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Communication
A Multiresolution Domain Decomposition Preconditioner for the MoM

Solution of Multiscale Complex Structures
V. F. Martín , D. M. Solís , J. M. Taboada , and F. Vipiana

Abstract— In this communication, we present the combination of a high
scalability implementation of the multibranch–multiresolution precondi-
tioner with the domain decomposition method for the electromagnetic
analysis of geometrically complex structures with different levels of
multiscale features and discretized with a possible nonconformal mesh.
Finally, a numerical experiment is shown to illustrate the great efficiency
of the proposed approach for the solution of large multiscale objects.

Index Terms— Domain decomposition method (DDM), method of
moments (MoM), multibranch Rao–Wilton–Glisson (MB-RWG) basis
functions, multilevel fast multipole algorithm (MLFMA), multiresolution
(MR) preconditioner.

I. INTRODUCTION

In the context of computational electromagnetics (CEM), surface
integral equation (SIE) methods based on the method of moments
(MoM) [1] constitute a powerful tool that has become indispensable
for simulation and engineering of a wide range of applications, from
advanced antenna design [2], [3] to electromagnetic compatibility
and interference (EMC/EMI) [4], radar cross section (RCS) [5], and
stealth technologies [6], or cutting-edge nanoscience applications [7],
among others. SIE methods are especially appealing in the case of
large-scale radiation and scattering problems, as they only require
the parameterization of 2-D boundary surfaces, rather than the
3-D structure and embedding space required in other volumetric
approaches. Although they pose dense and large matrix systems in
the case of large-scale problems, the use of iterative fast solvers,
such as the multilevel fast multipole algorithm (MLFMA) and derived
algorithms [8], [9], enables the efficient solution of such problems.

However, when SIE methods are applied to the solution of realistic
structures, geometric multiscale and subsequent ill-conditioning of
matrix systems often come into play, dominating the simulation
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scenario and slowing down convergence. In these cases, fast iterative
solvers usually fail to reach an accurate solution in a reasonable time,
and the need for preconditioners to speed up iterative convergence
becomes evident. Among many variants available, physics-based
preconditioners relying on quasi-Helmholtz decompositions [10], [11]
or the Calderón identities [12], [13] have proven good success.
Alternatively, algebraic preconditioners, such as incomplete lower
unitriangular (ILU) upper triangular, sparse approximate inverse
(SPAI), or block-Jacobi [14], [15], [16], [17], [18], also improve con-
vergence considerably. In the case of large-scale problems including
multiscale features, Schwarz preconditioners based on the domain
decomposition method (DDM) [4], [19], [20], [21], [22] stand out
for their significant improvement in convergence, also bringing
additional advantages in handling such complex problems. These
preconditioners can be categorized as algebraic preconditioners, since
they estimate an inverse of the matrix system, and also as physics-
based preconditioners, since they allow to separate the physics of the
different subsystems that make up the whole problem to adequately
solve each one using the method best tailored to their particular
features.

Nonetheless, despite the use of outperforming preconditioners, the
effective solution of the increasingly complex high-fidelity models
that are demanded by the industry today must be undertaken with
extreme care. It is well known that the judicious selection of the
geometric partition into subdomains plays a fundamental role in the
performance of DDM [6], [23]. Choosing many small subdomains
can lead to fast local problems, but slow convergence of the external
iterative algorithm. On the other hand, choosing larger subdomains
will improve the effectiveness of the preconditioner and, thus, the
external convergence, but at the expense of a complexity shift toward
local solvers, which will face medium- to large-sized ill-conditioned
problems. A representative example is the case of a supporting
structure containing large yet complex subsystems, with details at
multiple scales (e.g., the case of large antenna arrays). Another case
is the presence of large cavities that, even if they are geometrically
simpler, support strong multiple-bounce interactions. In these and
other similar cases, these subsystems must be treated as a whole,
seeking not to artificially break the strong internal local interactions.
A parallel goal is to isolate as far as possible these strong interactions
from the external iterative algorithm, which in this way can be
focused on finding the global solution without dwelling on the
internal details of the subdomains.

As a result of all the above, the incorporation of efficient pre-
conditioners to the local solvers then becomes essential to improve
the convergence in the local stage, resulting in a better overall
performance of the DDM approach. Among the different precon-
ditioning alternatives, the multiresolution (MR) preconditioner [11],
[24], [25] emerges as a strong candidate to be integrated into a
domain decomposition scheme to speed up the solution of the local
subdomains. This preconditioner introduces a set of multilevel basis
functions to discretize the problem while keeping the different scales
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of variation of the solution [26], [27], improving the conditioning
of the original system [28] through a multilevel quasi-Helmholtz
decomposition in which the unknown current is separated into its
solenoidal and nonsolenoid parts. The MR preconditioner has proven
to be a good choice to improve the convergence in multiscale prob-
lems [24], [29], especially in the case of electrically medium-sized
geometries, and it can be efficiently embedded into the MLFMA–fast
Fourier transform (MLFMA-FFT) framework as a multiplicative pre-
conditioner. In addition, the MR preconditioner is the only multilevel
quasi-Helmholtz decomposition able to find automatically topological
loops in nonconformal meshes [30].

In this communication, we propose to integrate the multiresolu-
tion preconditioner into the DDM to derive an efficient multiscale
fast solver capable of addressing large-scale problems including
medium-sized complex subsystems exhibiting deep multiscale nature.
In addition, the multibranch Rao–Wilton–Glisson (MB-RWG) basis
and testing functions [30], [31], [32], [33] are applied. A numerical
example is presented to demonstrate the versatility and capability
of the proposed method for multiscale electrically large problems.
Preliminary results with a theoretical example consisting of an array
antenna were recently presented in [34], showing the capabilities of
the proposed approach when dealing with nonconformal multiscale
objects using the electric field integral equation (EFIE). In this work,
the formulation is extended to address complex structures exhibiting
multiple levels of detail at different scales, and a combined field
integral equation (CFIE)-EFIE (combined EFIEs) formulation is con-
sidered for solving closed and open surfaces. Then, the performance
of the method is examined through the solution of a high-fidelity
realistic model of a satellite with several communication systems, thus
demonstrating the capabilities of the proposed scheme for solving
cutting-edge applications demanded by the industry. Furthermore, the
convergence solution is compared with two efficient preconditioners,
commonly applied in the context of a DDM approach.

The rest of this communication is organized as follows. The
background of the formulation is briefly reviewed in Section II,
setting the notation. In Section III, the formulation of the proposed
MR-DDM method is discussed in detail. A numerical result analyzing
a challenging problem is presented in Section IV. Finally, some
concluding remarks are drawn in Section V.

II. BACKGROUND

We consider the electromagnetic scattering of a perfect electric
conductor (PEC) body in a homogeneous background. We define
J(r′) as the equivalent electric current density on the body surface.
The tangential EFIE (T-EFIE) and the normal magnetic field integral
equation (N-MFIE) can be obtained by applying the equivalence
principle to the total electric and magnetic fields as follows:

T-EFIE: ηL {J}tan = Einc
tan (1)

N-MFIE: n̂ × K {J} +
1
2

J = n̂ × Hinc (2)

where η is the intrinsic impedance of the background, n̂ is the unit
vector normal to the surface, and Einc and Hinc are the incident
electric and magnetic fields, respectively. The integro-differential
operators L and K are defined as

L {J} = jk
∫∫

S
J(r′)g(r, r′)d S′

+
1
jk

∇

∫∫
S

J(r′)∇ ′g(r, r′) d S′ (3)

K {J} = PV
∫∫

S
J(r′) × ∇

′g(r, r′) d S′ (4)

where k is the wavenumber; r and r′ are the observation and
source point, respectively; ∇

′ denotes the divergence in the source
coordinates; and PV denotes the principal value of the integral in (4).
The homogeneous Green’s function g(r, r′) is defined as

g(r, r′) =
e− jk|r−r′

|

4π |r − r′|
. (5)

In order to derive a well-tested formulation, we combine (1)
and (2), obtaining the CFIE as

CFIE = α
T-EFIE

η
+ (1 − α)N-MFIE (6)

where 0 < α < 1 (α = 0.5 in this work) is a parameter to balance
the weight of the EFIE and MFIE equations.

The MoM procedure is applied to (6), expanding the equivalent
electric current densities into a sum of known vector basis functions
fn as

J ∼=

N∑
n=1

Infn (7)

where In are the unknown complex coefficients. In (7), both
RWG and MB-RWG bases are used, allowing nonconformal tri-
angular meshes at any point of the geometry, including the
tear contours between adjacent subdomains, which thereby can
be independently generated and meshed. Then, applying the
Galerkin testing procedure, we obtain a dense matrix system as
follows:

[Z ] [I ] = [V ] (8)

where

[Z ] = α
[

ZEFIE
]

+ (1 − α)
[

ZMFIE
]

(9)

with
[
ZEFIE] and

[
ZMFIE] equal to N × N matrices, contain-

ing the coupling between all the basis and testing functions for
the EFIE and MFIE formulations, respectively, and α is the pon-
deration factor, which is selected equal to 0.5 in this work to
optimize the tradeoff between conditioning and accuracy. In (8),
[I ] is an N -column vector collecting the unknown coefficients In
of the current expansion (7), and [V ] is the N -column excita-
tion vector, closely related to the incident fields originated by the
sources.

III. FORMULATION

Let us start with the matrix system of linear equations posed in (8)
and (9). The original problem can be decomposed into a collection of
K subdomains, Dk , with k = 1, . . . , K , depending on the geometrical
features. Then, an additive Schwarz DDM preconditioner [14] can
be applied for the solution of the previous matrix system as a
left-preconditioner along the solutions of the individual subdomains
as follows:

[P]−1 [Z ] [I ] = [P]−1 [V ] (10)

where [P] is the DDM block diagonal preconditioner, which can be
written as

[P] =


[
Z1
]

0 . . . 0
0

[
Z2
]

. . . 0
...

...
. . .

...

0 0 . . . [Z K ]

 . (11)

Each diagonal block
[
Pk
]

formally represents the impedance matrix
of the respective subdomain Dk , i.e.,

[
Pk
]

=
[
Zk
]
.



2988 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 3, MARCH 2024

As detailed in [4], the application of the DDM preconditioner
to (10) involves a global matrix-vector product (MVP) represent-
ing the global coupling between subdomains and a multiplication
by the block diagonal matrix [P]−1, denoting the local solution
of the individual subdomains. These operations are repeated at each
iteration of the global (outer) iterative algorithm. Although formally
stated with the inverses of the block matrices, the preconditioning
local problems of each outer iteration can be solved by the method
considered most appropriate in each case. Considering the above, the
subdomain problems can be written at each outer iteration as[

Zk
] [

Ĩk
]

=
[
Ṽk
]

(12)

where
[
Ĩk
]

is the local solution and
[
Ṽk
]

is the local right-hand side
(RHS), obtained as the global MVP restricted to the Dk subdomain.

Achieving good convergence with the above preconditioner
demands that normal current continuity is satisfied between subdo-
mains in contact. One way to improve this continuity is through
the concept of domain enlarging, using the so-called tear-and-
interconnect DDM approach [4]. With this technique, the local
subdomains solved at each outer iteration step are enlarged to
incorporate the near-field current flowing across the tearing contours.
The enlargement is done by including “flaps” [4] of a quarter to a
half wavelength width, which indeed belongs to the adjacent touching
subdomains. The reader interested in further application details of
DDM can refer to [4] and [21].

A. Local Systems Preconditioning

We focus now on the solution of the local problems stated in (12).
To simplify the notation, hereafter, we remove the local indexes
denoting subdomains. Hence, without loss of generality, we can
rewrite (12) as

[Z ] [I ] = [V ] . (13)

Notwithstanding, everything that follows in this section applies to the
independently solved local system in each subdomain Dk .

To expedite (and in some cases enable) the solution of the local
matrix system in (13), the MR preconditioner [11] is applied to
project the original matrix system into a new function subspace that
improves the eigenvalues’ distribution. The key point of this effective
preconditioner is the application of a quasi-Helmholtz decomposition
on the basis of a multilevel scheme. In this work, this decomposition
is allowed to start from a nonconformal triangular mesh. The com-
plete set of original RWG and MB-RWG bases is transformed into
a set of multilevel bases, generalized basis functions (gF). At each
level-l, l = 1, . . . , L , the corresponding gFl values are split to
generate the solenoidal and nonsolenoidal basis functions, called
latter MR basis, by means of a procedure that automatically includes
all the topological solenoidal functions [35]. The above scheme is
applied recursively down to the quasi-Nyquist cell-size level (level-
L), leaving (gFL ) defined at the last level. The obtained multilevel
set of basis functions (MR functions of levels l = 1, . . . , L − 1 and
gFL ) spans the same space of the original bases [11].

The MoM system matrix can be expressed in the new space of
functions as

[
Ẑ
]
= [D] [T ] [Z ] [T ]T [D]=

 [
ẐMR

] [
ẐMR,gFL

][
ẐgFL ,MR

] [
ẐgFL

]  (14)

where the matrix [T ] is the change-of-basis matrix, collecting the
coefficients of the new basis functions written as a linear combination
of the initial RWG and MB-RWG basis functions. The new basis
functions are grouped in two different blocks, including the MR basis

functions defined at the lower levels and the gFs defined at the last
level as

[T ] =

[
[TMR] ,

[
TgFL

]]T
(15)

where [TMR] is the subblock describing the set of NMR basis
functions defined at lower levels and

[
TgFL

]
is the subblock with the

set of NgFL functions at the coarsest level, being NMR + NgFL = N ,
i.e., the total number of unknowns.

In (14), [D] is a diagonal preconditioner whose elements are
formally given by[

Di i
]

=
1√[

Ti
]

[Z ]
[
Ti
]T , i = 1, . . . , N (16)

with
[
Ti
]

the i th row of [T ]. Note that although formally written like
above, the diagonal preconditioner can be obtained directly from the
diagonal of the near-field matrix in the context of a local MLFMA
solution of the subdomain.

To further improve the conditioning of the new matrix system,
an incomplete LU preconditioner is applied to the matrix block
corresponding to the gFs [i.e.,

[
ẐgFL

]
in (14)]. Considering all the

above, the preconditioned problem can be written as[
ẐMR-LU

] [
Î
]

=

[
V̂ MR-LU

]
(17)

with [
ẐMR-LU

]
=

 [
ẐMR

] [
ẐMR,gFL

][
ẐgFL ,MR

]
0


+

(
0 0

0 [LU ]−1
[

ẐgFL

]) (18)

[I ] = [T ] [D]
[
Î
]

(19)[
V̂ MR-LU

]
=

(
[1] 0
0 [LU ]−1

)
[D] [T ] [V ] (20)

where [LU ]−1 is the inverse of the incomplete LU factorization of
the matrix block corresponding to the gFL only.

Finally, to speed up the evaluation of the global and local MVPs
required in (10), a hybrid MPI/OpenMP parallel implementation of
the MLFMA-FFT is applied in synergy with the DDM scheme [4].

IV. NUMERICAL RESULTS

A realistic numerical problem is presented to demonstrate the
efficiency and versatility of the proposed approach to solve large
problems with complex subsystems exhibiting local deep-multiscale
features. All the simulations are performed with an AMD EPYC
7H12 64-CoreProcessor computing server with 4-TB memory.

Let us consider the characterization of the X-band system mounted
on a morphed complex satellite, as shown in Fig. 1. The dimensions
of the satellite are approximately 20 m length, 7-m beam, and
5 m height (800λ × 280λ × 200λ at the working wavelength, λ,
at 12 GHz). The detailed model of this structure includes four
different communication systems, as shown in Fig. 1. The X-band
and Ku-band communication systems consist of four horn antennas
supported by two external arms (shown in the top-left corner of
Fig. 1) whose beam is directed by five reflectors. The Ka-band
communication system consists of a complex array of horn antennas,
which is shown in the bottom-right corner of Fig. 1. The model is
completed with two solar panels and the main structure supporting
the described elements.

The DDM is applied in conjunction with the proposed MR-LU
preconditioner to get an accurate prediction of the radiation at 12 GHz
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Fig. 1. Partition into subdomains of the satellite, highlighting some
geometrical details.

of the X-band system 1 (see Fig. 1). A total of 60 267 853 unknowns
(with 2160 MB-RWG) are required to mesh the entire geometry,
which exhibits deeply multiscale features, including nonconformal
discretization (shown in the top-right inset of Fig. 1), with a disparate
mesh size ranging from λ/20 on smooth surfaces to λ/1350 close
to the Ka-band antennas. This disparity in the mesh size results
in poor conditioning, which in turn leads to lack of convergence
unless proper simulation methodologies are applied. The excita-
tion consists of a delta-gap voltage on the feed terminals of the
antenna.

For the analysis of this challenging structure, the entire problem
is partitioned into ten subdomains (also shown in Fig. 1). This
partitioning is done according to its natural features:

1) two large subdomains corresponding to the complete solar
panels, far enough from the excitation domain, where it is
assumed a smooth variation of the electric currents and fast
convergence;

2) four subdomains for the four aperture antennas belonging to
the different communication systems on the satellite;

3) two subdomains for the support arms of the upper
communication systems, including its horn antennas;

4) one subdomain for the main structure of the satellite;
5) one subdomain for the array antenna.
Aiming for a global residual error below 10−3, the subdomains are

solved using ten independent MLFMA-FFT solvers, with six levels
for the support arms subdomains, five levels for the array antenna
subdomain, and eight levels for the rest, setting a local residual
error target of 10−3. The intrinsic complexity of this structure is
exacerbated by the presence of the four communication systems,
especially the large array with 90 horn antennas, shown in the
right insets of Fig. 1. The strong mutual coupling between elements
prevents, in this case, the use of 90 equal small MoM subdomains.
Although this would allow to take advantage of the repetition pattern,
relieving local calculations and memory consumption, it would be at
the expense of the lack of convergence of the global iterative solver.
Conversely, considering the entire array antenna as a single large sub-
domain is not without its drawbacks. The strong interaction between
elements, its multiscale nature, and the use of nonconformal meshes
will cause slow convergence, becoming a major bottleneck unless
specific preconditioning techniques are applied. In this case, the
proposed MR-LU technique is applied to speed up the solution of the
subdomains.

We first analyze the residual error of the local iterative solution
(at a given DDM iteration) of this horn array antenna subdomain,
which is expected to give the worst convergence, as mentioned
above. Fig. 2 shows the convergence performance (both in terms
of iterations and in terms of wall-clock time) using the proposed

Fig. 2. Convergence performance of the inner GMRES when solving one
outer GMRES iteration of the array of antennas domain of the satellite using
the diagonal, the ILU, the SPAI, and the proposed MR-LU preconditioners in
terms of (a) iterations and (b) wall-clock time.

Fig. 3. Convergence performance of the outer GMRES when solving the
EMC problem of the satellite using the diagonal, the ILU, the SPAI, and
the proposed MR-LU in the local solver and using the MLFMA-MR-LU as
global solver; ϵ is the threshold of the residual error in the local solvers.

MR-LU preconditioner, compared to the diagonal, the SPAI [17],
[18], and ILU [14] preconditioners built from the MLFMA near-
field matrix. It can be observed that the MR-LU preconditioner
greatly reduces the solving time, allowing the effective solution of
this challenging subdomain in the framework of the DDM iterative
solution.

Next, we study the performance of solving the whole problem
with DDM, by locally applying the three preconditioners men-
tioned in Fig. 2. Fig. 3 shows the comparison of the total time
to solve by letting the local solvers to reach the target residual
error of 10−3. A high reduction in solution time is observed with
the application of the MR-LU preconditioner to local solutions,
posing an accurate solution in less than 20 h. This is in contrast
with the case of using diagonal local preconditioners, which would
need more than 400 h, and the case of using ILU preconditioners,
which would require more than 100 h to reach the final result.
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Fig. 4. Real part of the equivalent electric surface current distribution
(dBµA/m) on satellite surfaces provided by the SIE-DDM approach.

TABLE I
COMPUTATIONAL TIMES AND PEAK MEMORY WHEN COMPUTING

THE SETUP STEPS FOR THE DIFFERENT PRECONDITIONERS

In the case of using the SPAI preconditioner, the convergence
stagnates.

For a deeper comparison of the three configurations in terms of
time and performance, we restrict the iterative solution of the local
solvers by setting a residual error threshold of 5 × 10−2 for the
subdomains belonging to antennas. The results are also shown in
Fig. 3, where, although a similar Krylov exterior convergence might
be expected for all cases of local preconditioners, the poorer residual
error exhibited by diagonal and ILU impairs the outer Generalized
Minimal Residual Method (GMRES) convergence. This ruins the
accuracy of the solution, turning the DDM with the proposed MR-LU
preconditioner the only one of the considered approaches capable
of adequately solving this challenging problem in a reasonable
time.

For the sake of completeness, we include the convergence
for the solution of the satellite applying the MR-LU precondi-
tioner to the whole structure via the MLFMA solver (labeled as
MLFMA-MR-LU); it exhibits a slower convergence. The compu-
tation times and peak memory for calculating the initialization for
all the considered methods are shown in Table I, revealing that
the DDM-MR-LU outperforms the other methods in both time and
memory.

Finally, Fig. 4 shows the real part of the equivalent electric surface
current distribution evaluated by applying DDM with the proposed
MR-LU preconditioner.

V. CONCLUSION AND PERSPECTIVES

In this communication, we presented the efficient combination of
the MR preconditioner with the DDM to obtain the accelerated solu-
tion of complex multiscale domains discretized with nonconformal
meshes in the local stage. This strategy equips the local solvers
with an efficient tool to address medium-sized complex subdomains
exhibiting multiscale features, ensuring the optimal convergence of
the DDM in real-life challenging problems. The efficiency and
accuracy of the proposed methods were demonstrated through the
solution of a realistic radiation numerical example in the field of
space.

The next step of the work will be to extend the proposed method
also to finite dielectric structures combined with metal parts.
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