that the majority of the trainedmodels exhibit average F1 scores
in the original test set that are comparable to the obtained Cu
bimetallic surfaces with high impurity concentrations. This
highlights the potential of these methods for the accelerated
prediction of CO binding energies for CuM alloys.

In addition, we our GBR model can predict DECO values on
CuAu(111), CuAg(111) and CuAu(100) with remarkable accu-
racy, i.e. R2/MSE (eV2)= 0.789/0.004, R2/MSE (eV2)= 0.872/0.004
and R2/MSE (eV2) = 0.733/0.006, respectively. From the parity
plots in Fig. 8 we also observe that our models can accurately
predict DECO both in the vicinity and far away from the impu-
rity. While GBR seems to slightly underestimate DECO, overall
the results can be deemed very satisfactory considering that the
impurity concentration in these systems is ca. 4–6 times larger
than the one used for training. The adsorption energy maps
This journal is © The Royal Society of Chemistry 2024
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Fig. 9 DFT-calculated (left) and ML-predicted (right) CO adsorption
energy maps over the (a) Cu0.833Ag0.167(111) and (b) Cu0.875Au0.125(100)
surfaces. The dashed black lines highlight the unit cells. The smaller
dots correspond to different binding sites for CO, with the colors
representing their adsorption energies. White dots denote unstable
sites. Color code: Cu (light blue), Au/Ag (dark gray).
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calculated by DFT and predicted by our two-step ML approach
(GBC + GBR) on the Cu0.833Ag0.167(111) and Cu0.875Au0.125(100)
surfaces are shown in Fig. 9. The small dots in the maps denote
the different binding sites for CO with their colors expressing
their associated DECO values, while white dots indicate unstable
sites. We note that for the Cu0.833Ag0.167(111) surface, the B site
between the two impurities is stable. However, since for the
(111) surface we did not consider B as a possible adsorption site,
our model is unable to predict this conguration. This site is
stable only due to the particular geometrical conguration of
the substitutional impurities, hence it represents a pathological
case that could be addressed by expanding the dataset with
systems showing this kind of structure.

In summary, observing the maps reported in Fig. 9, we
conclude that our two-stepML approach is capable of accurately
predicting CO adsorption energies on Cu bimetallic (111) and
(100) surfaces with high impurity concentrations up to ca. 17%.
This remarkable capability of these models is envisioned to
enable the high-throughput screening of bimetallic alloys to
accelerate the discovery of CO2RR electrocatalysts.
4 Conclusions

In this work we report a novel two-step ML approach based on
classication and regression algorithms to predict CO adsorp-
tion energies on Cu-based bimetallic alloys. Among the ML
models developed herein, GBC exhibits the best performance in
classifying the type of binding sites (as stable or unstable), while
GBR outperforms all themodels in the prediction of CO binding
energies on the identied stable sites. The features used to
describe the Cu bimetallic (111) and (100) surfaces include the
readily available chemical and geometrical properties of the
guest species and binding sites, respectively, which prove very
advantageous. Firstly, they make our ML models highly
This journal is © The Royal Society of Chemistry 2024
interpretable as they contain much descriptive information
about adsorbate–surface interactions. For example, the chem-
ical features of the impurity, namely the ionization energy,
atomic group, surface energy and electron affinity, have a strong
inuence on the surrounding Cu atoms within a radius of 2.7 Å,
while the GCN does not have a signicant effect on the classi-
cation of stable/unstable binding sites. In addition, we nd an
interesting linear correlation between the surface energy of the
guest species and the CO binding energies in the vicinity of the
impurity. Notably the boiling and melting points, as well as the
GCN of the binding site, become more important in the
prediction of CO adsorption energies than in the classication
of the binding site. Secondly, our approach is accessible and
computationally efficient, since it is built on readily available
features which do not require any further calculations.

Our machine learning models demonstrate exceptional
performance, accurately predicting CO binding energies on
a wide array of Cu-based bimetallic alloys. This accuracy is
maintained even when the models are tested on systems with
substitutional impurity concentrations ca. 6 times higher than
those in the training set, showcasing the models' versatility and
broad applicability. Leveraging the CO binding energy as
a reaction descriptor for C2/C2+ product formation, our study
highlights Cu surfaces doped with Ni and V as promising
candidate materials. These metals exhibit a stronger CO
binding compared to Cu, favoring C–C coupling by increasing
the likelihood of CO molecules being in close proximity.
Signicantly, the CO binding strength on these metals is
optimal, reducing the risk of CO surface poisoning. Nonethe-
less, a comprehensive assessment of catalytic performance
must also account for the H binding energy87 and the surface
coverage of the electrocatalyst under relevant applied potentials
and pH.88 The universal and adsorbate-independent features
incorporated into our models guarantee their applicability to
a range of CO2RR intermediates and electrocatalytic processes.
In addition, this versatility holds great promise for applying our
methodology to investigate various adsorbates across different
Cu : M ratios, thereby expediting the design of efficient, selec-
tive electrocatalysts for the CO2RR. Such an approach is poised
to transform the production of chemical fuels and value-added
compounds, enabling the rapid screening and experimental
synthesis of novel materials with superior catalytic
performance.
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