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Abstract
The unavailability of labeled data has always been the main limitation of data-
driven solutions for monitoring the health state of full-scale structures. In this
area, domain adaptation (DA) solutions have occasionally been proposed in
recent years, which allow the sharing of data sets between distinct but similar
systems. This paper presents a novel computational methodology to evaluate
the condition state of historical buildings subjected to continuous monitoring.
The DA method, specifically transfer component analysis, is used to maintain
correlations between two data domains with low relevance, thereby improving
the accuracy of classification models. Additionally, it is shown that the kernel-
ized Bayesian transfer learning can enhance classification accuracy beyondwhat
is achievable with a support vector machine. The paper is completed with a
real-world application to the classification of data sets from two Italian Baroque
churches, both characterized by imposing oval masonry domes, but equipped
with very different monitoring systems.

1 INTRODUCTION

Recently, artificial intelligence (AI) is proving to be a use-
ful tool in the field of structural health monitoring (SHM)
and integrated structural control and health monitoring
(ISCHM) (Farrar & Worden, 2012; Javadinasab Hormoz-
abad et al., 2021; Pezeshki, Adeli, et al., 2023), especially
machine learning (ML),which is increasingly used toman-
age data and perform predictions (Adeli & Hung, 1994;
Amezquita-Sancheza et al., 2020; Farrar & Worden, 2012;
Pavlou, 2022; Perez-Ramirez et al., 2019). ML algorithms
are trained on a data set that may or may not be labeled,
and then used to perform predictions on new data. The
main limits of supervised algorithms, that is, algorithms

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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trained for classification with labeled data sets, are the
need to provide a minimum of observations for each class
considered, which in the examined case are structural
condition states, for example, damage or even just temper-
ature (Rafiei & Adeli, 2017). Training data sets consist of
several features, which can be, for instance, modal param-
eters, as they reflect variations in structural conditions,
be they pathological or physiological. These features are
obtained through an identification procedure (Ceravolo
et al., 2016; Perez-Ramirez et al., 2016) developed from the
signal recorded during dynamic monitoring of the struc-
ture and are structurally significant for any kind of existing
systems (Pezeshki, Pavlou, et al., 2023). It is therefore pos-
sible to understand that in most full-scale structures, it
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is difficult or even impossible to find data sets describing
all possible structural conditions, as it is not possible to
deliberately act on the structure to obtain information on
different conditions. The lack of labeled data is a crucial
aspect thatmust be addressed to develop anMLmodel that
can perform well for new unseen data.
In this view, new methods, such as transfer learning

(TL), are required to compensate for insufficient labeled
data. The problem is addressed by considering data from
different systems, which can be different but, in some way,
related, and by manipulating them with domain adapta-
tion (DA) techniques (Pan & Yang, 2009). The concept
behind TL with DA is to exploit data, that is, knowledge,
from “third-parties systems” to improve the prediction
capability of a classifier for the investigated system about
which a little amount of data are available. Therefore,
a proper choice of the system(s) from which to retrieve
data is essential; indeed, it is likely that the more sim-
ilar that system(s) is to the one being investigated, the
better the information transfer will be. When the investi-
gated system is an observed structure, the exploited system
may be a mathematical model of it, such as a calibrated
finite element model (FEM) (Ceravolo et al., 2016), or
other observed structures that have some correspondence
with the investigated one. The set of structures considered
generates a population that may be homogeneous or het-
erogeneous according to the dissimilarity that exists among
them in terms of geometry, material, and topology (Bull
et al., 2020; Gardner, Bull, et al., 2020).
The strategy of enriching monitoring data sets by draw-

ing from richer domains is increasingly being applied to
engineering structures. References can be made to Huang
et al. (2024), Lin et al. (2022), and Quqa et al. (2023) for
simulation-to-real information transfer in beams, sheets,
and rails; Li et al. (2021) for pavement distress detection;
Chakraborty et al. (2011) for the classification of fatigue
damage in an aluminum lug joint; and Gao and Mosalam
(2018) and Giglioni et al. (2024) for damage detection.
Instead, in this work, a full computational procedure is

proposed to transfer knowledge between full-scale struc-
tures subjected to continuous monitoring, specifically his-
torical domes. Indeed, monitoring practices play a crucial
role in historical buildings (Ceravolo et al., 2016), providing
first-hand data for decisionmaking. The continuous obser-
vation of the entire structure, as well as the objective and
accurate information on the performance and structural
integrity that only permanent monitoring can achieve,
favors the implementation of preventive conservation and
the execution of targeted interventions, containing costs,
invasiveness, and risks of irreparable damage.
First, the homogeneous TL between a continuously

monitored structure and its FEM is addressed, taking
advantage of a preliminary study that used the FEmodel of

the Sanctuary of Vicoforte, which features one of the most
monitored historical domes in the world (Coletta et al.,
2021). In this case, a DA is realized through a transfer
component analysis (TCA) (Pan et al., 2011) and the clas-
sification is performed with a relevance vector machine
(RVM) model (Tipping, 2001). A heterogeneous perspec-
tive of TL is then proposed for which information obtained
from the monitoring activities of a structure is transferred
to enhance the prediction accuracy of data representative
of the less monitored structure. A suitable tool for trans-
ferring knowledge between different monitoring systems
is kernelized Bayesian transfer learning (KBTL) (Gönen
& Margolin, 2014), a supervised algorithm that performs
a heterogeneous TL with DA. The experimental verifica-
tion of the heterogeneous case is conducted on continuous
monitoring data sets of two oval domes, respectively, of the
Sanctuary of Vicoforte and of the Church of Santa Caterina
in Casale Monferrato.
The paper is organized as follows. Section 2 is intended

to provide an overview on DA, and specifically on TCA
and KBTL. In Section 3, the main types of application of
TL for SHM, a brief description of the case studies used
to define the methodology and the methodology itself are
introduced.
Section 4 illustrates the experimental verification of the

methodology proposed for the twohistorical domes, via the
application of TCAandKBTL. In Section 5, conclusions are
drawn.

2 THEORETICAL BACKGROUND

This section initially takes up the definitions and con-
cepts underlying the TL with DA, which is conceptually
different from the fine-tuning approaches generally used
to exploit existing deep neural networks. Thereafter, in
specific subsections, the two algorithms used in the pro-
posed computational procedure are briefly described, with
their principal hypotheses and assumptions, to provide an
overview and justify their choice. For the description of the
approach with TCA, one may refer to the article by Pan
et al. (2011), whereas for KBTL method, reference is made
to the paper byGönen andMargolin (2014) and to the paper
by Gardner et al. (2022), where the first application of this
algorithm to framed laboratory structures was presented.
For simplicity, matrices will be indicated with bolded

uppercase characters, vectors with bolded lowercase
characters, and scalar variables with italic lowercase
characters.
DA is a TL technique applied to induce an improvement

in the predictive ability of a model for a given domain
that contains insufficient data by exploiting knowl-
edge learned by the model in the training phase from
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CAVANNI et al. 3

third-party domains with adequate labeled data. Each
domain is composed by an input feature space 

and a marginal probability distribution 𝑃(𝐗) of a set
𝐗 = {𝐱1; … ; 𝐱𝑁} ∈  , with 𝐱𝑖 the 𝑖th observation of the
features vector. To each domain, a task  = { ; 𝑓(⋅)}

is associated, where  is the label space and 𝑓(⋅) the
objective predictive function, which can also be seen
as a conditional distribution 𝑓 (𝑥) = 𝑃(𝑦|𝑥) (Farahani
et al., 2020). To develop a DA, two domains are required,
specifically the target and the source one. The first, 𝐷𝑡, is
the reference domain for which the network is trained, but
which contains too few data to obtain accurate predictions
and it can be composed of labeled or partially labeled data:

𝐷𝑡 =
{
𝐱𝑡,𝑖 , 𝑦𝑡,𝑖

}𝑁𝑡

𝑖=1
where 𝐱𝑡,𝑖 ∈ 𝑡 and 𝑦𝑡,𝑖 ∈ 𝑡 (1)

with 𝑖 free variable that indicates the 𝑖th sample. The
second, 𝐷𝑠, in the case of a single-source TL (i.e., only one
system is considered as source), is the domain of labeled
data that is exploited to increase performance on making
prediction of data belonging to the target domain (TD):

𝐷𝑠 =
{
𝐱𝑠,𝑖 , 𝑦𝑠,𝑖

}𝑁𝑠

𝑖=1
where 𝐱𝑠,𝑖 ∈ 𝑠 and 𝑦𝑠,𝑖 ∈ 𝑠 (2)

where 𝑁𝑠 and 𝑁𝑡 are the number of observations in the
source domain (SD) and TD, respectively, and generally
0 < 𝑁𝑡 ≪ 𝑁𝑠.
Depending on the relation between the feature spaces

and label spaces of the two domains, different TL models
can be distinguished, specifically a homogeneous or het-
erogeneous TL can be performed. The first assumes that
the feature and the label spaces are shared by the two
domains, meaning𝑡 = 𝑠 and𝑡 = 𝑠, and therefore the
dimensions of the feature spaces are equal, that is, 𝑑𝑠 = 𝑑𝑡.
Unlike, the second assumes that the feature spaces are not
equivalent, that is, 𝑡 ≠ 𝑠, and often that the SD and TD
do not have the same feature space dimension, that is, 𝑑𝑠 ≠

𝑑𝑡; additionally, it can also assume different label spaces,
𝑡 ≠ 𝑠 (Farahani et al., 2020). Regardless of the type of TL
to be developed (homogeneous or heterogeneous), the two
domains will differ in the marginal distributions, that is,
𝑃(𝐗𝐬) ≠ 𝑃(𝐗𝐭). DA approaches are therefore involved with
the aim of reducing the distance between these marginal
distributions. Furthermore, in the case of different fea-
ture space dimensions, the DA is also responsible for the
dimensionality reduction (or expansion) of the original
domains to the common dimension,.

2.1 Transfer component analysis

The TCA is a homogenous TL algorithm introduced by Pan
et al. (2011) that viaDA tries to preserve asmuch as possible

the data variance, and to reduce the distance between dif-
ferent distributions across domains, in order to enable the
transfer of knowledge between distinct domains. This is
performed with a dimensionality reduction in a reproduc-
ing kernel Hilbert space (RKHS), spanned by the learned
components, employing the maximum mean discrepancy
(MMD) criterion.
TCA assumes that 𝑃(𝐗𝐬) ≠ 𝑃(𝐗𝐭) and 𝑃 (𝐘𝐬|𝐗𝐬) =

𝑃(𝐘𝐭|𝐗𝐭), requiring that 𝑡 = 𝑠 and 𝑡 = 𝑠 corre-
spond to a homogenous TL approach. The MMD dis-
tance between the empirical means of the two domains,
𝐷𝑖𝑠𝑡(𝐗

′

𝐬, 𝐗
′

𝐭), reads:

𝐷𝑖𝑠𝑡
(
𝐗

′

𝐬, 𝐗
′

𝐭

)
= 𝑡𝑟 (𝐊𝐋) (3)

where 𝐗′
𝐬 and 𝐗′

𝐭 are the inputs transformed form of the
SD and TD, 𝐊 ∈ ℝ(𝑁𝑠+𝑁𝑡)×(𝑁𝑠+𝑁𝑡) is a kernel symmetric
matrix, containing the kernel matrices of source, target,
and cross domains, and 𝐋 is the MMDmatrix.
The kernel matrix can be decomposed as

𝐊 = (𝐊𝐊−0.5) (𝐊−0.5𝐊), defined as the empirical
kernel map. By exploiting a matrix �̃� ∈ ℝ(𝑁𝑠+𝑁𝑡)×𝑚,
the empirical kernel map features are transformed into an
𝑚-dimensional space (with𝑚 ≪ 𝑁𝑠 + 𝑁𝑡 hyperparameter
to be selected) obtaining the resultant kernel matrix
as:

�̃� =
(
𝐊𝐊−0.5�̃�

) (
�̃�⊺𝐊−0.5𝐊

)
= 𝐊𝐖𝐖⊺𝐊 (4)

with the transformation matrix𝐖 = 𝐊−0.5 �̃�.
To minimize the MMD distance, a regularization term

is needed to control the complexity of the matrix𝐖, hence
the kernel learning problem becomes:

min𝐖
s.t. 𝐖⊺𝐊𝐇𝐊𝐖=𝐈

𝑡𝑟 (𝐖⊺𝐊𝐋𝐊𝐖) + 𝜇 𝑡𝑟 (𝐖⊺𝐖) (5)

where the second term is the product between a trade-off
parameter (𝜇 > 0) and the regularization term (𝑡𝑟(𝐖⊺𝐖)),
𝐇 is a centering matrix, 𝐈 ∈ ℝ𝑚×𝑚 is an identity matrix,
and the constraint 𝐖⊺𝐊𝐇𝐊𝐖 = 𝐈 is introduced to avoid
the trivial solution𝐖 = 0.
Then, Equation (5) can be solved with the equivalent

trace optimization problem:

max𝐖 𝑡𝑟
(
(𝐖⊺ (𝐊𝐋𝐊 + 𝜇𝐈)𝐖)

−1
𝐖⊺𝐊𝐇𝐊𝐖

)
(6)

as can be seen from the Lagrangian of Equation (5).
The solutions for 𝐖 in Equation (6) are the 𝑚 lead-
ing eigenvectors of (𝐊𝐋𝐊 + 𝜇𝐈)

−1
𝐊𝐇𝐊, where 𝑚 ≤

𝑁𝑠 + 𝑁𝑡 − 1, which are used to define the space of
the transformed features through 𝐙 = 𝐊𝐖, where 𝐙 ∈

ℝ(𝑁𝑠+𝑁𝑡)×𝑚.
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4 CAVANNI et al.

F IGURE 1 Overview on kernelized Bayesian transfer learning (KBTL) conceptual flow for a target domain t and a source domain s.
Graphical representations are also presented of the original domains, target (e.g., dt = 3) and source (e.g., ds = 2), with a common label space
of three classes (multiclass problem), and of the same domains projected in the latent subspace with the linear classifier for each class
(one-versus-all).

2.2 Kernelized Bayesian transfer
learning

The KBTL is a heterogeneous supervised learning algo-
rithm used to share knowledge within a population and
admits the features inconsistency. This model has been
introduced by Gönen and Margolin (2014) to share knowl-
edge across multiple data sets from different systems
generating a linear classification model in a shared latent
subspace.
This model assumes 𝑇 domains {𝐷𝑘}

𝑇
𝑘=1

with inconsis-
tent feature spaces {𝑘}

𝑇
𝑘=1

. Each domain has an associated
task {𝑘}

𝑇
𝑘=1

with consistent label spaces𝑗 = 𝑟 ∀ 𝑗, 𝑟 ∈

1∶𝑇, hence a global and unique label space  shared
among the 𝑇 domains can be assumed. Each 𝑘th domain
has 𝑁𝑘 finite feature observations 𝐗k = {𝐱k,i ∈ 𝑘}

𝑁𝑘

𝑖=1
at

which correspond a finite set of 𝑁𝑘 label observations
𝐲𝑘 ∈  . The label space  is composed by 𝐶 classes (i.e.,
𝐶 = 2 for binary problem, 𝐶 > 2 for multiclass problem).
For each 𝑘th domain/task pair, there is a specific kernel
function 𝑘𝑘( ⋅, ⋅ ) that defines the correlation between the
observations of the 𝑘th domain and therefore each domain
is represented by its own kernel matrix𝐊k = 𝑘𝑘(𝐗k, 𝐗

′

k
).

Conceptually, the algorithm can be summarized in two
main phases: projection of data points from the different
domains into a shared latent subspace , using a kernel-
based dimensionality reduction model for each domain,
and deduction of a linear discriminative classifier in the
shared latent subspace (see Figure 1). The first phase has
been designed to manage the inconsistent feature spaces
and to reduce the distance between the distributions.
Indeed, considering two domains 𝐷𝑗 and 𝐷𝑟 with dimen-
sions 𝑑𝑗 and 𝑑𝑟, with 𝑑𝑗 ≠ 𝑑𝑟, if a classifier within these
domains has to be obtained, both domains have to be pro-

jected into a shared latent subspace through a dimension-
ality reduction to the dimension  of the latent subspace
. To perform it, each domain 𝑘 has to be representedwith
its own kernel matrix {𝐊k ∈ ℝ𝑁𝑘×𝑁𝑘 }𝑇

𝑘=1
and the repre-

sentation of the datapoints in the shared latent subspace
 is subsequently obtained by premultiplying the kernel
matrix for the transpose of the optimal linear projection
matrix {𝐀k ∈ ℝ𝑁𝑘×}𝑇

𝑘=1
, learned by the algorithm. The

final representation of each domain in the shared latent
subspace is described as { 𝐇k = 𝐀

⊺

k
𝐊k 𝜖 ℝ × 𝑁𝑘 }𝑇

𝑘=1
. The

KBTL can be used for binary classification or multiclass
classification, which corresponds to the model used in
this paper. Consequently, only the hypotheses for this sec-
ond case are reported, while for additional details one can
refer to Gönen and Margolin (2014). The second stage is
the classification part that calculates the predicted out-
puts in the shared latent subspace . This is performed
for a multiclass problem with a linear classifier for each
class 𝑐, 𝐟k,c = 𝐇

⊺

k
𝝎c + 𝟏𝑏𝑐 ∀ 𝑘 ∈ 1 ∶ 𝑇 and ∀ 𝑐 ∈ 1 ∶ 𝐶,

where the weights vector {𝝎c 𝜖 ℝ × 1}𝐶
𝑐=1

and the bias
{𝑏𝑐 𝜖 ℝ1 × 1}𝐶

𝑐=1
are the classifier parameters learned by the

algorithm for each class and shared among all the domains.
In Figure 2, a graphical representation of the KBTL

model for multiclass classification is reported, where
it is possible to identify all the priors, the hyperparam-
eters, and the latent variables. In detail, three priors
are present, namely, the matrix of priors {𝚲k 𝜖 ℝ𝑁𝑘×}

of the task-specific projection matrix 𝐀k, the vector of
priors {𝜼c 𝜖 ℝ×1} of the weights vector 𝝎c, and the prior
{𝛾𝑐 𝜖 ℝ1×1} for the bias parameter 𝑏𝑐. Each of these three
priors is defined from a set of two hyperparameters {𝛼𝜆, 𝛽𝜆}

for 𝚲k, {𝛼𝜂, 𝛽𝜂} for 𝜼c and {𝛼𝛾, 𝛽𝛾} for 𝛾𝑐. The variance of
the shared latent subspace is introduced as 𝜎2

ℎ
. Since it is a

multiclass classification model, each class has its own set
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CAVANNI et al. 5

F IGURE 2 Graphical representation of kernelized Bayesian
transfer learning (KBTL) model for multiclass classification, with
hyperparameters (dashed), input data set (𝐗𝑘), parameters for the
dimensionality reduction and projection in the latent subspace, and
classifier parameters.

of classifier parameters {𝑏𝑐 ∈ ℝ1×1, 𝝎c ∈ ℝ×1}, which
are shared by the domains. Indeed, the model is built in a
one-versus-allmanner, which means that each class has its
own classifier that separates it from the other classes. This
implies that for each class, the probability that a given dat-
apoint is a subset of it is computed, then the label assigned
to the datapoint will be the one for which the highest prob-
ability has been computed. Several assumptions are used
for the distributions: (i) Normal distribution,  (⋅; 𝝁, 𝚺),
for𝐀k(𝑖, 𝑠)|𝚲k(𝑖, 𝑠); 𝐇k(𝑠, 𝑖)|𝐀k(∶, 𝑠), 𝐊k(∶, 𝑖); 𝑏𝑐|𝛾𝑐; 𝝎c(𝑠)|
𝜼𝑐(𝑠) and 𝐟k,c(𝑖)|𝑏𝑐, 𝝎c, 𝐇k(∶, 𝑖); (ii) Gamma distribution,
(⋅; 𝛼, 𝛽), for 𝚲k(𝑖, 𝑠); 𝛾𝑐 and 𝜼𝑐; and (iii) Kronecker delta
function 𝐲k,c(𝑖)|𝐟k,c(𝑖) ∼ 𝛿(𝐟k,c(𝑖)𝐲k,c(𝑖) > 𝜈); where,
k ∈ 1 ∶ 𝑇, 𝑖 ∈ 1 ∶ 𝑁𝑘, 𝑠 ∈ 1 ∶  and 𝜈 is the nonnegative
margin parameter, introduced to find a low-density region
among the classes (closely to the idea of a support vector
machine model).
To realize an efficient inference mechanism, Gönen and

Margolin (2014) developed a variationalmethod that uses a
lower bound on themarginal likelihood using an ensemble
of factored posteriors to find the joint parameter distri-
bution. To bound the marginal likelihood, the Jensen’s
inequality is exploited, and it is optimized by maximizing
it with respect to each factor until convergence, for more
details about this, the authors suggest referring directly to
Gönen and Margolin (2014).
The approximate posterior distributions for the mul-

ticlass problem result with the same distribution as the
corresponding factors. The predictive equations for the
projection and dimensionality reduction part, the predic-
tive distribution of the predicted output, and the predictive
distribution of the class label are written by substitut-

F IGURE 3 Different source–target combinations for
application of transfer learning (TL) to structural health monitoring
(SHM). (a) TL from the experimental data sets of a monitored
structure to the simulated ones; (b) TL from the simulated data sets
of a monitored structure to the experimental ones; (c) TL from the
experimental data sets of a monitored structure to the experimental
data sets of an insufficiently monitored one.

ing the true posteriors with the approximate posterior
distributions (Gönen & Margolin, 2014).

3 APPLICATION TO EVALUATING
THE CONDITION OF HISTORICAL
DOMES: EXAMPLEMODELS AND
PROPOSEDMETHODOLOGY

TL has various potential uses in monitoring full-scale
structures, depending on the domains (source and target)
chosen. The substantial difference lies above all in the
“nature” of the data to be exploited; specifically, it is possi-
ble to work with experimental data (i.e., obtained directly
from sensors placed on the structure) orwith data obtained
bymodel simulations, such as FEMs. From these two types
of data sets, which will henceforth be referred to as experi-
mental data set (from monitoring) and simulated data set
(from the model), it is possible to obtain three possible
source–target combinations (Figure 3).
Figure 3a: TL from experimental data set to simulated

data set. The purpose of this type of application of TL
is to calibrate the mathematical model (e.g., FEM) of a
structure, thereby obtaining a digital twin that can later
be exploited as a means of simulating any structural con-
dition, thus predicting the response of the real structure.
Nevertheless, to performamodel calibration, a quite exten-
sive monitoring campaign is required, consequently only
for highly monitored structures is there a real possibility
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6 CAVANNI et al.

of creating a predictive model. Currently, model updating
procedures are successfully performed without the need
to resort to TL techniques (e.g., Friswell & Mottershead,
1995). This derives from the great availability of linear FEM
formulations and the high level of accuracy achieved by
the local and global sensitivity methods proposed in the
literature (e.g., Boscato et al., 2015; Bursi* et al., 2014; Cer-
avolo et al., 2020). The application of TL, specifically DA
techniques, could in the future make the process faster
and therefore more convenient for matching nonlinear
and complex behaviors. In cases where it was possible to
reach a level of correspondence for which the two domains
were almost overlapping, one could, in perspective, con-
sider each characteristic simulated on the model in the
same way as data extrapolated directly from themonitored
structure. This would lead to overcoming one of the fun-
damental limitations of using ML in SHM, namely, the
difficulty in finding data from damaged conditions to train
supervised algorithms.
Figure 3b: TL from simulated data set to experimental

data set. When an accurate (e.g., experimentally cali-
brated) model of the structure is available, this can be
exploited to simulate those structural conditions for which
few data from direct monitoring of the structure are avail-
able. Since, however, inmost of the cases, the experimental
data set and the simulated data set are not perfectly over-
lapped, a TL with DA can be implemented in order to
reduce the distance between the two data distributions
by allowing a classification (or regression) model to be
generated in a latent space shared by the two domains,
thus compensating the limitations of experiments with
simulations.
Figure 3c: TL from an experimental data set to another

experimental data set. Further possible applications occur
when data are available from exhaustively monitored
structures (e.g., permanent dynamic monitoring system),
which can be traced back from a structural point of view to
an insufficiently monitored structure (e.g., nonpermanent
monitoring, incomplete data sets, periodic or una tantum
condition assessment tests). In this circumstance, the data
of the most monitored structure can be exploited via DA to
implement the knowledge of the less monitored structure
thus allowing the interpretation of its new data.
Recently, DA has been applied, in varied ways, to simple

structural schemes, such as laboratory frames and beams
(e.g., Gardner et al., 2022; Gardner, Liu, et al., 2020; Wang
& Xia, 2022). The common application of DA is indeed
to transfer knowledge from more than one system, that
is, consider a TD and different SDs (both from real struc-
tures and from models, more or less similar to the target
structure). Another possible point of view presented in
literature is that of sharing knowledge among multiple
structures, in which case, the strict meaning of SD and TD

would be lost, because each domain would be source and
target at the same time. This last approach, in fact, aims
at improving the predictive capacity of the model for each
structure considered and not just one.
This paper aims to develop the concepts (b) and (c)

and materialize them in a full knowledge transfer proce-
dure between data sets of full-scale structures, even very
complex ones but with similarities, subject to continuous
monitoring.

3.1 Application models and data sets

This subsection is devoted to the description of the two
case studies with the associated dynamic monitoring data
sets, from which the features of the TL applications have
been extracted. The Sanctuary of Vicoforte (Figure 4a)
and the Church of Santa Caterina in Casale Monferrato
(Figure 4g) are two well-known Baroque churches, both
subjected to a continuousmonitoring and characterized by
high geometric complexity, as well as uncertainties regard-
ing materials and construction techniques. Except for the
similarity in the oval shape of the dome, the two structures
present significant differences, both in plan and elevation,
which leads to the development of substantially different
dynamic responses. For this reason, it is believed that the
two churches form a heterogeneous population (Gardner,
Bull, et al., 2020).
The Sanctuary of Vicoforte (Figure 4a) is a baroque

monumental building located in Vicoforte (Cuneo, Italy)
and famous for having the world’s largest oval masonry
dome. The Sanctuary was commissioned in 1596 by Carlo
Emanuele I di Savoia to Ascanio Vitozzi, but the construc-
tion of the drum–dome system (from 1728 to 1732) is to be
attributed to Francesco Gallo with the support of Filippo
Juvarra. The oval dome (Figure 4b,d) has a major axis of
37.15 m and a minor axis of 24.80 m.
The plan follows the oval shape of the dome, with a total

of five chapels and a main atrium distributed along the
perimeter. The dome–drum system has suffered over the
years from significant structural problems, partly due to
progressive settlements, and, to a large extent, arising from
the bold structural configuration of the dome–drum sys-
tem itself, see Figure 4c. In 1983, concerns over the severe
settlement and cracking phenomena affecting the struc-
ture prompted the decision to put in place a strengthening
system (1985–1987).
It consisted of 56 active steel tie-bars placed within holes

drilled in the masonry at the top of the drum along 14 tan-
gents around the perimeter, slightly tensioned by jacks. A
static monitoring systemwas set up tomeasure strains and
stresses in the structure and crack propagation, as well as
stresses in the reinforcing tie-bars (re-tensioned in 1997).
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CAVANNI et al. 7

F IGURE 4 Sanctuary of Vicoforte: (a) external view (Pixelshop - stock.adobe.com), (b) internal view from the lantern, (c) crack pattern
of the dome (Garro, 1962), and (d) internal view of the dome. Church of Santa Caterina: (e) internal view of the dome, (f) horizontal crack on
a pillar of the lantern, (g) external view, and (h) façade vertical crack. All the crack patterns are those observed before the strengthening
interventions.

Static monitoring data sets will not be used in this study;
however, their analysis was the subject of recent in-depth
research to which the reader may refer Ceravolo et al.
(2017, 2021). The permanent dynamic monitoring system
(Pecorelli et al., 2020) of the lantern–drum–dome system
was installed in December 2016 and consisted of 12 mono-
axial piezoelectric accelerometers (PCBPiezotronic,model
393B12). Three orthogonal accelerometers were located in
the crypt base to record the ground accelerations, while
the others were placed at different height of the lantern–
drum–dome element, specifically two sensors at the base
of the dome, three sensors on the dome, and one verti-
cal accelerometer at the base of the lantern. The system
acquires data from the accelerometers as response to ambi-
ent vibrations; those of the crypt are first transmitted to
a slave unit and then to the master unit, while all other
data are directly stored in the master unit. Thereafter, the
data are continuously transmitted to the Earthquake Engi-
neering and Dynamics lab (EED lab) of the Politecnico
di Torino. The system was set to record data for 20 min
every hour, and additionally when the ground horizon-
tal accelerations exceeds a preset threshold value (0.03 g).
The Sanctuary is provided with an automatic output-
only identification procedure (Pecorelli et al., 2020), based
on stochastic subspace identification (SSI) and clustering
techniques, to estimate the main modal vibration parame-
ters. The natural frequencies identified are represented in
Figure 5a,b, as a function of the days of recording and the
environmental temperature, respectively.

The Church of Santa Caterina (Figure 4g), located in
Casale Monferrato (Alessandria, Italy), is considered a
masterpiece of baroque architecture with a Greek cross
plan and characterized by a prominent ovalmasonry dome
(Figure 4e) with a major axis of 14 m, a minor axis of 10 m,
and a height of about 4.5 m. In 1718, the construction of
the new church began, starting from Palazzo Marchionale
previously donated to the Dominican nuns. The church
consists of two halls: the inner one known as the nuns’
choir (10×22 m), a private prayer place for the nuns, and
the outer one, open to the public, directly faces Piazza
Castello with the main façade of approximately 19 m of
height, which juts out from the church body of about 6 m.
The central room of the external church supports the oval
dome set on the drum (7mhigh), with eight large columns.
The dome is characterized by eight ribs and is topped by a
6-m-tall lantern.
In 2010, an extensive dynamic campaign has been car-

ried out that highlighted a significant degradation of the
lantern (Figure 4f), the drum–dome system and the façade
(Figure 4h), caused by water infiltrations (Ceravolo et al.,
2016). Consequently, two strengthening interventions have
been implemented to increase the stiffness of the lantern
and of the façade. Specifically, for the lantern, a system
of structural steel composed of 16 L-shaped profiles, posi-
tioned along the columns in correspondence of the internal
corner of the windows, and of three C-shaped profiles,
placed on the window openings, has been installed to pro-
mote a global behavior.While for the façade, ametal frame,
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8 CAVANNI et al.

F IGURE 5 Daily time series of the natural frequencies of the Sanctuary of Vicoforte (a) and its frequency–temperature law (b); daily
time series of the natural frequencies of the Church of Santa Caterina (c) and its frequency-temperature law (d).

composed by chains, inclined props, and vertical uprights,
has been connected to the inner part of to the tympanum
(cantilever portion of the façade), to improve the com-
pressive strength of the masonry, by exploiting its greater
tensile strength. A description of the damage state before
the strengthening interventions can be found in Ceravolo
et al. (2024).
From December 2022 to March 2023, the dynamic

response of the church to environmental vibrations was
recorded with a sparse permanent sensing system, with
the aims of collecting and emphasizing the oscillation
of modal parameters, notably the natural frequencies of
the main modes. These tests were also used as trial field
for the design of a permanent dynamic monitoring sys-
tem, to monitor and control the critical building elements.
The setups consists of three accelerometers located on
the top of the lantern and positioned to capture the lat-
eral and torsional vibrations of this element. Specifically,
two accelerometers were installed to record the accelera-
tions in the transverse directions and one to acquire the

longitudinal accelerations, with a sampling frequency for
the acquisition of 100 Hz. From a technical perspective,
the type of sensors is the same as used at the Sanctu-
ary of Vicoforte, with the difference that here the analog
signals are conveyed via three-channel to a Dewesoft R©
acquisitor (i.e., KRYPTON-4XACC, four channels single
ended Krypton slice for Voltage, IEPE) that performs sig-
nal conditioning, synchronization, and signal translation
from analog to digital format. After data translation, the
records in digital format are sent to a computer, which
saves data in continuous packets of 10 min, through a 10-
m-long data cable. These data packets are automatically
stored on a computer located in the EED lab of the Politec-
nico di Torino, where an identification procedure detects
mode 5, mode 6, mode 7, mode 8, mode 9, mode 10, and
mode 11. Lower frequency modes, associated with non-
structural elements (scaffolding), are discarded. Figure 5c
reports the identified natural frequencies as a function of
the registration days, while Figure 5d depicts the natural
frequencies as a function of temperature.
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CAVANNI et al. 9

F IGURE 6 Blocks of (a) homogeneous transfer learning (TL) and (b) heterogeneous TL.

3.2 Outline of the methodology

This subsection presents the outline for a methodology to
transfer knowledge between different monitoring systems
and models, in order to support diagnosis and decision
making for historical domes and buildings. In detail, a flow
chart is presented that addresses two types of application
of TL to SHM, among those shown in Figure 3, namely, (b)
TL from the simulated data sets of amonitored structure to
the experimental ones; (c) TL from the experimental data
sets of a monitored structure to the experimental data sets
of an insufficiently monitored one.
The final goal of the procedure is to track vibrationmode

fluctuations in time induced by variables that can affect the
structural behavior (e.g., environmental and operational
variations [EOVs], damage) for both themonitored and the
insufficiently monitored structure.
The threemain blocks of the procedure are: (a) homoge-

nous TL (Figure 6a), (b) heterogeneous TL (Figure 6b), and
(c) model calibration. For the general operation of TL algo-
rithms, specifically DA, refer to Section 2. While themodel
calibration is developed starting from the experimental
measures of the monitored structure and through the defi-
nition of the objective function and the stopping criteria.
When the updated model is available, the simulations
needed are performed.
The three main blocks are linked, as highlighted in the

outline of the computationalmethodology of Figure 7,with
two main conceptual branches that lead to track vibration
mode fluctuations for the target structure:

1. The selected diagnostic features from the experimen-
tal measures, X1t (target), and the features simulated
after themodel calibration,X0s, define the input for the
development of a homogenous TL (refer to Section 4.1).

2. The selected features of the insufficiently monitored
structure,X2t (target), and those of a similar monitored
one, X1s, define the input for the development of a
heterogeneous TL (refer to Section 4.2).

It is worth highlighting that the selection of the target
features affects the selection of the source features, since
only the most relevant ones should be provided to the
algorithm.
The paper focuses on the two branches of the method-

ology involving TL applications, for the experimental
verification of which permanent monitoring data sets of
twomasonry oval domes are used. As formodel calibration
of historical buildings, one may instead refer to the vast
literature on model updating (e.g., Ceravolo et al., 2020).

4 EXPERIMENTAL VERIFICATION

In this section, the applicability of the above procedure
is verified for two Italian Baroque Churches. Given the
complexity of the two structures, the application and effec-
tiveness of knowledge transfer between the two is not
obvious because of the substantial differences between
their dynamic responses. Therefore, this experimental ver-
ification aims to test whether the two monitoring systems
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10 CAVANNI et al.

F IGURE 7 Outline of the computational methodology.

and the mathematical model can be brought into com-
munication through the procedure defined above. For
this purpose, the classification of temperature states is
placed as the ultimate output of the procedure, as a
simple demonstration case. Indeed, in order to test a clas-
sifier, a reasonable amount of labeled data are needed.
While no progression of damage is currently observed
in the structures, even as a result of effective cerclage
interventions as for Vicoforte dome, the only labeled mon-
itoring data available in large quantities are variations of
natural frequencies as a function of temperature. Conse-
quently, also the temperature classeswere chosen to obtain
as much data as possible for each class for the testing
phase, namely, 3◦C and 10◦C for the homogenous TL and
[1.5◦C, 3.5◦C], [8.5◦C, 9.5◦C], and [15◦C, 18◦C] for the het-
erogeneous one. These classification models also work for
different temperature classes, as long as those classes are
not adjacent along the temperature axis.
To obtain a numerical evaluation of the efficiency of

transfer of knowledge, the results obtained through the

two branches of the proposed methodology are compared
to simple ML models inferred from the respective TD.

4.1 TL from simulated data set to
experimental data set

TL can be used to integrate experimental data sets that are
not able to cover all possible structural conditions, using
the FEM simulations of the monitored structure as the
SD. To demonstrate this approach, reference is made to
the described monitoring data sets of the Vicoforte Sanc-
tuary and to a simple application that contemplates only
two temperature classes, specifically 3◦C and 10◦C (Coletta
et al., 2021).
The TD has been associated with the first three natural

frequencies of the Sanctuary related to the temperatures
10◦Cand 3◦C.Respectively, 32 and 69 observations are used
for the class 1 and class 2. The SD consists of the first three
natural frequencies, corresponding to the first two bending
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CAVANNI et al. 11

F IGURE 8 Finite element model (FEM) of the Sanctuary of Vicoforte with the Young’s modulus E, Poisson ratio υ, and density ρ values
of the nine macrocomponents.

modes in the y and x directions and the torsional mode,
obtained through simulations on the numerical model of
the Sanctuary. Themodel is amultiphysics FEM calibrated
to reflect the dynamic response of the real structure under
ambient noise. Masonry macrocomponents are therefore
homogenized into as many linear materials, capable to
replicate the experimental vibration modes, both in fre-
quencies (error <1% for first three frequencies) and modal
shapes (Ceravolo et al., 2020). It is composed of 119’192
nodes and 210’228 finite elements that contemplate the
presence of spring, link, beam, shell, and brick element
types. The main structure has been divided into nine main
macrocomponents having uniform elastic characteristics.
These are the marlstone and clay soil components, the
basement with foundation, the buttresses, the drum, the
dome, the lantern, the bell towers, and the tie-bars.
The average dimension of the mesh is about 0.8 m and

varies from the lantern to the soil, which is fully restrained
at its edges. Spring elements are used to model the slight
interaction with adjacent structures, while link elements
are used tomodel the reaction frames of the tie-bars, which
in turn are modeled with beam elements. Figure 8 reports
the FEM of the structure with macrocomponents high-
lighted in different shades of gray, and the nominal values
of the mechanical parameters used in the analyses.
Starting from the FEM, it was then necessary to ensure

that the model was also able to reproduce the trend
observed for the natural frequencies as a function of tem-
perature, in order to generate the SD training data set.
Furthermore, in order to simulate the uncertainty obtained
from experimental estimates at constant temperature, that
is, variation of the mechanical parameters due to in-field
observation (e.g., EOVs other than temperature, instru-
mentation errors), a Gaussian distribution was used to

generate noise samples to add to the previously mentioned
modulus–temperature law.
Since a simple sensitivity analysis on the FE model

highlighted that the variation of the first three natural
frequencies is mainly influenced by the basement and
foundation system, in the analyses, only the Young’s mod-
ulus of this masonry macrocomponent was sampled to
generate the SD. To this aim, a Gaussian noise of 10% was
applied to the value of the modulus, in line with literature
(Saloustros et al., 2019) and considering the variability of
the results of the available experimental tests (Aoki et al.,
2011). For each temperature level, it was thus possible to
sample different values of Young’s modulus. In particu-
lar, a total of 100 eigenvalue problems (i.e., 50 relating to a
temperature of 10◦C and 50 to a temperature of 3◦C) were
solved using FE analysis, where the equivalent Young’s
modulus of the basement and foundation was changed in
accordance with the assumed modulus–temperature law.
The Young’s modulus–temperature law adopted for this

application depends on the thermal expansion coefficient
of water (for further information and physical interpre-
tations the reader can refer to Coletta et al., 2021) and
reads:

𝐸 (𝑇) ≈ 𝐸0 [1 + 𝛼H2O (𝑇) 𝑇] (7)

where 𝑇 is the absolute temperature, 𝐸(𝑇) the Young’s
modulus, 𝛼H2O(𝑇) the coefficient of thermal expansion of
water, and 𝐸0 a parameter of the law obtained by fitting the
experimental temperature–natural frequency law of the
first two modes of the Sanctuary. 𝛼H2O(𝑇) was obtained
by fitting the data reported in https://webbook.nist.gov/
chemistry/ about the density of water 𝜌 at different tem-
peratures (Moore & Molinero, 2011; Tanaka, 1998), with a
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12 CAVANNI et al.

F IGURE 9 Density 𝜌 of water (a); and the related temperature-equivalent Young’s modulus law (b).

F IGURE 10 Flow chart to verify the first branch of the
proposed methodology in the case of the Sanctuary of Vicoforte.

12-order polynomial law, using Equation (7):

𝛼H2O (𝑇) = −
1

𝜌(𝑇)

𝜕𝜌(𝑇)

𝜕𝑇
(8)

Figure 9 reports the density of water as function of
temperature, and the assumed temperature-equivalent
Young’s modulus law. The estimate of modal frequencies
deriving from this model had already been confirmed to
be fully compliantwith the experimental results in terms of
the trend ofmodal frequencies as a function of temperature
(Coletta et al., 2021; Pecorelli et al., 2020).
A comparison is always necessary between a simpleML,

trained on one domain that considers data from monitor-
ing activities and FEM together, and a TL methodology
that considers the two data sets as different domains, see
Figure 10. This is done because the SD shows some differ-
ences compared to the TD (Figure 11a), as in the first case,
the two classes do not present an overlapping region and
the two point clouds are less scattered. In fact, if the results
obtained from the two models were almost the same, it
would no longer make sense to use TL algorithms.
In line with the above, an RVM classifier was first

deduced on the data of the Sanctuary of Vicoforte, without
considering the differences between themonitored data set
and the simulated data set. For the kernel representation
of the data set a radial basis function (RBF) has been cho-
sen, for which the kernel scale parameter 𝜎 has been fixed

TABLE 1 Summary of the accuracies reached with the two
models during the test phase (global and single classes).

Single class
accuracyModel (machine learning

[ML] transfer learning [TL])
Global
accuracy Class 1 Class 2

Relevance vector machine
(RVM)

62.8% 70.6% 60.9%

Transfer component analysis
(TCA) + RVM

79.1% 76.5% 79.7%

Δacc 16.3% 5.9% 18.8%

as the value for which the maximum average classification
accuracy of a fivefold cross-validation procedure has been
reached (𝜎 = .3). The model has been trained on 15 obser-
vations of class 1 and no observations of class 2 for the TD,
and on all the points of the SD. Then, it was tested on the
remaining points (Figure 11c).
Second, a DA technique has been used to reduce the dis-

tance between the data distribution of the two domains,
before generating a pattern with an RVM algorithm.
In this case, a quadratic kernel has been used, and a
fivefold cross-validation procedure was performed, thus
the hyperparameters, which returned the highest average
accuracy, were selected. The adaptation procedure results
in a number of transfer component equal to 2, a regu-
larization parameter 𝜇 = 10−7 and a kernel scale equal
to 15, while for the classification, a Gaussian kernel has
been selected with 𝜎 = 2.9. The parameters 𝜇 and 𝜎 are
dimensionless.
The original data set has been dimensionally reduced

and projected into a bidimensional latent subspace (𝑧1, 𝑧2),
which does not have a physical meaning, but is a mathe-
matical expedient that tries to bring the domains as close as
possible (Figure 11b). This second model has been trained
and tested on the same data used for the previous classi-
fier (Figure 11d). An overview of the accuracies achieved
by the two models is presented in Table 1, together with
the accuracy achieved for each individual class. For the
RVM model, without prior DA, an accuracy of 62.8% is
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CAVANNI et al. 13

F IGURE 11 (a) Target and source domain; (b) projection of the domains in the latent subspace representation (z1, z2) obtained through
transfer component analysis (TCA); (c) relevance vector machine (RVM) model inferred without preliminary domain adaptation; and (d)
RVMmodel inferred in the latent subspace representation (z1, z2). The models are trained on the not circled data and tested on the remaining
ones, the circles color represent the model prediction.

reached; while for the RVM model inferred after the DA,
an accuracy of 79.1% is reached. Hence, the application of
TCA upstream of the definition of the classification model
with the RVM algorithm resulted in an increase in predic-
tion accuracy of 16.3%. This means that the FEM of the
Sanctuary does not perfectly adhere to the real structure,
therefore it is better not tomix the monitoring system data
with themodel data and perform a DA each time to reduce
the distance between the data distribution.

4.2 TL from an experimental data set to
another experimental data set

TL can be used to enrich experimental data sets of struc-
tures deemed insufficiently monitored to cover all possible

structural conditions. In this section, the SD is used as
the one that contains data coming from similar existing
structures, but which are monitored exhaustively, or in
any case with more data available. To demonstrate this
approach, the experimental monitoring data of the Sanc-
tuary of Vicoforte (SD) are exploited to expand the data
set necessary for a linear classifier to predict temperature
states of the Church of Santa Caterina (TD). In addition, to
obtain a basis of comparison for performance evaluation of
the DA procedure also a simpleML, namely support vector
machine (SVM), trained only on the TD is developed (see
Figure 12).
For this purpose, only a subset of the data actually

available from the Santa Caterina monitoring is used,
so that it can be considered insufficient for classifica-
tion, but so that there is enough data left for testing
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14 CAVANNI et al.

F IGURE 1 2 Flow chart to verify the second branch of the
proposed methodology for the Church of Santa Caterina (target)
and Sanctuary of Vicoforte (source).

the generated classification models (SVM and KBTL
model).
Referring to theChurch of SantaCaterina, all the natural

frequencies detectable in Figure 5c and d were considered,
except for local modes (e.g., mode 6 that is ruled by
the façade) and high-frequency modes 10 and 11, that are
typically noisy. Figure 13a–d reports themodal shapes asso-
ciated to the selected vibration frequencies. Among the
frequency-temperature laws of these four modes consid-
ered, only those values identified at temperatures in ranges
[1.5◦C, 3.5◦C], [8.5◦C, 9.5◦C] and [15◦C, 18◦C] are selected
for the TL model definition (i.e., three classes/labels are
defined, class 1, class 2 and class 3, respectively). Conse-
quently, from the monitoring activities of December 2022
to March 2023 are available 112 observations for class 1, 157
observations for class 2, and 32 observations for class 3,
for a total of 301 observations. For the training of the algo-
rithms (SVM and KBTL) only 18 observations, randomly
drawn, for each class are used, while the remaining 247
observations are considered as test data set (Figure 14a).
Additionally, for the training of the KBTL model also

data of the Sanctuary of Vicoforte (SD) are exploited,
specifically the first two natural frequencies f1 and f2 (i.e.,
translation modes along the dome minor and major axis).
Figure 13e,f reports the mode shapes associated to the
two vibration frequencies selected for the Sanctuary. The
authors’ choice to consider only two of the seven natural
frequencies of the Sanctuary is dictated by various rea-
sons. First, modes 4 to 7 are excluded because they mostly
involve the same structural elements as the two translation
ones, and therefore contain little useful information for
the classifier. Mode 3 was also excluded, as it is a torsional
mode, which is underrepresented in the dynamic response
of the Church of Santa Caterina and therefore f3 would be
unhelpful for the classification of its data. Furthermore,
unlike the first two frequencies, for this third frequency
much fewer observations are available and therefore, to
avoid a substantial reduction of the Vicoforte data set, it
was not considered. The source data set is composed by

TABLE 2 Observations for each class for the training and test
of the SVM and kernelized Bayesian transfer learning (KBTL)
model for the classification of the insufficiently monitored system
data (Church of Santa Caterina).

Model Church Class Training Test
SVM Church of

Santa Caterina
y = 1 18 94
y = 2 18 139
y = 3 18 14

Sanctuary of
Vicoforte

y = 1 0 0
y = 2 0 0
y = 3 0 0

KBTL Church of
Santa Caterina

y = 1 18 94
y = 2 18 139
y = 3 18 14

Sanctuary of
Vicoforte

y = 1 100 0
y = 2 100 0
y = 3 100 0

the same three temperature classes of the TD, specifically
100 observations for each classes (Figure 14b). In Table 2, a
summary of the domains and the number of observations
used to train and test the models is presented.
First, an ML model is generated from data of only

the Church of Santa Caterina to understand and verify
whether it is possible to generate, from a small amount of
data, a predictive model that does not overfit the data pro-
vided in training and thus generalizeswell for unseen data.
To solve this classification problem, the choice fell on a lin-
ear classifier, that is, an SVM (Salcedo-Sanz et al., 2014),
in consideration of the possible causes that may gener-
ate an overfitting problem. Indeed, overfitting is generally
attributable to two main causes, either too small size of
the training data set and/or too high degree of the clas-
sifier polynomial (Ying, 2019). As a result of this, having
only 54 observations (18 for each class) available to train
the model, a linear classifier avoids the introduction of an
additional factor, along with the limitations of the data set,
that may induce overfitting. In a nutshell, an SVM model
attempts to maximally separate data by hyperplanes (lin-
ear law), finding a low-density region between classes. To
easily separate the data with a linear law, the kernel repre-
sentation is generally applied to transfer the initial data set
into a larger, possibly infinite size space, that is, the RKHS
(Salcedo-Sanz et al., 2014). To find the optimal solution the
Classification Learner MATLAB Toolbox was used, specifi-
cally the optimizable SVM, which led to a one-versus-one
classifier and using a linear kernel function with scaling
parameter set equal to 1 in order to manipulate the input
data set. Themodel obtained is shown in Figure 15a, where
the correct labels are presented with the color of the dots,
while the predictions are highlighted by the color of the
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CAVANNI et al. 15

F IGURE 13 Mode shapes of the two churches for the selected features of target and source domains. Church of Santa Caterina: (a)
Mode 5, (b) Mode 7, (c) Mode 8, and (d) Mode 9; Sanctuary of Vicoforte: (e) Mode 1 and (f) Mode 2.

F IGURE 14 (a) Training and test domain of the Church of Santa Caterina. The test data set is composed by data circled in red, the
remaining data are the training data set; and (b) source domain (Sanctuary of Vicoforte) for the training of the kernelized Bayesian transfer
learning (KBTL) model.
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16 CAVANNI et al.

F IGURE 15 (a) SVMmodel obtained providing a training data set consisting of only 54 observations obtained for Church of Santa
Caterina (projections of the four-dimensional space); (b) testing of SVMmodel; (c) training phase of kernelized Bayesian transfer learning
(KBTL) model, trained on 54 observations of the Church of Santa Caterina (circle) and on 300 observations of the Sanctuary of Vicoforte
(triangle); and (d) testing of the KBTL model.

circles around the dots. In this training phase, according to
fivefold cross-validation, an accuracy of 75.93% is reached.
Subsequently, the remaining 247 observations from the
monitoring of the Church of Santa Caterina are used to
test themodel generated above, whose results are shown in
Figure 15b. In this test phase, a global accuracy of 69.64%

is reached by the model.
As a result of the testing phase, the accuracy of the

SVM model is approximately of only 69% and for this rea-
son an alternative approach involving a DA procedure is
justifiable to enhance predictive capability. This is accom-
plished with the support of the KBTL algorithm, a specific
TL technique based on DA, which allows knowledge to be
shared from the exhaustively monitored dome, the Sanc-
tuary of Vicoforte, to the Church of Santa Caterina. For
simplicity, going forward, the Sanctuary of Vicoforte and
the Church of Santa Caterina will be designed as SD and
TD, respectively.
To train the algorithm, 54 observations for the TD and

300 observations for the SD are considered. As it is evi-

dent from Section 2.2, the KBTL model is generated using
an extensive set of hyperparameters that requires careful
handling. These hyperparameters were initially set based
on the authors’ expectation and on the input parame-
ters analysis. Subsequently, they were slightmodified until
the model achieved the highest accuracy without visi-
ble overfitting, that is, manual tuning. At the end of this
process, the following values were selected: a latent sub-
space dimension equal to 2, a number of iteration equal
to 1000, the priors hyperparameters 𝛼𝜆, 𝛽𝜆, 𝛼𝛾, 𝛽𝛾, 𝛼𝜂, 𝛽𝜂

equal to .076, a latent subspace variance 𝜎2
ℎ
equal to 9

and a nonnegative margin 𝜈 equal to 1. A brief explana-
tion of the reasons behind these choices follows. First of
all, the latent subspace dimension equal to 2 permits the
model representation for visual checks of any overfitting
problems, while the number of iterations fixed to 1000 is
sufficiently high while still involving a reasonable com-
putation time. The prior hyperparameters were set equal
to .076, following a process in which they were made to
vary within the limited range [.001, .1]. The boundaries
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CAVANNI et al. 17

of this range were established based on two considera-
tions. First, because of the hierarchical nature of theKBTL,
the posterior distribution should exhibit limited sensitiv-
ity to the prior hyperparameter choices. Second, due to the
small sample size, the two hyperparameters for each prior
should be small values (Gardner et al., 2022). The latent
subspace variance 𝜎2

ℎ
is set equal to 32, as a rather large

value is needed (several attempts were developed varying
this parameter between 12 and 72), to reflect the expecta-
tion of finding a latent subspace in which the two domains
are quite sparse, as there are notable differences between
the dynamic responses of the two structures considered.
Finally, the nonnegative margin 𝜈 is set equal 1 to force the
algorithm to find in the latent subspace a margin among
classeswith a small data density. For the kernel representa-
tion (Herbrich, 2001), both the linear function and the RBF
were analyzed. However, the final model was obtained
with the RBF, where the handling of the weight hyper-
parameters 𝛾𝑘 (one for each training domain) was solved
with a median heuristics approach, proposed by Gretton
et al. (2012) and successfully applied in the SHM field by
Gardner et al. (2022). The RBF takes as input the matrix
of the observed features of the 𝑘th domain, 𝐗𝑘, and rep-
resents it with its kernel matrix, 𝐊𝑘. The RBF kernel is
defined as 𝑘𝑘 (𝐱, 𝐱′) = exp(−𝛾𝑘 ‖𝐱 − 𝐱′‖2

), with ‖𝐱 − 𝐱′‖2

the squared Euclidean distance.
The model generated during the training phase of the

KBTL is shown in Figure 15c, where the TD is presented
with the dot-circle systemwhile the SDwith filled triangle-
empty triangle system. The dots and the filled triangles
define with their colors the label to be predicted by the
algorithm, while the circles and the empty triangles show
with their colors the label predicted by the algorithm for
that given data. The training accuracy achieved by this
model in predicting the temperature states of the TD is
87.04%.
Subsequently, the model generated above was tested for

the remaining 247 observations retrieved from the mon-
itoring activities developed on the target structure. In
Figure 15d, the KBTLmodel is applied to predict the target
unseen data. The figure is composed like the training one,
with the difference that only data belonging to the TD are
present (dot-circle). For this test phase, themodel led to an
overall accuracy in predicting the TD temperature states of
80.57%.
Finally, in Table 3, a summary of the accuracy reached

by the two classificationmodels—SVMandKBTL—is pro-
posed to demonstrate the applicability and the efficiency
of the proposed methodology for the two churches. Specif-
ically, the accuracy reached during the training phase and
test phase of the two algorithms is reported, highlighting
the test accuracy achieved in the predictions of each sin-

TABLE 3 Comparison between the accuracies reached by the
two applied model, SVM and kernelized Bayesian transfer learning
(KBTL), during the training phase and test phase. With the
explication of the accuracies reached in the prediction of each class
during the test phase.

Phase
Accuracy
SVM

Accuracy
KBTL Variation

Training 75.93% 87.04% +11.11%
Test 69.64% 80.57% +10.93%
Class 1 - test 80.85% 87.23% +6.38%
Class 2 - test 61.15% 74.82% +13.67%
Class 3 - test 78.57% 92.86% +14.29%

gle class. The transition from the SVMmodel, trained only
using data from the Church of Santa Caterina, to the KBTL
model, trained also on data from the Sanctuary of Vico-
forte, led to an increment in the predictive accuracy of
∼11% for the Church of Santa Caterina. Since a homoge-
neous data set was not provided during the test phase, it
was necessary to analyze the accuracy with which each
individual class was predicted. From this analysis, a fur-
ther demonstration of the effectiveness of the DA can be
obtained. In fact, by comparing the accuracy achieved by
each class before and after the application of the DA, a
percent increase in the range 6% − 14% was observed.
Ultimately, the use of data from the Sanctuary of Vico-

forte, through DA, proved to be beneficial in generating a
predictivemodel for the Church of Santa Caterina. Indeed,
even if limited data for the TD were available for the train-
ing phase of the classifier, the final test accuracy exceeded
80%.

5 CONCLUSIONS

In this paper, different TL approaches, based on DA, have
been investigated in order to define a methodology for
assessing the structural condition states in monitored his-
torical domes. The methodology was designed to allow
diagnostic evaluations even on very complex structures
for which limited and incomplete monitoring data are
available, by transferring knowledge between different
monitoring systems and models.
Specifically, twodifferent TL applications have been pro-

posed. The first revealed how the implementation of a
homogeneous DA strategy can exploit additional informa-
tion retrievable from a mathematical model, in order to
implement the recognition of different temperature states
from monitoring data. The second demonstrated how a
monitoring program very rich in information can con-
tribute to improving knowledge of a structure with a
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18 CAVANNI et al.

certain similarity butwith a less completemonitoring data,
thorough heterogeneous DA. The proposed methodology
was applied to two churches, namely the Sanctuary of
Vicoforte and the Church of Santa Caterina, in order to
demonstrate its effectiveness. Overall, a reduction in accu-
racy from training to testing was found in the analyses.
This might be explained in two ways: an overfitting case
or, more likely, an effect of the different amount of data
used in the training and testing phases, to simulate a real
data availability condition. At any rate, the results can be
summarized as follows:

1. The first application type was solved by adapting the
domains through TCA and classifying data with an
RVM model, which led to an enhancement of the test-
ing prediction accuracy of 16.3%, compared with the
unadapted case.

2. The second application type was implemented via the
KBTL algorithm, which led to an improvement of the
testing prediction accuracy of 10.93% compared to an
SVMmodel.

The results obtained in these presented studies consti-
tute proofs of strength, which are believed to encourage
a systematic application of DA in the field of monitoring
complex full-scale structures. Historical and monumen-
tal structures, in addition to being geometrically and
mechanically complex, have the characteristic of unique-
ness. Precisely for this reason, it is not easy to develop an
experience in terms of symptoms and thresholds that can
be exploited directly for diagnostic purposes. Transferring
knowledge between experimental data sets, also thanks to
the newpotential offered byAI, would be evenmore strate-
gic in this sector. Conversely, rigorous criteria are needed to
identify classes of structures that can be considered similar
from the TL point of view.
In future developments, this methodology may be used

for the classification of more general structural condi-
tions (e.g., damaged ones), for which very few observations
are available. This will be done by exploiting numeri-
cal and experimental datasets from other structures, but
also by undertaking a comprehensive process to select the
most suitable DA algorithm to refine the methodology. To
this end, a systematic performance comparison between
various available TL methods will be carried out.
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