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Inference in conditioned dynamics 
through causality restoration
Alfredo Braunstein 1,2,3, Giovanni Catania 4, Luca Dall’Asta 1,2,3,5, Matteo Mariani 1* & 
Anna Paola Muntoni 1

Estimating observables from conditioned dynamics is typically computationally hard. While obtaining 
independent samples efficiently from unconditioned dynamics is usually feasible, most of them do 
not satisfy the imposed conditions and must be discarded. On the other hand, conditioning breaks the 
causal properties of the dynamics, which ultimately renders the sampling of the conditioned dynamics 
non-trivial and inefficient. In this work, a Causal Variational Approach is proposed, as an approximate 
method to generate independent samples from a conditioned distribution. The procedure relies on 
learning the parameters of a generalized dynamical model that optimally describes the conditioned 
distribution in a variational sense. The outcome is an effective and unconditioned dynamical model 
from which one can trivially obtain independent samples, effectively restoring the causality of the 
conditioned dynamics. The consequences are twofold: the method allows one to efficiently compute 
observables from the conditioned dynamics by averaging over independent samples; moreover, it 
provides an effective unconditioned distribution that is easy to interpret. This approximation can be 
applied virtually to any dynamics. The application of the method to epidemic inference is discussed in 
detail. The results of direct comparison with state-of-the-art inference methods, including the soft-
margin approach and mean-field methods, are promising.

The method we will present is rather general and applies to a wide family of stochastic processes. We will thus first 
describe it below in complete generality, and delay its description for a specific important application (namely 
the risk assessment problem in epidemic spreading processes) to the following section.

Let us denote by P[x] = P[x(0), . . . , x(k�t)] the probability distribution of trajectories x of a (known) 
dynamical model. Given a (hidden) realization x∗ , consider a set of observations O = (O1, . . . ,OM) sampled 
from a (known) conditional distribution P

[

O |x∗
]

 . The scope of this work is to devise an efficient method to 
infer information about x∗ given O , in particular, to be able to estimate averages over the posterior distribution

Although it might be generally feasible to sample efficiently from the prior P[x] , sampling from P
[

x|O
]

 is nor-
mally difficult. A naive approach is given by importance sampling1,2, that consists in evaluating the average of a 
function f by first generating M independent samples x1, . . . , xM from P[x] and then computing

Unfortunately, this method is impractical when observations deviate significantly from the typical case, as for 
the case in which P

[

O |xµ
]

 becomes very small (or even zero), rendering the convergence of 
〈

f
〉

 to the true 
average value inefficient.

One reason for which sampling from P[x] is usually feasible is that the causal structure induced by the 
dynamical nature of the stochastic process can be exploited to efficiently generate trajectories. The causal prop-
erty of the stochastic dynamics lies in the fact that the state of the system at a given time depends naturally (in 
a stochastic way) on states at previous times. When considering discrete time-steps or epochs 0,�t, 2�t, . . . 
(in the following discussion, for simplicity of notation, we will assume �t = 1 ), this property implies that the 
distribution of trajectories of the stochastic dynamics assumes the following factorized form:

(1)P
[

x|O
]

= P[x]P
[

O |x
]

P
[

O
]−1

.

(2)
〈

f
〉

≈

∑M
µ=1 f (x

µ)P
[

O |xµ
]

∑M
µ=1 P

[

O |xµ
] .
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where in the t = 0 term the conditioning part is empty and thus the probability is unconditioned. In most models, 
it is computationally simple (or at least feasible) to sample x(t) from P[x(t)|x(t − 1), . . . , x(0)] , implying that (3) 
can be exploited to generate trajectories by sequentially sampling x(0), then x(1), etc.

The intrinsic difficulty associated with sampling from the conditioned distribution P
[

x|O
]

 is a consequence 
of causality breaking3 induced by the addition of the extra information in O . In general, P[x(t)|x(t − 1), . . . , x(0)] 
and P

[

x(t)|x(t − 1), . . . , x(0),O
]

 are very different objects. For example, even if the former is time and space 
invariant, the latter is generally not, because this symmetry is typically broken by the observations. This difference 
ultimately implies that we cannot sample from the posterior distribution sequentially as in the unconditioned 
case (3). Although we can write an exact expression similar to (3),

sampling from (4) is unfortunately still problematic. Indeed, the expression for P
[

x(t)|x(t − 1), . . . , x(0),O
]

 is 
in general extremely difficult to compute and involves a marginalization over times t ′ > t (with an exponential 
number of terms):

This dependence on future times is in our opinion the real source of the causality breaking phenomenon.
When dynamics are unconditioned, i.e. causality applies, information is intuitively flowing from past to 

future. Although it is a very intuitive concept, the study of information flow is actually rather involved and it 
opens to interesting insights into the collective interactions among agents in agent-based systems. We refer the 
interested reader to4,5. The approach proposed here, called Causal Variational Approach (CVA), aims at providing 
a variational approximation of the posterior distribution P

[

x|O
]

 , for which causality features are restored and, 
therefore, independent samples can be efficiently generated from it. In particular, we propose to approximate 
P
[

x|O
]

≈ Q(x) , where Q(x(0), . . . , x(T)) =
∏T

t=0 qt(x(t)|x(t − 1), . . . x(0)) . This approach is formally exact. 
Indeed, if we set each qt(x(t)|x(t − 1), . . . x(0)) = P

[

x(t)|x(t − 1), . . . , x(0),O
]

 , we would recover the exact 
posterior, due to equation (4). However, this is in practice unfeasible, because it would require qt to depend on 
a huge (i.e. exponential in the size of the system) number of parameters. The general idea of CVA method is to 
restrict the functional space of Q assuming the qt(x(t)|x(t − 1), . . . , x(0)) to have the same broad functional form 
of the unconstrained prior distribution P[x(t)|x(t − 1), . . . , x(0)] , retaining then the ability to efficiently compute 
it and sample from it, but generalizing it by the addition of extra parameters. This generalization will naturally 
allow for the spatial and/or time heterogeneity that is present in the corresponding terms in the posterior, and 
will be explained in detail for the specific models in the next sections. In particular, we chose in the approxi-
mating distribution of CVA to maintain the following properties (if they are present) of the prior distribution: 

1.	 Spatial Independence. In agent-based models6 on N agents, x(t) = (x1(t), . . . , xN (t)) and most dynamical 
processes satisfy a spatial conditional independence property7, namely that: 

 As this property is often crucial for efficient sampling from P[x] , CVA maintains it on the approximating qt 
i.e. qt(x(t)|x(t − 1), . . . , x(0)) =

∏

i q
i
t(x

i(t)|x(t − 1), . . . , x(0)).
2.	 Local interactions. Each variable of the prior process, moreover, might depend only on a restricted (local) set 

of variables on a given contact network; we choose to preserve this dependence in qt . Note that this property 
is in general not present in the posterior.

3.	 Markovianity. If the prior distribution defines a memory-less stochastic process8, namely 

 C VA  e x t e n d s  t h i s  p r o p e r t y  t o  t h e  a p p r o x i m a t i n g  f a c t o r s  a s  w e l l , 
qit
(

xi(t)|x(t − 1), . . . , x(0)
)

= qit
(

xi(t)|x(t − 1)
)

 .  Note  t hat  i f  a d d i t i ona l ly  t he  ob s e r v a -
tions are time-factorized, namely P[O |x] =

∏T
t=0 P[Ot |x(t)] , then it can be shown (See Sec-

tion IX of the Supplementary Information) that Markovianity extends to the posterior distribution, 
P[x(t)|x(t − 1), . . . , x(0),O ] = P[x(t)|x(t − 1),O ].

There are simple but instructive examples where CVA leads to the exact posterior, see for example the SI epidemic 
model for N = 2 individuals in Section I of the Supplementary Information.

CVA can be used to tackle some difficult problems emerging in the field of epidemic inference, such as 
epidemic risk assessment from partial and time-scattered observations of cases, or the detection of the sources 
of infection. These problems have been recently addressed within a Bayesian probabilistic framework using 

(3)P[x(0), . . . , x(T)] =

T
∏

t=0

P[x(t)|x(t − 1), . . . , x(0)],

(4)P
[

x|O
]

=

T
∏

t=0

P
[

x(t)|x(t − 1), . . . , x(0),O
]

,

(5)P
[

x(t)|x(t − 1), . . . , x(0),O
]

∝
∑

x(t+1),...,x(T)

T
∏

t′=0

P
[

x(t′)|x(t ′ − 1), . . . , x(0)
]

P
[

O |x(T), . . . , x(0)
]

.

(6)P[x(t)|x(t − 1), . . . , x(0)] =

N
∏

i=1

P[xi(t)|x(t − 1), . . . , x(0)],

(7)P[x(t)|x(t − 1), . . . , x(0)] = P[x(t)|x(t − 1)],
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computational methods inspired by statistical physics9–11, and generative neural networks12. With respect to exist-
ing similar approaches based on variational autoencoders (e.g.12,13), the CVA ansatz for the posterior distribution 
does not employ neural networks, has comparatively a much smaller set of parameters and allows for much 
simpler physical interpretations. In particular, risk assessment from contact tracing data is of major importance 
for epidemic containment, because having access to an accurate measure of the individual risk can pave the way 
to effective targeted quarantine plans based on contact tracing devices14–16. Moreover, in epidemic problems, 
there are quantities of interest that are not known a priori. An example is the infection rate of the disease. Our 
method can be used to compute such quantities, treated as hyperparameters of the CVA distribution. Being 
able to find the prior parameters of a distribution gives also the possibility to simplify the inference problem by 
adopting a simpler model. For example, in the context of epidemic inference, CVA allows one to study inference 
problems related to the SEIR model (introduced later) with an effective SI model, which is simpler than SEIR. 
This part, which we call model reduction is illustrated in detail in the Results section. After presenting the CVA in 
a general setting, its main features will be discussed by exploiting a conditioned random walk17–19 as a toy model. 
Then, an application to the important problem of epidemic inference and risk assessment on dynamic contact 
networks is developed and analyzed in detail. We stress that the two reference cases, i.e. the epidemic inference 
and the conditioned random walk, represent two very different dynamical processes, the former continuous in 
time while the latter advances in discrete time-steps.

Methods
The method is based on approximating the original constrained process by introducing an effective unconstrained 
causal process that is naturally consistent with the observations.

Let Qθ (x) be the probability distribution of a generalized dynamics, parametrized by the vector θ of param-
eters. The best approximation to P

[

x|O
]

 (in a precise variational sense) can be obtained by observing that Eq. (1) 
can be interpreted as a Boltzmann distribution Z−1 exp [−H(x)] with H(x) = − logP

[

x,O
]

 and Z = P
[

O
]

 and 
by minimizing the corresponding variational free energy20, i.e.

This quantity can be estimated efficiently by sampling the distribution Qθ  .  Note that 
F (Qθ ) = DKL

(

Qθ ||P
[

x|O
])

− logP
[

O
]

 where DKL is the Kullback-Leibler divergence21. To optimize F , a 
gradient descent method can be employed (see Section V of the Supplementary Information), where the gradient 
can be also estimated by means of sampling, indeed

The crucial point in this estimation is that both Qθ and P
[

x,O
]

= P[x]P
[

O |x
]

 have explicit expressions 
that, due to their causal structure, can be efficiently computed using rejection-free sampling, at difference with 
P
[

x|O
]

 and P
[

O
]

 which do not benefit from this property. The fact that the samples are independent allows for 
trivial parallelism in implementation. For a detailed description of the gradient descent optimization adopted in 
this work, we refer the reader to Section V of the Supplementary Information.

When a fixed point is reached, the corresponding distribution Qθ (x) is the argument that (locally) minimizes 
the free energy in (9) therefore providing an approximation of the posterior distribution P

[

x|O
]

 . Finally, the 
result can be used to generate samples satisfying the constraints given by O and to compute interesting observables 
from them by efficiently computing sample averages.

A toy model application: conditioned random walk.  Before introducing the main scenario where 
CVA is employed—i.e. on epidemic spreading models -, we first discuss a simple but instructive application of 
the method, that consists in generating an approximate probabilistic description for a conditioned random walk. 
A simple realization of the latter is a one-dimensional random walk, starting at site x(0) = 0 . If the generating 
process is spatially homogeneous, the probability of every feasible trajectory x of length T is P[x] = 2−T . Note 
that every possible trajectory can be directly sampled by means of a causal generative process, namely a dis-
crete-time Markov chain in which the conditional probability of a jump is P[x(t + 1) = x(t)± 1 |x(t)] = 1/2 . 
Fig. 1(a) displays a space-time representation for a set of realizations of such an unbiased random walk (black 
paths). For this process, let us imagine a procedure that, given a time instant tµ and position xµ in space, can 
test if the trajectory was at time tµ to the left or right of position xµ , and denote the corresponding half-line as 
Wµ ⊆ Z . Assume that for a given unknown trajectory, we have M observations of this kind O = (tµ,Wµ)µ 
with µ = 1, . . . ,M . The posterior probability of a trajectory x can be written as

(8)F (Qθ ) :=

∫

dxQθ (x) log
Qθ (x)

P
[

x,O
]

(9)=

〈

log
Qθ (x)

P
[

x,O
]

〉

Qθ

.

(10)∇θF (Qθ ) =

〈

∇θ logQθ (x) log
Qθ (x)

P
[

x,O
]

〉

Qθ

.

(11)P
[

x|O
]

=

∏M
µ=1 I[x(t

µ) ∈ Wµ]
∑

y

∏M
µ=1 I[y(t

µ) ∈ Wµ]
,
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where the numerator is 1 only if the trajectory x satisfies all observations, and zero otherwise. The denomina-
tor is the sum over all trajectories (so the variable y runs over the space of all the possible trajectories) of the 
numerator and plays the role of a normalization term for the posterior. The effect of O is to select (or constrain 
to) a subset of the trajectories of a free random walk, i.e. those compatible with the observations. One could 
naively sample trajectories from the free dynamics and then select only those compatible with O . However, as 
depicted in Fig. 1, the fraction of trajectories compatible with the constraints might be very small to allow for 
a feasible computation: in the example of Fig. 1(b), where it is assumed that three regions at specific time steps 
(black horizontal barriers) cannot be crossed, several realizations of the unconstrained dynamics are discarded 
(red paths), while only a small fraction is kept (black paths). In this regard, the CVA provides an efficient way of 
generating trajectories compatible with the constraints by building up an effective probability distribution that 
is - by construction - compatible with the former. Within the framework provided by CVA, the following causal 
ansatz can be introduced for the conditioned random walk problem:

with θ =
{

rtx
}t=1,...,T

x=−T ,...,T
 being the set of site-dependent and time-dependent rates to jump to the right, and 

ltx(t) = 1− rtx(t) the associated probabilities to jump to the left. We remark that Eq. (12) has the same functional 
form as the unconstrained distribution, i.e. it still represents the probability distribution of a random walk, but 
with heterogeneous (in general, both in space and time) jump rates. The distribution Qθ requires T(2T + 1) 
parameters, where 2T + 1 is the total number of sites that can be visited by the realizations of the random walk. 
These parameters are sought by minimizing the KL distance between Qθ and the posterior distribution Eq. (11). 
The resulting probability Qθ (x) obtained using the CVA is characterized by heterogeneous rates rtx whose depend-
ence in time and space perfectly mirrors the constraints introduced by the barriers. The marginal distributions 
of the trajectories sampled from Qθ (x) are represented in Fig. 1(c), where the color gradient is associated with 
the marginal probability of occurrence of each step.

Epidemic models and observations.  From now on, we will consider a class of individual-based epi-
demic models describing a spreading process in a community of N individuals, interacting through a (possibly 
dynamic) contact network. The overall state of the system at time t (consisting of the state of each individual) 
is described by a vector x(t) ∈ XN , where X  is a finite set of possible health conditions (called compartments). 
The simplest, but already non-trivial, model of epidemic spreading is the discrete-time Susceptible-Infected (SI) 
model22, in which X = {S, I} (corresponding to an individual being “susceptible” and “infected”, respectively) 
where the only allowed transition occurs from state S to state I. More precisely, each time t, if an infected indi-
vidual j is in contact with a susceptible individual i, the former can infect the latter (which moves into state I) 
with a transmission probability �̃ji(t) , sometimes called transmissivity. Since transmissions are independent, the 
individual transition probabilities are

and P[xi(t +�t) = I|x(t)] = 1− P[xi(t +�t) = S|x(t)] . A simple assumption is that time dependence only 
enters to describe the dynamic nature of the contact network (with �̃ji(t) = 0 if there is no contact between j 

(12)Qθ (x) = δx(0),0

T−1
∏

t=0

[

rtx(t)δx(t+1),x(t)+1 + ltx(t)δx(t+1),x(t)−1

]

,

(13)P[xi(t +�t) = S|x(t)] = δxi(t),S

∏

j �=i

(

1− �̃ji(t)δxj(t),I

)

Figure 1.   Panel (a) Unconditioned homogeneous random walk on a one-dimensional lattice. Time is reported 
on the vertical axis (up to T = 40 ) and the spatial coordinate x is on the horizontal axis. Panel (b) Some 
trajectories are sampled from the unconditioned homogeneous distribution. The black (red) ones (do not) 
satisfy the constraints, i.e. they (do not) avoid the black horizontal barriers. The fraction of feasible trajectories 
among a given pool can be numerically estimated, and it approaches 10−6 . In other words, only one of a million 
trajectories sampled from the unconditioned distribution satisfies the constraint. Panel (c) The distribution 
of the trajectories sampled from the CVA distribution. The color of each pixel indicates the probability for a 
trajectory to visit the corresponding state at a specific time.
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and i at epoch t). More realistically, the transmission probability �̃ji(t) should also depend on the current stage 
of infection of the infector j (e.g. presence/absence of symptoms) and thus mainly on the time elapsed since her 
own infection, making the epidemic dynamics non-Markovian.

Assuming transmission probabilities proportional to �t in Eq. (13) and defining transmission rates as 
�ij(t) = lim�t→0+ �̃ij(t)/�t , a continuous-time version of the SI model is obtained. Both for the discrete-
time and continuous-time SI models, the history of the epidemic process can be fully specified by the “infec-
tion times” {ti}Ni=1 of all individuals; we conventionally set ti = 0 if individual i is already infected at the initial 
time and ti = +∞ if i is never infected during the whole epidemic process. In terms of the trajectory vector 
t := (t1, . . . , tN ) , the probability pseudo-density of an epidemic history can be generally written as

where γ denotes the probability of each individual to be a patient zero, and �
(

f (t), b
)

= f (b)e−
∫ b
−∞ f (t)dt is the 

first-success distribution density of an event with rate f(t). Hence, the quantity �
(

∑

j  =i I
[

tj ≤ t
]

�ji(t), ti

)

 is the 
probability density associated with the infection, at time ti , of individual i by one of its infectious contacts at 
previous times. Notice that when 

∫ b
−∞

�
(

f , t
)

dt < 1 , it means that there is a non-zero probability of the indi-
vidual remaining susceptible. In that case, we will formally assign the defect mass 1−

∫ b
−∞

�
(

f , t
)

dt to t = ∞ . 
In addition to the epidemic model, a set of observations has to be defined. In real epidemics, observations mirror 
the outcomes of medical tests, namely the state of an individual i at time t. For the sake of simplicity, an auxiliary 
variable r ∈ {+.−} representing positive or negative tests, respectively, is defined, such that each observation can 
be encoded as a triplet (i, t, r) . Given the stochastic nature of clinical tests, it is assumed that the outcome r of a 
test performed on individual i at time t obeys a known conditional distribution law P[r|ti] where ti represents 
the infection time of individual i. When medical tests are affected by uncertainty, i.e. there exist non-zero false 
positive and false negative rates of the diagnostic tests, the conditional probability states 

For a population undergoing M individual test events, the set O of observations is then identified with the set 
of triplets (iµ, tµ, rµ) for µ = 1, . . . ,M . As in the random walk example, each observation constrains the dynam-
ics: in the noise-less case (i.e. pFNR = pFPR = 0 ) the posterior distribution gives zero measure to all the epidemic 
trajectories that violate the observations. Given a realization of an epidemic model defined on a contact network, 
and the (possibly noisy) observation of the states of a subset of the individuals (at possibly different times), the 
epidemic risk assessment problem consists of estimating the epidemic risk, i.e. the risk of being infected, of the 
unobserved individuals at some specific time. In practice, it amounts to computing marginal probabilities from 
the posterior distribution

where 
∫

dt denotes the integral over all infections times t1, . . . , tN.
A richer epidemic model, that is often used as a testing ground for more realistic scenarios (see e.g. Refs.23,24), 

is the SEIR model25, which includes also the Exposed (E) and Recovered (R) states, i.e. X = {S,E, I ,R} . The only 
allowed transitions are S → E (representing the contagion event), E → I , and I → R ; the latter ones occur for 
each individual independently of the others, with latency and recovery rates νi and µi , respectively. The previ-
ous representation in terms of transmission times can be straightforwardly generalized to the SEIR model (by 
introducing individual-wise infective and recovery times) as well as the definition of observations from clinical 
tests and the measure of the individual risk (see Supplementary Information online for additional details).

The choice of the parameters θ of the CVA ansatz reflects and somehow generalizes the features of the genera-
tive model P[t] : in the SI case for instance, for each individual i, heterogeneous infection rates �i(t) , zero-patient 
probabilities γi , and self-infection rates ωi(t) are defined. Since �i(t) and ωi(t) are time-dependent quantities, 
an additional parametrization is introduced for computational purposes. Then, the trial distribution Qθ (t) is 
optimized with respect to the full set of parameters. The total number of parameters for the inference in the SI 
model in a population of N individuals is 7N, while for the SEIR model is 13N. We refer to Section III of the 
Supplementary Information for a more detailed discussion of the parameter choice and of the implementation 
of the gradient descent.

Results on epidemic inference
Performances on synthetic networks.  The performance of the CVA in reconstructing epidemic trajec-
tories can be tested by measuring its ability in classifying the state of the unobserved individuals based on their 
predicted risk. The results are directly compared with those obtained using other inference techniques previ-
ously proposed in the literature, such as Belief Propagation26 as implemented in9 (sib), a Monte Carlo method 
(MC), a Soft Margin method (soft) adapted from27, and simple heuristic methods based on Mean Field equations 

(14)P[t] =
�

i







γ δ(ti)+ (1− γ )�





�

j �=i

I
�

tj ≤ t
�

�ji(t), ti











,

(15a)P[r = +|ti] =
(

1− pFNR
)

I[ti ≤ t]+ pFPR I[ti > t]

(15b)P[r = −|ti] = pFNR I[ti ≤ t]+
(

1− pFPR
)

I[ti > t]

(16)P
[

xi(t) = I|O
]

=

∫

dtI[ti ≤ t]P
[

t|O
]
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(MF)9 or on sampling (heu). A description of the implementation of the several methods used for comparison is 
provided in the Supplementary Information (Section VII) online.

For the sake of simplicity, we considered SI epidemic processes on proximity graphs28, i.e. random graphs 
generated by proximity relationships between N = 50 individuals randomly drawn from a uniform distribution 
on a two-dimensional square region (a definition of proximity graphs is given in Section VIII of the Supplemen-
tary Information). Each instance corresponds to a different realization of both the dynamical network and the 
forward epidemic propagation. Observations O are noiseless, i.e. pFNR = 0 , and performed on a randomly chosen 
fraction of the population at a fixed time tobs = T . The comparison among the different inference methods is 
performed by ranking the individual marginal probabilities of being in state I at a chosen time t∗ and building 
the corresponding receiving operating characteristic (ROC) curve29. The AUC (area under the ROC curve) at a 
time t∗ is an indicator of the accuracy of the method in reconstructing the state of the individuals at that time. 
The AUC at initial time ( t∗ = 0 , patient-zero problem) and at the final time ( t∗ = T , risk assessment) are shown 
in Fig. 2 as function of the number of observations available.

As one may expect, in both cases the average performances of all methods improve when the number of 
observations increases. In particular, the Soft Margin method is expected to converge to the exact results for 
this type of experiment when the number N of individuals is small. The results obtained with CVA are very close 
(and closer than any other technique) to those obtained by means of Soft Margin (soft), even in the interesting 
and challenging regime with only a few observations.

To further investigate the performances of CVA against other state-of-the-art techniques, the AUC associ-
ated with the prediction of individual risk is quantified as a function of time, with two different observation 
protocols: (i) the states of a fraction of individuals are observed at observation times scattered over the dura-
tion of the simulation or (ii) observations are performed at the last time tobs = T . More precisely, in the first 
protocol observation times are randomly drawn a priori with uniform distribution in the interval [1,T] , and 
observations are biased towards tested-positive outcomes to mimic a realistic scenario where symptomatic, i.e. 
infected individuals, are more likely tested than susceptible ones. For these experiments, two realistic dynamic 
contact network instances are considered, one generated using the Spatio-temporal Epidemic Model (StEM) in 
continuous-time in Ref.30 and the other using the discrete-time OpenABM model in Ref.14 (see Section VIII of 
the Supplementary Information for a brief description of StEM and OpenABM models). For sake of simplicity, 
instead of adopting the complex epidemic dynamics described in Ref.14 and Ref.30, epidemic realizations are 
generated using a continuous-time SI model on these contact graphs.

A measure of the individual risk is computed according to all different methods (CVA, sib, soft, and MC), 
and the corresponding AUCs are shown as functions of time (in days), in Fig. 3(a, c) and (b, d) for OpenABM 
and the StEM respectively. For the latter only, we also consider different MC parameterizations, in particular 
when using δ ∈ {12, 24, 48, 96} hours; a further increase of δ does not carry any improvement of the results. The 
quantity δ is associated with the MC move’s proposal (see Section VII of the Supplementary Information for a 
detailed description). Panels (a) and (b) are associated with the observations scattered in time, while panels (c) 
and (d) use observations at the last time only. In panel (a) simulations are run for N = 2000 , while in panel (c) we 
set N = 1000 . It is easy to see that, in panels (a) and (c), CVA (blue dots) is the best-performing method in terms 
of AUC; only MC (pink triangles) reaches comparable AUC for t ∼ T . The results achieved by Belief Propaga-
tion are similar to those produced by CVA when the size of the graph is N = 1000 (panel (c)), and significantly 

Figure 2.   Area under the ROC (AUC) as a function of the number of observations for the risk assessment 
problem, i.e. t⋆ = T , in panel (a), and for the patient-zero problem, t⋆ = 0 , panel (b). The simulated contact 
graph is a proximity network with average connectivity 2.2/N. For both simulations in panels (a) and (b), the 
total number of individuals is N = 50 , the probability of being the zero patient is set to γ = 1/N , and the 
infection rate is � = 0.1 . For each epidemic realization, the inference is performed for an increasing number of 
noiseless observations (here pFNR = 0 ) at time tobs = T . Thick lines and shaded areas indicate the averages and 
the standard errors computed over 40 different instances.
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deteriorate for N = 2000 (panel (a)). For the instances generated according to StEM in panels (b) and (d), the 
comparison reveals that CVA achieves the largest values of the AUC at all times and only Belief Propagation (sib, 
orange squares) performs comparably to CVA for the risk assessment problem, i.e. the inference at the last time 
of the dynamics. MC for δ ∈ {48, 96} , approaches CVA performances in the last days while is not able to predict 
the zero patient. Indeed, the AUC associated with MC predictions for all parametrizations is slightly larger than 
0.5 for t < 5 when observations are performed at the last time of the dynamics.

Hyperparameters inference.  In the previous numerical experiments, the parameters of the generative 
SI model, i.e. the (homogeneous) infection rate � and the probability of being the zero patient γ , are assumed 
to be known. These quantities enter the CVA formalism as hyperparameters of the prior distribution which 
are often inaccessible in realistic applications, but can be estimated as those realizing the minimum of the free-
energy F = − logP[O ] . This can be achieved by gradient descent if the number nobs of available observations 
is sufficiently large (see Section VI of the Supplementary Information for details). An example of the quality of 
the parameter inference is provided by the following experiment. For a SI model with nobs and true parameters 
(γ ⋆, �⋆) = (1/N , 0.1) (see the caption of Fig. 4 for further details), Fig. 4(a) shows a heatmap of F computed at 
the convergence of CVA as function of the pair of values (γ , �) used as the hyperparameters of the correspond-
ing prior distribution. The region attaining the lowest values also contains the true values (γ ∗, �∗) . The oriented 
paths (white arrows) in Fig. 4(a) represent the sequences of intermediate values of � and γ obtained during the 
convergence process of CVA, starting from three different initial conditions. These traces show that trajectories 
end up in the same region, very close to where the true values are located (green star). Similar experiments, 
where the value of the zero patient probability is set to γ = 1/N and the infection probability varies in the range 
[0.05, 0.20] are performed. Similarly to the previous set-up, CVA is applied to infer the parameter � . Figure 4(b) 
displays a scatter plot of the inferred values against the true ones. Results suggest a good agreement between the 
result of the inference and the generative process.

Model reduction.  For viral diseases with sufficiently known transmission mechanisms, agent-based mod-
eling using discrete-state stochastic processes has proven useful to build large-scale simulators of epidemic out-
breaks and design containment strategies24,30. Such mathematical models are much more complex than the SI 
model analyzed previously, as they need to include additional specific features of real-world diseases. In particu-
lar, models may assume different infected states, characterized by a different capability of transmitting the virus 
and diverse sensitivity to diagnostic tests. Another important feature that can emerge from realistic transmis-
sions is that individuals can stop being infectious, even before recovering from the infected state, because of the 
decay of their viral load. These ingredients may be effectively included in the SI and SEIR models by introduc-

Figure 3.   AUC associated with the prediction of the infected individuals, for the Causal Variational Approach 
(CVA), Belief Propagation (sib) and SoftMargin (soft), and MCMC (MC) as a function of time during the 
epidemic propagation of a SI model on several instances of dynamic contact network generated using the 
OpenABM model14 (in panel (a) N = 2000 , in (c) N = 1000 ) and the StEM in Ref.30 (panels (b) and (d)) 
for N = 904 . The infection rate is set to � = 0.15 for the latter and � = 0.02 for the former; observations are 
noiseless in both cases. For panels (c) and (d), observations are performed at the last time of the dynamics, i.e. 
tobs = T . For the results in panels (a) and (b) observation times are extracted uniformly in the range [1,T] ; at 
each observation time tobs , infected nodes are observed with a biased probability equal to 1.1× NI (tobs)/N 
where NI (tobs) is the number of infected individuals at time tobs and N is the total number of individuals. The 
total number of observations is nobs = N · 0.1 for OpenABM and nobs = 100 for the StEM.
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ing time-dependent infection rates, which is a natural assumption in the framework of the Causal Variational 
Approach (see Section II-III of the Supplementary Information). This property makes the latter a very suitable 
inference method to approximate unknown and possibly complex generative epidemic processes using classes 
of simpler probabilistic models. A simple test of such a potentiality is provided by the following example. Several 
epidemic realizations are generated with an SEIR prior model and the quality of the inference obtained by the 
Causal Variational Approach is evaluated when (i) the SEIR model is also used as an ansatz for the posterior dis-
tribution and (ii) when the posterior distribution is approximated with a simpler probabilistic model, such as the 
SI model. If the parameters of the generative SEIR model are known, the hyperparameters of the SEIR posterior 
are also known. The corresponding results (green diamonds) for the AUC as a function of time on a proximity 

Figure 4.   Panel (a) Heat map of the free energy ( F := − logP(O ) ) computed at the convergence of CVA 
as a function of the assumed hyperparameters of the generative SI model. The experiment is performed on a 
proximity graph with N = 50 individuals and density ρ = 2/N ; the epidemic model is characterized by the 
zero-patient probability γ ∗ = 1/N and the infection rate �∗ = 0.1 , shown here as a green star. We perform a 
large number of observations ( nobs = 2N ) at uniformly randomly distributed times. As expected, the lowest 
values of this free energy are concentrated around the exact value (γ ∗, �∗) . The oriented paths (white arrows) 
represent the convergence towards the minimum of − logP[O ] obtained by performing a gradient descent 
algorithm over the hyperparameters starting from three different initial points in the plane (γ , �) . Panel (b) 
Scatter plot of inferred values for the infection probability against the ground truth. In these experiments, we fix 
and assume to know the zero patient probability γ = 1/N while the infection parameter � is varied. For each � 
an epidemic simulation is performed and nobs = 10N observations are taken at uniformly randomly distributed 
times.

Figure 5.   Effects of model reduction on inferential performances and generative capabilities. The numerical 
experiments are performed on a proximity graph with N = 100 individuals and density 2.2/N. The observed 
epidemic realizations are generated using an SEIR model with γ = 1/N , � = 0.3 (panels (a) and (b)) and 0.15 
(panel (c)), latency delay ν = 0.5 and recovery delay µ = 0.1 . Panel (a) Values of the AUC as a function of 
time obtained using the CVA in two observation regimes (when the number of observations is nobs = N/10 
and nobs = N/2 ), with the three different inferred posterior distributions: an SEIR model with known 
hyperparameters (green diamonds), an SEIR model with unknown hyperparameters (blue circles), and a SI 
model with unknown hyperparameters (red squares). Shaded areas represent the error around the average 
value, computed using 22 instances. Panels (b) and (c) The average fraction of infected individuals as a function 
of time estimated using the correct SEIR prior model (green diamonds), an SEIR prior with the inferred 
hyperparameters (blue circles), and a SI prior model with the inferred hyperparameters (red squares). The 
regimes shown correspond to unbiased observations (center, for � = 0.3 ), and to observations preferentially 
sampled from large outbreaks (right, for � = 0.15 ). The black curves represent the same quantity computed 
from the observed epidemic realizations. Shaded areas represent the standard error computed from 40 
realizations of the dynamics.
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graph are displayed in Fig. 5(a). Otherwise, the hyperparameters of the SEIR posterior can be inferred by means 
of the CVA (blue circles). Finally, the ansatz for the posterior distribution can be simplified to a SI model, and 
the corresponding hyperparameters can be inferred as well within the CVA (red squares). The overall quality of 
the inference depends on the possibly different regimes of information contained in the observations. Strikingly, 
when the generative model is not known, the results from SEIR-based and SI-based inference are always very 
close to each other. For a sufficiently large number of observations, such results are also close to those obtained 
with the SEIR posterior and known hyperparameters.

From a generative perspective, the inferred hyperparameters can be also interpreted as the epidemic param-
eters of some prior model, from which epidemic realizations can be sampled. It is natural to ask what are the 
statistical properties of such generative processes compared to the original one, from which the observations 
were sampled. Figure 5 also shows, in two different regimes, as a function of time the average number of infected 
individuals estimated from the original SEIR prior model (green diamond), the SEIR prior model with inferred 
hyperparameters (blue circles) and the SI prior model with inferred hyperparameters (red squares). The aver-
age number of infected individuals computed over the realizations from which the observations are sampled 
is also displayed (black line). The regimes shown in Fig. 5 correspond to unbiased observations (panel (b), for 
� = 0.3 ), and to observations preferentially sampled from large outbreaks (panel (c), for � = 0.15 ). Although the 
discrepancy between the different curves is significant, the moderate difference between predictions obtained 
using SEIR and SI prior models with inferred hyperparameters suggests that model reduction is only a minor 
source of information bias.

Conclusions
Sampling from the posterior distribution of a conditioned dynamical process can be computationally hard. In 
this work, a novel computational method to accomplish this task, called the Causal Variational Approach, was 
put forward. The Causal Variational Approach is based on the idea of inferring the posterior with an effective, 
unconditioned, dynamical model, whose parameters can be learned by minimizing a corresponding free energy 
functional. An insight into the potential of the method is obtained by analyzing a one-dimensional conditioned 
random walk in which some regions of space are forbidden. The CVA produces a generalized random walk 
process, with space-dependent and time-dependent jump rates, whose unconditioned realizations satisfy the 
imposed constraints. An application of greater practical interest concerns epidemic inference, in particular the 
risk assessment from partial and time-scattered observations. For simple stochastic epidemic models, such as 
SI and SEIR, taking place on contact networks of moderately small size, the CVA performs better or as well as 
the best methods currently available. Moreover, the variational nature of the method allows one to estimate the 
parameters of the original epidemic model that generated the observations, which enter the CVA in the form of 
hyperparameters. Since the CVA approximates the posterior distribution of the epidemic process by learning a 
set of generalized individual-based, time-dependent parameters, even with a rather simple ansatz for the epi-
demic model, such as an SI model, inference from observations coming from more complex epidemic processes 
can be performed. In fact, a generalized SI model with time-dependent infection rates and self-infection rates 
allows one to accommodate many features of real-world epidemic diseases, such as time-varying viral load and 
transmissivity, incubation, and recovery. The performances of the Causal Variational Approach do not seem to 
suffer from model reduction from SEIR to SI, suggesting that simplified epidemic models could be effective for 
inference also in real-world cases. The Causal Variational Approach is very flexible and, employing sampling to 
perform estimates, it can be applied virtually to any dynamics for which the latter can be carried out efficiently. In 
particular, the method can thus be applied to inference problems involving recurrent epidemic processes, such as 
the SIS model31 or other models (e.g.32) where immunity decays over time. There are, however, some limitations. 
The CVA relies on the fact that the functional form of the posterior should be similar to the one of the prior. 
This is not true in general. For example, let us take an epidemic SI model in which the zero-patient probability 
γ is infinitesimally small. If one individual is tested positive at a certain time, then the posterior distribution 
is substantially different from the prior. In particular, in the prior process each individual is the patient zero 
independently with probability γ , while in the posterior there is a strong (anti)correlation: indeed the measure 
will concentrate on trajectories with exactly one infected individual (and this is impossible to reproduce with 
independent patient zero probabilities). Of course, this example is extremely contrived, as the probability that 
infection occurs at all in this system, and thus such a test result can be obtained, is infinitesimally small as well. 
Moreover, in this case the problem can be simply solved by adopting a more natural distribution for the initial 
state (either by using a non-infinitesimal initial infection probability in the prior, or by adopting a single initial 
infection in the test distribution q, see also Supplementary Information). Nevertheless, it is a simple example in 
which the prior functional form is substantially different from the one of the posterior.

Data availability
All data is generated using simulations and can be reproduced by following the prescriptions provided in the 
main text and in Supplementary Information online. A public GitHub repository containing a Julia implemen-
tation of the algorithm and notebooks to reproduce the results of this work is available at https://​github.​com/​
abrau​nst/​Causa​lity.​git.

Received: 25 January 2023; Accepted: 18 April 2023

References
	 1.	 Newman, M. E. J. & Barkema, G. T. Monte Carlo Methods in Statistical Physics (Clarendon Press, Oxford, 1999).

https://github.com/abraunst/Causality.git
https://github.com/abraunst/Causality.git


10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7350  | https://doi.org/10.1038/s41598-023-33770-3

www.nature.com/scientificreports/

	 2.	 MacKay, D. J. Information Theory, Inference and Learning Algorithms (Cambridge University Press, Cambridge, 2003).
	 3.	 Biroli, G. & Kurchan, J. Metastable states in glassy systems. Phys. Rev. E 64, 016101. https://​doi.​org/​10.​1103/​PhysR​evE.​64.​016101 

(2001).
	 4.	 James, R. G., Ayala, B. D. M., Zakirov, B. & Crutchfield, J. P. Modes of information flow 1808.06723 (2018).
	 5.	 Sattari, S. et al. Modes of information flow in collective cohesion. Sci. Adv. 8, eabj1720. https://​doi.​org/​10.​1126/​sciadv.​abj17​20 

(2022).
	 6.	 Macal, C. M. & North, M. J. Agent-based modeling and simulation. In Proceedings of the 2009 Winter Simulation Conference (WSC), 

86–98. https://​doi.​org/​10.​1109/​WSC.​2009.​54293​18 (2009).
	 7.	 Dawid, A. P. Conditional independence in statistical theory. J. R. Stat. Soc. Ser. B (Methodological) 41, 1–15. https://​doi.​org/​10.​

1111/j.​2517-​6161.​1979.​tb010​52.x (1979).
	 8.	 Norris, J. R. Markov Chains (Cambridge University Press, Cambridge, 1998).
	 9.	 Baker, A. et al. Epidemic mitigation by statistical inference from contact tracing data. Proc. Natl. Acad. Sci. 118, e2106548118. 

https://​doi.​org/​10.​1073/​pnas.​21065​48118 (2021).
	10.	 Herbrich, R., Rastogi, R. & Vollgraf, R. CRISP: A Probabilistic Model for Individual-Level COVID-19 Infection Risk Estimation 

Based on Contact Data, https://​doi.​org/​10.​48550/​arXiv.​2006.​04942 (2022). arXiv:​2006.​04942 [cs, stat].
	11.	 O’Neill, P. D. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo 

methods. Math. Biosci. 180, 103–114. https://​doi.​org/​10.​1016/​S0025-​5564(02)​00109-8 (2002).
	12.	 Biazzo, I., Braunstein, A., Dall’Asta, L. & Mazza, F. A Bayesian generative neural network framework for epidemic inference 

problems. Sci. Rep. 12, 19673. https://​doi.​org/​10.​1038/​s41598-​022-​20898-x (2022).
	13.	 Wu, D., Wang, L. & Zhang, P. Solving statistical mechanics using variational autoregressive networks. Phys. Rev. Lett. 122, 080602. 

https://​doi.​org/​10.​1103/​PhysR​evLett.​122.​080602 (2019).
	14.	 Ferretti, L. et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368, 

eabb6936. https://​doi.​org/​10.​1126/​scien​ce.​abb69​36 (2020).
	15.	 Cencetti, G. et al. Digital proximity tracing on empirical contact networks for pandemic control. Nat. Commun. 12, 1655. https://​

doi.​org/​10.​1038/​s41467-​021-​21809-w (2021).
	16.	 Eames, K. T. D. & Keeling, M. J. Contact tracing and disease control. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 2565–2571. https://​

doi.​org/​10.​1098/​rspb.​2003.​2554 (2003).
	17.	 Foss, S. & Sakhanenko, A. Structural properties of conditioned random walks on integer lattices with random local constraints. 

In In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius. Progress in Probability (eds Vares, M. E. et al.) 407–438 (Springer, 
Cham, 2021). https://​doi.​org/​10.​1007/​978-3-​030-​60754-8_​19.

	18.	 Gantert, N., Popov, S. & Vachkovskaia, M. On the range of a two-dimensional conditioned simple random walk. Ann. Henri 
Lebesgue 2, 349–368. https://​doi.​org/​10.​5802/​ahl.​20 (2019).

	19.	 Ding, J., Fukushima, R., Sun, R. & Xu, C. Geometry of the random walk range conditioned on survival among Bernoulli obstacles. 
Probab. Theory Relat. Fields 177, 91–145. https://​doi.​org/​10.​1007/​s00440-​019-​00943-z (2020).

	20.	 Parisi, G. Statistical Field Theory (Avalon Publishing, London, 1998).
	21.	 Joyce, J. M. Kullback–Leibler Divergence. In International Encyclopedia of Statistical Science (ed. Lovric, M.) 720–722 (Springer, 

Berlin, 2011). https://​doi.​org/​10.​1007/​978-3-​642-​04898-2_​327.
	22.	 Allen, L. J. S. Some discrete-time SI, SIR, and SIS epidemic models. Math. Biosci. 124, 83–105. https://​doi.​org/​10.​1016/​0025-​

5564(94)​90025-6 (1994).
	23.	 Kerr, C. C. et al. Covasim: An agent-based model of Covid-19 dynamics and interventions. PLOS Comput. Biol. 17, e1009149 

(2021).
	24.	 Hinch, R. et al. OpenABM-covid19-an agent-based model for non-pharmaceutical interventions against COVID-19 including 

contact tracing. PLOS Comput. Biol. 17, e1009146. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10091​46 (2021).
	25.	 Biswas, M. H. A., Paiva, L. T. & Pinho, M. D. A SEIR model for control of infectious diseases with constraints. Math. Biosci. Eng. 

11, 761–784. https://​doi.​org/​10.​3934/​mbe.​2014.​11.​761 (2014).
	26.	 Mézard, M. & Montanari, A. Information, Physics, and Computation (Oxford University Press, Oxford, 2009).
	27.	 Antulov-Fantulin, N., Lancčić, A., Šmuc, T., Štefančić, H. & Šikić, M. Identification of patient zero in static and temporal networks: 

Robustness and limitations. Phys. Rev. Lett. 114, 248701. https://​doi.​org/​10.​1103/​PhysR​evLett.​114.​248701 (2015).
	28.	 Mathieson, L. & Moscato, P. An introduction to proximity graphs. In Business and Consumer Analytics: New Ideas (eds Moscato, 

P. & de Vries, N. J.) 213–233 (Springer, Cham, 2019). https://​doi.​org/​10.​1007/​978-3-​030-​06222-4_4.
	29.	 Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874. https://​doi.​org/​10.​1016/j.​patrec.​2005.​10.​010 

(2006).
	30.	 Lorch, L. et al. Quantifying the effects of contact tracing, testing, and containment measures in the presence of infection hotspots. 

ACM Transactions on Spatial Algorithms and Systemshttps://​doi.​org/​10.​1145/​35307​74 (2022).
	31.	 Ortega, E., Machado, D. & Lage-Castellanos, A. Dynamics of epidemics from cavity master equations: Susceptible-infectious-

susceptible models. Phys. Rev. E 105, 024308. https://​doi.​org/​10.​1103/​PhysR​evE.​105.​024308 (2022).
	32.	 Wonham, M. J., de Camino-Beck, T. & Lewis, M. A. An epidemiological model for West Nile virus: invasion analysis and control 

applications. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 501–507. https://​doi.​org/​10.​1098/​rspb.​2003.​2608 (2004).

Acknowledgements
This study was carried out within the FAIR - Future Artificial Intelligence Research and received funding from the 
European Union Next-GenerationEU (Piano Nazionale Di Ripresa e Resilienza (PNRR)-Missione 4 Componente 
2, Investimento 1.3- D.D. 1555 11/10/2022, PE00000013). This manuscript reflects only the authors-views and 
opinions, neither the European Union nor the European Commission can be considered responsible for them. 
LDA acknowledges financial support from ICSC (Centro Nazionale di Ricerca in High-Performance Computing, 
Big Data, and Quantum Computing) founded by European Union – NextGenerationEU.

Author contributions
A.B. and M.M. devised research and developed the CVA code. A.B. and L.D.A. supervised research. A.P.M. 
developed the two epidemic simulator interfaces. G.C. developed the MCMC code. M.M. and A.P.M. performed 
simulations. All authors analyzed results and wrote the manuscript.

Competing interests 
The authors declare no competing interests.

https://doi.org/10.1103/PhysRevE.64.016101
https://doi.org/10.1126/sciadv.abj1720
https://doi.org/10.1109/WSC.2009.5429318
https://doi.org/10.1111/j.2517-6161.1979.tb01052.x
https://doi.org/10.1111/j.2517-6161.1979.tb01052.x
https://doi.org/10.1073/pnas.2106548118
https://doi.org/10.48550/arXiv.2006.04942
http://arxiv.org/abs/2006.04942
https://doi.org/10.1016/S0025-5564(02)00109-8
https://doi.org/10.1038/s41598-022-20898-x
https://doi.org/10.1103/PhysRevLett.122.080602
https://doi.org/10.1126/science.abb6936
https://doi.org/10.1038/s41467-021-21809-w
https://doi.org/10.1038/s41467-021-21809-w
https://doi.org/10.1098/rspb.2003.2554
https://doi.org/10.1098/rspb.2003.2554
https://doi.org/10.1007/978-3-030-60754-8_19
https://doi.org/10.5802/ahl.20
https://doi.org/10.1007/s00440-019-00943-z
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1016/0025-5564(94)90025-6
https://doi.org/10.1016/0025-5564(94)90025-6
https://doi.org/10.1371/journal.pcbi.1009146
https://doi.org/10.3934/mbe.2014.11.761
https://doi.org/10.1103/PhysRevLett.114.248701
https://doi.org/10.1007/978-3-030-06222-4_4
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1145/3530774
https://doi.org/10.1103/PhysRevE.105.024308
https://doi.org/10.1098/rspb.2003.2608


11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7350  | https://doi.org/10.1038/s41598-023-33770-3

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​33770-3.

Correspondence and requests for materials should be addressed to M.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-33770-3
https://doi.org/10.1038/s41598-023-33770-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Inference in conditioned dynamics through causality restoration
	Methods
	A toy model application: conditioned random walk. 
	Epidemic models and observations. 

	Results on epidemic inference
	Performances on synthetic networks. 
	Hyperparameters inference. 
	Model reduction. 

	Conclusions
	References
	Acknowledgements


