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a b s t r a c t

The application of shift cell technique is presented and discussed for periodic porous media
described with equivalent fluid models: as it can be found in literature, it consists in a
reformulation of classical Floquet-Bloch (F-B) conditions, in which the phase shift of the
boundary conditions, related to wave propagation, is integrated into the partial derivative
operator. Consequently, the periodicity is included in the overall behavior of the structure,
while continuity conditions are imposed at the edges of the unit cell. Its major advantage
stands in allowing the introduction of a generic frequency dependence of porous material
behavior, through the resolution a quadratic eigenvalue problem, providing an efficient
way to compute the dispersion curves of a porous material modeled as an equivalent fluid.
A validation and a computational cost comparison are performed between the shift cell
technique and the classical F-B approach, pointing out that the first can provide, among
its other advantages, a sensible computational time reduction for this kind of analyses.
The derivation of the equivalent acoustic properties of the unit cell from its dispersion
characteristics is also investigated. To this aim, group velocity matrix formulation and a
branch-tracking algorithm are described. Some test cases are used for validating the pro-
posed methodology.
Crown Copyright � 2020 Published by Elsevier Ltd. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The inclusion of vibroacoustic treatments at early stage of product development, through the use of porous media with
periodic inclusions, is a powerful strategy for the achievement of lightweight sound packages and represents a convenient
solution for manufacturing aspects [1].

The main advantage of designing sound packages with periodic arrangements is that they can provide a combination of
absorption effects, resonance effects and wave interference effects. These configurations can address different applications in
transportation (aerospace, automotive, railway), energy and civil engineering sectors, where both weight and space, as well
as vibroacoustic comfort, still remain as critical issues. Indeed, although porous materials are commonly used for vibroacous-
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Nomenclature

Nomenclature
c0 sound speed in the interstitial fluid
Cg group velocity
E total energy
Ek kinetic energy
Ep potential energy
I flow of energy
j imaginary unit
K bulk modulus
k wave number in the material
k0 wave number in the interstitial fluid
m mass
p pressure
p� conj(p)
p0 amplitude of the incident pressure
r thickness of the unit cell
S surface interested by incident pressure
s side length
v instantaneous local velocity
vE energy transport speed
x; y; z space variables
Z0 characteristic impedance of the interstitial fluid
Zc characteristic impedance of the material
Zs surface impedance of the material
C domain boundary
h;/ angles of incidence
q density of the material
q0 density of the interstitial fluid
s1 transmission coefficient
X poro-elastic volume
x angular frequency
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tic applications, they suffer from a lack of absorption at low frequencies compared to their efficiency at higher ones; this
difficulty is usually overcome by multi-layering [2]. However, while reducing the impedance mismatch at the air-material
interface, the efficiency of such devices relies on the allowable thickness [1].

A more efficient way to enhance the low frequency performances of sound packages consists in embedding periodic
inclusions in a porous layer [3,4] in order to create wave interferences or resonance effects that may play a positive role
in the dynamics of the system. Therefore, numerical tools to properly design sound packages are more and more useful.

The classical approach, known as Floquet-Bloch (F-B) theory, is a branch of the theory of ordinary differential equations
relating to the class of solutions to 1D periodic linear differential equations of the form _x ¼ A tð Þx with A tð Þ a piecewise con-
tinuous periodic function with period T. Floquet’s theorem, due to Gaston Floquet [5], gives a canonical form for each fun-
damental matrix solution of this common linear system, through a coordinate change that transforms the periodic system to
a traditional linear system with constant, real coefficients. In solid-state physics, the analogous result, extended to 3D sys-
tems, is known as Bloch’s theorem [6]. In the literature dealing with wave propagation problems in mechanical systems, the
theory is referred to as Floquet-Bloch theory.

In physical sciences and engineering, dispersion relations describe the effect of dispersion in a medium on the properties
of a wave traveling within that medium, and therefore they offer a good perspective to explain the wave field behavior inside
bodies, relating the wavelength or wavenumber of a wave to its frequency.

Dispersion may be caused either by geometric boundary conditions or by interaction of the waves with the transmitting
medium and, in its presence, wave velocity is no longer uniquely defined, giving rise to the distinction of phase velocity and
group velocity.

For instance, the Helmholtz equation is a known example of equation describing the spatial behavior: there, the physical
periodic structure of the studied object translates into spatial periodicity of its coefficients. Therefore, the F-B theory can be
applied to obtain the dispersive properties of different mechanical periodic systems, reducing the problem to the calcula-
tions performed in the so-called unit cell under to certain specific boundary conditions derived from the F-B theory itself [7].

In order to develop efficient numerical techniques to handle the problem, the shift cell operator technique is herein con-
sidered. It allows the description of the propagation of all existing waves from the description of the unit cell through the
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resolution of a quadratic eigenvalue problem. It belongs to the class of the k xð Þ (wave number as a function of the angular
frequency) methods, that allow computing dispersion curves for frequency-dependent problems, instead of using the clas-
sical x kð Þ (angular frequency as a function of wave number) that leads to non-linear eigenvalue problems. Similar tech-
niques, which use a modified F-B approach in order to handle a k xð Þ problem, can be found in literature [8,9].

In particular, compared to the research performed by Wang et al. [10,11], in the present work the k xð Þ problem (herein
addressed as ‘‘shift cell”) is specifically derived for porous materials modeled as equivalent fluids. If one considers a foam,
excited by an acoustic load at a frequency much higher than the phase decoupling one, with a stiffness (or a weight) much
greater than the one of the air, the material frame can be considered as rigid and motionless [12]. No structure-borne waves
travel into the foam, since its frame is considered as perfectly rigid; thus, only the pressure is taken into account in this for-
mulation, while the displacement of the solid part is neglected. Therefore, the porous medium with motionless skeleton can
be replaced by the homogeneous fluid layer without modifying the reflected field in the external medium [2]. Johnson-
Champoux-Allard (JCA) semi-phenomenological model [13,14] constitute a good compromise, between empirical models
(that are simpler and less accurate) and Biot formulation [15] (that requires a completely different formulation, with more
parameters and a sensible increase in terms of computational cost), which is commonly used to describe the acoustic behav-
ior of a wide range of foams whose skeleton can be cosidered as motionless.

Furthermore, compared to [10], the JCA model used here has a more precise description of the physical behavior for rigid-
framed foams: the formulation developed here is not restricted to 1D, and it is provided in details for the Finite Element
implementation.

In this context, the characterizing parameters of the system, such as the density q and the bulk modulus K, and therefore
the wave number k, depend on frequency; as a consequence, for the sake of the computation of dispersion properties of peri-
odic porous media, the switch between the classicalx kð Þ and the k xð Þ approaches is not trivial, and would normally require
a powerful non-linear solver. Through the shift cell, instead, in Section 2 the Helmholtz equation is re-formulated and
adapted in order to obtain a quadratic eigenvalue problem, without limitations on the (compressional or shear) nature of
the waves to study, as well as on the geometry and inhomogeneities of the system. Moreover, as shown in Section 3, this
technique shows interesting computational advantages compared to the classical Floquet-Bloch approach, while in Section 4
and Section 5 it is also presented an algorithm that allows the derivation of transmission loss performances of a periodic
porous unit cell directly from the dispersion properties.

Going more into details, the shift cell method consists in a reformulation of classical F-B conditions, in which the phase
shift of the boundary conditions, together with the exponential amplitude decrease related to wave propagation, are inte-
grated into the partial derivative operator; consequently, the periodicity is included in the overall behavior of the structure,
while continuity conditions are imposed at the edges of the unit cell. Hence, this approach avoids condensation or non-linear
eigenvalue solver, which are required by other ones.

This technique has been successfully applied for describing the mechanical behavior of periodic structures embedding
visco-elastic materials [16,17] or piezoelectric materials [18,19]. Here it is proposed an extension to equivalent fluid models
of porous materials, which makes possible to overcome the limits of existing approaches in order to obtain a device whose
frequency efficiency outperforms existing designs.

It should be pointed out that a homogeneous 3D unit cell with a 2D periodicity essentially represents an infinite layer
with a given thickness; anyway in this paper, in order to keep a consistent nomenclature, this configuration is still addressed
as ‘‘homogeneous case” or ‘‘homogeneous unit cell”. Herein, the behavior of the porous material is described by JCA model,
but one can identically use any other equivalent fluid model [20–22].

Then, starting from the complex wave numbers, obtained as an output from the quadratic eigenvalue problem, it is shown
that it is possible to compute an equivalent transmission loss curve for an excitation at normal incidence; the comparison
with results obtained using classical methods, shows a very good agreement.

The aim of this paper, therefore, is to introduce some enhancements to the state of the art of the shift cell technique
applied to equivalent fluid models.
2. Shift cell operator technique

In this paper, a porous medium with a periodic arrangement of perfectly rigid inclusions is considered. The behavior of
the foam is described by an equivalent fluid model in the frequency domain, i.e.:
q
x2

K
pþ Dp ¼ 0; ð1Þ
where p ¼ p x;xð Þ is the acoustic pressure, x ¼ x; y; zð Þ is the coordinate vector, x is the angular frequency, q ¼ q xð Þ is the
equivalent fluid density and K ¼ K xð Þ is the bulk modulus [2]. The periodicity is described by q x� rnð Þ � q xð Þ ¼ 0 and
K x� rnð Þ � K xð Þ ¼ 0, 8x 2 X, where n is a vector of integers normal to the face considered, r ¼ r1; r2; r3ð Þ is a matrix con-
taining the three vectors defining the cell periodicity directions and lengths, and X is the domain of interest. Eq. (1) applies
everywhere except on the discontinuity surfaces, where appropriate boundary conditions apply. When finite densities and
bulk moduli are used, these are the continuity conditions stated on pressure and normal velocity; when rigid inclusions are
considered, the normal velocity on the inclusion surfaces vanishes. The classical F-B approach, that here is recalled in its 1D
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formulation but can easily be generalized for 3D applications, provides a strategy to obtain a set of solutions of a linear ordi-
nary equations system. Only the solution inside a period is needed, verifying that:
f̂ xþ Lð Þ ¼ bF f̂ xð Þ: ð2Þ
where f̂ is a solution of Eq. (1) and, according to the classical nomenclature, bF ¼ ekF L is called Floquet multiplier, while kF is
the complex Floquet exponent. In addition, Floquet found that the solution at any point can be factorized in the following
two terms:
f̂ xð Þ ¼ f xð ÞekF x; ð3Þ

where f xð Þ is a periodic function, that represents the eigenvectors and carries the periodicity L of the coefficients of the prob-
lem [7]. Any solution of Eq. (1) can therefore be expressed in the form of Eq. (3). For the purpose of the shift cell development,
considering Eq. (1) and applying the Bloch theorem, which generalizes Floquet’s results to 3D systems, such as
p x;xð Þ ¼ p xð Þejkx, where k, for a 3D application with real angles, is (Fig. 1):
k ¼ k

cos h cos/
cos h sin/

sin h

0
B@

1
CA ð4Þ
one can obtain:
q
x2

K
pþ rþ jkð ÞT rþ jkð Þp ¼ 0: ð5Þ
p xð Þ being periodic, the Dirichlet boundary conditions imply continuity along the periodic directions. The results dis-
cussed in the following sections are obtained along the x-axis (/ ¼ h ¼ 0�).

2.1. Weak formulation

The aim of this section is the development of the weak formulation of the problem, in order to obtain a matrix equation
that fully describes what happens inside a periodic unit cell of equivalent fluid. A weak formulation of Eq. (5) consists in find-

ing p such that 8p�, which obeys to the periodic boundary conditions, one has:
x2
R
X

1
K p

�
pdXþ RX 1

q p
�rTrpdXþ jk

R
X

1
q p

�rTpdXþ jkT R
X

1
q p

�rpdXþ�kTk
R
X

1
q p

�
pdX ¼ 0: ð6Þ
The solution approach follows a common weak formulation of a differential problem in a discrete coordinate scheme.
After rewriting the second term through the use of an integration by parts, for which the considerations on classical
weighted residual methods [24] are valid, and considering that C is the boundary domain, one obtains
x2
R
X

1
K p

�
pdXþ RC 1

q p
�rTpdC� RX 1

qrp
�rTpdXþ 2jk

R
X

1
q p

�rTpdXþ�kTk
R
X

1
q p

�
pdX ¼ 0: ð7Þ
The boundary condition causes the integral on the boundary to vanish:
x2
Z
X

1
K

p
�
pdX�

Z
X

1
q
rT p

�rpdXþ 2jk
Z
X

1
q
p
�rpdX� kTk

Z
X

1
q
p
�
pdX ¼ 0: ð8Þ

x2
Z
X

1
K

p
�
pdX�

Z
X

1
q
rT p

�rpdXþ jk
Z
X

1
q

p
�rp�r p

�
p

� �
dXþ�kTk

Z
X

1
q
p
�
pdX ¼ 0: ð9Þ
Finally, one can discretize the weak formulation through the FEM: considering that u is the eigenvector, the equation can
be written in matrix form:
K þ jkLþ k2H �x2M
� �

u ¼ 0 ð10Þ
with the following matrices:

� K / RX 1
qr p

�rpdX;

� L / RX 1
q rp

�
p� p

�rp
� �

dX;

� H / RX 1
q p

�
pdX;

� M / RX 1
K p

�
pdX.
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Here,M and K are respectively the symmetric mass and symmetric stiffness matrices, L is a skew-symmetric matrix and H is
a symmetric matrix; all of them are complex and frequency-dependent.

2.2. Right and left eigenvalue problems

In this sub-section, the link between right and left eigenvectors is derived. A left eigenvector of a matrix is the same as the
right eigenvector of the same real transposed matrix.

The formulation in Eq. (10) leads to the following right eigenvalue problem:
K �x2M
� �þ kiL� k2i H
� �

ur
i ¼ 0 ð11Þ
where ki ¼ jki is the i-th eigenvalue and ur
i denotes the right eigenvector associated to ki. In this formulation, all matrices are

frequency dependent. The Eq. (11) can be rewritten as
A1 xð Þwr
i ¼ kiA2 xð Þwr

i ð12Þ

with

� A1 xð Þ ¼ 0 Id
K �x2M L

� 	
;

� A2 xð Þ ¼ Id 0
0 H

� 	
;

� wr
i ¼

ur
i

kiur
i

� 	
.

where Id is the identity matrix. Conversely, a left-eigenvector for the same eigenvalue satisfies
wl
i

T
A1 xð Þ ¼ kiw

l
i

T
A2 xð Þ; with wl

i ¼
A
B

� 	
: ð13Þ

B ¼ ur
�i ¼ ul

i

AT ¼ kiur
�i

TH �ur
�i

TL ¼ kiul
i
T
H �ul

i
T
L

(
ð14Þ
In the resolution of the right eigenvalue problem, the i-th mode i 2 Nþ� �
is defined by its ki and its eigenvector ur

i . For
each mode i, a mode �i is associated with k�i such that k�i ¼ �ki and ur

�i ¼ ul
i. Therefore, by solving the right eigenvalue

problem, the left solution is found too [17].

2.3. Group velocity

For frequency-dependent systems, the estimation of the group velocity is not trivial [25]. In order to find its expression,
Eq. (12) is now differentiated with respect to x:
@A1 xð Þ
@x

wr
i þ A1 xð Þ @w

r
i

@x
¼ @ki

@x
A2 xð Þwr

i þ ki
@A2 xð Þ
@x

wr
i þ kiA2 xð Þ @w

r
i

@x
ð15Þ
and multiplied by the left eigenvector such that:
wl
i

T @A1 xð Þ
@x wr

i þ wl
i

T
A1 xð Þ @wr

i
@x ¼

¼ wl
i

T @ki
@xA2 xð Þ þ ki

@A2 xð Þ
@x

� �
wr

i þ wl
i

T
kiA2 xð Þ @wr

i
@x :

ð16Þ
Considering that
wl
i

T
A1 xð Þ ¼ kiw

l
i

T
A2 xð Þ ð17Þ
one obtains
@ki
@x

¼
wl

i

T @A1 xð Þ
@x � ki

@A2 xð Þ
@x

h i
wr

i

wl
i

T
A2 xð Þwr

i

ð18Þ
which gives the expression of the group slowness using ki ¼ jki:
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@ki
@x

¼ �j
ul

i
T �2xM þ @K

@xþ ki @L
@x� k2i

@H
@x

� �
ur

i

ul
i
T �Lþ 2kiH½ �ur

i

: ð19Þ
Finally, the complex Cg is the inverse of the complex group slowness [25]:
Cg ¼ @x
@ki

¼ jul
i
T �Lþ 2kiH½ �ur

i

ul
i
T �2xM þ @K

@xþ ki @L
@x� k2i

@H
@x

� �
ur

i

: ð20Þ
It should be noted that the frequency dependence of porous material models is generally known analytically, hence the
computation of Cg is fast since the derivatives of the matrices with respect to x can be expressed analytically:
@K
@x

¼ � 1
q2

@q
@x

K ;
@L
@x

¼ � 1
q2

@q
@x

L;
@H
@x

¼ � 1
q2

@q
@x

H ð21Þ
with @q
@x to be derived from the specific equivalent fluid model. This is without doubts the most efficient way to perform the

Cg computation, but one could also choose to numerically estimate the matrix derivative, or even directly the Dx
Dki

values.

2.4. Classifying criteria to distinguish propagative and evanescent waves

For undamped systems, waves are classified according to their propagative (k purely real) or evanescent (k purely imag-
inary) behavior, but when dissipation occurs, such as it happens for a sample modeled through an equivalent fluid, all wave
numbers are complex; consequently, there is no purely propagative solution and all waves are damped, with a decay rate
that may be used to classify the branches in two categories: those that are rapidly damped and those that are slowly damped
in space. Hence, the latter could be addressed as ‘‘propagative” ones, for the sake of brevity. In general, the distinction
between them is difficult and, thus, two classifying criteria are proposed.

I) The ratio between the real and the imaginary parts of every wave number [17]: CI ¼ real kð Þ
imag kð Þ. The physical meaning of CI is

related to the fact that the real part of a wave number represents the propagative behavior, while its imaginary part is
linked to the dissipation and therefore should be smaller than the real part in order to be able to consider a wave as prop-
agative.
It should be pointed out that, since the real part of k is periodic while the imaginary one is not, in order to correctly apply
this criterion, the real part of k must be turned into non-periodic, by mirroring it in correspondence to each period; in
particular, starting with a ¼ 2 and for each frequency f i with i > 0 of a specific dispersion branch, the procedure is the
following:
if
df i�1

dreal ki�1ð Þ > 0 and if
df i

dreal kið Þ < 0 )

) real ki:endð Þ ¼ a
p
r
� real ki:endð Þ; a ¼ aþ 1 ð22Þ

II) The ratio between the real part of the energy transport speed, defined as vE ¼ I
E for undamped waves, and the real part

of group velocity Cg : CII ¼ real vEð Þ
real Cgð Þ, where Iis the flow of energy and E ¼ Ek þ Ep ¼

R
X

1
2 qv2 þ p2

qc2

� �
dX is the total energy.

Waves may be qualified as propagative when the energy is transported at a velocity which is at least close to the order
of the group velocity.

Only the waves for which the ratios CI and CII are higher than specific threshold values, respectively indicated as sI and sII
and chosen differently according to the problem of interest [17], are considered as propagative ones. In practice, for the pur-
pose of the following analysis, the thresholds s are chosen such as sI ¼ 1 and sII ¼ 0:7. Since there is no strict distinction
between ‘‘propagative” and ‘‘evanescent” waves, an alternative would be to define an indicator of the ‘‘propagativeness” nat-
ure for each x; kð Þ value of the dispersion diagram. This is illustrated later in Section 4 results.
3. Validation of the method

3.1. Analysis of undamped case

In order to validate the shift cell technique implementation, in the studied configuration and for propagation along the x-
axis, a first calculation is made to compare shift cell results with those obtained using classical F-B periodic conditions, using
(non-dissipative) air as material. Herein, all results are related to a 2D unit cell (top part of Fig. 2), constituted by a square
with side equal to 2 cm and with a 0.5 cm radius circular perfectly rigid inclusion located at the center of the unit cell, and to



Fig. 1. Reciprocal lattice vector in a 3D unitary cell [23].
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a 3D unit cell (bottom part of Fig. 2), that is the extrusion of the 2D one. Both methods are used to obtain the dispersion
diagram along the x-axis direction; the only non-null component of the wave vector is then the 1st one and k ¼ kx.

The air parameters are: qair ¼ 1:21 kg
m3 (density), cair ¼ 343:3m

s (speed of sound) and Kair ¼ 142 kPa (bulk modulus). It
should be pointed out that, in this paper, the 3D cases are in Fact 2D ones solved with 3D meshing, not exploiting the pos-
sibility, from the geometrical point of view, of doing a 2D meshing. This choice is motivated by the fact that a 3D mesh actu-
ally captures the behavior along an additional direction respect to the 2D one, allowing to perform analyses for every
combination of angles / and h.

The comparison shows a perfect agreement between the results of the two methods (Fig. 2). In particular, one can observe
that this arrangement exhibits a band gap between 6000 Hz and 10,000 Hz for waves propagating along x direction.
3.2. Meaning and behavior of band gaps for inclusions of increasing size

Fig. 3 shows on the left what happens to the band gap, in the previously defined 2D unit cell, when the size of the inclu-
sion (that has perfectly rigid walls) changes.

The radius of the inclusion for the three analyzed cases are respectively equal to s
32 ;

s
4 and s

2:1, where s is the side length:
the opening frequency of the Bragg band gap decreases when the radius is increased, and at the same time the width of the
gap is increasing.

In the previous sub-section, only the real part of the wave number is shown. Now both real and imaginary parts are
shown, the latter being actually positive but shown as negative in the plots due to axis consistence. If no damping is included
in the model, k is either purely real, the wave is then propagative, or purely imaginary, the wave being then evanescent (left
column in Fig. 3).

On the contrary, instead of using the adiabatic value (142 kPa) for the bulk modulus of air, one can artificially add a
frequency-constant imaginary part to it (142þ j12 kPa is used here for illustration), so that one can simulate a band gap
behavior in presence of dissipation. The new dispersion curves are shown in the right column of Fig. 3. Indeed, a complex
bulk modulus prevents the presence of ideal band gaps in dispersion curves; one can clearly see that the gap is opening
but, because of the damping, kx is no longer purely imaginary: around the band gap, the slow branch with undamped mate-
rial becomes a fast wave when damping is added and allows rapid and damped energy transportation inside the band gap.
So, the real part of kx (being mirrored and turned into non-periodic as explained in the 1st classifying criterion described in
Sub-Section 2.4) is not equal to p

r anymore, but remains low (compared to the imaginary one), which means that the wave
will be strongly spatially attenuated. Also, a very fast branch can be observed in the right column of Fig. 3.
3.3. Comparison of computational cost

It is now performed a computational cost comparison between the shift cell technique and the classical F-B approach,
pointing out that the first can provide, among its other advantages, a sensible computational time reduction for dispersion
analyses. Figs. 4 and 5 show a comparison of the computational cost, in terms of time and as a function of the mesh size,
between the shift cell and the F-B techniques. In particular, both eigenproblems are solved using 100 frequency steps;
the 2D unit cell is meshed using triangular elements while, for the 3D geometry, tetrahedral elements are used. Both 2D
and 3D geometries correspond to those shown in the previous sections and these results, in terms of computational times,
are related to an undamped case.

As a conclusion, for the case of interest, the calculation cost is always lower with the proposed approach than the one
required by the classical Floquet-Bloch technique.



Fig. 2. Comparison between dispersion curves obtained with classical Floquet-Bloch and shift cell techniques on a 2D (on the top) and a 3D (on the bottom)
air unit cell, whose geometric data are reported in detail in Sub-Section 3.1. Dashed red lines: classical F-B method; blue points: shift cell operator. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The gain is increasing when the number of elements of the finite element model is increasing, which makes the technique
attractive. The lower cost is attributed to the management of the boundary conditions, which is much more simple in the
proposed methodology, where continuity instead of F-B periodic conditions are needed.
4. Dispersion curves

4.1. Branch-tracking algorithm

The previous Section has highlighted that a dispersion diagram can have several branches, which are associated to differ-
ent wave characteristics. In a dispersion diagram there is a set of points, forming branches, that one may wish to connect and
follow according to the nature of each branch.

Some solutions are proposed in literature, such as a MAC sorting criterion [16], but these methods require to store many
data at every iteration. Instead, the group velocity constitutes a relevant indicator in order to follow the branches from a
point of calculation to the next one [17]. The proposed technique consists in comparing a single group velocity value at a
specific frequency Cgi fð Þ with Cg f þ Dfð Þ: from the group velocity associated to a starting point, the routine compares the
initial Cgi with all the group velocities at the next frequency step f þ Df and a minimization is made in order to identify
the point at f þ Df to which is associated the closest value of Cg . Then, this point is defined as the new starting one and



Fig. 3. Dispersion curves for an air 2D cell, with increasing inclusion radius (from top to bottom: r ¼ s
32 ; r ¼ s

4 and r ¼ s
2:1), with adiabatic (left column) and

complex (right column) bulk modulus.
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so on, step by step, the branch is identified. In order to better appreciate the behavior of each branch in the frequency range
of study, in the following plots, dispersion and Cg curves are also colorized with a scale of colors that indicates the level of
‘‘propagativeness”: the value 0 means that the wave at that specific frequency is totally spatially attenuated, while the value
1 represents a properly propagative behavior. In particular, considering the criteria discussed in Sub-Section 2.4, if all of
them are satisfied then the propagativeness value is equal to 1, otherwise it is calculated as the product between the results
of the two classifying ratios divided by the correspondent thresholds. It should be pointed out that, if a specific criterion is
satisfied, its contribution to the estimation of the level of propagativeness is always equal to 1, even if its related ratio is
larger. In other words:
if CI > sI ) propI ¼ 1; else propI ¼ CI
sI

if CII > sII ) propII ¼ 1; else propII ¼ CII
sII

level of propagativeness ¼ propI � propII ð23Þ



Fig. 4. Computational times [s] in the 2D (left) and 3D (right) cases, for increasing number of elements.

Fig. 5. Computational time percentage in the 2D (left) and 3D (right) cases, for increasing number of elements.
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4.2. Results

In this Section, for a 3D melamine unit cell, whose geometric data are reported in detail in Sub-Section 3.1, some results
are shown in terms of evanescent — propagative dispersion and group velocity diagrams and branch-tracked dispersion and
group velocity diagrams. These curves are obtained for both a homogeneous and a heterogeneous (with inclusion) 3D unit
cell, whose porous material is modeled with JCA model ([13,14]):
q xð Þ ¼ a1q0

/
1þ r/

jxq0a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2

1gq0x
r2K2/2

s !
; ð24Þ
K xð Þ ¼
cP0
/

c� c� 1ð Þ 1� j 8kt
K02cpq0x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j K0

2cpq0x
16kt

q� 	�1 ; ð25Þ
where:

� P0
kg

m� s2

h i
is the fluid equilibrium pressure;

� kt kg�m
s3 �K

h i
is the thermal conductivity of the air.

The analyses are carried out in the frequency range 0 – 20,000 Hz. This range, indeed, is interesting for acoustic applica-
tions and assures that the wavelength is much larger than the pore size, which is a necessary condition in order to use equiv-
alent fluid models. The size of the inclusion is also large compared to the typical characteristic length that may be observed
on a representative elementary volume describing the macroscopic behavior of the porous material [26].
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It is well known that the parameters of the equivalent fluid models can have a strong impact on the performances of the
acoustic device [27], hence they should be determined in a confident way. In the current case, they have been experimentally
determined and are reported in Table 1.

In Figs. 6 and 7, the two plots on the top and the center of each figure represent two different ways to show the classi-
fication between evanescent and propagative waves: on the top, the plot is directly obtained from the application of the cri-
teria presented in Sub-Section 2.4, while on the center the same distinction is shown using a color scale of ‘‘propagativeness”
as described in Section 4.1.

For each dispersion diagram, three eigenvectors are reported (Fig. 8). Only the real parts of the eigenvectors, in terms of
acoustic pressure field, are shown, the imaginary parts being null due to the fact that they are proportional to their corre-
spondent real parts. They are all extracted at the frequency of 8500 Hz and along the direction that conventionally corre-
sponds to h ¼ / ¼ 0� in the 1st Brillouin zone. Their branches are ordered as follows: at increasing frequencies, the 1st
branch is represented by the first real part that reaches the unitary value, the 2nd one is the second that satisfies this con-
dition and so on. It can be noticed that they respectively act along the x-, z- and y-axis directions. As already stated in the
introduction, a homogeneous 3D unit cell with a 2D periodicity essentially represents an infinite layer with given thickness:
in particular, continuity conditions are applied along x-axis and z-axis, while sound-hard wall boundary conditions are used
on the surfaces orthogonal to the y-axis. Therefore, in the homogeneous case, the so-called eigenvectors basically show the
pressure acoustic field inside the medium in correspondence of the first three eigenfrequencies.

For what concerns the propagative – evanescent plots, one can notice that the 1st mode propagates at almost all frequen-
cies, the 2nd one appears to be propagative starting frommiddle frequencies, while the 3rd and 4th ones are relevant only at
high frequencies. For all tested configurations, the branch-tracking algorithm is able to correctly classify the solutions, even
in the presence of band gaps, branch-crossing or branch-veering phenomena, as it can be appreciated from Figs. 6 and 7.

5. Computation of transmission loss from dispersion diagrams

Dispersion diagrams presented above help designers to understand the nature of the waves that can propagate in a sound
package and the way they are attenuated on the basis of an infinite periodic arrangement of the unit cell.

In this section, it is shown how these results can be used to estimate the transmission loss at normal incidence for an
acoustic package composed by a finite arrangement of 5 cells (Fig. 9). This, in a first approximation, allows comparing the
dispersion relations and the acoustical characteristics of the equivalent finite medium. For more complex cases, advanced
homogenization techniques may be used [28,29].

For a plane wave configuration, the transmission loss is computed in three different ways.

I) Transfer matrix method [2] (homogeneous case):
TL ¼ 10log10
1
4
j T11 þ T12

q0c0
þ q0c0T21 þ T22j2

� 	
; ð26Þ

with
T11 T12

T21 T22

� �
¼

cos krð Þ j sin krð ÞZc

j sin krð Þ
Zc

cos krð Þ

" #
: ð27Þ

II) Full FEM with 5 cells (case with inclusion):

TL ¼ 10log10
Pincident

Ptransmitted
ð28Þ

where Pincident and Ptransmitted represent the incident and transmitted power, respectively. For this configuration, the calcula-
tion is made using an implementation of the plane wave forced response of the periodic cell accounting for fluid loading [30].

III) Transfer matrix method (proposed approach); in this case, a repetition of 5 unit cell is considered and the same for-
mulas defined for the first approach (homogeneous case) are used, but with k and Zc provided by the dispersion curves. In
order to perform this estimation, only the 1st branch of the diagram is taken into account, since it is the only one to which
corresponds an eigenvector along the direction of the plane wave excitation, the others being orthogonal to it. This
assumption is valid as long as, in the frequency range of interest, there are no other propagative dispersion branches
Table 1
Acoustical parameters of the tested porous material.

Porosity 0.99
Tortuosity 1.02

Resistivity Pa�s
m2

h i
8430

Viscous char. length mm½ � 0.138
Termal char. length mm½ � 0.154



Fig. 6. Evanescent and propagative (on the top and the center, in which the color scale indicates the level of propagativeness) and branch-tracked (on the
bottom) group velocity diagrams, for the case of a melamine unit cell, homogeneous (on the left) and with a rigid inclusion (on the right). The positive range
of the x axis shows the real parts, while its negative zone shows the imaginary ones.
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to which is associated a mode that acts along the plane wave direction in the TL analysis. For a plane wave that acts along
an arbitrary direction, a more complex formulation is required. While k is a direct output of the dispersion relation, the
equivalent characteristic impedance is computed as Zc ¼

ffiffiffiffiffiffiffi
Kq

p
, where the density q is obtained from the JCA model and

the bulk modulus is calculated as K ¼ q x
k

� �2.
The 3rd way of computation actually consists in a homogenization and several papers that deal with the link between this

kind of techniques and Bloch waves can be found in literature [31].
Concerning the case with the inclusion, one can notice that an improvement of transmission loss properties, with respect

to the homogeneous case, is shown at all frequencies, in particular in correspondence of a peak at a frequency around 7 kHz,



Fig. 7. Evanescent and propagative (on the top and the center, in which the color scale indicates the level of propagativeness) and branch-tracked (on the
bottom) dispersion diagrams, for the case of a melamine unit cell, homogeneous (on the left) and with a rigid inclusion (on the right). The positive range of
the x axis shows the real parts, while its negative zone shows the imaginary ones.
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where a gain of about 15 dB is observed, and at high frequencies. Note that, for the sake of comparison with the related dis-
persion curves, only their 1st branch, identified through the previously defined algorithm, is meaningful due to the fact that
the corresponding mode is the only one, between those considered here (which are lowest order and therefore the least
attenuated modes), that is actually excited during these transmission loss simulations. Note also that the dispersion branch
taken into account is actually propagative, according to the previously defined classifying criteria, in the whole frequency
range considered. Indeed, the TL improvement peak exactly corresponds to the frequency range of the 1st branch of disper-
sion curves in which the wave is strongly spatially attenuated. This is definitely encouraging, for the purpose of deriving the
equivalent acoustic properties of the unit cell from its dispersion characteristics.



Fig. 8. From top to bottom, real parts of the 1st , 2nd and 3rd branch eigenvectors for a melamine homogeneous unit cell (on the left) and for a melamine unit
cell with inclusion (on the right).
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6. Conclusions

In this paper, the formulation of the shift cell technique is presented together with some applications aimed at evaluating
the dispersive properties of some foams modeled as a periodic porous medium. The benefit of the k xð Þ formulation, in the
extraction of the eigenvalues, is shown and commented.

Since the numerical formulation for the foams leads all complex wave numbers, one of the key elements of the present
research activities is the definition of adequate classifying criteria. As matter of fact, there is no purely propagative solution
and all waves are damped, with a decay rate that may be used to classify the branches in two categories: those that are
rapidly damped and those that are slowly damped in space. The proposed criteria allow to distinguish between the evanes-
cent and propagative waves traveling in the material and, consequently, to derive the group velocity.

The proposed technique is validated through a comparison with the application of the classical Floquet-Bloch periodic
conditions to a melamine unit cell. It is also evidenced a remarkable reduction of the computational costs associated with
the application of this shift-cell technique.

Furthermore, thanks to a branch-tracking algorithm, it is possible to compute equivalent transmission loss curves, which
show a very good agreement with those obtained with classical methods.

The next steps of this research work will involve the Biot model [15] for 2D and 3D geometries.
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Fig. 9. Transmission loss computed for a 3D repetition of 5 melamine unit cells [23].
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