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Abstract: Among many emerging technologies, battery electric vehicles (BEVs) have emerged as
a prominent and highly supported solution to stringent emissions regulations. However, despite
their increasing popularity, key challenges that might jeopardize their further spread are the lack
of charging infrastructure, battery life degradation, and the discrepancy between the actual and
promised all-electric driving range. The primary focus of this paper is to formulate an integrated
energy and thermal comfort management (IETM) strategy. This strategy optimally manages the
electrical energy required by the heating, ventilation, and air conditioning (HVAC) unit, the most
impacting auxiliary in terms of battery load, to minimize battery life degradation over any specific
drive cycle while ensuring the actual cabin temperature hovers within the permissible tolerance limit
from the reference cabin temperature and the driver-requested traction power is always satisfied. This
work incorporates a state-of-health (SOH) estimation model, a high-fidelity cabin thermodynamics
model, and an HVAC model into the forward-approach simulation model of a commercially available
BEV to showcase the impact and efficacy of the proposed IETM strategy for enhancing battery
longevity. The instantaneous optimization problem of IETM is solved by the golden-section search
method leveraging the convexity of the objective function. Simulated results under different driving
scenarios show that the improvement brought by the proposed ITEM controller can minimize battery
health degradation by up to 4.5% and energy consumption by up to 2.8% while maintaining the cabin
temperature deviation within permissible limits from the reference temperature.

Keywords: battery life extension; cabin thermal model; electric vehicle; integrated energy and thermal
management; optimal control; real-time implementable

1. Introduction

In recent years, powertrain electrification has been proven to be a trustworthy ap-
proach to reducing GHG emissions emitted by the road transportation sector. Even if EVs
use non-zero-carbon electricity, their massive introduction will contribute to carbon capture.
More accessible carbon-capture technologies can be applied to power plants’ exhausts
rather than vehicles’ tailpipes. As per the prediction [1], EV sales have been rapidly grow-
ing worldwide in recent years, as shown in Figure 1 [2], driven by advancements in battery
technologies, a shift toward cleaner energy sources, and fuel cost advantages of EVs [3].

However, the transition to a fully electric transportation system faces many hindrances,
including but not limited to the availability and mining of many rare-earth minerals nec-
essary to build batteries with current technologies (i.e., Li, Co, etc.) [4], the energy mix
used to generate electricity [5], the environmental impact of battery production and dis-
posal [6,7], limited driving range [8], lack of reliable charging facility [9], limited lifes-
pan and high battery replacement cost [10,11], and reduced payload capacity for electric
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trucks [12,13]. Achieving true sustainability through electrified transportation requires
addressing these challenges.
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Figure 1. Progressive increase in EV sales throughout the world, especially in the USA, China,
and Europe, between 2010 and 2023 [2].

Addressing the limited driving range and early battery fading through state-of-the-art
technology is of the utmost priority since these concerns are intertwined with prospective
EV buyers’ socioeconomic and psychological behavior. Typically, most original equipment
manufacturers (OEMs) offer a warranty for eight years or 160,000 km on the battery life
span [14] (whichever comes first). For most OEMs, the warranty provides cover if and only
if the battery operates within 70–80% of its original storage capacity or 70% of its original
power capability [15].

Since battery replacement cost is a significant expense, and since this expense still cre-
ates a substantial barrier to customer acceptance, OEMs and academia have been tirelessly
working on developing innovative energy management strategies [16,17] and powertrain
architectures [18] to decelerate the process of battery health degradation. Battery state
of health (SOH) is negatively influenced by several factors [19], such as abusive driving
patterns [20], extreme weather conditions [21], and irregular charging patterns [22], because
the battery is the sole energy provider to all the noteworthy energy-consuming systems,
such as (a) propulsion system, (b) HVAC system (up to 35%), and (c) steering and braking
system (up to 5%), in an EV [23]. Unlike HEVs, where the energy management system
(EMS) can split the combined power demand into two onboard power sources, i.e., ICE
and battery, the EMS in an EV must delegate the entire combined power request to the
battery [24]. Notably, vehicle manufacturers have the least control over driving style and
weather. However, they have complete control over the EMS strategies and algorithms,
which decide whether to fully respect the power request from the powertrain, HVAC,
and battery thermal system [25,26]. EMSs mostly respect the power requested by the
powertrain. Still, it may only sometimes respect the power demand from other systems,
such as HVAC and battery thermal systems, to reduce the overall load on the battery.
With such a feature, EMSs can also be better denoted as integrated energy and thermal
management systems (IETMs) since they manage the entire vehicle’s traction and thermal
energy consumption in an integrated fashion [27,28].

Literature Review

Looking at the necessity of finding an IETM strategy to decelerate the battery’s SOH
degradation in an EV, a handful of articles have opted to manage the electrical load on the
battery from the HVAC system through an intelligent energy management strategy [27,28].
However, the fuel cell EV chosen in [27] has fewer challenges than a BEV in managing the
electrical load on the battery. On another note, the collaborative cabin thermal management
problem, presented in [28], is solved by a real-time speed-prediction-based nonlinear
model predictive control (NMPC) but through a high-performance CPU. The real-time
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implementation of an IETM strategy through a model predictive control (MPC) framework
demands additional control-oriented models of the cabin thermodynamics and HVAC
system, unlike a typical real-time EMS implementation, on top of control-oriented models
of the powertrain dynamics and battery SOH degradation.

The cabin thermal model should be accurate enough to predict the temperature
evolution inside the EV’s cabin and computationally cheap enough to be used as a control-
oriented model. The literature is full of studies developing various high-fidelity vehicle
cabin thermal modeling approaches, such as, but not limited to, AMESim-based [29],
Modelica-based [30], CFD-based [31], and coupling of 3D airflow simulation and 1D fluid
node-based [32]. However, such models are computationally expensive and require many
parameters to be defined. Lumped-parameter-based models, on the other hand, are a
computationally cheap way of modeling vehicle cabin thermal interactions and have
emerged as an excellent substitute for high-fidelity thermal models due to their acceptable
correlation with measured temperature evolution data [33] and their conduciveness to
real-time controller development [34].

In a series of consecutive works [35,36], the authors recognized that it is possible to
reduce the EV’s overall energy consumption if thermal comfort inside the EV’s cabin can
be dynamically compromised or adjusted within a permissible range through theoretically
optimal control [35] and real-time rule-based control [36]. However, both these works
focused only on reducing the energy consumption but not on the battery’s SOH degradation.
In another series of consecutive works [37,38], the authors designed a model predictive
climate control (MPCC) strategy to minimize the combined energy usage of the fan, heating,
and cooling circuits of the HVAC system [37] and a traction power-aware MPCC to reduce
the battery’s SOH degradation process [38]. While both works resulted in a real-time
implementable control strategy, they required offline pre-calculated look-up tables. MPC
leverages the prediction of vehicle load for a short window in the future to dynamically
calculate the optimal and permissible deviation in cabin climatic comfort, extending battery
lifetime by up to 13.2% and reducing energy consumption by up to 14.4% [38]. However,
the inaccuracy of modeling the cabin thermal system can have a slight impact on the
effectiveness of their proposed battery-aware climate control strategy [39], leading us to
believe that a more realistic model of the cabin climate model would be necessary for
realistic evaluation of a battery-aware cabin thermal management strategy’s efficacy in
improving the energy economy and battery durability. Therefore, lumped-parameter-based
cabin thermal models, which are accurate enough to predict realistic cabin temperature
evolution, are necessary for developing such a real-time IETM strategy.

Moreover, such studies corroborating the efficacy of battery-aware climate control in
decelerating the battery’s SOH degradation should consider the varying SOC vs. open cir-
cuit voltage (OCV) relationship with varying battery SOH values. To the best of the knowl-
edge of the authors of this article, varying SOC–OCV relationships have not been included
in either traction-aware or battery-aware climate control frameworks for EVs. Moreover,
such control frameworks should be validated with realistic cabin thermal plant models.

Looking at the research gaps in the existing literature, such as requiring an accu-
rate enough lumped-parameter cabin temperature evolution model, considering varying
SOC vs. OCV relationship with varying battery SOH, and including battery durability
improvement as a necessary objective of an ITEM framework, the authors in this article are
inspired to present an instantaneous optimization-based framework for the ITEM problem.
The article has the following contributions:

• It presents an instantaneous optimization framework for IETM without predicting
vehicle loads.

• It develops an EV plant model incorporating a high-fidelity but real-time-running
cabin thermal model and a battery SOH degradation model derived from experimental
battery aging data. Since the IETM controller cannot accommodate such a high-fidelity
cabin thermal model, an equivalent lumped-parameter model, correlating well with
the high-fidelity model, is also created.



Energies 2024, 17, 3185 4 of 20

• The battery SOH degradation model is accompanied by the varying relationships
between SOC and OCV corresponding to varying SOH values.

• The IETM regulates the actual HVAC power supplied by the battery around the
theoretically required HVAC power for maintaining the reference cabin temperature.

The remainder of this paper is organized as follows: Section 2 describes the longitudi-
nal vehicle dynamics modeling. Section 3 first delineates the high-fidelity cabin thermal
modeling, and then, creates an equivalent lumped-parameter model of the cabin thermal
system, which is necessary for the control-oriented model in the IETM. Sections 4 and
5 delve into HVAC modeling and battery capacity degradation modeling, respectively.
Section 6 gives a detailed description of the IETM problem formulation and resolution.
The paper delves into the simulation results of the intelligent traction-aware IETM strategy
in Section 7. The concluding remarks are drawn in Section 8.

2. Forward-Approach EV Modeling

A vehicle plant model is needed to accurately simulate the vehicle’s longitudinal
dynamics. The choice fell on a forward-looking vehicle model simulating longitudinal
dynamics while following a reference drive schedule with a proportional–integral (PI)-
based driver block. Essentially, the driver receives the velocity error between the target
speed and the actual vehicle’s speed, as expressed in Equation (1), as the input, and the
driver outputs a traction torque request as the control effort required to minimize the
speed error. Before sending it to the actual powertrain, this torque request is processed
by the vehicle control unit (VCU), specifically the energy management system (EMS).
The traction torque request, which is satisfied by the sole electric motor in the given
powertrain architecture, can be calculated as per Equation (2), and is the basis of calculating
the battery power request.

es = vch,actual − vch,target (1)

Tem = Trolling + Tad + Tslope + Tinertia + kp · es + ki ·
∫ t

0
es · dt (2)

This torque is generated by the electric motor and is transmitted to the drive wheels (3),
where the traction effort is exploited.

Twhl = τf d · η
sign(Tem)
f d · Tem (3)

The remaining part of the vehicle plant model is based on dynamic equations and effi-
ciency charts related to both electrical (i.e., battery, inverter, electric motor) and mechanical
(i.e., electric motor, final drive, wheels) elements involved in the power system. The power
is brought to the drive wheels using the traction system, where it releases its final useful
effect according to Newton’s second law. The load resulting on the vehicle chassis is given
in Equation (4). This comes from four different contributions, namely: torque delivered to
the wheel (Equation (5)), aerodynamic resistance of the air (Equation (6)), rolling resistance
due to the contact between the tires and road (Equation (7)), and weight resistance coming
from an eventual road inclination (Equation (8)). Lastly, by writing down the energy bal-
ance, including all the rotating masses, one ends up with Equation (9). For the definitions
of all the entries appearing in the formulas reported below, please refer to Table 1.

Fload = Fwhl − Fad − Frolling − Fslope (4)

Fwhl =
Twhl
rwhl

(5)

Fad =
1
2
· ρair · A f ront · Cx · v2

ch,actual (6)

Frolling = mvh · g · cos(α) · ( f0 + f1 · vch,actual) (7)
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Fslope = mvh · g · sin(α) (8)

v̇ch,actual =
C0 + C1 · vch,actual + C2 · v2

ch,actual

Meq
(9)

where Meq = mveh +
Imot∗C2

f d+I f d+4∗Iwhl
rwhl

is the equivalent vehicle mass used in the longitudi-
nal dynamics of the vehicle.

Table 1. Description of the symbols and parameters used in vehicle dynamics-related formulas.

Parameter Definition Values

rwhl Wheels’ rolling radius 0.584 m
A f ront Frontal section vehicle’s area 1.78 m2

Cx Aerodynamic drag coefficient 0.326
vch,actual Actual chassis’ speed variable

mvh Vehicle mass 1 1375 kg
f0, f1 Tires’ rolling coefficients 0.006 & 0.0001

g Gravitational acceleration 9.81 m/s2

α Road slope variable
Imot Motor inertia 0.02 kg-m2

C f d Final drive ratio 3.87
I f d Inertia of final drive 0.1 kg-m2

Iwhl Wheel inertia 1 kg-m2

C0, C1, C2 Cost-down coefficients 45.32, 0.5316, 0.0295
1 This includes both sprung and unsprung masses, as well as eventual additional loads acting transversely to
the ground.

3. Cabin Thermal Modeling

A comprehensive cabin model is necessary to systematically develop and simulate
the intended IETM strategy. This model is pivotal for accurately capturing the convoluted
dynamics of energy fluxes within the system. This section delineates the key steps essential
for constructing a thermodynamic model tailored for automotive cabin environments.
Since an automotive cabin operates as an open thermodynamic system, it includes various
mass and heat fluxes such as inward and outward air mass flow rates, incoming solar
radiation, passengers’ sensible heat, conduction, and a convection heat flux through the
cabin’s shell. Each of these listed energy fluxes has been modeled through mathematical
expressions coming from the respective physical description of the phenomenon. Notably,
while constructing the cabin model, an assumption of dealing with dry air is adopted,
neglecting the effect of air humidity.

3.1. Solar Radiation

Solar radiation is a direct incoming heat flux that must be considered, and it can be
represented by the heating capacity released per unit area on a flat horizontal surface,
i.e., q̇sun. From the theory of electromagnetic waves, it is known that the effective power
transferred onto the surface is only the portion carried by the component of the wave
transversely impinging, as expressed in Equation (10). Furthermore, opaque surfaces
(e.g., roof) and transparent surfaces (e.g., lateral windows, rear windows, and windshield)
have been differentiated while applying the effect of solar radiation.

Q̇sun, e f f = Aw · q̇sun · sin(φ) , measured in [Watt] (10)

where Aw is the effective surface area, 1.6907 m2, and ϕ is the angle between the impinging ra-
diation and the surface (ϕ f ront = 1.0681 radian; ϕlateral = 0.4363 radian; ϕrear = 0.4538 radian).
It is unnecessary to account for solar radiation on the lateral doors since its contribution
would be negligible as these surfaces are almost vertical. However, for transparent surfaces
inside the vehicle cabin, both the radiation transmitted (as per Equation (11)) and the
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radiation absorbed in the thickness of the body (as per Equation (12)) need to be con-
sidered. As for the roof, only the portion that is absorbed by the vehicle is considered
while modeling.

Q̇sun, transmitted, i = Qsun, e f f , i · τi (11)

Q̇sun, absorbed, i = Qsun, e f f , i · ρi (12)

where τ (value = 0.76) and ρ (value = 0.05) are the windows’ transmissivity and absorptivity,
respectively. It is worth mentioning that the radiation absorbed by pieces of the cabin’s
shield does not directly affect the energy balance inside the cabin’s volume since it is not
transmitted directly inside. However, this portion modifies the thermal state of the cabin’s
boundaries, which in turn affects the convection and conduction heat transfer.

3.2. Air Fluxes

The cabin’s energy budget should consider the inward and outward air mass flow rates.
The HVAC system regulates the temperature inside the cabin by blowing a controlled air
mass (ṁHVAC) into the cabin. Additionally, a mass flow rate of the cabin’s air is recirculated
(ṁrec) and exits the cabin. Finally, there are air leakages (ṁleak) towards the external
environment that may occur due to imperfect sealing of the cabin’s shield. All of these
contributions have been considered, considering the respective temperatures of the different
air fluxes.

3.3. Sensible Heat of Passengers

Various formulas have been proposed in the literature to explain the amount of
heat generated inside the cabin due to passengers. These formulas generally correlate
the total sensible heat passengers produce with the number of passengers, denoted by
np. Equation (13) presents the formulation adopted in this paper to model sensible heat
generation due to passengers [40]. This formula assumes an average surface area, Ap
(value = 1.8 m2), and a specific sensible heat, Ms, for each passenger, expressed in [W/m2].
This relationship is expressed as follows:

Q̇pass = np · Ap · Ms (13)

3.4. Conduction and Convection

The cabin shield was divided into four boundary zones, windows, lateral frame, roof,
and floor, to account for the impact of convection and conduction heat transfer between the
cabin and the external environment. A thermal layer model was created in Simscape™ for
each zone. The convective heat transfer coefficient for the inside was kept constant, while
for the outside, a function (Equation (14)) based on the vehicle’s actual speed was used,
as described in reference [40].

hext = 1.163 + 4 ·
(
12 +

√
vch,actual

)
(14)

3.5. High-Fidelity Cabin Thermodynamic Model

All contributions to the energy budget that apply to the cabin’s volume were con-
sidered using an accurate model implemented in Simulink® by accessing Simscape™’s
libraries, designed explicitly for gaseous thermodynamic problems. A similar model for
the cabin volume of a bus was used as a solid base (as described in reference [41]) to
construct the model. The construction of the model required the creation of two extreme
environments by imposing their pressures and temperatures: the cabin environment (using
the ‘Constant Volume Chamber (G)’ block) and the outdoor ambient (using the ‘Temperature
Source (G)’ block). In order to connect these two environments, it was necessary to follow
the steps explained below:
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1. Generating the cabin’s shield
Each of the four aforementioned shield zones was modeled with a proper stratigraphy,
using technical data from [42] and the Simscape™ blocks linked to conduction and con-
vection phenomena (‘Convective Heat Transfer’, ‘Conductive Heat Transfer’, and ‘Thermal
Mass’ blocks).

2. Including external incoming energy contributions
The solar radiation that enters through windows and the solar radiation absorbed by
the roof’s outer layer and window glasses are the factors that affect the temperature
inside the cabin. To model these factors, the heat flux associated with the internal
ambient thread was used for the former and the thermal capacity of the outer layers
of material was used for the latter.

3. Including internal heating capacity generation
The same heat flux block was used to describe the sensible heating power generated
by the passengers. This was connected to the cabin’s ambient thread.

4. Introducing mass exchanges of the cabin’s volume
In this case, the constant mass flow rate block was considered for the air fluxes blown
inside and drawn from the cabin (’Controlled Mass Flow Rate Source (G)’ block). It is pos-
sible to introduce a restriction (‘Local Restriction’ block) between the cabin’s volume and
the outdoor environment to model the air leakages towards the outdoor environment.

These steps created the high-fidelity model in Figure 2, which can reasonably grasp the
actual cabin thermodynamics. Despite its high reliability, the necessity of exploiting the
resolution of partial differential equations to solve the thermodynamic problem at each
time step made this model computationally expensive. However, the model’s high accuracy
was utilized as the foundation for developing a less computationally intensive model.

Figure 2. High-fidelity model—Simscape™ flowchart.
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3.6. Thermal Comfort Estimation

As per ASHRAE, cabin thermal comfort inside a vehicle’s cabin is a subjective sensa-
tion of comfort experienced by the occupants and influenced by the cabin’s air temperature,
relative humidity, air speed, and radiant heat [43]. Because of the vehicle occupants’ prox-
imity to the windows and glass shields, the radiant heat is pivotal in dictating thermal
comfort, and radiant heat depends on ambient and cabin interior temperature [34]. Cabin
humidity follows the cabin interior temperature among the remaining factors regarding
the rank of importance [33]. However, only the estimation of cabin interior temperature
(Tcabin) is prioritized in this paper to retain the simulation’s simplicity and reduce the
computational complexity.

3.7. Lumped-Parameter Cabin Thermodynamic Model

Considering the environment enclosed inside the cabin’s shield, one can start from the
energy budget coming from the ’first law of thermodynamics’, as expressed in Equation (15),
to build a solid foundation for the simpler model. The following formulation considers all
the energy contributions explained before.

Q̇sun + Q̇cond,conv + Q̇pass =

(
∂Et

∂t

)
C.V.

+ (ṁrec + ṁleak) · cp · Tcabin − ṁHVAC · cp · THVAC,out (15)

The two most important assumptions that we brought in to simplify the model so that is
lighter and faster are:

• Neglecting the cabin shield’s thermal inertia and considering a constant heat transfer
coefficient to account for heat transfers through convection and conduction.

• Treating the transparent surfaces with a bulk approach.
• Assuming a constant air mass inside the cabin.

These three points can lead to an extremely simplified formulation of the thermal problem,
expressed by Equations (16)–(18).

Q̇sun = C̄ · ∑(Awindow,i · sin(ϕi)) · τ · q̇sun + ∑
(

Aboundary,i · sin(ϕi) · ρi

)
· q̇sun (16)

Q̇cond,conv = K̄ · Aboundary,tot · (Text − Tcabin) (17)(
∂Et

∂t

)
C.V.

= Mair · cp ·
(

∂ Tcabin
∂ t

)
C.V.

(18)

Thus, upon writing these simplified expressions, one ends up with the following final
expression of Equation (19) deriving from Equation (15), whose parameters’ meanings can
be found in Table 2.

C1 · q̇sun + C2 · (Text − Tcabin) + Q̇pass − Q̇HVAC = C3 ·
(

∂ Tcabin
∂ t

)
C.V.

(19)

A fine-tuning of these three constants is required to have the best correlation between the
temperature evolution of the lumped-parameter cabin thermal model and the high-fidelity
Simscape™ model, as shown in Figure 3, at least within the temperature range of interest,
i.e., hovering between 20 and 30 degrees Celcius. Since the lumped-parameter model
correlates very well with the high-fidelity model within the desired temperature range for
thermal comfort, the lumped-parameter model can be considered a good substitute for the
high-fidelity model.
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Figure 3. Cabin’s temperature evolution obtained through (green) Simscape™ cabin thermal model;
(blue) lumped-parameter cabin thermal model.

Table 2. Explanation of the entries of FLT applied to cabin’s ambient conditions.

Parameter Unit Definition Value

C1 m2 Effective window surface area 0.71
C2 W/K Cabin shield’s thermal resistance 35
C3 J/K Cabin’s equivalent air thermal mass 13,000

4. HVAC Modeling

After the cabin’s thermal problem was thoroughly addressed, a model for the HVAC
unit, capable of handling the thermal conditions inside the cabin, was implemented. In-
spired by [44], the chosen architecture for the HVAC unit, as reported in Figure 4, involved
two air handling stages executed by two heat pumps: a first stage for cooling and a second
stage for heating. The system was modeled using a simplified approach, similar to what
had been used in other research [37,38], which described the circuit of each heat pump
through the coefficient of performance (COP). The design of the HVAC unit proved to be
extremely important as it allowed for determining the power required to meet the thermal
comfort conditions desired by passengers inside the cabin. By utilizing the psychrometric
chart for humid air—although it was assumed that dry air was being dealt with, this
was necessary to achieve realistic power consumption figures for the HVAC—the internal
control logic of the HVAC system was designed. This ensured that the relative humidity
inside the cabin was maintained between 20% and 60% for different reference temperatures,
which, according to [34], is the acceptable range for ensuring passenger comfort.

19/12/2023 Mattia Mauro 12

HVAC Plant

CABIN

Air Volume
COOLING
Stage

HEATING
Stage

𝑚𝑟𝑒𝑐𝑖𝑟𝑐

𝑚 𝑒𝑥𝑡 𝑚𝐻𝑉𝐴𝐶 𝑚𝐻𝑉𝐴𝐶 𝑙𝑒𝑎𝑘𝑎𝑔𝑒𝑠

Figure 4. Simplified single-zone HVAC unit scheme.

The recirculated mass flow rate, i.e., ṁrecirc, has been designed as a constant portion
of the mass flow rate blown inside, i.e., ṁHVAC. The rule for the temperature at the outlet
of the cooling stage has consequently been designed to fulfill such requirements. Lastly,
the temperature of the air directly blown into the cabin has been set 8 ◦C below the
temperature desired. The two internal rules are displayed in Figure 5.
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Figure 5. Control rules for controlling HVAC system’s internal variables.

Equation (20) expresses the power demand of the HVAC from the battery pack based
on the principles of thermodynamics explained earlier.

P batt
HVAC =

ṁHVAC
ηexc · ηcomp−em

·
(

THVAC,in − Tcool
COPc

+
THVAC,out − Tcool

COPh − 1

)
(20)

Given that all terms in Equation (20) remain constant at a reference temperature, a propor-
tional relationship exists between P batt

HVAC and ṁHVAC. Other parameters and symbols used
in this equation are described in Table 3.

Table 3. Description of parameters used in modeling HVAC power demand.

Parameter Definition Value

ηexc Heat exchanger efficiency 0.6
ηcomp−em Combined efficiency compressor-electric driver 0.7

COPc Cooling stage coefficient of performance (COP) 4
COPh Heating stage COP 4

5. Battery Fading Modeling

The battery pack has been designed focusing on A123 26650 LiFePO4 cells. The bat-
tery pack’s architecture comprises multiple battery branches connected in parallel, each
consisting of a specific number of cells in series. The design was developed to meet the
nominal battery characteristics used in a commercially available hatchback BEV [45,46].
A semi-empirical battery degradation model, like the one developed in [47], is included in
the vehicle simulation model once the battery design is finalized. The degradation model
is based on the Arrhenius equation, typically used in chemistry to describe the velocity
of chemical reactions. By leveraging this equation, the capacity loss of the battery can be
calculated as a percentage using Equation (21). However, some constant parameters must
be fine-tuned to ensure that the model can adequately fit the empirical evidence of battery
degradation. This formulation only captures the variability in battery degradation that
arises from different C-rates and temperatures.

Ahloss,% = B(c) · e−
A f (c)
Tbat · Ah z

tp (21)

The battery management system (BMS) is assumed to keep the battery pack’s temper-
ature constantly at 25 ◦C. The end of life (EOL) of the battery is considered as the point at
which Ahloss,% = 20%. The Ah-throughput can be expressed as Equation (22):

Ahtp =
1

3600
·
∫ tEOL

t=0
|i| · dt (22)
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Given the assumptions made, Equation (23) can be used to determine the number of
round-trip cycles for specific operating conditions.

N(c, Tbat) =
Ahtp(c, Tbat)

2 · Ahcell,rated
(23)

Thus, the rate of battery capacity degradation can be evaluated using Equation (24), and con-
sequently, the residual battery capacity, i.e., Ahbat, can be updated. The values used for the
constants in battery fading modeling is tabulated in Table 4.

˙SOH = 0.2 · c
3600 · N(c, Tbat)

(24)

A new battery model has been developed, distinguishing itself from similar research
by focusing on the battery’s characteristics. Using results from previous research on battery
capacity deterioration, as found in [47], a description of the battery’s characteristics has
been extracted. This description includes the variation in the battery’s open circuit voltage
(OCV) and internal resistance, corresponding to two variables: the state of health (SOH)
and the state of charge (SOC). These characteristics, over their respective domains, can be
observed in Figure 6a,b.

(a) (b)

Figure 6. Characterization curves of a LiFePO4 cylindrical battery cell manufactured by A123: (a) cell-
level state-of-charge (SOC)–OCV curves as a function of battery SOH; (b) cell-level SOC–internal
relationship curves as a function of battery SOH.

Table 4. Explanation of the entries of SOH model.

Parameter Unit Definition

Aging factor, A f K 3814.7 − 44.6 · c
Power law factor, z − 0.55

Battery temperature, Tbat K 298.15
Empirical pre-exponential factor, B(c) − [21,681; 12,934; 15,512; 15,512]

C-rate, c 1/h [2; 6; 10; 20]

6. Integrated Energy and Cabin Thermal Management (IETM) Problem Formulation
and Solution
6.1. IETM Problem Formulation

The integrated energy and thermal management (IETM) problem is formulated based
on understanding the battery degradation process. A capacity degradation model for the
battery is used, through which the degradation caused by the power loads demanded from
the battery is successfully deduced. Before solving the IETM problem, it should be math-
ematically formulated. The problem is then solved through instantaneous optimization
and the punctual minimization of a precise cost function. For the problem formulation,
the following state variables were selected:
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• Tcabin − Tre f ;
• Battery SOH.

The power required for the HVAC system, PHVAC, was chosen as the control variable (u(k))
to instantaneously minimize the cost function at each instant. Given these parameters,
the instantaneous formulation of the cost function for the given time t(k) can be expressed in
Equation (25):

J (u(k), x(k), t(k)) = β ·
(

∆T(k) − ∆T(k)
min

)2
+ γ · (1 − β) ·

(
∆SOH(k) − ∆SOH(k)

min

)2
(25)

It is necessary to choose the right value of PHVAC to minimize the cost function while
respecting the control variable’s constraint, as expressed in Equation (26).

0 ≤ PHVAC ≤ P des
HVAC (26)

All the terms entering Equations (25) and (26) are meticulously explained as follows:

• ∆SOH(k) = SOH(k) − SOH(k+1) > 0 is the drop in battery SOH across one simulation
time step.

• ∆SOH(k)
min =

(
SOH(k) − SOH(k+1)

)
min

> 0 is the smallest drop in battery SOH that
could happen across one time step, easily determined by the current traction conditions.

• ∆T(k) = T(k+1)
cabin − T(k)

cabin is the temperature difference in the cabin across one time step
to be managed.

• P des
HVAC is the desired power demand of the HVAC system, computed by the PI con-

troller in the HVAC system.
• ∆T(k)

min =
(

T(k+1)
cabin − T(k)

cabin

)
|P des

HVAC
< 0 is the minimum temperature drop inside the cabin

if the desired power demanded by the PI controller is forwarded to the HVAC system.
• γ is the scaling factor for balancing magnitudes of the two costs included in the

objective function.
• β is the weighting factor used to emphasize cost components of the objective function.

It should be noted that adjustments are required for the last two items on the list above.
After the necessary adjustments were made, the γ value was determined to be 6.43 × 1015.
The β value is expressed as a function of the difference between the external and reference
temperatures (Text − Tre f ), as indicated in Table 5. The justification for the beta values in
Table 5 can be attributed to the observation that the power demand from the HVAC system
increases as the desired temperature within the cabin decreases.

Table 5. Weighting factor β as a function of the difference between Text and Tre f .

Text − Tre f 14 ◦C 13 ◦C 12 ◦C 11 ◦C 10 ◦C 9 ◦C 8 ◦C 7 ◦C 6 ◦C 5 ◦C

β 0.780 0.745 0.707 0.666 0.620 0.574 0.523 0.472 0.419 0.368

6.2. IETM Problem Solution with GSS

The cost function given in Equation (25) is convex, meaning it has a unique minimum
corresponding to the optimal cost. This property allows the function to be minimized in real
time using a computationally efficient optimization method called the golden-section search
algorithm (GSS), whose working principle is delineated in Table 6. The GSS algorithm is
based on the golden ratio, φ = (1 +

√
5)/2, and can find the minimum of a convex function

with significantly fewer iterations compared to standard minimum-search algorithms.
A final tolerance, i.e., ϵ, and a bounded interval ([xl , xu]) within which the minimum must
be searched for, i.e., [xl, xu], must be defined to use the GSS algorithm. The number of
iterations required to find the minimum depends on the final tolerance, ranging between 8
and 14. Figure 7 depicts the interaction between the IETM controller and HVAC system.
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Table 6. Golden-section search algorithm.

Step Number Step Command

Step 1 Determine the intermediate points x1 = xl + d and x2 = xu − d, where d = (φ − 1) · (xu − xl)
Step 2 If f (x1) < f (x2) ⇒ x k+1

l = x k
2 , x k+1

2 = x k
1 , x k+1

u = x k
u , x k+1

1 = x k+1
l + d k+1

If f (x1) > f (x2) ⇒ x k+1
l = x k

l , x k+1
u = x k

1 , x k+1
1 = x k

2 , x k+1
2 = x k+1

u − d k+1

Step 3 k = k + 1
If | f (x k

l )− f (x k
u )| ≤ ϵ ⇒ END — xmin = (x k

l + x k
l )/2 , and Fmin = f (xmin)

If | f (x k
l )− f (x k

u )| > ϵ ⇒ Keep on iterating by starting back again from Step 2

IETM controller

𝑃𝑡𝑟𝑎𝑐𝑡 +𝑎𝑢𝑥 𝑃𝐻𝑉𝐴𝐶
𝑑𝑒𝑠

PI
controller

HVAC
system

𝑇𝑐𝑎𝑏𝑖𝑛

𝑇𝑟𝑒𝑓

𝑄𝐻𝑉𝐴𝐶
𝑑𝑒𝑠

𝑚𝐻𝑉𝐴𝐶

HVAC
internal
control

Cabin

Auxiliaries

Powertrain

Plant

𝐹(𝑢, 𝑥, 𝑡)

𝑃𝐻𝑉𝐴𝐶

𝑃𝐻𝑉𝐴𝐶

Figure 7. Scheme of the new HVAC control architecture, including the IETM controller.

6.3. IETM Action

The results regarding temperature evolution and power supplied to the HVAC unit
can be easily deduced from Figure 8. With a given solar radiation of qsun = 1000 W/m2 and
single-passenger occupancy (np = 1), the temperature evolution inside the cabin starting
from Tcabin,0 = 26 ◦C for standard PI control and IETM control are shown in the left half of
Figure 8, whereas the right half of the figure depicts the difference in HVAC power between
PI control and IETM control. The reference is set at 23 ◦C.

Figure 8. Temperature evolution (left) and power supplied to HVAC (right) on the WLTC. The same
initial conditions and external conditions were considered with both HVAC controls: standard control
(red), IETM control (blue).
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From the profiles depicted in Figure 8, one can confirm the fairness of the IETM
controller by observing how the temperature evolves corresponding to the HVAC power’s
variation. Although the former is a clear consequence of the latter, the power trajectory
oscillates because of Equation (25), which is the cost function for the IETM controller.

7. Simulation Results and Discussion

Evaluating the IETM control strategy’s efficacy in reducing battery capacity degra-
dation is necessary, followed by the controller’s implementation. Two driving scenarios,
as shown in Figure 9, representative of European and North American standard drive cycles
for energy consumption and pollution measurements, are selected for the simulations:

• Scenario 1: WLTC (Worldwide Harmonized Light Vehicles Test Cycle);
• Scenario 2: UDDS (Urban Dynamometer Driving Schedule) + HWFET (Highway Fuel

Economy Driving Schedule).

2000

30

20

10

0

Figure 9. Driving scenarios used to validate the efficacy of the proposed IETM strategy.

It is easy to understand that the first driving scenario is more aggressive than the
second one by simulating the vehicle model in each scenario with no cabin condition-
ing (HVAC turned off). From Table 7, one can deduce that the specific energy required
to complete the driving schedule is lower for scenario 2 (1.012 Ah

km ) than for scenario 1
(1.182 Ah

km ).

Table 7. Technical summary of the two driving schedules.

Schedule Distance Covered [km] Time [s] Energy Spend/Cycle [Ah]

Scenario 1 23.25 1801 27.494
Scenario 2 28.50 2134 28.853

Four consecutive drive cycles were carried out to quantitatively assess the benefits,
followed by measuring the battery capacity drop at the end of the test. Assuming that the
battery degradation would repeat identically, it was determined that the SOH degradation
resulting from 160,000 km of driving could be obtained by extrapolating the combined
degradation caused by the two scenarios. However, the drop in battery SOH caused by
the charging phase, which occurs every time the SOC reaches the minimum threshold,
i.e., SOC = SOCmin = 5%, was not considered. The ambient conditions are characterized
by an external temperature of Text = 32 ◦C and solar radiation of qsun = 1000 W/m2.

Notably, Figure 10 compares the battery power demand from the propulsion and
HVAC systems. Although the variation in power demand coming from the HVAC system
is much smaller than the traction system, the HVAC power demand varies as a function of
reference cabin temperature. The HVAC system ideally requires around 4 kW and 2 kW of
power to maintain the cabin at 18 ◦C and 27 ◦C temperatures, respectively, during driving
scenario 1, as shown in Figure 11. The desired power demand for the HVAC system does
not change much as the driving scenario changes, hovering around 4 kW and 2 kW for 18 ◦C
and 27 ◦C, respectively, as shown in Figures 12 and 13 compared to Figure 11.
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Figure 10. Battery loads in scenario 1 and scenario 2: traction power demand (green) and HVAC battery
load to keep constantly 18 °C and 27 °C inside the cabin.
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Figure 11. Temperature profile (upper panel) and HVAC power profile (lower panel) resulting from
using the IETM controller with a reference temperature of 18 °C (left hand) and 27 °C (left hand) in
driving scenario 1.

Figure 12. Temperature profile (upper panel) and HVAC power profile (lower panel) resulting from
using the IETM controller with a reference temperature of 18 °C in driving scenario 2.

It may look like the IETM controller cannot make a difference in the battery’s durability
by optimally regulating the HVAC power demand since it has a small share in the overall
power demand of the vehicle. However, IETM intelligently cuts down the desired HVAC
power demand by approximately 1 kW whenever the traction power demand is in the zone
of high peaks, as shown in Figures 11–13.
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Figure 13. Temperature profile (upper panel) and HVAC power profile (lower panel) resulting from
using the IETM controller with a reference temperature of 27 °C in driving scenario 2.

As a result of such an optimal reduction in HVAC power demand, the cabin tempera-
ture hovers around the reference temperature with a larger response time, meticulously
justifying the foundational assumption of this research work, that the cabin thermal system
has slower dynamics than the powertrain. After the HVAC system attains its steady-state
power, i.e., after 200 s, in Figures 11–13, the proposed IETM strategy has caused maximum
temperature deviation only (∆maxT) of = 1.5 ◦C in both driving scenarios. Assuming
the order of deviation in controlled cabin temperature from the reference temperature,
as shown in Figures 11–13, will not be perceived by and will not create any discomfort to
the drivers and passengers, the effectiveness of the proposed ITEM control over traditional
PI control in decreasing SOH degradation is depicted in Figure 14. It is evident from the
comparison between the PHVAC,PI and PHVAC,IETM trajectories in Figures 11–13 that the
cumulative HVAC power demand over a drive cycle has been reduced with the proposed
IETM strategy, and this is partly responsible for the delay in SOH degradation depicted in
Figure 14. Due to IETM, not only does the cumulative HVAC power decrease, but the peak
battery discharge power also decreases, which is also responsible for delaying battery SOH
degradation. The figure depicts the savings in SOH for only a single occurrence of both
driving scenarios.

Figure 14. Capacity deterioration profiles in driving scenario 1 (red) and driving scenario 2 (blue) with
controlled cabin temperature (Tre f = 23 ◦C): standard PI control (solid), and IETM control for the
HVAC (dashed).
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This same test is repeated while maintaining the inside of the cabin’s volume in several
comfort conditions, expressed in terms of the reference temperature to be held inside the
cabin. The efficacy of the proposed IETM control strategy, quantitatively measured in terms
of battery capacity saved after 160,000 km, is summarized in Table 8 for scenario 1 and
scenario 2, and depicted in Figure 15 as well.

Table 8. Decrease in battery capacity degradation on scenarios #1 and #2 due to using IETM controller.

Tre f (◦C) 18 19 20 21 22 23 24 25 26 27

∆Csaved%WLTP 4.19 4.12 4.02 3.92 3.83 3.66 3.5 3.27 3.03 2.76
∆Csaved%EPA 4.62 4.45 4.2 3.98 3.82 3.57 3.37 3.1 2.83 2.55
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Figure 15. Battery degradation benefits found by controlling the HVAC with IETM controller rather
than with PI controller.

The results, expressed in percentage, represent the additional battery capacity found
for the battery pack at the end of the 160,000 km using the IETM strategy, as compared to the
same distance traveled without the assistance of the controller. The improvements, ranging
in the interval between 3.1% and 4.5%, are in line with what one could have expected by
such a strategy. Indeed, this is neither a strategy acting on the driving style, nor some
improvement in powertrain efficiency. These could have returned higher improvements,
minimizing the traction power, which would have meant having a range of values of
power to act on that would be far larger than the one required by the HVAC. Aiming to
explain the decreasing trend that occurs as the reference temperature within the cabin
increases, this is due to the HVAC system’s increased energy consumption necessary to
maintain lower temperatures inside the cabin. Then, the IETM control can work on a higher
power margin, limiting the damaging effect on the battery when needed, thus leading to
greater improvements.

Some other benefits have been found by investigating carefully the outcomes of these
tests. The IETM strategy shows a positive impact in terms of energy consumption as
well. By monitoring the SOC decrease at the end of each test run, the results obtained are
summarized in Figure 16.
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Figure 16. Energy consumption benefits found from controlling the HVAC with IETM controller
rather than with PI controller.

8. Conclusions

This article has made significant strides in enhancing the durability and energy
efficiency of battery electric vehicles by introducing an innovative, fast-running IETM.
The IETM is effective for improving battery health and energy efficiency in EVs by per-
forming an optimal adjustment of the battery loads. The simulation results prove that:

• The proposed IETM decreases the battery health degradation of a well-known com-
mercial EV by as much as 4.6% and improves energy efficiency by as much as 2.8%.

• The proposed IETM keeps the actual cabin temperature within a permissible deviation
(∆maxT = 1.5 ◦C) from the reference temperature set by the passengers.

The IETM can be easily integrated into any battery-powered powertrain architecture by
augmenting a small module of software to the EMS, enforcing BEVs’ jump into the cur-
rent automotive industry. Furthermore, the IETM’s performance is worthy, considering
it is computationally as cheap, especially in more aggressive driving scenarios where its
advantages are even more evident. A critical next step could be exploring the feasibility of
real-time implementation, upgrading the cabin thermal model with humidity estimation
such that thermal comfort can be measured with standardized metrics such as predicted
mean vote (PMV) and predicted percentage of dissatisfaction (PPD), and onboard eval-
uation of the IETM strategy on the vehicle control unit. This approach would provide
insights into the real-world applicability and performance of the IETM controller under
dynamic driving conditions. This possibility also would enable us to check how far the real
advantages coming from the IETM application could be from the ideal one outlined within
this research project.
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