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Entropy solutions of mildly-singular non-local scalar conservation
laws with congestion via deterministic particle methods

Emanuela Radici∗ Federico Stra†

August 2, 2022

Abstract
We develop deterministic particle schemes to solve non-local scalar conservation laws

with congestion. We show that the discrete approximations converge to the unique entropy
solution under more general assumptions that in the existing literature: the velocity fields
are allowed to be time-dependent (with no regularity in time), they are allowed to be less
regular in space (in particular the interaction force can have a discontinuity at the origin), no
prescribed attractive/repulsive regimes or symmetry are required, and the mobility can have
unbounded support. We treat in a unified manner two different schemes, with sampled and
integrated interaction, showing that they both converge to the entropy solution, albeit with
different trade-offs between accuracy and computational effort. We complement our results
with some numerical simulations, among which we show the applicability to the multi-species
setting, for which the integrated scheme appears to be the better choice.
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1 Introduction
In this article we study the scalar conservation law

∂tρ(t, x) + divx
[
ρ(t, x)v

(
ρ(t, x)

)(
V (t, x)− (W ′ ∗ ρ)(t, x)

)]
= 0 (1.1)

∗EPFL, Lausanne, emanuela.radici@epfl.ch
†Politecnico di Torino federico.stra@polito.it

1

emanuela.radici@epfl.ch
federico.stra@polito.it


where the transport vector field depends non-locally on the solution itself via a convolution and
v : [0,∞)→ [0,∞) is a non increasing function to model congestion. We are interested in the
Cauchy problem with initial condition ρ0 being a probability measure in P(R)∩L∞(R)∩BV (R)
with compact support. In the sequel we adopt the shorthand notations m(ρ) = ρv(ρ) for the
mobility and U(t, x) = V (t, x)− (W ′ ∗ ρ)(t, x) for the uncongested velocity field. Moreover, for
convenience we denote W ′ = ∂xW . With a slight abuse of notation, all throughout the article the
term W ′ ∗ ρ has to be intended as a convolution in space alone with a time-dependent kernel, i.e.

(W ′ ∗ ρ)(t, x) = [W ′(t, · ) ∗ ρ(t, · )](x) =
∫
R
W ′(t, x− y)ρ(y) dy.

The case V = 1,W = 0 has been studied for the first time in [DR15] with a similar approach.
The case V = 0 and with a regular attractive potential W has been studied in [DFR19]. The case
W = 0 and some symmetry assumptions on V has been studied in [DS20]. In the recent article
[FT22] the authors consider a general equation of the form (1.1) and study the gradient flow
structure with respect to a variation of the Wasserstein distance. A more detailed comparison
between our result and theirs will be discussed after we present our main theorem and the
assumptions on the mobility and the potentials.

Since weak solutions of (1.1), i.e. functions ρ satisfying∫ ∞
0

∫
R

[
ρ∂tϕ+m(ρ)U∂xϕ

]
dx dt = 0 ∀ϕ ∈ C∞c

(
(0,∞)× R

)
, (1.2)

are not unique in general, we are interested in studying a more restrictive class of solutions,
entropy solutions introduced by [Kru70], for which we can show uniqueness.

Definition 1.1 (Entropy Solution). A function ρ : [0,∞) × R → R is an entropy solution to
(1.1) if∫ ∞

0

∫
R

{
|ρ− c|∂tϕ+ sign(ρ− c)

[(
m(ρ)−m(c)

)
U∂xϕ−m(c)∂xUϕ

]}
dx dt ≥ 0 (1.3)

for every constant c ≥ 0 and non-negative test function ϕ ∈ C∞c
(
(0,∞)× R; [0,∞)

)
.

The definition is adapted from [Vol67], where the inequality is required only for the absolute
value instead of all entropy-flux pairs (η, q). In addition, notice that in our problem the vector
field U depends non-locally on the solution itself, therefore the uniqueness for problem (1.1) does
not follow immediately from the results by Kružkov.

The article revolves around the study of a Lagrangian discretization of the PDE (1.1), in
which the solution ρ is approximated by a piecewise constant density associated to particles
evolving according to an explicit system of ODEs. We construct two similar deterministic particle
approximations (integrated and sampled), which differ only in the way the interaction term is
computed. All the results contained in the article apply equally well to both schemes.

Such particle approximations enjoy good a priori estimates, compactness properties and a
suitable approximate entropy inequality (2.14). By passing to the limit as the number of particles
grows to infinity we can obtain the existence of an entropy solution for problem (1.1).

In addition, we demonstrate the practical feasibility of this particle discretization as a
numerical scheme for computing good approximations of the density and the underlying flow.

In comparison to approaches that regularize the equation, such as Godunov or the Finite
Elements Method, our scheme does not incur in a loss of resolution of the entropic shocks, which
are instead always resolved to a sharp discontinuity.

We now introduce the above mentioned particle discretization, with the two alternative
schemes (integrated and sampled), and then proceed to state our main results.
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1.1 Deterministic particle schemes

Given a diffuse probability ρ ∈P(R), we discretize it by means of N+1 particles (x0, x1, . . . , xN )
in increasing order with the property that ρ

(
(xi−1, xi)

)
= 1/N for every i ∈ {1, . . . , N}, from

which we can reconstruct a piecewise constant density

ρ̄ =
N∑
i=1

ρi1(xi−1,xi), ρi = 1
N(xi − xi−1) ,

which approximates the original probability ρ. For convenience, we define also the external
densities ρ0 = ρN+1 = 0.

We then evolve these particles by making them flow with the transport vector field of the
conservation law (1.1). Two terms require particular attention: the interaction W ′ ∗ ρ and the
congestion v(ρ).

The most obvious way to treat the interaction is to compute exactly the convolution with
the measure ρ̄ determined by the particles

(W ′ ∗ ρ̄)(x) =
N∑
i=1

∫ xi

xi−1
W ′(x− y)ρi dy

=
N∑
i=1

ρi[W (x− xi−1)−W (x− xi)]

=
N∑
i=0

(ρi+1 − ρi)W (x− xi).

We refer to this approach as integrated interaction. An alternative is to sample the convolution
at the points (x0, . . . , xN ). Denoting by δx the Dirac delta measure centered at x, we can
approximate

(W ′ ∗ ρ)(x) '
(
W ′ ∗ 1

N + 1

N∑
i=0

δxi

)
(x) = 1

N + 1

N∑
i=0

W ′(x− xi).

When x is one of the points xi we have to interpret W ′(0) = 0. We will not make use of this
form of interaction. A third option, suitable only when we want to compute the convolution at
one of the points xi, is to sample the convolution at the other points xj

(W ′ ∗ ρ)(xi) '

W ′ ∗ 1
N

∑
j 6=i

δxj

 (xi) = 1
N

∑
j 6=i

W ′(xi − xj).

We refer to this approach as sampled interaction. It coincides with the second approach multiplied
by a factor (N + 1)/N . It is equivalent to computing W ′ ∗ ρ̇(xi) where

ρ̇ = 1
N

N∑
i=0

δxi

and we interpret W ′(0) = 0. Notice that ρ̇ is not a probability because it has mass (N + 1)/N ,
but when we use to sample the interaction in correspondence of a particles, then it is equivalent
to using a probability because the particle itself does not count.

Regarding the congestion term v(ρ), we need a way to decide which density to use in the
computation. At each point xi we have the two densities on the left and right side

lim
x→x−i

ρ̄(x) = ρi, lim
x→x+

i

ρ̄(x) = ρi+1.

3



For the computation of the congestion, we decide to use the downwind density, i.e. the density in
the direction of motion, toward which the particle is traveling. This means that if the particle xi
has to move to the right, meaning that the transport vector field is non negative, we use the
right density ρi+1 in the computation of v(ρ); if the particle has to move left, we use ρi instead.

In conclusion, we can formulate the two following systems of ordinary differential equations
describing the evolution of the particles (x0, . . . , xN ):

• the model with integrated interaction

x′i(t) = vi(t)Ūi(t),
Ūi(t) = V

(
t, xi(t)

)
− (W ′ ∗ ρ̄)

(
t, xi(t)

)
= V

(
t, xi(t)

)
−

N∑
j=0

(ρj+1(t)− ρj(t))W
(
t, xi(t)− xj(t)

)
,

vi(t) =
{
v
(
ρi(t)

)
, if Ūi(t) < 0,

v
(
ρi+1(t)

)
, if Ūi(t) ≥ 0,

(ODEI)

• and the model with sampled interaction

x′i(t) = vi(t)U̇i(t),
U̇i(t) = V

(
t, xi(t)

)
− (W ′ ∗ ρ̇)

(
t, xi(t)

)
= V

(
t, xi(t)

)
− 1
N

∑
j 6=i

W ′
(
t, xi(t)− xj(t)

)
,

vi(t) =
{
v
(
ρi(t)

)
, if U̇i(t) < 0,

v
(
ρi+1(t)

)
, if U̇i(t) ≥ 0.

(ODES)

The only difference between the two models is how we compute the non-local interaction, so
that the resulting vector field is either Ū = V −W ′ ∗ ρ̄ or U̇ = V −W ′ ∗ ρ̇.

In order to work with the Cauchy problem, the last thing that remains to be specified is
the initial condition, which is rather simple thanks to the following lemma, which allows us to
approximate with piecewise constant densities an arbitrary initial probability satisfying suitable
regularity assumptions.

Lemma 1.2. Given a fixed ρ0 ∈P(R) ∩ L∞(R) ∩BV (R) with the bounds

ρ0 ≤ R0, supp(ρ0) ⊆ [−S0, S0], TV(ρ0) ≤ B0,

for every N ∈ N there is a family of sorted particles XN
0 = (xN0,0, xN1,0, . . . , xNN,0) such that the

corresponding piecewise constant ρ̄N0 satisfies

ρ̄N0 ≤ R0, supp(ρ̄N0 ) ⊆ [−S0, S0], TV (ρ̄N0 ) ≤ B0, ρ̄N0 → ρ0 in L1(R). (1.4)

Proof. It is sufficient to consider particles xN0,0 and xNN,0 such that [xN0,0, xNN,0] is the smallest
interval containing supp(ρ0), i.e. it is its convex hull, and then consider intermediate particles xNi,0
for i = 1, . . . , N − 1 with the property that ρ([xNi−1,0, x

N
i,0]) = 1/N . In fact, clearly the support

and the density bounds are satisfied. Moreover, letting ηε ∈ C∞c
(
[−ε, ε]; [0,∞)

)
be normalized

mollifiers and ρε = ρ0 ∗ ηε, then ρ̄Nε → ρ̄N0 in L1 for ε→ 0 and

TV(ρε) = ‖Dρ0 ∗ ηε‖1 ≤ ‖Dρ0‖1‖ηε‖L1 = ‖Dρ0‖1 = TV(ρ0),
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where ‖µ‖1 = |µ|(R) denotes the total mass of a signed measure µ. Since ρε is continuous, by
the intermediate value theorem it is easy to check that TV(ρ̄Nε ) ≤ TV(ρε) ≤ TV(ρ0) for every
N . Therefore by lower-semicontinuity we get for every N

TV(ρ̄N0 ) ≤ lim inf
ε→0

TV(ρ̄Nε ) ≤ TV(ρ0) ≤ B0.

Finally, we need to show that ρ̄N0 → ρ0 in L1(R). Since ρ̄N0 is bounded in BV (R), we have
that ρ̄N0 → σ in L1(R) for some σ ∈ L1(R). On the other hand, letting W1( · , · ) denote the
1-Wasserstein distance between two probability measures [Vil08], one has

W1(ρ̄N0 , ρ0) ≤
N∑
i=1

1
N

(xi − xi−1) = 2S0
N

,

hence ρ̄N0 ⇀ ρ0 because the Wasserstein distance metrizes this topology. By the uniqueness of
the limit we deduce that σ must be equal to ρ0, and therefore ρ̄N0 → ρ0 in L1(R).

The discussion of the local and global existence of solutions of (ODEI) and (ODES) is in
Lemma 2.1 and Proposition 2.8.

1.2 Main results

We present here the main result of the article. We are able to show the existence and uniqueness
of the entropy solution for the equation (1.1), and prove that both particle schemes converge to
this entropy solution.

Theorem 1.3. Let v, V and W satisfy the Assumptions 1.4 and let ρ0 ∈P(R)∩L∞(R)∩BV (R)
be compactly supported. For every N ∈ N, let ρ̄N be the piecewise constant density associated to
the particles solving either (ODEI) or (ODES), with initial datum ρ̄N0 satisfying (1.4) for some
constants R0, S0, B0 ∈ (0,∞).

Then ρ̄N converges in L1
loc
(
[0,∞)× R

)
to an entropy solution

ρ ∈ L∞loc
(
[0,∞)× R

)
∩BVloc

(
[0,∞)× R

)
∩ C

(
[0,∞);L1(R)

)
of (1.1) according to Definition 1.1 with initial datum ρ0,1 with the property that for every
t ∈ [0,∞)

ρ(t) ≤ R(t), supp
(
ρ(t)

)
⊆ [−S(t), S(t)], TV

(
ρ(t)

)
≤ B(t), (1.5)

for some increasing functions R,S,B : [0,∞)→ [0,∞). Moreover, such entropy solution of (1.1)
with this initial datum is unique.

We now present the assumptions on the vector fields and the mobility for which we are able
to obtain Theorem 1.3.

Assumptions 1.4. We make the following assumptions on the mobility v and the fields V,W ∈
L1

loc
(
[0,∞) × R

)
. There exist three non-negative non-decreasing functions F ∈ L∞loc

(
[0,∞)

)
,

G ∈ L∞loc
(
[0,∞)

)
and λ : [0,∞)→ [0,∞) with

∫∞
y

dx
λ(x) =∞ for every y > 0, such that:2

• v ∈W 1,∞
loc

(
[0,∞); [0,∞)

)
is a non-increasing function satisfying

‖v′‖L∞([0,r]) ≤ G(r); (1.6)
1The initial datum can be interpreted pointwise as ρ(0, · ) = ρ0 in L1(R), since ρ is continuous in time hence it

makes sense to evaluate it at t = 0.
2With the notation H ∈ Lploc

(
[0,∞)

)
we mean that H ∈ Lp

(
[0, R)

)
for every R > 0.
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• either W is repulsive at small scales, i.e. there exists h > 0 such that

sign(x)W ′(t, x) ≤ 0, ∀x ∈ [−h, h], (1.7)

or the congestion decays sufficiently fast so that∫ ∞
1

dr
r2v(r) =∞; (1.8)

• V (t, · ) ∈W 2,1
loc (R), with the estimates

‖V (t, · )‖W 1,∞([−x,x]) ≤ F (t)G(x), ‖V ′′(t, · )‖L1([−x,x]) ≤ F (t)G(x); (1.9)

• W (t, · ) ∈ W 1,∞
loc (R), W ′(t, · ) ∈ BVloc(R) with distributional derivative DxW

′(t, · ) =
W ′′(t, · )L 1 +w(t)δ0,3 whereW ′′(t, · ) ∈W 1,1

loc
(
(−∞, 0]

)
∩W 1,1

loc
(
[0,∞)

)
, with the estimates4

‖W ′(t, · )‖L∞([−x,x]) ≤ F (t)G(x), |w(t)| ≤ F (t),
‖W ′′(t, · )‖L∞([−x,x]) ≤ F (t)G(x), ‖W ′′′(t, · )‖L1([−x,x]) ≤ F (t)G(x);

(1.10)

• for every t > 0 and x > 0 we have

V+(t, x) ≤ F (t)λ(x), V−(t,−x) ≤ F (t)λ(x), ‖W ′(t, · )‖L∞([−2x,2x]) ≤ F (t)λ(x).
(1.11)

Remark 1.5. Notice that the assumption (1.6) on v is satisfied for instance if v(r) ≤ log(r)/r. A
particular case is when v(r) = 0 for r larger than some constant rmax > 0. On the opposite side,
another case of particular interest is v = 1, as long as the interaction W is repulsive at small
scales. Moreover, the hypothesis (1.11) can be slightly generalized to

‖W ′(t, · )+‖L∞([−2x,0]) ≤ F (t)λ(x), ‖W ′(t, · )−‖L∞([0,2x]) ≤ F (t)λ(x),

allowing to work with interaction potentials with a strong long-distance attraction.
This study has been motivated by [DFR19], which introduced a deterministic particle scheme

to solve (1.1) with V = 0 and a regular attractive non-local interaction potential W . The main
novelty of our scheme is the way v intervenes in the ODEs for the particles. Namely, instead
of weighing each individual interaction term with the congestion evaluated in the appropriate
direction, we first compute the total velocity field U = V −W ∗ ρ and then multiply it by the
congestion evaluated in the direction resulting from its sign.

This scheme appear to be more natural from the modelization point of view, in the sense
that the agents first feel the velocity field that they want to follow and only afterwards they look
at the congestion ahead.

In the recent [FT22] the authors investigate the gradient flow structure of (1.1) by introducing
the same scheme (ODES). As a byproduct of their study, they are able to show that the many
particle limit of ρ̄N is an entropy solution of (1.1) under more restrictive hypothesis than
Assumptions 1.4. In particular, they require that v vanishes above a certain threshold, V and
W ′ have linear growth and most importantly either W ∈ W 3,∞(R) or it has the specific form
W (x) = ±|x|.

In the present article we introduce concurrently (ODES) and for the first time the more
regular (ODEI), which at least from the numerical point of view allows to treat the multi-species
problem. Both schemes allow us to treat asymmetric and time-dependent potentials which are
singular at the origin and to employ congestion terms v which do not vanish above a threshold.

3L 1 is the Lebesgue measure on R, W ′′ represents the absolutely continuous part of the derivative, w(t) is a
measurable function of time which represents the weight of δ0.

4By W ′′′ we denote the weak derivative of W ′′ in (−∞, 0) ∪ (0,∞).
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1.3 Outline of the article

In Subsection 2.1, after some preliminary lemmas which compare the two velocity fields Ū and
U̇ and estimate their Lipschitz norm and discrete second derivative, we provide some a priori
estimates for the piecewise constant densities ρ̄N which allow us to deduce uniform bounds for the
support (Proposition 2.5), the density (Proposition 2.6) and the total variation (Proposition 2.10).
Thanks to a compactness argument developed in [RS03] which generalizes Aubin-Lion’s lemma,
we then deduce the convergence in L1 of ρ̄N (Theorem 2.11). Furthermore, we show that such a
limit ρ is continuous in time with respect to the spacial L1 norm (Corollary 2.12).

In Subsection 2.2 we begin by showing an approximate entropy inequality for the piecewise
constant densities ρ̄N (Proposition 2.13). We pass this inequality to the limit with Proposition 2.14,
deducing that the density ρ is an entropy solution. Finally, we employ a generalization of the
stability theorem of [KR03] allowing for time-dependent potentials (Theorem 2.15) to deduce the
uniqueness of the entropy solution.

In Section 3 we complement the theoretical results with an implementation of the numerical
schemes and demonstrate their applicability to some interesting examples.

1.4 Future perspectives

The most natural extension of this work would be to relax the Assumptions 1.4 in order to allow
interactions which are more singular in the origin, for instance Riesz potentials W (x) = ± 1

|x|α or
Lennard-Jones potentials W (x) = ±

(
1
|x|α −

1
|x|β
)
for α, β > 0. Among the technical difficulties

there is establishing a bound for the growth of the total variation.
Another possible generalization consists in adding a diffusion term in the conservation law

(1.1). In the setting with a non-linear mobility this has already been investigated in [FR18], for
the choice V = 0 and W a regular attractive non-local interaction, working in a fixed bounded
interval [0, L], with a strictly positive initial datum. A similar study has been conducted in
[FR21] in the setting of opinion dynamics, which is a variation in which the congestion v(ρ)
is replaced by a function of space v(x). Finally, in [DRR22] the authors consider the diffusive
conservation law without congestion, V = 0 and a symmetric interaction W and show the
convergence of the particle scheme in the unbounded domain R by exploiting the gradient flow
structure of the equation. In this case it is not natural to derive a total variation estimate for
the solution because boundedness in BV is not expected in general. A possible future objective
would be to study the equation (1.1) with a diffusion term ∆A(ρ) with A increasing under our
more general Assumptions 1.4 in the entire domain R. A delicate point is to prove the discrete
entropy inequality when the supports are not equi-bounded.

Another direction for future development would be to consider a system of conservation laws

∂tρi + divx
[
ρivi(ρ)

(
Vi −

S∑
j=1

W ′i,j ∗ ρj

)]
= 0, ∀i ∈ {1, . . . , S}, (1.12)

where ρ = (ρ1, . . . , ρS) are S different species subject to external fields (V1, . . . , VS), mutual
interactions (W ′i,j)Si,j=1 and congestions (v1, . . . , vS). While from the computational point of
view this extension does not pose particular challenges, we are not able to prove however any
convergence of the numerical scheme for this case, leaving it for future research. We provide
some examples in the last section.

Leaving the world of conservation laws, it would be interesting to add a source term to the
right hand side of the equation (1.1) and generalize this particle approach to the case where
mass is not conserved.
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Finally, having in mind applications to traffic flow, instead of working on the real line one
could pose the conservation law as a PDE on the edges of a planar graph, with boundary rules
on how the traffic flows at the vertices.

2 Theoretical analysis
In what follows we discuss the many particle limit for both the models. Whenever the difference
between Ū and U̇ does not affect the proof of a statement, we directly use the unified notation
where U indicates both the sampled and the integrated fields at the same time.

We begin with a lemma ensuring the local existence of solutions of (ODEI) and (ODES).

Lemma 2.1 (Local solutions of the ODE). Let v, V and W satisfy the Assumptions 1.4. Given
a family of distinct sorted particles X0 = (x0,0, x1,0, . . . , xN,0) and a time t0 ≥ 0, for some ∆t > 0
there exists a solution X(t) =

(
x0(t), . . . , xN (t)

)
defined on [t0, t0 + ∆t) to the Cauchy problem

given by (ODEI) with the initial datum XN (t0) = XN
0 . The same statement applies to (ODES).

Proof. The set of distinct sorted particles

S = {X = (x0, . . . , xN ) : x0 < x1 < · · · < xN} (2.1)

is the union over k ∈ N+ of the convex compact sets

Sk = {X = (x0, . . . , xN ) : −k ≤ x0, xN ≤ k, xi−1 + 1/k ≤ xi ∀i = 1, . . . , N}. (2.2)

Fix k ∈ N+ such that X0 lies in the interior of Sk.
The equation (ODEI) is of the form X ′(t) = Φ

(
t,X(t)

)
, for a Φ : [0,∞)×S → RN which is a

certain composition of the mapping X 7→ (ρi)Ni=1 and the functions v, V,W ′. The local existence
and uniqueness of solutions is then guaranteed by Carathéodory’s theorem provided that

• t 7→ Φ(t,X) is measurable for every X ∈ S;

• there is a function h ∈ L1([0,∞); [0,∞)
)
such that

|Φ(t,X)| ≤ h(t) ∀t ∈ [0,∞), ∀X ∈ Sk;

• there is a function h ∈ L1([0,∞); [0,∞)
)
such that

|Φ(t,X2)− Φ(t,X1)| ≤ h(t)|X2 −X1| ∀t ∈ [0,∞), ∀X1, X2 ∈ Sk.

The first point directly follows from the measurability of V and W . The L1L∞loc property follows
from

|vi(t)Ūi(t)| ≤ ‖v‖∞
[
‖V (t, · )‖L∞([−k,k]) + ‖W ′ ∗ ρ̄(t, · )‖L∞([−k,k])

]
≤ ‖v‖∞

[
‖V (t, · )‖L∞([−k,k]) + ‖W ′(t, · )‖L∞([−2k,2k])

]
≤ 2‖v‖∞F (t)G(2k).

Noticing that x′i(t) can be written as v
(
ρi+1(t)

)(
Ūi(t)

)
+−v

(
ρi(t)

)(
Ūi(t)

)
−, the L

1Liploc property
follows from these facts:

• the densities associated to particles in Sk are bounded by k/N ≤ k;
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• the estimate∣∣∣ŪX2
i (t)− ŪX1

i (t)
∣∣∣ ≤ |V (t, xi,2)− V (t, xi,1)|+ |W ′ ∗ ρ̄X2(t, xi,2)−W ′ ∗ ρ̄X1(t, xi,1)|

≤ |V (t, xi,2)− V (t, xi,1)|+ |W ′ ∗ ρ̄X2(t, xi,2)−W ′ ∗ ρ̄X2(t, xi,1)|
+ |[W ′ ∗ (ρ̄X2 − ρ̄X1)](t, xi,1)|

≤
(
‖V ′(t, · )‖L∞([−k,k]) + ‖DW ′ ∗ ρ̄X2(t, · )‖L∞([−k,k])

)
|X2 −X1|

+ ‖W ′ ∗ (ρ̄X2 − ρ̄X1)(t, · )‖L∞([−k,k])

≤ F (t)
(
k +G(k) +G(2k)

)
|X2 −X1|+ ‖W ′‖L∞([−2k,2k])‖ρ̄X2 − ρ̄X1‖L1([−k,k])

≤ F (t)
(
k +G(k) +G(2k)

)
|X2 −X1|+ F (t)G(2k)‖ρ̄X2 − ρ̄X1‖L1([−k,k]),

which uses ‖DW ′∗ρ‖L∞([−k,k]) ≤ ‖W ′′∗ρ‖L∞([−k,k])+w(t)‖ρ‖L∞([−k,k]) ≤ ‖W ′′‖L∞([−2k,2k])+
w(t)k ≤ F (t)

(
k +G(2k)

)
;

• Sk → L1([−k, k]) : X 7→ ρ̄X is Lipschitz with constant 4k3/N : indeed, defining the
interpolation X(s) = (1− s)X1 + sX2, when x ∈

(
xi−1(s), xi(s)

)
one has

∣∣∣∣∣ ρ̄X(s)(x)
ds

∣∣∣∣∣ =

∣∣∣xi(s)ds −
dxi−1(s)

ds

∣∣∣
N(xi(s)− xi−1(s))2 = |(xi,2 − xi,1)− (xi−1,2 − xi−1,1)|

N(xi(s)− xi−1(s))2 ≤ 2k2

N
|X2 −X1|,

which integrated gives

‖ρ̄X2− ρ̄X1‖L1([−k,k]) =
∫ k

−k
|ρ̄X2(x)− ρ̄X1(x)| dx ≤

∫ k

−k

∫ 1

0

∣∣∣∣∣ ρ̄X(s)(x)
ds

∣∣∣∣∣ ds dx ≤ 4k3

N
|X2−X1|;

• Sk → [0, k]N : X 7→ (ρi)Ni=1 is Lipschitz with constant CNk2;

• v : [0, k]→ [0,∞) is Lipschitz with constant ‖v′‖L∞([0,k]) ≤ G(k).

The same argument applies to (ODES) with slight modifications in the way |U̇X2
i (t)− U̇X1

i (t)|
is estimated.

2.1 A priori estimates and compactness

All the quantities involved in the estimates of the two following lemmas are computed at a fixed
time, therefore for notational convenience we omit the explicit time dependence.

Lemma 2.2. Let X = (x0, . . . , xN ) be sorted particles and let Ui be either Ūi or U̇i as defined
in (ODEI) or (ODES) respectively. Then

|Ui − Ui−1| ≤ [C1 + C2ρi](xi − xi−1) (2.3)

|U̇i+1 − 2U̇i + U̇i−1| ≤ C1
|ρi+1 − ρi|
Nρiρi+1

+ 1
N

( 1
ρi

+ 1
ρi+1

)(
C3
N

+
∫ xi+1

xi−1
|V ′′(x)|dx

)
(2.4)

+ 1
N2ρi

∑
j 6=i,i±1

∫ xi+1

xi−1
|W ′′′(y − xj)|dy

|Ūi+1 − 2Ūi + Ūi−1| ≤ C1
|ρi+1 − ρi|
Nρiρi+1

+ 1
N

( 1
ρi

+ 1
ρi+1

)(
C3
N

+
∫ xi+1

xi−1
|V ′′(x)|dx

)
(2.5)

+ 1
Nρi

∫ xi+1

xi−1
|W ′′′| ∗ ρ̄(y) dy.
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where

C1 = ‖V ′‖L∞([x0,xN ]) + ‖W ′′‖L∞([x0−xN ,xN−x0]), C2 = 2‖W ′‖L∞([x0−xN ,xN−x0]),

C3 = 3‖W ′′‖L∞([x0−xN ,xN−x0]).

Proof. Let us start with (2.3) first. The field V itself is locally Lipschitz, so |Vi − Vi−1| ≤
‖V ′‖L∞([x0,xN ])(xi − xi−1). Regarding the interaction term, we treat the sampled and the
interaction version separately. For the sampled one we have

|W ′ ∗ ρ̇(xi)−W ′ ∗ ρ̇(xi−1)|

≤ 1
N

∑
j 6=i−1,i

|W ′(xi − xj)−W ′(xi−1 − xj)|+
1
N
|W ′(xi − xi−1)−W ′(xi−1 − xi)|

≤ 1
N

∑
j 6=i−1,i

‖W ′′‖L∞([x0−xN ,xN−x0])(xi − xi−1) + 2‖W ′‖L∞([x0−xN ,xN−x0])ρi(xi − xi−1)

≤
[
‖W ′′‖L∞([x0−xN ,xN−x0]) + 2‖W ′‖L∞([x0−xN ,xN−x0])ρi

]
(xi − xi−1).

We were able to use the Lipschitz estimate for W ′ because for every j 6= i− 1, i the two terms
xi − xj and xi−1 − xj have the same sign. For the integrated interaction on the other hand, we
have the estimate

|W ′ ∗ ρ̄(xi)−W ′ ∗ ρ̄(xi−1)|

≤
∑
j 6=i

∫ xj

xj−1
|W ′(xi − x)−W ′(xi−1 − x)|ρj dx+

∫ xi

xi−1
|W ′(xi − x)−W ′(xi−1 − x)|ρi dx

≤ ‖W ′′‖L∞([x0−xN ,xN−x0])(xi − xi−1) + 2
N
‖W ′‖L∞([x0−xN ,xN−x0])

≤
[
‖W ′′‖L∞([x0−xN ,xN−x0]) + 2‖W ′‖L∞([x0−xN ,xN−x0])ρi

]
(xi − xi−1).

Let us now move on to discrete second derivative estimates. We deal first with the external
potential V , for which we compute

V (xi+1)− 2V (xi) + V (xi−1) = V ′(xi)(xi+1 − xi) +
∫ xi+1

xi

V ′′(x)(xi+1 − x) dx

+ V ′(xi)(xi−1 − xi) +
∫ xi−1

xi

V ′′(x)(xi−1 − x) dx

= V ′(xi)(xi+1 − 2xi + xi−1)

+
∫ xi+1

xi

V ′′(x)(xi+1 − x) dx+
∫ xi−1

xi

V ′′(x)(xi−1 − x) dx,

hence

|V (xi+1)− 2V (xi) + V (xi−1)|

≤ |ρi+1 − ρi|
Nρiρi+1

‖V ′‖L∞([x0,xN ]) + 1
Nρi

∫ xi

xi−1
|V ′′(x)|dx+ 1

Nρi+1

∫ xi+1

xi

|V ′′(x)| dx

≤ |ρi+1 − ρi|
Nρiρi+1

‖V ′‖L∞([x0,xN ]) + 1
N

( 1
ρi

+ 1
ρi+1

)∫ xi+1

xi−1
|V ′′(x)| dx.

(2.6)

Next, we have to deal with the interaction term. Here we have to distinguish between the
sampled and integrated scheme since the terms W ′ ∗ ρ̇ and W ′ ∗ ρ̄ are treated slightly differently.
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In the setting of the sampled particle scheme, recalling that W is in W 3,1
loc on both (0,∞) and

(−∞, 0), we can compute

|W ′ ∗ ρ̇(xi+1)− 2W ′ ∗ ρ̇(xi) +W ′ ∗ ρ̇(xi−1)|

≤ 1
N

∑
j 6=i,i±1

∣∣∣∣∣
∫ xi+1

xi

W ′′(x− xj) dx−
∫ xi

xi−1
W ′′(x− xj) dx

∣∣∣∣∣
+
∣∣∣∣ 1
N

[W ′(xi+1 − xi−1) +W ′(xi+1 − xi)]−
2
N

[W ′(xi − xi−1) +W ′(xi − xi+1)]

+ 1
N

[W ′(xi−1 − xi) +W ′(xi−1 − xi+1)]
∣∣∣∣

≤ 1
N

∑
j 6=i,i±1

∫ 1

0

∣∣W ′′(xi + t(xi+1 − xi)− xj
)
(xi+1 − xi)−W ′′

(
xi−1 + t(xi − xi−1)− xj

)
(xi − xi−1)

∣∣ dt
+ 1
N
|W ′(xi+1 − xi−1)−W ′(xi − xi−1)|+ 1

N
|W ′(xi − xi+1)−W ′(xi−1 − xi+1)|

+ 1
N
|W ′(xi+1 − xi)−W ′(xi − xi−1)|+ 1

N
|W ′(xi−1 − xi)−W ′(xi − xi+1)|

≤ 1
N2

∣∣∣∣ 1
ρi
− 1
ρi+1

∣∣∣∣ ∑
j 6=i,i±1

∫ 1

0

∣∣W ′′(xi + t(xi+1 − xi)− xj
)∣∣ dt

+ 1
N2ρi

∑
j 6=i,i±1

∫ 1

0

∫ xi+t(xi+1−xi)

xi−1+t(xi−xi−1)
|W ′′′(y − xj)|dy dt

+ 1
N
‖W ′′‖L∞([x0−xN ,xN−x0])[(xi+1 − xi) + (xi − xi−1) + 2(xi+1 − xi−1)]

≤ |ρi+1 − ρi|
Nρi

∑
j 6=i,i±1

∫ xi+1

xi

|W ′′(y − xj)|dy + 1
N2ρi

∑
j 6=i,i±1

∫ xi+1

xi−1
|W ′′′(y − xj)| dy

+ 3
N
‖W ′′‖L∞([x0−xN ,xN−x0])(xi+1 − xi−1),

where in the last step, by Fubini, we used the estimate∫ 1

0

∫ xi+t(xi+1−xi)

xi−1+t(xi−xi−1)
|W ′′′(y − xj)|dy dt ≤

∫ xi+1

xi−1

∫ 1

0
|W ′′′(y − xj)|min

{
y − xi−1
xi − xi−1

,
xi+1 − y
xi+1 − xi

}
dt dy

≤
∫ xi+1

xi−1
|W ′′′(y − xj)| dy.

Then (2.4) follows from (2.6), the previous computation and

∑
j 6=i,i±1

∫ xi+1

xi

|W ′′(y − xj)|dy ≤
1

ρi+1
‖W ′′‖L∞([x0−xN ,xN−x0]), xi+1 − xi−1 = 1

N

( 1
ρi

+ 1
ρi+1

)
.

Let us consider now the integrated scheme. The interaction can be split into two sums of
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long range and short range interactions respectively

W ′ ∗ ρ̄(xi+1)− 2W ′ ∗ ρ̄(xi) +W ′ ∗ ρ̄(xi−1)

=
∫ ∞
−∞

[W ′(xi+1 − x)− 2W ′(xi − x) +W ′(xi−1 − x)]ρ̄(x) dx

=
∑

j 6=i,i+1
ρj

∫ xj

xj−1
[W ′(xi+1 − x)− 2W ′(xi − x) +W ′(xi−1 − x)] dx

+
∑

j=i,i+1
ρj

∫ xj

xj−1
[W ′(xi+1 − x)− 2W ′(xi − x) +W ′(xi−1 − x)] dx

=
∑

j 6=i,i+1
ρj

∫ xj

xj−1

(∫ xi+1

xi

W ′′(y − x) dy −
∫ xi

xi−1
W ′′(y − x) dy

)
dx

+
∑

j=i,i+1
ρj

∫ xj

xj−1
[W ′(xi+1 − x)− 2W ′(xi − x) +W ′(xi−1 − x)] dx.

With a computation similar to the one used for the sampled interaction, the first sum can be
bounded in absolute value by

∑
j 6=i,i+1

ρj

∫ xj

xj−1

∣∣∣∣∣
∫ xi+1

xi

W ′′(y − x) dy −
∫ xi

xi−1
W ′′(y − x) dy

∣∣∣∣∣ dx
≤ |ρi+1 − ρi|

ρi

∑
j 6=i,i±1

∫ xi+1

xi

∫ xj

xj−1
|W ′′(y − x)|ρj dx dy + 1

Nρi

∑
j 6=i,i±1

∫ xi+1

xi−1

∫ xj

xj−1
|W ′′′(y − x)|ρj dx dy

≤ |ρi+1 − ρi|
ρi

‖W ′′‖L∞([x0−xN ,xN−x0])(xi+1 − xi) + 1
Nρi

∫ xi+1

xi−1

∫ xN

x0
|W ′′′(y − x)|ρ̄(x) dx dy

≤ |ρi+1 − ρi|
Nρiρi+1

‖W ′′‖L∞([x0−xN ,xN−x0]) + 1
Nρi

∫ xi+1

xi−1
|W ′′′| ∗ ρ̄(y) dy.
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On the other hand, the second sum can be rewritten as∣∣∣∣∣ρi
∫ xi

xi−1
[W ′(xi+1 − x)− 2W ′(xi − x) +W ′(xi−1 − x)] dx

+ ρi+1

∫ xi+1

xi

[W ′(xi+1 − x)− 2W ′(xi − x) +W ′(xi−1 − x)] dx
∣∣∣∣∣

≤ ρi
∫ xi

xi−1
|W ′(xi+1 − x)−W ′(xi − x)|dx+ ρi+1

∫ xi+1

xi

|W ′(xi − x)−W ′(xi−1 − x)| dx

+
∣∣∣∣∣ρi
∫ xi

xi−1
[W ′(xi − x)−W ′(xi−1 − x)] dx− ρi+1

∫ xi+1

xi

[W ′(xi+1 − x)−W ′(xi − x)] dx
∣∣∣∣∣

≤ 1
N
‖W ′′‖L∞([x0−xN ,xN−x0])(xi+1 − xi−1)

+ 1
N

∣∣∣∣∣
∫ 1

0

{[
W ′
(
xi − xi−1 − t(xi − xi−1)

)
−W ′

(
xi−1 − xi−1 − t(xi − xi−1)

)]
−
[
W ′
(
xi+1 − xi − t(xi+1 − xi)

)
−W ′

(
xi − xi − t(xi+1 − xi)

)]}
dt
∣∣∣∣∣

≤ 1
N
‖W ′′‖L∞([x0−xN ,xN−x0])(xi+1 − xi−1)

+ 1
N

∫ 1

0

{
|W ′

(
(1− t)(xi − xi−1)

)
−W ′

(
(1− t)(xi+1 − xi)

)
|

+ |W ′
(
−t(xi − xi−1)

)
−W ′

(
−t(xi+1 − xi)

)
|
}

dt

≤ 3
N
‖W ′′‖L∞([x0−xN ,xN−x0])(xi+1 − xi−1) ≤ 3

N2 ‖W
′′‖L∞([x0−xN ,xN−x0])

( 1
ρi

+ 1
ρi+1

)
.

In summary, we have that

|W ′ ∗ ρ̄(xi+1)− 2W ′ ∗ ρ̄(xi) +W ′ ∗ ρ̄(xi−1)|

≤ |ρi+1 − ρi|
Nρiρi+1

‖W ′′‖L∞([x0−xN ,xN−x0]) + 1
Nρi

∫ xi+1

xi−1
|W ′′′| ∗ ρ̄(y) dy

+ 3
N2 ‖W

′′‖L∞([x0−xN ,xN−x0])

( 1
ρi

+ 1
ρi+1

)
,

which, together with (2.6), concludes the proof of (2.5).

Lemma 2.3. Let X = (x0, . . . , xN ) be sorted particles and let Ūi and U̇i be defined as in (ODEI)
and (ODES). Then

|Ūi − U̇i| ≤
1
N
‖W ′′‖L∞([x0−xN ,xN−x0])(xN − x0), (2.7)

|(Ūi − U̇i)− (Ūi−1 − U̇i−1)| ≤ 2
N

(
‖W ′′′‖L1([x0−xN ,xN−x0]) + ‖W ′′‖L∞([x0−xN ,xN−x0])

)
(xi − xi−1).

(2.8)
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Proof. We directly compute

|Ūi − U̇i|

≤
i∑

j=1

∫ xj

xj−1
|W ′(xi − x)−W ′(xi − xj−1)|ρj dx+

N∑
j=i+1

∫ xj

xj−1
|W ′(xi − x)−W ′(xi − xj)|ρj dx

≤
i∑

j=1
‖W ′′‖L∞([0,xN−x0])ρj(xj − xj−1)2 +

N∑
j=i+1

‖W ′′‖L∞([x0−xN ,0])ρj(xj − xj−1)2

≤ ‖W ′′‖L∞([x0−xN ,xN−x0])
1
N

N∑
j=1

(xj − xj−1),

which implies (2.7), and

|(Ūi − U̇i)− (Ūi−1 − U̇i−1)|

≤
i−1∑
j=1

∫ xj

xj−1

∣∣[W ′(xi − x)−W ′(xi−1 − x)
]
−
[
W ′(xi − xj−1)−W ′(xi−1 − xj−1)

]∣∣ρj dx

+
N∑

j=i+1

∫ xj

xj−1

∣∣[W ′(xi − x)−W ′(xi−1 − x)
]
−
[
W ′(xi − xj)−W ′(xi−1 − xj)

]∣∣ρj dx

+
∫ xi

xi−1

∣∣[W ′(xi − x)−W ′(xi−1 − x)
]
−
[
W ′(xi − xi−1)−W ′(xi−1 − xi)

]∣∣ρi dx

≤
i−1∑
j=1

ρj

∫ xj

xj−1

∫ xi

xi−1

∫ x

xj−1
|W ′′′(y − z)|dz dy dx+

N∑
j=i+1

ρj

∫ xj

xj−1

∫ xi

xi−1

∫ xj

x
|W ′′′(y − z)| dz dy dx

+
∫ xi

xi−1

[
|W ′(xi − x)−W ′(xi − xi−1)|+ |W ′(xi−1 − x)−W ′(xi−1 − xi)|

]
ρi dx

≤
i−1∑
j=1

ρj

∫ xi

xi−1

∫ xj

xj−1
|W ′′′(y − z)|(xj − z) dz dy +

N∑
j=i+1

ρj

∫ xi

xi−1

∫ xj

xj−1
|W ′′′(y − z)|(z − xj−1) dz dy

+ 1
N

(
‖W ′′‖L∞([0,xN−x0]) + ‖W ′′‖L∞([x0−xN ,0])

)
(xi − xi−1)

≤ 1
N

∫ xi

xi−1

∫ xN

x0
|W ′′′(y − z)| dz dy + 2

N
‖W ′′‖L∞([x0−xN ,xN−x0])(xi − xi−1),

which implies (2.8).

Thanks to the above estimates on the velocity fields, we can now proceed to show uniform
bounds independent of N for both the support and the L∞ norm of piecewise constant densities
ρ̄ originating from particles solving (ODEI) or (ODES). The main tool is the Gronwall inequality
and its generalization due to [Bih56], and [BR71]. Since the latter is less know, for the reader’s
convenience we recall here the statement, taken from [BR71].

Theorem 2.4 (Bihari, Butler-Rogers). Let x(t), a(t), b(t) be positive functions of t, bounded in
c ≤ t ≤ d, let k(t, s) be nonnegative, bounded on the triangular region c ≤ s ≤ t ≤ d; assume
further that x(t) is measurable and k(t, s) is a measurable function of s for each t. Let f(u), g(u)
be positive functions for u ≥ 0, with f strictly increasing and g nondecreasing. Then defining

A(t) = sup
c≤s≤t

a(s), B(t) = sup
c≤s≤t

b(s),

K(t, s) = sup
s≤τ≤t

k(τ, s),
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the inequality
f
(
x(t)

)
≤ a(t) + b(t)

∫ t

c
k(t, s)g

(
x(s)

)
ds, c ≤ t ≤ d,

implies the inequality

x(t) ≤ f−1
(

Ω−1
(

Ω
(
A(t)

)
+B(t)

∫ t

c
K(t, s) ds

))
, c ≤ t ≤ d′ ≤ d,

where
Ω(u) =

∫ u

ε

dw
g
(
f−1(w)

) , ε > 0, u > 0,

and
d′ = max

{
c ≤ t ≤ d : Ω

(
A(t)

)
+B(t)

∫ t

c
K(t, s) ds ≤ Ω

(
f(∞)

)}
.

Proposition 2.5 (Uniform bound of the supports). Let v, V , W satisfy the assumptions As-
sumptions 1.4 and let ρ̄ be the piecewise constant density associated to particles X = (x0, . . . , xN )
solving either (ODEI) or (ODES), with initial conditions −S0 ≤ x0(0) < xN (0) ≤ S0 for some
S0 > 0.

Then there exists an increasing function S ∈ C
(
[0,∞); [0,∞)

)
independent of N such that

−S(t) ≤ x0(t) ≤ xN (t) ≤ S(t), ∀t ∈ [0,∞),

hence supp
(
ρ̄(t)

)
⊆ [−S(t), S(t)].

Proof. Consider the last particle xN . We have

x′N (t) = vN [V (t, xN (t)) +W ′ ∗ ρ̄(t, xN (t))]
≤ ‖v‖∞V+(t, xN (t)) + ‖v‖∞‖W ′‖L∞([−xN (t)+x0(t),xN (t)−x0(t)]).

A similar estimate is valid for x′0(t), hence if we define s(t) = max{xN (t)+, x0(t)−}, using (1.11)
we have

s′(t) ≤ ‖v‖∞F (t)λ
(
s(t)

)
+ ‖v‖∞‖W ′‖L∞([−2s(t),2s(t)]) ≤ 2‖v‖∞F (t)λ

(
s(t)

)
.

By the assumptions on F and λ we can apply Bihari’s estimate and deduce that

s(t) ≤ S(t) = Λ−1(Λ(S0) +A(t))

where A is the primitive of F .

Proposition 2.6 (Uniform bound of the density). Let v, V , W satisfy the assumptions As-
sumptions 1.4 and let ρ̄ be the piecewise constant density associated to particles X = (x0, . . . , xN )
solving either (ODEI) or (ODES), with initial conditions −S0 ≤ x0(0) < xN (0) ≤ S0 and
ρ̄(0) ≤ R0 for some S0, R0 > 0.

Then there exists an increasing function R ∈ C
(
[0,∞); [0,∞)

)
independent of N such that

ρi(t) ≤ R(t) for every t ∈ [0,∞) and i = 1, . . . , N , or equivalently ρ̄(t) ≤ R(t).

Proof. At a fixed t, let i be the index such that ρi(t) = maxj ρj(t). We can compute the derivative

ρ′i(t) = −Nρi(t)2[x′i(t)− x′i−1(t)]
= −Nρ2

i [(vi − v(ρi))Ui − (vi−1 − v(ρi))Ui−1]−Nρ2
i v(ρi)(Ui − Ui−1).
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If Ui < 0, then vi − v(ρi) = 0. If instead Ui > 0, then vi − v(ρi) = v(ρi+1)− v(ρi) ≥ 0 because
ρi ≥ ρi+1. A similar consideration for Ui−1 leads to conclude that the first term is negative, thus
ρ′i(t) ≤ −Nρ2

i v(ρi)(Ui − Ui−1).
Let us assume that (1.8) holds. Thanks to (2.3) we have

ρ′i(t)
≤ Nρ2

i v(ρi)
(
‖V ′‖L∞([x0,xN ]) + ‖W ′′‖L∞([x0−xN ,xN−x0]) + 2‖W ′‖L∞([x0−xN ,xN−x0])ρi

)
(xi − xi−1)

≤ ‖v‖∞
(
‖V ′‖L∞([x0,xN ]) + ‖W ′′‖L∞([x0−xN ,xN−x0])

)
ρi + 2‖W ′‖L∞([x0−xN ,xN−x0])ρ

2
i v(ρi)

≤ 2‖v‖∞F (t)G
(
2S(t)

)
ρi + 2F (t)G

(
2S(t)

)
ρ2
i v(ρi).

If we define r(t) = maxi ρi(t) = ‖ρ̄(t)‖∞, then from the previous estimate we get

r′(t) ≤ h(t)r(t) + k(t)r(t)2v(r(t)),

for some increasing functions h, k. We are again in a position to apply Bihari’s estimate and
deduce

r(t) ≤ R(t) = Ω−1[Ω(H(t)) +K(t)],

where H, K and Ω are the primitives of h, k and 1/(r2v(r)) respectively.
Let us now assume that (1.7) holds instead, with no longer any requirement about the decay

of v. In this case, we proceed in a similar way but instead of directly applying the Lipschitz
estimate (2.3) we must derive a better one-sided inequality in which we treat separately the
interaction between the two consecutive particles, which has a sign thanks to the repulsive nature
of W . In particular by (1.7) we have either xi − xi−1 > h or W ′(xi − xi−1)−W ′(xi−1 − xi) ≤ 0.
In the latter case, dealing with the sampled interaction, we find

Ui − Ui−1 = V (xi)− V (xi−1)− 1
N

∑
j 6=i−1,i

[W ′(xi − xj)−W ′(xi−1 − xj)]

− 1
N

[W ′(xi − xi−1)−W ′(xi−1 − xi)]

≥ −|Vi − Vi−1| −
1
N

∑
j 6=i−1,i

|W ′(xi − xj)−W ′(xi−1 − xj)|

≥ −
(
‖V ′‖L∞([x0,xN ]) + ‖W ′′‖L∞([x0−xN ,xN−x0])

)
(xi − xi−1).

Therefore, either ρi(t) ≤ 1
Nh , or we get the inequality

ρ′i(t) ≤ Nρ2
i v(ρi)

(
‖V ′‖L∞([x0,xN ]) + ‖W ′′‖L∞([x0−xN ,xN−x0])

)
(xi − xi−1)

≤ ‖v‖∞
(
‖V ′‖L∞([x0,xN ]) + ‖W ′′‖L∞([x0−xN ,xN−x0])

)
ρi,

from which we conclude by Gronwall instead of Bihari, using Assumptions 1.4 to estimate the
norms. The case with the integrated interaction is treated in the exact same way, by exploiting
the sign of the term ∫ xi

xi−1
[W ′(xi − x)−W ′(xi−1 − x)]ρi dx

when the particles xi−1 and xi are near each other.

Remark 2.7. Let X be either XI or XS solving (ODEI) or (ODES) respectively and let Ui be
either Ūi or U̇i accordingly. Then, as a consequence of Assumptions 1.4, Proposition 2.5 and

16



Proposition 2.6, the estimates in Lemma 2.2 take the form

|Ui − Ui−1| ≤ 2F (t)G
(
2S(t)

)
[1 +R(t)](xi − xi−1),

|U̇i+1 − 2U̇i + U̇i−1| ≤
3F (t)G

(
2S(t)

)
Nρiρi+1

(
|ρi+1 − ρi|+

2R(t)
N

)
+ 2R(t)
Nρiρi+1

∫ xi+1

xi−1
|V ′′(x)|dx

+ 1
N2ρi

∑
j 6=i,i±1

∫ xi+1

xi−1
|W ′′′(y − xj)|dy,

|Ūi+1 − 2Ūi + Ūi−1| ≤
3F (t)G

(
2S(t)

)
Nρiρi+1

(
|ρi+1 − ρi|+

2R(t)
N

)
+ 2R(t)
Nρiρi+1

∫ xi+1

xi−1
|V ′′(x)|dx

+ 1
Nρi

∫ xi+1

xi−1
|W ′′′| ∗ ρ̄(y) dy.

Similarly, the estimates in Lemma 2.3 take the form

|Ūi − U̇i| ≤
2
N
F (t)G

(
2S(t)

)
S(t),

|(Ūi − U̇i)− (Ūi−1 − U̇i−1)| ≤ 4
N
F (t)G

(
2S(t)

)
(xi − xi−1).

Proposition 2.8 (Global solutions of the ODE). Let v, V and W satisfy the Assumptions 1.4.
Given a family of distinct sorted particles X0 = (x0,0, x1,0, . . . , xN,0), there exists a unique global
in time solution X(t) =

(
x0(t), . . . , xN (t)

)
defined on [0,∞) to the Cauchy problem given by

(ODEI) with the initial datum X(0) = X0. The same statement applies to (ODES).

Proof. Let X : [0, T ) → RN be the unique maximal solution to the Cauchy problem, whose
existence and uniqueness is provided by Lemma 2.1, and suppose T < ∞. With S and Sk
be as defined in (2.1) and (2.2) respectively, Proposition 2.5 and Proposition 2.6 ensure that
the solutions cannot reach the boundary of S in finite time, i.e. there is an increasing function
k : [0,∞) → [0,∞) such that X(t) ∈ Sk(t). By a classical argument the solution X(t) then
admits the limit for t → T and can be extended to [0, T + ∆t] → RN with Lemma 2.1 again,
contradicting the maximality.

The estimate for the total variation of a piecewise constant density relies on the following
lemma, which provides the negativity of the error term appearing when replacing the mobilities
of two consecutive particles with the one evaluated at the intermediate density. Together with
the proof of the discrete entropy inequality (2.14), this is the only step where the monotonicity
of v is required.

Lemma 2.9. Letting σi = sign(ρi+1 − ρi) and µi = σi − σi−1, we have

µi
[(
vi − v(ρi)

)
Ui −

(
vi−1 − v(ρi)

)
Ui−1

]
≤ 0.

Proof. If ρi−1 < ρi < ρi+1 or ρi−1 > ρi > ρi+1, then µi = 0 and the inequality is satisfied.
We need therefore to consider the cases ρi ≤ ρi±1 and ρi ≥ ρi±1. Let’s investigate the former,
as the latter is completely analogous. We have that σi−1 ≤ 0 ≤ σi, hence µi ≥ 0. If Ui ≥ 0,
then vi = v(ρi+1) ≤ v(ρi), otherwise vi = v(ρi). In both cases we have that

(
vi − v(ρi)

)
Ui ≤ 0.

Similarly,
(
vi−1 − v(ρi)

)
Ui−1 ≥ 0. The stated inequality is therefore satisfied.

Proposition 2.10 (Total variation growth). Given N ∈ N, let ρ̄ be either

• the piecewise constant density associated to the particles xI = (xI0, . . . , xIN ) solving (ODEI),
driven by the total velocity field vŪ ;
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• the piecewise constant density associated to the particles xS = (xS0 , . . . , xSN ) solving (ODES),
driven by the total velocity field vU̇ ;

with the assumptions of Proposition 2.6 and TV(ρ̄(0)) ≤ B0. Then there exists an increasing
function B : [0,∞)→ [0,∞) independent of N such that

TV
(
ρ̄(t)

)
≤ B(t).

Proof. Letting σi = sign(ρi+1 − ρi), µi = σi − σi−1 and using the fact that

ρ′i = −Nρ2
i (x′i − x′i−1),

since | · | is Lipschitz, by the chain rule we can compute

d
dt TV

(
ρ̄(t)

)
=

N∑
i=0

σi(ρ′i+1 − ρ′i) = −
N∑
i=1

µiρ
′
i =

N∑
i=1

µiNρ
2
i (x′i − x′i−1)

=
N∑
i=1

µiNρ
2
i (viUi − vi−1Ui−1)

=
N∑
i=1

µiNρ
2
i

[
v(ρi)(Ui − Ui−1) +

(
vi − v(ρi)

)
Ui −

(
vi−1 − v(ρi)

)
Ui−1

]
≤

N∑
i=1

µiNρ
2
i v(ρi)(Ui − Ui−1) =

N∑
i=1

µiρiIi,

where Ii = Nρiv(ρi)(Ui − Ui−1) = Nm(ρi)(Ui − Ui−1) and the inequality is true because of
Lemma 2.9. Summing again by parts, we obtain

d
dt TV

(
ρ̄(t)

)
≤

N∑
i=1

µiρiIi =
N∑
i=1

(σi − σi−1)ρiIi

=
N∑
i=0

σi(ρiIi − ρi+1Ii+1)

=
N∑
i=0

σi(ρi − ρi+1)Ii+1 +
N∑
i=0

σiρi(Ii − Ii+1).

(2.9)

Thanks to (2.3) with Remark 2.7, we can bound

|Ii| ≤ 2‖v‖∞NρiF (t)G
(
2S(t)

)
[1 +R(t)](xi − xi−1) ≤ 2‖v‖∞F (t)G

(
2S(t)

)
[1 +R(t)],

hence ∣∣∣∣∣
N∑
i=0

σi(ρi − ρi+1)Ii+1

∣∣∣∣∣ ≤ 2‖v‖∞F (t)G
(
2S(t)

)
[1 +R(t)] TV

(
ρ̄(t)

)
. (2.10)

On the other hand, observe that

Ii+1 − Ii = Nm(ρi+1)(Ui+1 − Ui)−Nm(ρi)(Ui − Ui−1)
= Nm(ρi+1)(Ui+1 − 2Ui + Ui−1) +N

(
m(ρi+1)−m(ρi)

)
(Ui − Ui−1),

18



therefore, for the integrated scheme, thanks to (2.3) and (2.5) with Remark 2.7, we have∣∣∣∣∣
N∑
i=0

σiρi(Ii − Ii+1)
∣∣∣∣∣ ≤

N∑
i=1

ρi|Ii+1 − Ii|

≤ N
N∑
i=1

ρi[m(ρi+1)|Ūi+1 − 2Ūi + Ūi−1|+
(
m(ρi+1)−m(ρi)

)
|Ūi − Ūi−1|]

≤ N
N∑
i=1

ρiρi+1v(ρi+1)
{

3F (t)G
(
2S(t)

)
Nρiρi+1

(
|ρi+1 − ρi|+

2R(t)
N

)

+ 2R(t)
Nρiρi+1

∫ xi+1

xi−1
|V ′′(x)|dx+ 1

Nρi

∫ xi+1

xi−1
|W ′′′| ∗ ρ̄(y) dy

}

+N
N∑
i=1

ρi‖m′‖L∞([0,R(t)])|ρi+1 − ρi|2F (t)G
(
2S(t)

)
[1 +R(t)](xi − xi−1)

≤ 3F (t)G
(
2S(t)

)
‖v‖∞TV

(
ρ̄(t)

)
+ 6F (t)G

(
2S(t)

)
R(t)‖v‖∞

+ 4R(t)‖v‖∞‖V ′′‖L1([−S(t),S(t)]) + 2R(t)‖v‖∞‖|W ′′′| ∗ ρ̄‖L1([−S(t),S(t)])

+ 2F (t)G
(
2S(t)

)
[1 +R(t)]

(
‖v‖∞ +R(t)‖v′‖L∞([0,R(t)])

)
TV

(
ρ̄(t)

)
≤ 6F (t)G

(
2S(t)

)
R(t)‖v‖∞ + 4F (t)G

(
S(t)

)
R(t)‖v‖∞

+ 2R(t)‖v‖∞‖W ′′′‖L1[−2S(t),2S(t)]

+ 5F (t)G
(
2S(t)

)
[1 +R(t)][‖v‖∞ +R(t)‖v′‖L∞([0,R(t)])] TV

(
ρ̄(t)

)
≤ 12F (t)G

(
2S(t)

)
R(t)‖v‖∞

+ 5F (t)G
(
2S(t)

)
[1 +R(t)]

[
‖v‖∞ +R(t)G

(
R(t)

)]
TV

(
ρ̄(t)

)
.

(2.11)

For the sampled scheme, we can perform a similar computation using (2.4) with Remark 2.7,
where the only difference is in the term

N
N∑
i=1
ρiρi+1v(ρi+1) 1

N2ρi

∑
j 6=i,i±1

∫ xi+1

xi−1
|W ′′′(y − xj)|dy

≤ 2R(t)‖v‖∞
1
N

∑
j 6=i,i±1

∫ xN

x0
|W ′′′(y − xj)|dy

≤ 2R(t)F (t)G
(
2S(t)

)
‖v‖∞,

which leads to the same estimate as for the integrated scheme.
In conclusion, putting together (2.9), (2.10) and (2.11), we deduce

d
dt TV

(
ρ̄(t)

)
≤ P (t) +Q(t) TV

(
ρ̄(t)

)
,

for some finite functions P and Q independent of N , hence by Gronwall we deduce that
TV

(
ρ̄(t)

)
≤ B(t) for some increasing function B : [0,∞)→ [0,∞).

We conclude this section showing that the sequence of ρ̄N constructed with either scheme
(ODEI) or (ODES) is compact in L1

loc.

Theorem 2.11. Let v, V and W satisfy the assumptions Assumptions 1.4 and let ρ0 ∈P(R) ∩
L∞(R) ∩BV (R) with the bound ρ0 ≤ R0 and compact support supp(ρ0) ⊆ [−S0, S0].
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Let ρ̄N0 satisfy the initial conditions (1.4) and ρ̄N be the piecewise constant density associated
to the particles solving either (ODEI) or (ODES).

Then there exists a non negative probability density ρ ∈ L∞loc
(
[0,∞)× R

)
such that up to a

subsequence ρ̄N converges to ρ in the strong topology of Lp([0, T ]×R) for every T > 0 and every
p ∈ [1,∞). Moreover, for almost every t ∈ [0,∞), one has ρ̄N (t, · )→ ρ(t, · ) in Lp(R) for every
p ∈ [1,∞).

Proof. The proof relies on a very powerful generalization of Aubin-Lions Lemma as obtained
in [RS03, Theorem 2] which ensures that the sequence of ρ̄N is strongly relatively compact in
L1([0, T ]× R) as soon as

sup
N

∫ T

0

[
|supp

(
ρ̄N (t)

)
|+ TV

(
ρ̄N (t)

)]
dt <∞, (2.12)

sup
N
W1
(
ρ̄N (t, · ), ρ̄N (s, · )

)
< C|t− s| for any s, t ∈ [0, T ], (2.13)

where W1 denotes the 1-Wasserstein distance.
Notice that (2.12) is an immediate consequence of Proposition 2.5 and Proposition 2.10.
Let us now focus on the proof of (2.13). The optimal transport map Ξ from ρ̄N (s, · ) to ρ̄N (t, · )

is increasing and piecewise affine, mapping every interval [xNi−1(s), xNi (s)] onto [xNi−1(t), xNi (t)],
given by the formula

Ξ(x) =
N∑
i=1

(
x− xNi−1(s)

xNi (s)− xNi−1(s)
xNi (t) + xNi (s)− x

xNi (s)− xNi−1(s)
xNi−1(t)

)
1[xNi−1(s),xNi (s)](x).

Notice in particular that for x ∈ [xNi−1(s), xNi (s)] we have

|Ξ(x)− x| =
∣∣∣∣∣ x− xNi−1(s)
xNi (s)− xNi−1(s)

[xNi (t)− xNi (s)] + xNi (s)− x
xNi (s)− xNi−1(s)

[xNi−1(t)− xNi−1(s)]
∣∣∣∣∣

≤ |xNi−1(t)− xNi−1(s)|+ |xNi (t)− xNi (s)|,

therefore

W1
(
ρ̄N (t, · ), ρ̄N (s, · )

)
≤ 2
N

N∑
i=0
|xNi (t)− xNi (s)| = 2

N

N∑
i=0

∣∣∣∣∫ t

s
(xNi )′(τ) dτ

∣∣∣∣
≤ ‖v‖∞

N

N∑
i=0

∫ t

s
|Ui(τ)|dτ

≤ ‖v‖∞
∫ t

s

(
‖V ‖L∞([−S(τ),S(τ)]) + ‖W ′‖L∞([−2S(τ),2S(τ)])

)
dτ

≤ 2‖v‖∞F (T )G
(
2S(T )

)
|t− s|.

Since (2.12) and (2.13) are verified, from Aubin-Lions Lemma we get that, up to a subsequence,
ρ̄N → ρ in L1([0, T ]× R

)
for every T > 0.

In addition, since ρ̄N , ρ ≤ R(T ), for every p ∈ [1,∞) we have that

‖ρ̄N − ρ‖pLp([0,T ]×R) ≤ ‖ρ̄
N − ρ‖p−1

L∞([0,T ]×R)‖ρ̄
N − ρ‖L1([0,T ]×R) ≤ [2R(T )]p−1‖ρ̄N − ρ‖L1([0,T ]×R),

hence there is also strong convergence in Lp
(
[0, T ]× R

)
.

By a standard argument, up to a further subsequence, for almost every t ∈ [0, T ] we have
ρ̄N (t, · )→ ρ(t, · ) in Lp(R).

20



Corollary 2.12. With the assumptions of Theorem 2.11, we have that ρ ∈ C
(
[0,∞);Lp(R)

)
for

every p ∈ [1,∞).

Proof. From the equi-Lipschitzianity (2.13), we deduce that also [0, T ] →
(
P(R),W1

)
: t 7→

ρ(t, · ) is Lipschitz, hence ρ(t, · ) is continuous in time with respect to the weak convergence of
measures.

Let us observe that for p ∈ (1,∞) and s → t we have ρ(s) ⇀ ρ(t) in Lp(R). In fact, given
ϕ ∈ Lp′(R) and ε > 0 we can find ψ ∈ C0(R) ∩ Lp′(R) such that ‖ϕ− ψ‖Lp′ (R) < ε. But then

∣∣∣∣∫
R
ρ(s, x)ϕ(x) dx−

∫
R
ρ(t, x)ϕ(x) dx

∣∣∣∣
≤
∣∣∣∣∫

R
[ρ(s, x)− ρ(t, x)]ψ(x) dx

∣∣∣∣+ ∫
R
|ρ(s, x)− ρ(t, x)| · |ϕ(x)− ψ(x)|dx,

and the first integral goes to 0 by weak convergence whereas the second can be estimated by
Hölder

‖ρ(s)− ρ(t)‖Lp(R)‖ϕ− ψ‖Lp′ (R) ≤ ε‖ρ(s)− ρ(t)‖1/pL1(R)‖ρ(s)− ρ(t)‖1/p
′

L∞(R) ≤ ε2R(t)1/p′ .

Moreover, the functions [0, T ]→ R : t→ ‖ρ̄N (t, · )‖Lp(R) are equi-Lipschitz because, thanks
to (2.3) with Remark 2.7 and Proposition 2.10, we have
∣∣∣∣ d
dt‖ρ̄

N (t, · )‖pLp(R)

∣∣∣∣ =
∣∣∣∣∣ d
dt

N∑
i=1

ρpi (xi − xi−1)
∣∣∣∣∣ =

∣∣∣∣∣ d
dt

1
N

N∑
i=1

ρp−1
i

∣∣∣∣∣ =
∣∣∣∣∣p− 1
N

N∑
i=1

ρp−2
i ρ′i

∣∣∣∣∣
≤ (p− 1)

N∑
i=1

ρpi |x
′
i − x′i−1| = (p− 1)

N∑
i=1

ρpi |viUi − vi−1Ui−1|

≤ (p− 1)
N∑
i=1

ρpi
(
vi|Ui − Ui−1|+ |vi − vi−1| · |Ui−1|

)
≤ (p− 1)

N∑
i=1

ρpi ‖v‖∞2F (T )G
(
2S(T )

)
[1 +R(T )](xi − xi−1)

+ (p− 1)
N∑
i=1

ρpi ‖v
′‖L∞([0,R(T )])

(
|ρi+1 − ρi|+ |ρi − ρi−1|

)
2F (t)G

(
2S(t)

)
≤ 2(p− 1)R(T )p−1F (T )G

(
2S(T )

)
[1 +R(T )]‖v‖∞

+ 4(p− 1)R(T )pF (T )G
(
2S(T )

)
G
(
R(T )

)
B(T ),

which is independent of N ; therefore the limit function [0, T ]→ R : t 7→ ‖ρ(t, · )‖Lp(R) is Lipschitz
as well.

It follows that, for s→ t, ρ(s) converges to ρ(t) weakly in Lp(R) and the Lp norms converge
as well. Since Lp(R) is uniformly convex for p ∈ (1,∞), we have that ρ(s) → ρ(t) strongly in
Lp(R).

By the boundedness of the support, this implies the strong convergence in L1(R) too.

2.2 Existence, uniqueness and convergence to the entropy solution

The proof of Theorem 1.3 relies on several ingredients. We begin by presenting the tools used
to prove the existence. The first proposition states an approximate entropic inequality for the
discrete densities, whereas the second allows to pass to the limit this inequality.
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Proposition 2.13. For every N ∈ N, let ρ̄N be either

• the piecewise constant density associated to the particles xI = (xI0, . . . , xIN ) solving (ODEI),
driven by the total velocity field vŪ ;

• the piecewise constant density associated to the particles xS = (xS0 , . . . , xSN ) solving (ODES),
driven by the total velocity field vU̇ .

Then for every constant c ≥ 0, T > 0 and non-negative test function ϕ ∈ C∞c
(
(0, T ) ×

R; [0,∞)
)
we have

∫ ∞
0

∫
R

{
|ρ̄N − c|∂tϕ+ sign(ρ̄N − c)

[(
m(ρ̄N )−m(c)

)
ŪN∂xϕ−m(c)∂xŪNϕ

]}
dx dt

≥ − 1
N
H(T )(‖∂xϕ‖∞ + ‖ϕ‖∞), (2.14)

where
ŪN (t, x) = V (t, x)− (W ′ ∗ ρ̄N )(t, x)

and H : [0,∞)→ [0,∞) is an increasing function depending on F,G,R, S,B.
Moreover, ρ̄N satisfies an approximate continuity equation: for every ϕ ∈ C∞c

(
(0, T )×R

)
we

have ∣∣∣∣∫ ∞
0

∫
R

[
ρ̄N∂tϕ+m(ρ̄N )ŪN∂xϕ

]
dx dt

∣∣∣∣ = Oϕ

( 1
N

)
. (2.15)

Proposition 2.14. Let v, V and W satisfy Assumptions 1.4. For every n ∈ N let ρ̄N : [0,∞)×
R→ [0,∞) be a curve of probability measures such that ρ̄N (t) ≤ R(t), supp ρ̄N (t) ⊂ [−S(t), S(t)],
TV

(
ρ̄N (t)

)
≤ B(t), where R,S,B : (0,∞)→ [0,∞) are increasing functions.

Assume that, for every T > 0, ρ̄N converges to ρ in L1([0, T ] × R) and that ρ̄N satisfies
(2.14).

Then ρ satisfies (1.2) and (1.3), hence it is both a weak solution and an entropy solution of
(1.1) according to Definition 1.1.

On the other hand, the uniqueness in Theorem 1.3 follows from a variation of the arguments
developed in [KR03] and [Kru70]. More precisely, adapting [KR03, Theorem 1.3] we deduce the
following statement. Given the strong similarity with [KR03, Theorem 1.3], we will not give a
fully detailed proof of the Theorem 2.15, but will instead just sketch the main steps, pointing
out the main differences.

Theorem 2.15 ([KR03, Theorem 1.3]). Consider two fluxes Rt × Rnx × Ru → R of the form
p(u)P (t, x) and q(u)Q(t, x), with p, q ∈ Liploc

(
[0,∞)

)
and P,Q ∈ L1

loc
(
[0,∞);W 1,1

loc (R)
)
. Let

then ρ, σ ∈ L∞loc
(
[0,∞); P(R) ∩BV (R)

)
be entropy solutions of

∂tρ+ divx
(
p(ρ)P (t, x)

)
= 0, ∂tσ + divx

(
q(σ)Q(t, x)

)
= 0,

in the sense of Definition 1.1, i.e. for every constant c ≥ 0 and non-negative test function
ϕ ∈ C∞c

(
(0, T )× R; [0,∞)

)
the following inequalities hold∫ ∞

0

∫
R

{
|ρ− c|∂tϕ+ sign(ρ− c)

[(
p(ρ)− p(c)

)
P divx ϕ− p(c) divx Pϕ

]}
dx dt ≥ 0,∫ ∞

0

∫
R

{
|σ − c|∂tϕ+ sign(σ − c)

[(
q(σ)− q(c)

)
Qdivx ϕ− q(c) divxQϕ

]}
dx dt ≥ 0,
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with the additional assumptions that

supp
(
ρ(t)

)
⊆ [−S(t), S(t)], ρ(t) ≤ R(t), TV

(
ρ(t)

)
≤ B(t),

supp
(
σ(t)

)
⊆ [−S(t), S(t)], σ(t) ≤ R(t), TV

(
σ(t)

)
≤ B(t),

where R,S,B : [0,∞)→ [0,∞) are increasing functions.
Then

‖ρ(t)− σ(t)‖L1(R)

∣∣∣t2
t1
≤
∫ t2

t1

∫ S(t)

−S(t)

{
‖p− q‖L∞([0,R(t)])|divx P |+ ‖p‖L∞([0,R(t)])|divx(P −Q)|

+ ‖P −Q‖L∞([−S(t),S(t)])‖p′‖L∞([0,R(t)])|divx ρ|

+ ‖P‖L∞([−S(t),S(t)])‖p′ − q′‖L∞([0,R(t)])|divx ρ|
}

dx dt.
(2.16)

Remark 2.16. The previous theorem can be specialized to fluxes of the form considered in (1.1):
assume that p = q = m, the fields P and Q are given by P = V −W ′ ∗ ρ and Q = V −W ′ ∗ σ,
where v, V and W satisfy Assumptions 1.4, and ρ and σ are as in Theorem 2.15. Then (2.16)
becomes

‖ρ(t)− σ(t)‖L1(R)

≤ ‖ρ(0)− σ(0)‖L1(R) + ‖m‖L∞([0,R(T )])

∫ t

0

∫ S(s)

−S(s)
|divx(P −Q)| dx ds

+ ‖m′‖L∞([0,R(T )])

∫ t

0
‖P −Q‖L∞([−S(s),S(s)]) TV

(
ρ(s)

)
ds

≤ ‖ρ(0)− σ(0)‖L1(R)

+ ‖m‖L∞([0,R(T )])

∫ t

0

(
‖W ′′(s, · )‖L1([−2S(s),2S(s)]) + w(s)

)
‖ρ(s)− σ(s)‖L1(R) ds

+ ‖m′‖L∞([0,R(T )])B(T )
∫ t

0
‖W ′(s, · )‖L∞([−2S(s),2S(s)])‖ρ(s)− σ(s)‖L1(R) ds

≤ ‖ρ(0)− σ(0)‖L1(R) +A(T )
∫ t

0
‖ρ(s)− σ(s)‖L1(R) ds,

for some increasing function A depending on F,G,R, S,B. By Gronwall lemma, this implies

‖ρ(t)− σ(t)‖L1(R) ≤ ‖ρ(0)− σ(0)‖L1(R) exp
(
tA(T )

)
, ∀t ∈ (0, T ). (2.17)

We now proceed to prove the propositions and theorems presented in this section.

Proof of Proposition 2.13. Let us fix the constant c and the test function ϕ. In order to keep
the notation light, we write Ū = ŪN and we omit the dependence on (t, x) whenever possible.
Applying the definition of the particle approximations ρ̄N to the left hand side of (2.14), we
reduce to study the non negativity of the following quantity∫ T

0

∫
(x0,xN )c

[
c∂tϕ(t, x) +m(c)∂x

(
ŪN (t, x)ϕ(t, x)

)]
dx dt

+
N∑
i=1

∫ T

0

∫ xi

xi−1

[
|ρi − c|∂tϕ(t, x)− sign(ρi − c)m(ρi)∂xŪN (t, x)ϕ(t, x)

]
dx dt

+
N∑
i=1

∫ T

0

[
sign(ρi − c)

(
m(ρi)−m(c)

)(
ŪN (t, xi)ϕ(t, xi)− ŪN (t, xi−1)ϕ(t, xi−1)

)]
dt.

(2.18)
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The boundary term can be dealt with in the following manner∫ T

0

∫
(x0,xN )c

[
c∂tϕ+m(c)∂x(Ūϕ)

]
dx dt

= c

∫ T

0

[
d
dt

∫
(x0,xN )c

ϕ dx+ ϕ(xN )x′N − ϕ(x0)x′0

]
dt

+m(c)
∫ T

0

(
Ū(x0)ϕ(x0)− Ū(xN )ϕ(xN )

)
dt

= c

∫ T

0

[
ϕ(xN )

(
x′N − v(c)Ū(xN )

)
− ϕ(x0)

(
x′0 − v(c)Ū(x0)

)]
dt.

(2.19)

Integrating twice by parts we can rewrite

N∑
i=1

∫ T

0

∫ xi

xi−1
|ρi − c|∂tϕ dx =

N∑
i=1

∫ T

0

{
d
dt

[∫ xi

xi−1
|ρi − c|ϕ dx

]
dt−

∫ xi

xi−1
sign(ρi − c)ρ′iϕ dx

− |ρi − c|
(
ϕ(xi)x′i − ϕ(xi−1)x′i−1

)}
dt

=
N∑
i=1

∫ T

0
sign(ρi − c)

[
ρi(x′i − x′i−1)ϕ(x̄i)

− (ρi − c)
(
ϕ(xi)x′i − ϕ(xi−1)x′i−1

)]
dt

=
N∑
i=1

∫ T

0
sign(ρi − c)ρi(x′i − x′i−1)

(
ϕ(x̄i)− ϕ(xi)

)
dt

−
N∑
i=1

∫ T

0
sign(ρi − c)ρix′i−1

(
ϕ(xi)− ϕ(xi−1)

)
dt

+ c
N∑
i=1

∫ T

0
sign(ρi − c)

(
x′iϕ(xi)− x′i−1ϕ(xi−1)

)
dt,

where x̄i ∈ (xi−1, xi) is such that ϕ(x̄i) = −
∫ xi
xi−1

ϕ(x) dx. Thanks to the above computation, we
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can combine the first term of the second line and the third line of (2.18) to get

N∑
i=1

∫ T

0

{∫ xi

xi−1
|ρi − c|∂tϕdx+ sign(ρi − c)

(
m(ρi)−m(c)

)(
Ū(xi)ϕ(xi)− Ū(xi−1)ϕ(xi−1)

)}
dt

=
N∑
i=1

∫ T

0
sign(ρi − c)ρi(x′i − x′i−1)

(
ϕ(x̄i)− ϕ(xi)

)
dt

−
N∑
i=1

∫ T

0
sign(ρi − c)ρix′i−1

(
ϕ(xi)− ϕ(xi−1)

)
dt

+ c
N∑
i=1

∫ T

0
sign(ρi − c)

(
x′iϕ(xi)− x′i−1ϕ(xi−1)

)
dt

+
N∑
i=1

∫ T

0

{
sign(ρi − c)

(
m(ρi)−m(c)

)(
Ū(xi)ϕ(xi)− Ū(xi−1)ϕ(xi−1)

)}
dt

= c
N∑
i=1

∫ T

0
sign(ρi − c)

[(
x′i − v(c)Ū(xi)

)
ϕ(xi)−

(
x′i−1 − v(c)Ū(xi−1)

)
ϕ(xi−1)

]
dt

+
N∑
i=1

∫ T

0
sign(ρi − c)ρi(x′i − x′i−1)

(
ϕ(x̄i)− ϕ(xi)

)
dt

−
N∑
i=1

∫ T

0
sign(ρi − c)ρix′i−1

(
ϕ(xi)− ϕ(xi−1)

)
dt

+
N∑
i=1

∫ T

0
sign(ρi − c)m(ρi)

[(
Ū(xi)− Ū(xi−1)

)
ϕ(xi) + Ū(xi−1)

(
ϕ(xi)− ϕ(xi−1)

)]
dt

(summing by parts and rearranging the terms)

= −c
N−1∑
i=1

∫ T

0
[sign(ρi+1 − c)− sign(ρi − c)]ϕ(xi)

(
x′i − v(c)Ū(xi)

)
dt

+ c

∫ T

0

[
sign(ρN − c)ϕ(xN )

(
x′N − v(c)Ū(xN )

)
− sign(ρ1 − c)ϕ(x0)

(
x′0 − v(c)Ū(x0)

)]
dt

+
N∑
i=1

∫ T

0
sign(ρi − c)

{
m(ρi)ϕ(xi)(Ū(xi)− Ū(xi−1))

+ ρi
[
(x′i − x′i−1)(ϕ(x̄i)− ϕ(xi))−

(
ϕ(xi)− ϕ(xi−1)

)(
x′i−1 − v(ρi)Ū(xi−1)

)]}
dt.

(2.20)

Applying (2.19) and (2.20) to the appropriate terms in (2.18), we can rewrite the latter as
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I + II + III where

I = −c
N−1∑
i=1

∫ T

0
[sign(ρi+1 − c)− sign(ρi − c)]ϕ(xi)

(
x′i − v(c)Ū(xi)

)
dt,

II = c

∫ T

0

[
ϕ(xN )

(
x′N − v(c)Ū(xN )

)(
1 + sign(ρN − c)

)
− ϕ(x0)

(
x′0 − v(c)Ū(x0)

)(
1 + sign(ρ1 − c)

)]
dt,

III =
N∑
i=1

∫ T

0
sign(ρi − c)

{
m(ρi)

[
ϕ(xi)

(
Ū(xi)− Ū(xi−1)

)
−
∫ xi

xi−1
∂xŪϕdx

]

+ ρi
[
(x′i − x′i−1)(ϕ(x̄i)− ϕ(xi))−

(
ϕ(xi)− ϕ(xi−1)

)(
x′i−1 − v(ρi)Ū(xi−1)

)]}
dt.

We make the important remark that up to this point we have only performed algebraic
manipulations and never used the actual ordinary differential equation solved by the particles
X = (x0, . . . , xN ). In particular, all computations carried out so far apply to both schemes.

We now proceed to discuss the case in which ρ̄N is associated to the particles XI solving
(ODEI): in particular, we substitute x′i = viŪ(xi) in the terms I, II, III. The validity of (2.14)
follows once we prove that I and II are non negative terms, while III goes to zero as 1/N when
N →∞.

Observe that the contribution of sign(ρi+1 − c) − sign(ρi − c) is non trivial only when
ρi ≤ c ≤ ρi+1 or ρi ≥ c ≥ ρi+1 and, similarly, the contribution of 1 + sign(ρ1 − c) and
1 + sign(ρN − c) is non zero only when ρ1, ρN ≥ c. Then the non negativity of I and II is an
immediate consequence of the monotonicity of v.

Let us now focus on the term III. The first line can be estimated as∣∣∣∣∣
N∑
i=1

∫ T

0
sign(ρi − c)m(ρi)

[
ϕ(xi)

(
Ū(xi)− Ū(xi−1)

)
−
∫ xi

xi−1
∂xŪϕdx

]
dt
∣∣∣∣∣

≤ ‖v‖∞
∫ T

0

N∑
i=1

ρi

∣∣∣∣∣
∫ xi

xi−1
∂xŪ

(
ϕ(xi)− ϕ(x)

)
dx
∣∣∣∣∣ dt

≤ ‖v‖∞‖∂xϕ‖∞
∫ T

0
ρi(xi − xi−1)

N∑
x=1

∫ xi

xi−1
|∂xŪ | dx dt

≤ 1
N
‖v‖∞‖∂xϕ‖∞

∫ T

0

∫ S(t)

−S(t)
|∂xŪ |dx dt

≤ 1
N
‖v‖∞‖∂xϕ‖∞

∫ T

0
‖V ′ − (W ′′ + w(t)δ0) ∗ ρ̄‖L1([−S(t),S(t)]) dt

≤ 1
N
‖v‖∞‖∂xϕ‖∞

∫ T

0

(
‖V ′‖L1([−S(t),S(t)]) + ‖W ′′‖L1([−2S(t),2S(t)]) + |w(t)|

)
dt

≤ 1
N
‖v‖∞‖∂xϕ‖∞

∫ T

0
F (t)

[
1 +G

(
S(t)

)
+G

(
2S(t)

)]
dt

≤ 1
N
‖v‖∞‖∂xϕ‖∞‖F‖L1([0,T ])

[
1 + 2G

(
2S(T )

)]
.
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To estimate the second line of III, first observe that thanks to (2.3) and Remark 2.7 we have

|x′i − x′i−1| = |viŪi − vi−1Ūi−1|
≤ v(ρi)|Ūi − Ūi−1|+ |vi − v(ρi)| · |Ūi|+ |vi−1 − v(ρi)| · |Ūi−1|
≤ 2‖v‖∞F (t)G

(
2S(t)

)
[1 +R(t)](xi − xi−1)

+ ‖v′‖L∞([0,R(t)])‖V −W ′ ∗ ρ̄‖L∞([−S(t),S(t)])
(
|ρi+1 − ρi|+ |ρi − ρi−1|

)
≤ 2‖v‖∞F (t)G

(
2S(t)

)
[1 +R(t)](xi − xi−1)

+ 2G
(
R(t)

)
F (t)G

(
2S(t)

)(
|ρi+1 − ρi|+ |ρi − ρi−1|

)
hence∣∣∣∣∣
N∑
i=1

∫ T

0
sign(ρi − c)ρi

[
(x′i − x′i−1)(ϕ(x̄i)− ϕ(xi))−

(
ϕ(xi)− ϕ(xi−1)

)(
x′i−1 − v(ρi)Ū(xi−1)

)]
dt
∣∣∣∣∣

≤ ‖∂xϕ‖∞
N

N∑
i=1

∫ T

0

(
|x′i − x′i−1|+ |vi−1 − v(ρi)| · |Ū(xi−1)|

)
dt

≤ ‖∂xϕ‖∞
N

[
2‖v‖∞

∫ T

0
F (t)G

(
2S(t)

)
[1 +R(t)]S(t) dt+ 8

∫ T

0
F (t)G

(
R(t)

)
G
(
2S(t)

)
TV

(
ρ̄N (t)

)
dt
]

≤ 2
N
‖∂xϕ‖∞(‖v‖∞ + 4)G

(
2S(T )

)
[1 +R(T ) +G

(
R(T )

)
][S(T ) +B(T )]‖F‖L1([0,T ]).

Putting together these last two estimates one sees that |III| ≤ 1
NH(T )‖∂xϕ‖∞ for some increasing

function H : [0,∞)→ [0,∞) which can be expressed in terms of F,G,R, S,B.
Let us now move on to the case in which ρ̄N is associated to the particles XS solving (ODES).

Adding and subtracting U̇ where appropriate in the terms I, II and III, we can rewrite (2.18) as
Ĩ + ĨI + ĨII + ĨV where

Ĩ = −c
N−1∑
i=1

∫ T

0
[sign(ρi+1 − c)− sign(ρi − c)]ϕ(xi)

(
x′i − v(c)U̇i

)
dt,

ĨI = c

∫ T

0

[
ϕ(xN )

(
x′N − v(c)U̇N

)(
1 + sign(ρN − c)

)
− ϕ(x0)

(
x′0 − v(c)U̇0

)(
1 + sign(ρ1 − c)

)]
dt,

ĨII =
N∑
i=1

∫ T

0
sign(ρi − c)

{
m(ρi)

[
ϕ(xi)

(
Ūi − Ūi−1

)
−
∫ xi

xi−1
∂xŪϕdx

]

+ ρi
[
(x′i − x′i−1)(ϕ(x̄i)− ϕ(xi))−

(
ϕ(xi)− ϕ(xi−1)

)(
x′i−1 − v(ρi)U̇i−1

)]}
dt,

ĨV = m(c)
N−1∑
i=1

∫ T

0
[sign(ρi+1 − c)− sign(ρi − c)]ϕ(xi)

(
Ūi − U̇i

)
dt

−m(c)
∫ T

0

[
ϕ(xN )

(
ŪN − U̇N

)(
1 + sign(ρN − c)

)
− ϕ(x0)

(
Ū0 − U̇0

)(
1 + sign(ρ1 − c)

)]
dt

+
N∑
i=1

∫ T

0
sign(ρi − c)m(ρi)

(
ϕ(xi)− ϕ(xi−1)

)(
Ūi−1 − U̇i−1

)
dt.

Since in this case x′i = viU̇i, the non-negativity of Ĩ and ĨI and the fact that |ĨII| ≤ 1
NH(T )‖∂xϕ‖∞

follow by the same arguments as before. What is left to show is that the remainder term ĨV
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goes to 0 as well at the same rate 1/N . Thanks to Lemma 2.3 with Remark 2.7 we can estimate

|ĨV | ≤ m(c)
N∑
i=1

∫ T

0

∣∣∣sign(ρi − c)
[
ϕ(xi)

(
Ūi − U̇i

)
− ϕ(xi−1)

(
Ūi−1 − U̇i−1

)]∣∣∣ dt
+m(c)

∫ T

0

∣∣∣ϕ(xN )(ŪN − U̇N )− ϕ(x0)(Ū0 − U̇0)
∣∣∣ dt

+
N∑
i=1

∫ T

0

∣∣∣sign(ρi − c)m(ρi)
(
ϕ(xi)− ϕ(xi−1)

)(
Ūi−1 − U̇i−1

)∣∣∣ dt
≤

N∑
i=1

∫ T

0
[m(c) +m(ρi)] · |ϕ(xi)− ϕ(xi−1)| · |Ūi−1 − U̇i−1| dt

+m(c)
N∑
i=1

∫ T

0
ϕ(xi)|(Ūi − U̇i)− (Ūi−1 − U̇i−1)|dt

+m(c)
∫ T

0

[
ϕ(xN )|ŪN − U̇N |+ ϕ(x0)|Ū0 − U̇0|

]
dt

≤ 1
N

N∑
i=1

∫ T

0

[
m(c) +R(t)‖v‖L∞

]
‖∂xϕ‖∞(xi − xi−1)F (t)G

(
2S(t)

)
S(t) dt

+ 4
N
m(c)‖ϕ‖L∞

N∑
i=1

∫ T

0
F (t)G

(
2S(t)

)
(xi − xi−1) dt

+ 2
N
m(c)‖ϕ‖L∞

∫ T

0
F (t)G

(
2S(t)

)
S(t) dt

≤ 1
N

(
‖∂xϕ‖∞ + 6‖ϕ‖L∞

)(
m(c) +R(T )‖v‖L∞

)
G
(
2S(T )

)(
S(T ) + S(T )2)‖F‖L1([0,T ]).

This concludes the proof of (2.14).
Let us now check that ρ̄N satisfies the approximate continuity equation (2.15). Fix ϕ ∈

C∞c
(
(0, T )× R; [0,∞)

)
. Taking c = 0 we get from (2.14)∫ T

0

∫
R

{
ρ̄N∂tϕ+m(ρ̄N )ŪN∂xϕ

}
dx dt ≥ Oϕ

( 1
N

)
, (2.21)

whereas taking c = R(T ) and recalling that ρ̄N (t, · ) < R(T ) for t ≤ T we get∫ T

0

∫
R

{
[R(T )− ρ̄N ]∂tϕ−m(ρ̄N )ŪN∂xϕ+m

(
R(T )

)
∂x(ŪNϕ)

}
dx dt ≥ Oϕ

( 1
N

)
,

which implies ∫ T

0

∫
R

{
−ρ̄N∂tϕ−m(ρ̄N )ŪN∂xϕ

}
dx dt ≥ Oϕ

( 1
N

)
(2.22)

because the terms with R(T ) and m
(
R(T )

)
give a zero contribution to the integral. Combining

(2.21) and (2.22) we deduce the validity of (2.15) for non-negative test functions. This requirement
can then be dropped by writing an arbitrary ϕ ∈ C∞c

(
(0, T )× R

)
as a difference ϕ = ϕ1 − ϕ2

with ϕ1, ϕ2 ∈ C∞c
(
(0, T )× R; [0,∞)

)
.

In the proof of Proposition 2.14 we reuse as much as possible the argument from [DFR19],
focusing the attention primarily on the term (2.24) which is more problematic to pass to the
limit.
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Proof of Proposition 2.14. Up to a subsequence, we may assume that ρ̄N → ρ almost everywhere.
Let us first show that ρ solves the continuity equation (1.2). For a fixed test function

ϕ ∈ C∞c
(
(0, T ) × R

)
, thanks to Proposition 2.13 we know that ρ̄N solves the approximate

continuity equation (2.15), therefore we just need to pass it to the limit. The term ρ̄N∂tϕ is
obvious. For the other one we use the fact that∫ T

0

∫
R
|m(ρ̄N )ŪN −m(ρ)U |dx dt

≤
∫ T

0

∫ S(t)

−S(t)
|m(ρ̄N )(ŪN − U)| dx dt+

∫ T

0

∫ S(t)

−S(t)
|[m(ρ̄N )−m(ρ)]U |dx dt

≤ ‖v‖∞R(T )
∫ T

0

∫ S(t)

−S(t)
|W ′ ∗ (ρ̄N − ρ)|dx dt+ ‖m′‖L∞([0,R(T )])

∫ T

0

∫ S(t)

−S(t)
|ρ̄N − ρ| · |U |dx dt

≤ ‖v‖∞R(T )
∫ T

0
‖W ′‖L1([−2S(t),2S(t)])‖ρ̄N − ρ‖L1(R) dt

+
[
‖v‖∞ +R(T )‖v′‖L∞([0,R(T )])

] ∫ T

0
‖V −W ′ ∗ ρ‖L∞([−S(t),S(t)])

∫
R
|ρ̄N − ρ|dx dt

≤ 4‖v‖∞R(T )F (T )G
(
2S(T )

)
S(T )‖ρ̄N − ρ‖L1([0,T ]×R)

+
[
‖v‖∞ +R(T )G

(
R(T )

)]
F (T )

[
G
(
S(T )

)
+G

(
2S(T )

)]
‖ρ̄N − ρ‖L1([0,T ]×R),

which goes to 0 because ‖ρ̄N − ρ‖L1([0,T ]×R) → 0.
Let us now move on to proving that ρ solves the entropy inequality (1.3). We split the left

hand side of (2.14) into three terms:∫ T

0

∫
R
|ρ̄N − c|∂tϕ dx dt,∫ T

0

∫
R

sign(ρ̄N − c)
(
m(ρ̄N )−m(c)

)
ŪN∂xϕdx dt,∫ T

0

∫
R

sign(ρ̄N − c)m(c)ϕ∂xŪN dx dt.

The first two can be shown to pass to the limit in a similar fashion as in [DFR19, Lemma 4.4], in
particular exploiting the fact that r 7→ sign(r − c)

(
m(r)−m(c)

)
is a Lipschitz function.

Let us now deal with the third integral. Notice that the sought convergence is implied by

lim
N→∞

∫ T

0

∫
R

sign(ρ̄N − c)m(c)ϕ∂x
(
ŪN − U

)
dx dt = 0, (2.23)

lim
N→∞

∫ T

0

∫
R

(
sign(ρ̄N − c)− sign(ρ− c)

)
m(c)ϕ∂xU dx dt = 0. (2.24)

To prove the limit (2.23), assume w.l.o.g. that supp(ϕ) ⊂ (0, T ) × (−a, a). Then the limit
follows from the estimate∣∣∣∣∣

∫ T

0

∫
R

sign(ρ̄N − c)m(c)ϕ∂x
(
ŪN − U

)
dx dt

∣∣∣∣∣ ≤
∫ T

0

∫
R

∣∣∣∂x(ŪN − U)
∣∣∣ϕ dx dt

≤ ‖ϕ‖∞
∫ T

0
‖∂x(ŪN − U)(t, · )‖L1((−a,a)) dt

and the fact that for every t ∈ (0, T ) by Young inequality we have
‖∂x(ŪN − U)(t, · )‖L1((−a,a)) = ‖∂x[W ′ ∗ (ρ̄N − ρ)]‖L1((−a,a))

≤ ‖W ′′ ∗ (ρ̄N − ρ)‖L1((−a,a)) + |w(t)| · ‖ρ̄N − ρ‖L1(R)

≤
(
‖W ′′‖L1([−a−S(t),a+S(t)]) + |w(t)|

)
‖ρ̄N − ρ‖L1(R)

≤ F (T )
[
1 +G

(
a+ S(T )

)]
‖ρ̄N − ρ‖L1(R),
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which goes to zero because ‖ρ̄N − ρ‖L1(R) → 0.
To prove (2.24), we first need to study the behavior of |∂xU | on the set where ρ = c. Let

Z = {(t, x) ∈ (0,∞)× R : ρ(t, x) = c} and consider an open set Ω ⊃ Z, to be optimized later.
Consider the family of squares in (0, T )× R

F = {Q(z, r) : z ∈ Z, Q(z, r) ⊂ Ω}

covering Z, where Q(z, r) = {w = (wt, wx) : |wt − zt| < r, |wx − zx| < r} ⊂ (0, T ) × R. By
Besicovitch covering theorem there exists M ∈ N and a countable subfamily G ⊂ F such that

1Z ≤
∑
Q∈G

1Q ≤M1Ω. (2.25)

Let us now focus the attention on a single square Q = I ×A ⊂ (0, T )×R. For positive χ ∈ C1
c (I)

and η ∈ C1
c (A), consider the test function ϕ(t, x) = χ(t)η(x). Since ρ solves (1.2), we have∫

I

∫
A

[
ρ∂tχη +m(ρ)Uχ∂xη

]
dx dt = 0.

We know that ρ(t, · ) ∈ BV (R) for every t, but from the equation (1.1) we deduce that also
∂tρ is a measure, therefore ρ ∈ BV

(
(0, T )× R

)
and, by Leibniz and the chain rule, also m(ρ)U

belongs to BV
(
(0, T ) × R

)
. Hence, integrating by parts and looking only at the absolutely

continuous parts of the distributional derivatives, we have∫
I

∫
A

[
(∂tρ)a + ∂x

(
m(ρ)U

)a]
χη dx dt =

∫
I

∫
A

[
(∂tρ)a +m′(ρ)(∂xρ)aU +m(ρ)∂xU

]
χη dx dt = 0.

By [AFP00, Proposition 3.92] we have that (∂tρ)a = (∂xρ)a = 0 a.e. on Z, hence

m(c)
∫∫

Q∩Z
∂xUχη dx dt = −

∫∫
Q\Z

[
m(ρ)∂xU + (∂tρ)a +m′(ρ)(∂xρ)aU

]
χη dx dt.

By a standard argument (considering linear combinations of terms χη) we deduce

m(c)
∫∫

Q∩Z
|∂xU |dx dt ≤

∫∫
Q\Z
|m(ρ)∂xU + (∂tρ)a +m′(ρ)(∂xρ)aU |dx dt.

Summing this inequality over Q ∈ G and recalling (2.25) therefore we get

m(c)
∫∫

Z
|∂xU | dx dt = m(c)

∫∫
[0,∞)×R

|∂xU |1Z1Z dx dt

≤ m(c)
∑
Q∈G

∫∫
[0,∞)×R

|∂xU |1Z1Q dx dt

= m(c)
∑
Q∈G

∫∫
Q∩Z
|∂xU |dx dt

≤
∑
Q∈G

∫∫
Q\Z
|m(ρ)∂xU + (∂tρ)a +m′(ρ)(∂xρ)aU |dx dt

=
∑
Q∈G

∫∫
[0,∞)×R

|m(ρ)∂xU + (∂tρ)a +m′(ρ)(∂xρ)aU |1Zc1Q dx dt

≤M
∫∫

[0,∞)×R
|m(ρ)∂xU + (∂tρ)a +m′(ρ)(∂xρ)aU |1Zc1Ω dx dt

= M

∫∫
Ω\Z
|m(ρ)∂xU + (∂tρ)a +m′(ρ)(∂xρ)aU | dx dt.
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By the absolute continuity of the integral, letting Ω decrease towards Z we deduce

m(c)
∫∫

Z
|∂xU |dx dt = 0.

We can split the integral (2.24) in Z and Zc. The integral in Z is identically zero thanks to the
previous computation. On the other hand, in Zc we have that sign(ρ̄N − c)− sign(ρ− c)→ 0
a.e. because ρ̄N → ρ a.e. and r 7→ sign(r − c) is continuous for r 6= c. Therefore by Lebesgue
dominated convergence (a domination is 2m(c)ϕ|∂xU | ∈ L1) we have that

lim
N→∞

∫∫
Zc

(
sign(ρ̄N − c)− sign(ρ− c)

)
m(c)ϕ∂xU dx dt = 0.

This concludes the proof of (2.24).

Proof of Theorem 2.15. We follow very closely the proof of [KR03, Theorem 1.3], with the crucial
difference that our vector fields P,Q depend on time.

We fix a smooth, compactly supported, non-negative test function ϕ ∈ C∞c
(
R× Rn; [0,∞)

)
and define

ϕ̃(t, x, τ, y) = ϕ

(
t+ τ

2 ,
x+ y

2

)
δh

(
t− τ

2

)
ωh

(
x− y

2

)
,

where δ ∈ C∞c
(
R; [0,∞)

)
and ω ∈ C∞c

(
Rn; [0,∞)

)
are two kernels such that

∫
R δ(t) dt = 1 and∫

Rn ω(x) dx = 1 and

δh(t) = h−1δ(t/h), ωh(x) = h−nω(x/hn).

We write the entropy inequality for ρ(t, x) plugging the constant σ(τ, y) and integrate with
respect to τ and y; we then do the converse treatment to the entropy inequality for σ(τ, y). The
resulting inequalities are as follows:∫∫∫∫ {

|ρ− σ|∂tϕ̃+ sign(ρ− σ)
[(
p(ρ)− p(σ)

)
P (t, x) · ∇xϕ̃− p(σ) divx P (t, x)ϕ̃

]}
dt dx dτ dy ≥ 0,∫∫∫∫ {

|ρ− σ|∂τ ϕ̃+ sign(ρ− σ)
[(
q(ρ)− q(σ)

)
Q(τ, y) · ∇yϕ̃+ q(ρ) divy Q(τ, y)ϕ̃

]}
dt dx dτ dy ≥ 0,

where we used the implicit notation ρ = ρ(t, x), σ = σ(τ, y), ϕ̃ = ϕ̃(t, x, τ, y) to shorten the
formulas.

The proof now proceeds as in [KR03] by summing the two inequalities, and rearranging the
terms in the same manner. Notice in particular that the only manipulations performed are
integrations by parts exclusively in space, so the time dependence does not interfere in these
computations.

With the choice of a test function ϕk(t, x) = ψk(x)χk(t) with ψk ∈ C∞c
(
R; [0, 1]

)
, ψk → 1,

|ψ′k| ≤ 1, and χk that approximates 1[t1,t2] for some fixed 0 ≤ t1 < t2 ≤ T , we can pass to
the limit for h, k →∞ as in [KR03] and arrive at the conclusion (2.16), observing that all the
integrals in space are localized to [−S(T ), S(T )] because the densities vanish outside.

Finally, we can combine the results of this section to give a short proof of our main theorem.

Proof of Theorem 1.3. We first deal with the existence. Let ρ̄N : [0, T ]×R→ R be the piecewise
constant density associated to particles XN solving either (ODEI) or (ODES), whose existence is
guaranteed by Proposition 2.8. Thanks to Theorem 2.11 and Corollary 2.12, up to a subsequence,
we have that ρ̄N converges to a density ρ ∈ L∞loc

(
[0,∞)×R

)
∩C

(
[0,∞);L1(R)

)
. Moreover, since

ρ̄N enjoys the uniform estimates stated in Proposition 2.5, Proposition 2.6 and Proposition 2.10,
passing to the limit and using the lower semicontinuity of the total variation one deduces (1.5).
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Combining Proposition 2.13 and Proposition 2.14, we further obtain that ρ satisfies the
entropy inequality (1.3), thus it is an entropy solution of (1.1) according to Definition 1.1.

Regarding the uniqueness, it follows immediately from (2.17) of Remark 2.16, which is an
application of Theorem 2.15 to this setting.

3 Numerical simulations

3.1 Implementation

In this section we describe the numerical implementation of the two particle schemes introduced
above and show some simulations of the evolution of the particles and the associated piecewise
constant densities. The actual implementation is in the Julia programming language, using the
DifferentialEquation.jl [RN17] package to solve the system of ODE describing the evolution
of the particles. The code presented in this section is included and further developed in the
package ConservationLawsParticles.jl [Str21].

Assuming that one has at disposal the functions

V(t::Real, x::Real) :: Real
Wprime(t::Real, r::Real) :: Real
mobility(rho::Real) :: Real

defining the external velocity field, the auto-interaction and the mobility term respectively, the
resulting velocity of the particles according to the sampled scheme can be computed in-place
with

function velocity(dx, x, p, t)
R = pwc_density(x)
for i in 1:length(x)

v = (-sum(Wprime(t, x[i] - x[j]) for j in 1:i-1)
-sum(Wprime(t, x[i] - x[j]) for j in i+1:length(x)))

v /= length(x) - 1
v += V(t, x[i])
mob = mobility(v < 0 ? R[i] : R[i+1])
dx[i] = v * mob

end
end

function pwc_density(x::AbstractVector{<:Real})
len = length(x)
R = Array{float(eltype(x))}(undef, len+1)
R[1] = R[end] = 0
d = 1 / (len-1)
for i in 2:len

R[i] = d / (x[i] - x[i-1])
end
R

end

A solution to the ODEs can be found by initializing an array x0 to the initial position of the
particles whose piecewise density approximates the desired initial distribution of mass in the
sense of (1.4). The system of ODEs can then be solved with
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using DifferentialEquations
tspan = (0., 3.)
prob = ODEProblem(velocity, x0, tspan)
sol = solve(prob, BS5(); abstol=1e-7, reltol=1e-7);

The solution can then be visually inspected by either showing the trajectories of the particles
or by displaying the density at different times.

As an example, consider the time-dependent problem defined by

V(t, x) = -x^3 + 0.02sin(12x) + sinpi(2t)
Wprime(t, x) = -5sign(x) / (abs(x) + 1)
mob(rho) = 1 / (rho + 1)
model = SampledModel((V,), ((Wprime,),), (mob,))

We can visualize the trajectories of the particles and the densities at different times, as shown in
Figure 1.

Figure 1: plot of the trajectories (left) and densities (right) for the example.

The code computing the velocities of the particles can be generalized to more than one species.
To make the code more manageable, we introduce two types Model and IntegratedModel
which describe the whole system of N species (with external velocities Vs, mutual interactions
Wprimes/Ws and mobilities mobilities) and auxiliary functions which computes the interaction
effect of a species on each individual particle. The two types correspond to the sampled and
integrated scheme.

mutable struct Model{
N,
TVs <: Tuple{Vararg{Any,N}},
TWprimes <: Tuple{Vararg{Tuple{Vararg{Any,N}},N}},
Tmobilities <: Tuple{Vararg{Any,N}},

}
Vs::TVs
Wprimes::TWprimes
mobilities::Tmobilities

end

mutable struct IntegratedModel{
N,
TVs <: Tuple{Vararg{Any,N}},
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TWs <: Tuple{Vararg{Tuple{Vararg{Any,N}},N}},
Tmobilities <: Tuple{Vararg{Any,N}},

}
Vs::TVs
Ws::TWs
mobilities::Tmobilities

end

function sampled_interaction(t::Real, Wprime, ys::AbstractVector{<:Real}, x::Real)
sum(Wprime(t, x - y) for y in ys) / (length(ys) - 1)

end

function integrated_interaction(t::Real, W, dens_diff::AbstractVector{<:Real},
ys::AbstractVector{<:Real}, x::Real)

sum(i -> dens_diff[i] * W(t, x - ys[i]), eachindex(ys))
end

The total velocity describing the evolution of the full system is then computed by two methods
of the function velocities which call either sampled_interaction or integrated_interaction.
function velocities(

dx::ArrayPartition{F, T},
x::ArrayPartition{F, T},
p::Model{N, TVs, TWprimes, Tmobilities},
t

) where {
F,
T <: Tuple{Vararg{AbstractVector{<:Real}}},
N, TVs, TWprimes, Tmobilities

}
dens = pwc_densities(x.x...)
for spec in 1:N

for i in 1:length(x.x[spec])
v::F = p.Vs[spec](t, x.x[spec][i])
for other in 1:N

v -= sampled_interaction(t, p.Wprimes[spec][other],
x.x[other], x.x[spec][i])

end
if v < 0

mob = p.mobilities[spec](dens[spec][:, 1, i]...)
else

mob = p.mobilities[spec](dens[spec][:, 2, i]...)
end
dx.x[spec][i] = v * mob

end
end

end

function velocities(..., p::IntegratedModel{N, TVs, TWs, Tmobilities}, ...)
...
dens_diff = Vector{Vector{F}}(undef, N)
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for s in 1:N
dens_diff[s] = dens[s][s, 1, :] - dens[s][s, 2, :]

end
...

v -= integrated_interaction(t, p.Ws[spec][other], dens_diff[other],
x.x[other], x.x[spec][i])

...
end

The multi-species version of the densities computation is a bit more involved. The function

function pwc_densities(xs::Vararg{AbstractVector{<:Real}, N}) where N ... end

scans the particles left to right and computes the densities of the various species on both sides of
each particle, returning a tuple of arrays dens which can be indexed as dens[s][o, d, i] to
extract the density of the species o to the side d (1 for left, 2 for right) of the i-th particle of the
species s.

This multi-species implementation can be demonstrated in an example such as

V1(t, x) = - (x - 1)^3 / 15 + 0.05sin(12x)
V2(t, x) = - (x + 1 - 4sin(5t))^3 / 5
W_attr(t, x) = 5log(abs(x) + 1)
W_rep(t, x) = -5log(abs(x) + 1)
mob1(rho, sigma) = max(1 - rho - 0.5sigma, 0)
mob2(rho, sigma) = max(2 - sigma - 0.5rho, 0)

model = IntegratedModel(
(V1, V2),
((W_rep, W_attr), (W_attr, W_rep)),
(mob1, mob2))

x0 = ArrayPartition(
gaussian_particles(3, 75) .- 2,
gaussian_particles(3, 75) .+ 2)

tspan = (0., 5.)
prob = ODEProblem(velocities, x0, tspan, model)

@time sol = solve(prob, BS5(); abstol=1e-6, reltol=1e-6);

We want to point out that a possible downside of our piecewise constant construction of
the density is that it has intrinsically lower resolution where the density is low. This is because
the particles are necessarily more spread apart, hence they cannot capture finer details of the
density. This might be problematic because these lower resolution regions can influence adversely
the resolution of the other species, even where the latter have higher densities and hence are
more detailed. The reason is that with a decaying mutual interaction the dominant terms are
contributed by the local particles of the lower quality density, which produce a velocity field of
lower quality. This effect can be observed as staircase-like artifacts which can develop in the
densities. Over long periods of time, it is observed that these can lead to oscillations, which are
further amplified if the sampled scheme is used. With our approach the only simple way to limit
these artifacts seems to be to increase the total number of particles.
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Figure 2: trajectories and densities for the multi-species example.

Figure 3: example of staircase artifacts. Observe that near x = −1, even if the blue density is
high and has a good resolution, it exhibits some staircase artifacts which are caused by the local
interaction with the lower resolution orange density.

When dealing with a multi-species problem, the usage of the sampled interaction is inadequate,
since the resulting velocity field is discontinuous in correspondence of every particle, as can be
visualized in the example Figure 5. This is problematic because the particles of two different
species can become arbitrarily close, hence the effects of the discontinuity are very relevant and
can be observed: for instance, particles of different species can become locked together and might
not flow past each other. In contrast, the integrated scheme produces a velocity field which is
continuous and suitable to be evaluated at any desired position, hence it does not cause this
locking or jump behavior between particles.

Since in general the integrated scheme is not computationally more expensive than the sampled
scheme, but the quality of the solution can be much higher, it is to be generally preferred, especially
for multi-species models. Even in the single species case, the better regularity of the integrated
scheme sometimes can allow the numerical integrator to perform longer steps in time, leading to
higher performance.

3.2 Examples

In this section we show some peculiar examples that demonstrate the feasibility of the numerical
computation with both schemes.

Example 3.1. We begin with an example with a single species, a compactly supported mobility
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Figure 4: example of artifacts in a model with three species. Notice that near x = 1 there is the
development of oscillations caused by the sampled interaction between the orange and the green
species. These oscillation amplify and the solution becomes completely untrustworthy after this
time. A way to remedy is to use the integrated interaction scheme, which is better behaved. The
third picture shows the solution at the same instant in time solved with the same number of
particles according to the integrated scheme.

Figure 5: sampled interaction velocity field (in blue) and integrated interaction velocity field.
The particles follow a Gaussian distribution, the interaction is attractive. As it can be seen, the
sampled interaction is discontinuous in correspondence of every particle.

which enforces ρ ≤ 1 and time-dependent potentials. The initial density is discretized with 100
equally spaced particles in [−1,−1/2] and 100 particles in [0, 1/2]. In the plot only the trajectory
of one every 8 particles is displayed.

V (t, x) = −(x− sin(3t))3, v(ρ) = (1− ρ)+,

W (t, x) = −5 sin(4t)2 log(|x|+ 1), ρ0 = 1[−1,−1/2] + 1[0,1/2].
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Example 3.2. In this example we consider a strictly positive mobility v(ρ) = 1/(1 + ρ) which
satisfies (1.8). Consistently with Proposition 2.6, the density does not blow up in finite time,
but can grow arbitrarily large as time goes on. We plot the trajectories, showing the particles
collapsing to the origin, and the density at different times on a logarithmic scale. The potentials
are

V (t, x) = 0, W (t, x) = 5 log(|x|+ 1),

while the initial density is a perturbation of 1
21[−1,1] given by particles at position

xi = 2i−N
N

+ 0.01 sin
(

202i−N
N

)
.

Example 3.3. We compare the sampled and integrated schemes with time-dependent potentials,
non-vaninishing mobility and 30 particles.

V (t, x) = −(x− sin(3t))3, v(ρ) = 1/(ρ+ 1)2,

W (t, x) = sin(2πx)/(2πx), ρ0 = 1[−1,−1/2] + 1[0,1/2].

The two sets of trajectories seem to coincide to a much higher degree than suggested by (2.7),
because that follows from a pessimistic estimate applied to each interval [xi−1, xi], whereas in
reality compensations between consecutive intervals can occur. For example, in very regular
situations with monotone potentials one could expect U̇ − Ū to be of order 1/N2 instead of 1/N .
In the following picture we kept the number of particles extremely low otherwise the trajectories
would have been indistinguishable.
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Example 3.4. In the same setting as the previous example, we now compare the quality of the
solution with different number of particles. In the following picture we plot the trajectories of
31 particles in red, and one every 8 particles out of a total of 241 particles in blue, in order to
demonstrate that the “low-quality” solution with 31 particles already captures quite well the
behavior of the entropy solution.

Example 3.5. We propose an example in which the entropy solution is explicit (in particular
it is stationary) and allows us to compare our new scheme with the one described in [DFR19].
In order to fall inside the applicability domain of their scheme, we need to consider V = 0, a
regular attractive W and a compactly supported v. We consider

V (t, x) = 0, v(ρ) = (1− ρ)+,

W (t, x) = log(|x|+ 1) |x|
|x|+ 1 , ρ0 = 1[−2,−3/2] +[3/2,2] .

In the limit as N →∞, both schemes recover the correct stationary solution ρ(t) = ρ0. However,
while our new scheme correctly captures it with any number N , the old scheme (pictured in red
in the left column) merges in finite time the two peaks of the density into a single bump, with a
time of collapse which becomes increasingly large as N →∞.
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Example 3.6. In this last example we showcase an application of the integrated scheme to
a multi-species model of 2 populations that cross each other in opposite directions. With the
notation of (1.12), we use S = 2 and

V1(t, x) = 2, W1,1(t, x) = W2,2(t, x) = 2(e|x|/4 + e−2|x|),
V2(t, x) = −2, W1,2(t, x) = W2,1(t, x) = −2 log(|x|+ 1),

v1(ρ1, ρ2) = (2− ρ1 − ρ2/2)+, v2(ρ1, ρ2) = (2− ρ2 − ρ1/2)+,

ρ1(0) = 1[−2,−3/2] + 1[−1,−1/2], ρ2(0) = 1[1/2,3/2].

This model describes a density ρ1 that wants to travel to the right, a density ρ2 that wants to
travel to the left; the mutual interaction is repulsive, whereas the self interaction is repulsive at
small scales and attractive at long range.
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In: Matematicheskĭı Sbornik 81.123 (1970), pp. 228–255. mr: 0267257.

[RN17] C. Rackauckas and Q. Nie. “Differentialequations.jl–a performant and feature-rich
ecosystem for solving differential equations in julia”. In: Journal of Open Research
Software 5.1 (2017).

[RS03] R. Rossi and G. Savaré. “Tightness, integral equicontinuity and compactness for
evolution problems in Banach spaces”. In: Annali della Scuola Normale Superiore di
Pisa - Classe di Scienze 2.2 (2003), pp. 395–431. mr: 2005609. url: http://www.
numdam.org/item/ASNSP_2003_5_2_2_395_0/.

[Str21] F. Stra. ConservationLawsParticles.jl – Particle methods for 1D conservation laws.
2021. url: https://github.com/FedericoStra/ConservationLawsParticles.jl.

[Vil08] C. Villani. Optimal Transport: Old and New. Grundlehren der mathematischen Wis-
senschaften. Springer Berlin Heidelberg, 2008. isbn: 9783540710509.

[Vol67] A. I. Vol’pert. “The spaces BV and quasilinear equations”. In: Mathematics of the
USSR-Sbornik 2.2 (1967), pp. 225–267. issn: 0025-5734. doi: 10.1070/SM1967v002n02ABEH002340.
url: https://iopscience.iop.org/article/10.1070/SM1967v002n02ABEH002340/
meta.

42

https://doi.org/10.3934/dcds.2020010
https://www.aimsciences.org/article/doi/10.3934/dcds.2020010
https://doi.org/10.1142/S0218202518400067
https://www.worldscientific.com/doi/abs/10.1142/S0218202518400067
https://www.worldscientific.com/doi/abs/10.1142/S0218202518400067
https://doi.org/10.3934/krm.2020048
https://doi.org/10.3934/krm.2020048
https://www.aimsciences.org/article/doi/10.3934/krm.2020048
https://www.aimsciences.org/article/doi/10.3934/krm.2020048
https://doi.org/https://doi.org/10.1016/j.na.2022.112904
https://www.sciencedirect.com/science/article/pii/S0362546X22000785
https://doi.org/10.3934/dcds.2003.9.1081
http://www.ams.org/mathscinet-getitem?mr=0267257
http://www.ams.org/mathscinet-getitem?mr=2005609
http://www.numdam.org/item/ASNSP_2003_5_2_2_395_0/
http://www.numdam.org/item/ASNSP_2003_5_2_2_395_0/
https://github.com/FedericoStra/ConservationLawsParticles.jl
https://doi.org/10.1070/SM1967v002n02ABEH002340
https://iopscience.iop.org/article/10.1070/SM1967v002n02ABEH002340/meta
https://iopscience.iop.org/article/10.1070/SM1967v002n02ABEH002340/meta

	Introduction
	Deterministic particle schemes
	Main results
	Outline of the article
	Future perspectives

	Theoretical analysis
	A priori estimates and compactness
	Existence, uniqueness and convergence to the entropy solution

	Numerical simulations
	Implementation
	Examples

	References

